XavierJiezou/cloud-adapter-models
Updated
Error code: JobManagerCrashedError
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
image
image | label
class label |
---|---|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
|
0test
|
This dataset card aims to describe the datasets used in the Cloud-Adapter, a collection of high-resolution satellite images and semantic segmentation masks for cloud detection and related tasks.
pip install huggingface-hub
# Step 1: Download datasets
huggingface-cli download --repo-type dataset XavierJiezou/cloud-adapter-datasets --local-dir data --include hrc_whu.zip
huggingface-cli download --repo-type dataset XavierJiezou/cloud-adapter-datasets --local-dir data --include gf12ms_whu_gf1.zip
huggingface-cli download --repo-type dataset XavierJiezou/cloud-adapter-datasets --local-dir data --include gf12ms_whu_gf2.zip
huggingface-cli download --repo-type dataset XavierJiezou/cloud-adapter-datasets --local-dir data --include cloudsen12_high_l1c.zip
huggingface-cli download --repo-type dataset XavierJiezou/cloud-adapter-datasets --local-dir data --include cloudsen12_high_l2a.zip
huggingface-cli download --repo-type dataset XavierJiezou/cloud-adapter-datasets --local-dir data --include l8_biome.zip
# Step 2: Extract datasets
unzip hrc_whu.zip -d hrc_whu
unzip gf12ms_whu_gf1.zip -d gf12ms_whu_gf1
unzip gf12ms_whu_gf2.zip -d gf12ms_whu_gf2
unzip cloudsen12_high_l1c.zip -d cloudsen12_high_l1c
unzip cloudsen12_high_l2a.zip -d cloudsen12_high_l2a
unzip l8_biome.zip -d l8_biome
import os
import zipfile
from huggingface_hub import hf_hub_download
# Define the dataset repository
repo_id = "XavierJiezou/Cloud-Adapter"
# Select the zip file of the dataset to download
zip_files = [
"hrc_whu.zip",
# "gf12ms_whu_gf1.zip",
# "gf12ms_whu_gf2.zip",
# "cloudsen12_high_l1c.zip",
# "cloudsen12_high_l2a.zip",
# "l8_biome.zip",
]
# Define a directory to extract the datasets
output_dir = "cloud_adapter_paper_data"
# Ensure the output directory exists
os.makedirs(output_dir, exist_ok=True)
# Step 1: Download and extract each ZIP file
for zip_file in zip_files:
print(f"Downloading {zip_file}...")
# Download the ZIP file from Hugging Face Hub
zip_path = hf_hub_download(repo_id=repo_id, filename=zip_file, repo_type="dataset")
# Extract the ZIP file
extract_path = os.path.join(output_dir, zip_file.replace(".zip", ""))
with zipfile.ZipFile(zip_path, "r") as zip_ref:
print(f"Extracting {zip_file} to {extract_path}...")
zip_ref.extractall(extract_path)
# Step 2: Explore the extracted datasets
# Example: Load and display the contents of the "hrc_whu" dataset
dataset_path = os.path.join(output_dir, "hrc_whu")
train_images_path = os.path.join(dataset_path, "img_dir", "train")
train_annotations_path = os.path.join(dataset_path, "ann_dir", "train")
# Display some files in the training set
print("Training Images:", os.listdir(train_images_path)[:5])
print("Training Annotations:", os.listdir(train_annotations_path)[:5])
# Example: Load and display an image and its annotation
from PIL import Image
# Load an example image and annotation
image_path = os.path.join(train_images_path, os.listdir(train_images_path)[0])
annotation_path = os.path.join(train_annotations_path, os.listdir(train_annotations_path)[0])
# Open and display the image
image = Image.open(image_path)
annotation = Image.open(annotation_path)
print("Displaying the image...")
image.show()
print("Displaying the annotation...")
annotation.show()
@article{hrc_whu,
title = {Deep learning based cloud detection for medium and high resolution remote sensing images of different sensors},
journal = {ISPRS Journal of Photogrammetry and Remote Sensing},
volume = {150},
pages = {197-212},
year = {2019},
author = {Zhiwei Li and Huanfeng Shen and Qing Cheng and Yuhao Liu and Shucheng You and Zongyi He},
}
@article{gf12ms_whu,
author={Zhu, Shaocong and Li, Zhiwei and Shen, Huanfeng},
journal={IEEE Transactions on Geoscience and Remote Sensing},
title={Transferring Deep Models for Cloud Detection in Multisensor Images via Weakly Supervised Learning},
year={2024},
volume={62},
pages={1-18},
}
@article{cloudsen12_high,
title={CloudSEN12, a global dataset for semantic understanding of cloud and cloud shadow in Sentinel-2},
author={Aybar, Cesar and Ysuhuaylas, Luis and Loja, Jhomira and Gonzales, Karen and Herrera, Fernando and Bautista, Lesly and Yali, Roy and Flores, Angie and Diaz, Lissette and Cuenca, Nicole and others},
journal={Scientific data},
volume={9},
number={1},
pages={782},
year={2022},
}
@article{l8_biome,
title = {Cloud detection algorithm comparison and validation for operational Landsat data products},
journal = {Remote Sensing of Environment},
volume = {194},
pages = {379-390},
year = {2017},
author = {Steve Foga and Pat L. Scaramuzza and Song Guo and Zhe Zhu and Ronald D. Dilley and Tim Beckmann and Gail L. Schmidt and John L. Dwyer and M. {Joseph Hughes} and Brady Laue}
}
For questions, please contact Xavier Jiezou at xuechaozou (at) foxmail (dot) com.