Datasets:
Size:
10K<n<100K
License:
update readme
Browse files- README.md +117 -1
- example_load.py +88 -0
README.md
CHANGED
@@ -10,4 +10,120 @@ tags:
|
|
10 |
- plant-disease
|
11 |
size_categories:
|
12 |
- 10K<n<100K
|
13 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
- plant-disease
|
11 |
size_categories:
|
12 |
- 10K<n<100K
|
13 |
+
---
|
14 |
+
|
15 |
+
# Dataset Summary
|
16 |
+
## Table of Contents
|
17 |
+
- [Dataset Description](#dataset-description)
|
18 |
+
- [Dataset Summary](#dataset-summary)
|
19 |
+
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
20 |
+
- [Languages](#languages)
|
21 |
+
- [Dataset Structure](#dataset-structure)
|
22 |
+
- [Data Instances](#data-instances)
|
23 |
+
- [Data Fields](#data-fields)
|
24 |
+
- [Data Splits](#data-splits)
|
25 |
+
- [Dataset Creation](#dataset-creation)
|
26 |
+
- [Curation Rationale](#curation-rationale)
|
27 |
+
- [Source Data](#source-data)
|
28 |
+
- [Annotations](#annotations)
|
29 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
30 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
31 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
32 |
+
- [Discussion of Biases](#discussion-of-biases)
|
33 |
+
- [Other Known Limitations](#other-known-limitations)
|
34 |
+
- [Additional Information](#additional-information)
|
35 |
+
- [Dataset Curators](#dataset-curators)
|
36 |
+
- [Licensing Information](#licensing-information)
|
37 |
+
- [Citation Information](#citation-information)
|
38 |
+
- [Contributions](#contributions)
|
39 |
+
|
40 |
+
## Dataset Description
|
41 |
+
|
42 |
+
### Dataset Summary
|
43 |
+
|
44 |
+
This dataset consist of 21,384 2448x2048 pairs of synthetic images for tomato plants. Each pair consist of left/right RGBD, and panoptic segmentation labels for the left image.
|
45 |
+
|
46 |
+
### Supported Tasks and Leaderboards
|
47 |
+
|
48 |
+
- `image-segmentation`: Both panoptic and semantic labels for separating tomato plants and identifying features and disease types in the dataset.
|
49 |
+
- `depth-estimation`: ground truth depth values for stereo and monocular applications.
|
50 |
+
|
51 |
+
### Languages
|
52 |
+
English
|
53 |
+
|
54 |
+
## Dataset Structure
|
55 |
+
|
56 |
+
### Data Instances
|
57 |
+
Each datapoint consist of 6 images:
|
58 |
+
```
|
59 |
+
{
|
60 |
+
'left_rgb': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=2448x2048 at 0x7F63FB5F4350>,
|
61 |
+
'right_rgb': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=2448x2048 at 0x7F63FF2B3950>,
|
62 |
+
'left_semantic': <PIL.PngImagePlugin.PngImageFile image mode=L size=2448x2048 at 0x7F63FC4488C0>,
|
63 |
+
'left_instance': <PIL.TiffImagePlugin.TiffImageFile image mode=I;16 size=2448x2048 at 0x7F63FC497EF0>,
|
64 |
+
'left_depth': <PIL.TiffImagePlugin.TiffImageFile image mode=F size=2448x2048 at 0x7F63FACF6E70>,
|
65 |
+
'right_depth': <PIL.TiffImagePlugin.TiffImageFile image mode=F size=2448x2048 at 0x7F63FACF7560>
|
66 |
+
}
|
67 |
+
```
|
68 |
+
|
69 |
+
### Data Fields
|
70 |
+
- 'left_rgb': Left RGB image, was compressed to 95\% quality.
|
71 |
+
- 'right_rgb': Right RGB image, was compressed to 95\% quality. Note the baseline is 3.88112 cm and HFOV is 95.452621 degrees.
