WeiChow's picture
Upload folder using huggingface_hub
90a01ce verified
raw
history blame
10.2 kB
{
"pythonClassName": "tensorflow_datasets.core.features.features_dict.FeaturesDict",
"featuresDict": {
"features": {
"steps": {
"pythonClassName": "tensorflow_datasets.core.features.dataset_feature.Dataset",
"sequence": {
"feature": {
"pythonClassName": "tensorflow_datasets.core.features.features_dict.FeaturesDict",
"featuresDict": {
"features": {
"reward": {
"pythonClassName": "tensorflow_datasets.core.features.scalar.Scalar",
"tensor": {
"shape": {},
"dtype": "float32",
"encoding": "none"
},
"description": "+1 reward for each two-part assembly."
},
"language_embedding": {
"pythonClassName": "tensorflow_datasets.core.features.tensor_feature.Tensor",
"tensor": {
"shape": {
"dimensions": [
"512"
]
},
"dtype": "float32",
"encoding": "none"
},
"description": "Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5"
},
"discount": {
"pythonClassName": "tensorflow_datasets.core.features.scalar.Scalar",
"tensor": {
"shape": {},
"dtype": "float32",
"encoding": "none"
},
"description": "Discount if provided, default to 1."
},
"is_last": {
"pythonClassName": "tensorflow_datasets.core.features.tensor_feature.Tensor",
"tensor": {
"shape": {},
"dtype": "bool",
"encoding": "none"
}
},
"language_instruction": {
"pythonClassName": "tensorflow_datasets.core.features.text_feature.Text",
"text": {},
"description": "Language Instruction."
},
"observation": {
"pythonClassName": "tensorflow_datasets.core.features.features_dict.FeaturesDict",
"featuresDict": {
"features": {
"wrist_image": {
"pythonClassName": "tensorflow_datasets.core.features.image_feature.Image",
"image": {
"shape": {
"dimensions": [
"256",
"256",
"3"
]
},
"dtype": "uint8",
"encodingFormat": "jpeg"
},
"description": "Wrist camera RGB observation."
},
"image": {
"pythonClassName": "tensorflow_datasets.core.features.image_feature.Image",
"image": {
"shape": {
"dimensions": [
"256",
"256",
"3"
]
},
"dtype": "uint8",
"encodingFormat": "jpeg"
},
"description": "Main camera RGB observation."
},
"state": {
"pythonClassName": "tensorflow_datasets.core.features.tensor_feature.Tensor",
"tensor": {
"shape": {
"dimensions": [
"35"
]
},
"dtype": "float32",
"encoding": "none"
},
"description": "Robot state, consists of [3x eef position, 4x eef quaternion, 3x eef linear velocity, 3x eef angular velocity, 7x joint position, 7x joint velocity, 7x joint torque, 1x gripper width]."
}
}
}
},
"is_first": {
"pythonClassName": "tensorflow_datasets.core.features.tensor_feature.Tensor",
"tensor": {
"shape": {},
"dtype": "bool",
"encoding": "none"
}
},
"is_terminal": {
"pythonClassName": "tensorflow_datasets.core.features.tensor_feature.Tensor",
"tensor": {
"shape": {},
"dtype": "bool",
"encoding": "none"
}
},
"skill_completion": {
"pythonClassName": "tensorflow_datasets.core.features.scalar.Scalar",
"tensor": {
"shape": {},
"dtype": "float32",
"encoding": "none"
},
"description": "+1 skill completion reward; otherwise, 0."
},
"action": {
"pythonClassName": "tensorflow_datasets.core.features.tensor_feature.Tensor",
"tensor": {
"shape": {
"dimensions": [
"8"
]
},
"dtype": "float32",
"encoding": "none"
},
"description": "Robot action, consists of [3x eef pos velocities, 4x eef quat velocities, 1x gripper velocity]."
}
}
}
},
"length": "-1"
}
},
"episode_metadata": {
"pythonClassName": "tensorflow_datasets.core.features.features_dict.FeaturesDict",
"featuresDict": {
"features": {
"furniture": {
"pythonClassName": "tensorflow_datasets.core.features.text_feature.Text",
"text": {},
"description": "Furniture model name."
},
"file_path": {
"pythonClassName": "tensorflow_datasets.core.features.text_feature.Text",
"text": {},
"description": "Path to the original data file."
},
"initial_randomness": {
"pythonClassName": "tensorflow_datasets.core.features.text_feature.Text",
"text": {},
"description": "Randomness in furniture initial configuration.[low, med, high]"
}
}
}
}
}
}
}