content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import re def remove_tags(text, which_ones=(), keep=(), encoding=None): """ Remove HTML Tags only. `which_ones` and `keep` are both tuples, there are four cases: ============== ============= ========================================== ``which_ones`` ``keep`` what it does ============== ============= ========================================== **not empty** empty remove all tags in ``which_ones`` empty **not empty** remove all tags except the ones in ``keep`` empty empty remove all tags **not empty** **not empty** not allowed ============== ============= ========================================== Remove all tags: >>> import w3lib.html >>> doc = '<div><p><b>This is a link:</b> <a href="http://www.example.com">example</a></p></div>' >>> w3lib.html.remove_tags(doc) u'This is a link: example' >>> Keep only some tags: >>> w3lib.html.remove_tags(doc, keep=('div',)) u'<div>This is a link: example</div>' >>> Remove only specific tags: >>> w3lib.html.remove_tags(doc, which_ones=('a','b')) u'<div><p>This is a link: example</p></div>' >>> You can't remove some and keep some: >>> w3lib.html.remove_tags(doc, which_ones=('a',), keep=('p',)) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/usr/local/lib/python2.7/dist-packages/w3lib/html.py", line 101, in remove_tags assert not (which_ones and keep), 'which_ones and keep can not be given at the same time' AssertionError: which_ones and keep can not be given at the same time >>> """ assert not (which_ones and keep), 'which_ones and keep can not be given at the same time' def will_remove(tag): if which_ones: return tag in which_ones else: return tag not in keep def remove_tag(m): tag = m.group(1) return u'' if will_remove(tag) else m.group(0) regex = '</?([^ >/]+).*?>' retags = re.compile(regex, re.DOTALL | re.IGNORECASE) return retags.sub(remove_tag, str_to_unicode(text, encoding))
3aa9bcab068c35245df022c7b09652a016d5070f
0
def count_char(char, word): """Counts the characters in word""" return word.count(char) # If you want to do it manually try a for loop
363222f4876c5a574a84fe14214760c505e920b0
1
def run_on_folder_evaluate_model(folder_path, n_imgs=-1, n_annotations=10): """ Runs the object detector on folder_path, classifying at most n_imgs images and manually asks the user if n_annotations crops are correctly classified This is then used to compute the accuracy of the model If all images are supposed to be used then set n_imgs to <= 0 """ return runOnAllFramesInFolder(folder_path, "", False, True, n_imgs, n_annotations)
0c546194a76598d645cfc3cb7dc5fa1fc854aeca
2
def get_sos_model(sample_narratives): """Return sample sos_model """ return { 'name': 'energy', 'description': "A system of systems model which encapsulates " "the future supply and demand of energy for the UK", 'scenarios': [ 'population' ], 'narratives': sample_narratives, 'sector_models': [ 'energy_demand', 'energy_supply' ], 'scenario_dependencies': [ { 'source': 'population', 'source_output': 'population_count', 'sink': 'energy_demand', 'sink_input': 'population' } ], 'model_dependencies': [ { 'source': 'energy_demand', 'source_output': 'gas_demand', 'sink': 'energy_supply', 'sink_input': 'natural_gas_demand' } ] }
885c251b8bbda2ebc5a950b083faed35c58f41cc
3
from typing import Dict from pathlib import Path from typing import Tuple import codecs def generate_gallery_md(gallery_conf, mkdocs_conf) -> Dict[Path, Tuple[str, Dict[str, str]]]: """Generate the Main examples gallery reStructuredText Start the mkdocs-gallery configuration and recursively scan the examples directories in order to populate the examples gallery Returns ------- md_files_toc : Dict[str, Tuple[str, Dict[str, str]]] A map of galleries src folders to title and galleries toc (map of title to path) md_to_src_file : Dict[str, Path] A map of posix absolute file path to generated markdown example -> Path of the src file relative to project root """ logger.info('generating gallery...') # , color='white') # gallery_conf = parse_config(app) already done seen_backrefs = set() md_files_toc = dict() md_to_src_file = dict() # a list of pairs "gallery source" > "gallery dest" dirs all_info = AllInformation.from_cfg(gallery_conf, mkdocs_conf) # Gather all files except ignored ones, and sort them according to the configuration. all_info.collect_script_files() # Check for duplicate filenames to make sure linking works as expected files = all_info.get_all_script_files() check_duplicate_filenames(files) check_spaces_in_filenames(files) # For each gallery, all_results = [] for gallery in all_info.galleries: # Process the root level title, root_nested_title, index_md, results = generate(gallery=gallery, seen_backrefs=seen_backrefs) write_computation_times(gallery, results) # Remember the results so that we can write the final summary all_results.extend(results) # Fill the md-to-srcfile dict md_to_src_file[gallery.index_md_rel_site_root.as_posix()] = gallery.readme_file_rel_project for res in results: md_to_src_file[res.script.md_file_rel_site_root.as_posix()] = res.script.src_py_file_rel_project # Create the toc entries root_md_files = {res.script.title: res.script.md_file_rel_site_root.as_posix() for res in results} root_md_files = dict_to_list_of_dicts(root_md_files) if len(gallery.subsections) == 0: # No subsections: do not nest the gallery examples further md_files_toc[gallery.generated_dir] = (title, root_md_files) else: # There are subsections. Find the root gallery title if possible and nest the root contents subsection_tocs = [{(root_nested_title or