File size: 10,200 Bytes
90a01ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
{
"pythonClassName": "tensorflow_datasets.core.features.features_dict.FeaturesDict",
"featuresDict": {
"features": {
"steps": {
"pythonClassName": "tensorflow_datasets.core.features.dataset_feature.Dataset",
"sequence": {
"feature": {
"pythonClassName": "tensorflow_datasets.core.features.features_dict.FeaturesDict",
"featuresDict": {
"features": {
"reward": {
"pythonClassName": "tensorflow_datasets.core.features.scalar.Scalar",
"tensor": {
"shape": {},
"dtype": "float32",
"encoding": "none"
},
"description": "+1 reward for each two-part assembly."
},
"language_embedding": {
"pythonClassName": "tensorflow_datasets.core.features.tensor_feature.Tensor",
"tensor": {
"shape": {
"dimensions": [
"512"
]
},
"dtype": "float32",
"encoding": "none"
},
"description": "Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5"
},
"discount": {
"pythonClassName": "tensorflow_datasets.core.features.scalar.Scalar",
"tensor": {
"shape": {},
"dtype": "float32",
"encoding": "none"
},
"description": "Discount if provided, default to 1."
},
"is_last": {
"pythonClassName": "tensorflow_datasets.core.features.tensor_feature.Tensor",
"tensor": {
"shape": {},
"dtype": "bool",
"encoding": "none"
}
},
"language_instruction": {
"pythonClassName": "tensorflow_datasets.core.features.text_feature.Text",
"text": {},
"description": "Language Instruction."
},
"observation": {
"pythonClassName": "tensorflow_datasets.core.features.features_dict.FeaturesDict",
"featuresDict": {
"features": {
"wrist_image": {
"pythonClassName": "tensorflow_datasets.core.features.image_feature.Image",
"image": {
"shape": {
"dimensions": [
"256",
"256",
"3"
]
},
"dtype": "uint8",
"encodingFormat": "jpeg"
},
"description": "Wrist camera RGB observation."
},
"image": {
"pythonClassName": "tensorflow_datasets.core.features.image_feature.Image",
"image": {
"shape": {
"dimensions": [
"256",
"256",
"3"
]
},
"dtype": "uint8",
"encodingFormat": "jpeg"
},
"description": "Main camera RGB observation."
},
"state": {
"pythonClassName": "tensorflow_datasets.core.features.tensor_feature.Tensor",
"tensor": {
"shape": {
"dimensions": [
"35"
]
},
"dtype": "float32",
"encoding": "none"
},
"description": "Robot state, consists of [3x eef position, 4x eef quaternion, 3x eef linear velocity, 3x eef angular velocity, 7x joint position, 7x joint velocity, 7x joint torque, 1x gripper width]."
}
}
}
},
"is_first": {
"pythonClassName": "tensorflow_datasets.core.features.tensor_feature.Tensor",
"tensor": {
"shape": {},
"dtype": "bool",
"encoding": "none"
}
},
"is_terminal": {
"pythonClassName": "tensorflow_datasets.core.features.tensor_feature.Tensor",
"tensor": {
"shape": {},
"dtype": "bool",
"encoding": "none"
}
},
"skill_completion": {
"pythonClassName": "tensorflow_datasets.core.features.scalar.Scalar",
"tensor": {
"shape": {},
"dtype": "float32",
"encoding": "none"
},
"description": "+1 skill completion reward; otherwise, 0."
},
"action": {
"pythonClassName": "tensorflow_datasets.core.features.tensor_feature.Tensor",
"tensor": {
"shape": {
"dimensions": [
"8"
]
},
"dtype": "float32",
"encoding": "none"
},
"description": "Robot action, consists of [3x eef pos velocities, 4x eef quat velocities, 1x gripper velocity]."
}
}
}
},
"length": "-1"
}
},
"episode_metadata": {
"pythonClassName": "tensorflow_datasets.core.features.features_dict.FeaturesDict",
"featuresDict": {
"features": {
"furniture": {
"pythonClassName": "tensorflow_datasets.core.features.text_feature.Text",
"text": {},
"description": "Furniture model name."
},
"file_path": {
"pythonClassName": "tensorflow_datasets.core.features.text_feature.Text",
"text": {},
"description": "Path to the original data file."
},
"initial_randomness": {
"pythonClassName": "tensorflow_datasets.core.features.text_feature.Text",
"text": {},
"description": "Randomness in furniture initial configuration.[low, med, high]"
}
}
}
}
}
}
} |