|
72 |
+
- 'left_semantic': Rendered colors that denotes the RGB label for individual pixels. See `example_load.py` for classes and sample scripts.
|
73 |
+
- 'left_instance': Rendered colors that denotes the tomato plant instances for individual pixels.
|
74 |
+
- 'left_depth': Rendered left depth compressed to 16-bit floats (in centimeters).
|
75 |
+
- 'right_depth': Rendered right depth compressed to 16-bit floats (in centimeters).
|
76 |
+
|
77 |
+
### Data Splits
|
78 |
+
80/20 as shown in the train.txt and val.txt.
|
79 |
+
|
80 |
+
## Dataset Creation
|
81 |
+
|
82 |
+
### Curation Rationale
|
83 |
+
Created to provide dataset for dense plant disease detection for a robotics platform with corresponding camera sensors and strobe lighting.
|
84 |
+
|
85 |
+
### Source Data
|
86 |
+
|
87 |
+
#### Initial Data Collection and Normalization
|
88 |
+
We used PlantVillage Dataset with further processing to align the healthy leaf colors with the purchased assets. We collected 750GB of original data where we compressed the depth images from 32-bit to 16-bit and RGB to 95\% quality for ~160GB.
|
89 |
+
|
90 |
+
#### Who are the source language producers?
|
91 |
+
See PlantVillage Datasets for tomato diseases. The tomato plants were purchased through SketchFab with modifications for extra green tomatoes and denser leaves.
|
92 |
+
|
93 |
+
### Annotations
|
94 |
+
#### Annotation process
|
95 |
+
Annotations automatically generated through the simulation.
|
96 |
+
|
97 |
+
#### Who are the annotators?
|
98 |
+
Same as data creators with tomato leaf diseases the same as PlantVillage creators.
|
99 |
+
|
100 |
+
### Personal and Sensitive Information
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Considerations for Using the Data
|
104 |
+
|
105 |
+
### Social Impact of Dataset
|
106 |
+
|
107 |
+
[More Information Needed]
|
108 |
+
|
109 |
+
### Discussion of Biases
|
110 |
+
|
111 |
+
[More Information Needed]
|
112 |
+
|
113 |
+
### Other Known Limitations
|
114 |
+
|
115 |
+
[More Information Needed]
|
116 |
+
|
117 |
+
## Additional Information
|
118 |
+
|
119 |
+
### Dataset Curators
|
120 |
+
[More Information Needed]
|
121 |
+
|
122 |
+
### Licensing Information
|
123 |
+
CC BY-NC-SA-4.0
|
124 |
+
|
125 |
+
### Citation Information
|
126 |
+
[More Information Needed]
|
127 |
+
|
128 |
+
### Contributions
|
129 |
+
[More Information Needed]
|
example_load.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_dataset
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
import numpy as np
|
4 |
+
from scipy import stats
|
5 |
+
# similar to cityscapes for mmsegmentation
|
6 |
+
# class name, (new_id, img_id)
|
7 |
+
semantic_map = {
|
8 |
+
"bacterial_spot": (0, 5),
|
9 |
+
"early_blight": (1, 10),
|
10 |
+
"late_blight": (2, 20),
|
11 |
+
"leaf_mold": (3, 25),
|
12 |
+
"septoria_leaf_spot": (4,30),
|
13 |
+
"spider_mites": (5,35),
|
14 |
+
"target_spot": (6,40),
|
15 |
+
"mosaic_virus": (7,45),
|
16 |
+
"yellow_leaf_curl_virus":(8,50),
|
17 |
+
"healthy_leaf_pv": (9, 15), # plant village healthy leaf
|
