Search is not available for this dataset
image
imagewidth (px)
512
512
label
class label
50 classes
0aurora
0aurora
0aurora
0aurora
0aurora
0aurora
0aurora
0aurora
0aurora
0aurora
0aurora
0aurora
0aurora
0aurora
0aurora
0aurora
0aurora
0aurora
0aurora
0aurora
0aurora
0aurora
0aurora
0aurora
1beam
1beam
1beam
1beam
1beam
1beam
1beam
1beam
1beam
1beam
1beam
1beam
1beam
1beam
1beam
1beam
1beam
1beam
1beam
1beam
1beam
1beam
1beam
1beam
2blackswan
2blackswan
2blackswan
2blackswan
2blackswan
2blackswan
2blackswan
2blackswan
2blackswan
2blackswan
2blackswan
2blackswan
2blackswan
2blackswan
2blackswan
2blackswan
2blackswan
2blackswan
2blackswan
2blackswan
2blackswan
2blackswan
2blackswan
2blackswan
3blue-texture
3blue-texture
3blue-texture
3blue-texture
3blue-texture
3blue-texture
3blue-texture
3blue-texture
3blue-texture
3blue-texture
3blue-texture
3blue-texture
3blue-texture
3blue-texture
3blue-texture
3blue-texture
3blue-texture
3blue-texture
3blue-texture
3blue-texture
3blue-texture
3blue-texture
3blue-texture
3blue-texture
4boat
4boat
4boat
4boat
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

V2VBench

V2VBench is the dataset used in the research paper Diffusion Model-Based Video Editing: A Survey.

V2VBench is designed to benchmark and evaluate diffusion model-based video editing techniques and provides a diverse collection of video samples and corresponding editing tasks, enabling researchers and practitioners to assess the performance of various video editing algorithms.

For detailed instructions on how to use the V2VBench dataset, please refer to our documentation.

Downloads last month
173