18 |
+
"healthy_leaf_t": (9, 255), # texture leaf (healthy)
|
19 |
+
"background": (10, 0),
|
20 |
+
"tomato": (11, 121),
|
21 |
+
"stem": (12, 111),
|
22 |
+
"wood_rod": (13, 101),
|
23 |
+
"red_band": (14, 140),
|
24 |
+
"yellow_flower": (15, 131)
|
25 |
+
}
|
26 |
+
|
27 |
+
def maj_vote(img,x,y,n=3):
|
28 |
+
half = n // 2
|
29 |
+
x_min, x_max = max(0, x - half), min(img.shape[1], x + half + 1)
|
30 |
+
y_min, y_max = max(0, y - half), min(img.shape[0], y + half + 1)
|
31 |
+
|
32 |
+
window = img[y_min:y_max, x_min:x_max].flatten()
|
33 |
+
window = window[window != 255]
|
34 |
+
|
35 |
+
if len(window) > 0:
|
36 |
+
# Perform majority voting
|
37 |
+
most_common_label = stats.mode(window, keepdims=True)[0][0]
|
38 |
+
return most_common_label
|
39 |
+
else:
|
40 |
+
return semantic_map["background"][0]
|
41 |
+
|
42 |
+
def color_to_id(img_semantic, top_k_disease = 10, semantic_map = semantic_map):
|
43 |
+
semantic_id_img = np.ones(img_semantic.shape) * 255
|
44 |
+
disease_counts = []
|
45 |
+
# remap rendered color to semantic id
|
46 |
+
for _, id_value_map in semantic_map.items():
|
47 |
+
# track disease pixel counts for top_k_disease filtering
|
48 |
+
if id_value_map[1] < 60 and id_value_map[1] > 1:
|
49 |
+
disease_counts.append(np.sum(np.where(img_semantic == id_value_map[1], 1, 0)))
|
50 |
+
semantic_id_img[img_semantic == id_value_map[1]] = id_value_map[0]
|
51 |
+
# filter for most common disease labels
|
52 |
+
for i, item_i in enumerate(np.argsort(disease_counts)[::-1]):
|
53 |
+
if i >= top_k_disease:
|
54 |
+
id_value_map = list(semantic_map.items())[item_i][1]
|
55 |
+
semantic_id_img[img_semantic == id_value_map[1]] = 255
|
56 |
+
|
57 |
+
# Apply majority voting for unlabeled pixels (needed as the rendering process can blend pixels)
|
58 |
+
unknown_mask = (semantic_id_img == 255)
|
59 |
+
for y,x in np.argwhere(unknown_mask):
|
60 |
+
semantic_id_img[y, x] = maj_vote(semantic_id_img, x, y, 3)
|
61 |
+
return semantic_id_img
|
62 |
+
|
63 |
+
|
64 |
+
dataset = load_dataset("xingjianli/tomatotest", 'sample',trust_remote_code=True, num_proc=4)
|
65 |
+
print(dataset["train"][0])
|
66 |
+
|
67 |
+
|
68 |
+
left_rgb_img = dataset["train"][0]['left_rgb']
|
69 |
+
right_rgb_img = dataset["train"][0]['right_rgb']
|
70 |
+
left_semantic_img = np.asarray(dataset["train"][0]['left_semantic'])
|
71 |
+
left_instance_img = np.asarray(dataset["train"][0]['left_instance'])
|
72 |
+
left_depth_img = np.asarray(dataset["train"][0]['left_depth'])
|
73 |
+
right_depth_img = np.asarray(dataset["train"][0]['right_depth'])
|
74 |
+
plt.subplot(231)
|
75 |
+
plt.imshow(left_rgb_img)
|
76 |
+
plt.subplot(232)
|
77 |
+
plt.imshow(right_rgb_img)
|
78 |
+
plt.subplot(233)
|
79 |
+
plt.imshow(color_to_id(left_semantic_img))
|
80 |
+
plt.subplot(234)
|
81 |
+
plt.imshow(np.where(left_depth_img>500,0,left_depth_img))
|
82 |
+
plt.subplot(235)
|
83 |
+
plt.imshow(np.where(right_depth_img>500,0,right_depth_img))
|
84 |
+
plt.subplot(236)
|
85 |
+
plt.imshow(left_instance_img)
|
86 |
+
plt.show()
|
87 |
+
|
88 |
+
|