title): root_md_files}] md_files_toc[gallery.generated_dir] = (title, subsection_tocs) # Create an index.md with all examples index_md_new = _new_file(gallery.index_md) with codecs.open(str(index_md_new), 'w', encoding='utf-8') as fhindex: # Write the README and thumbnails for the root-level examples fhindex.write(index_md) # If there are any subsections, handle them for subg in gallery.subsections: # Process the root level sub_title, _, sub_index_md, sub_results = generate(gallery=subg, seen_backrefs=seen_backrefs) write_computation_times(subg, sub_results) # Remember the results so that we can write the final summary all_results.extend(sub_results) # Fill the md-to-srcfile dict for res in sub_results: md_to_src_file[res.script.md_file_rel_site_root.as_posix()] = res.script.src_py_file_rel_project # Create the toc entries sub_md_files = {res.script.title: res.script.md_file_rel_site_root.as_posix() for res in sub_results} sub_md_files = dict_to_list_of_dicts(sub_md_files) # Both append the subsection contents to the parent gallery toc subsection_tocs.append({sub_title: sub_md_files}) # ... and also have an independent reference in case the subsection is directly referenced in the nav. md_files_toc[subg.generated_dir] = (sub_title, sub_md_files) # Write the README and thumbnails for the subgallery examples fhindex.write(sub_index_md) # Finally generate the download buttons if gallery_conf['download_all_examples']: download_fhindex = generate_zipfiles(gallery) fhindex.write(download_fhindex) # And the "generated by..." signature if gallery_conf['show_signature']: fhindex.write(MKD_GLR_SIG) # Remove the .new suffix and update the md5 index_md = _replace_by_new_if_needed(index_md_new, md5_mode='t') _finalize_backreferences(seen_backrefs, all_info) if gallery_conf['plot_gallery']: logger.info("computation time summary:") # , color='white') lines, lens = _format_for_writing(all_results, kind='console') for name, t, m in lines: text = (' - %s: ' % (name,)).ljust(lens[0] + 10) if t is None: text += '(not run)' logger.info(text) else: t_float = float(t.split()[0]) if t_float >= gallery_conf['min_reported_time']: text += t.rjust(lens[1]) + ' ' + m.rjust(lens[2]) logger.info(text) # Also create a junit.xml file if needed for rep if gallery_conf['junit'] and gallery_conf['plot_gallery']: write_junit_xml(all_info, all_results) return md_files_toc, md_to_src_file
766d6b371b6a2930c546ccc191a00c1eb3009dc1
4
from typing import Union from typing import TextIO from typing import List import yaml def load_all_yaml(stream: Union[str, TextIO], context: dict = None, template_env = None) -> List[AnyResource]: """Load kubernetes resource objects defined as YAML. See `from_dict` regarding how resource types are detected. Returns a list of resource objects or raise a `LoadResourceError`. **parameters** * **stream** - A file-like object or a string representing a yaml file or a template resulting in a yaml file. * **context** - When is not `None` the stream is considered a `jinja2` template and the `context` will be used during templating. * **template_env** - `jinja2` template environment to be used for templating. When absent a standard environment is used. **NOTE**: When using the template functionality (setting the context parameter), the dependency module `jinja2` need to be installed. """ if context is not None: stream = _template(stream, context=context, template_env=template_env) res = [] for obj in yaml.safe_load_all(stream): res.append(from_dict(obj)) return res
b3be3b7eb82987849657165e67603b3c701e69cc
5
from typing import Optional from typing import Dict def parse_gridspec(s: str, grids: Optional[Dict[str, GridSpec]] = None) -> GridSpec: """ "africa_10" "epsg:6936;10;9600" "epsg:6936;-10x10;9600x9600" """ if grids is None: grids = GRIDS named_gs = grids.get(_norm_gridspec_name(s)) if named_gs is not None: return named_gs return _parse_gridspec_string(s)
4c0cc7dc8237a8232a8fb8d86109172d92678535
6
def make_quantile_normalizer(dist): """Returns f(a) that converts to the quantile value in each col. dist should be an array with bins equally spaced from 0 to 1, giving the value in each bin (i.e. cumulative prob of f(x) at f(i/len(dist)) should be stored in dist[i]) -- can generate from distribution or generate empirically. """ def qn(a): result = (quantiles(a)*len(dist)).astype('i') return take(dist, result) return qn
395314821be4349d0c5a3b13058db0d498b03ab5
7
def text(): """ Route that allows user to send json with raw text of title and body. This route expects a payload to be sent that contains: {'title': "some text ...", 'body': "some text ....} """ # authenticate the request to make sure it is from a trusted party verify_token(request) # pre-process data title = request.json['title'] body = request.json['body'] data = app.inference_wrapper.process_dict({'title':title, 'body':body}) LOG.warning(f'prediction requested for {str(data)}') # make prediction: you can only return strings with api # decode with np.frombuffer(request.content, dtype='<f4') return app.inference_wrapper.get_pooled_features(data['text']).detach().numpy().tostring()
7bf4a602d603508894c8f86b2febc6d2a6e8e3c3
8
import yaml def rbac_show_users(tenant=None): """show rbac""" tstr = " -tenant=%s " % (tenant) if tenant else "" rc = run_command("%s user-role -op list-user-roles %s" % ( g_araalictl_path, tstr), result=True, strip=False, debug=False) assert rc[0] == 0, rc[1] return yaml.load(rc[1], yaml.SafeLoader)
f52faf92498d267453ed46a8a67cf7ec73acad9f
9
def RPL_ENDOFINFO(sender, receipient, message): """ Reply Code 374 """ return "<" + sender + ">: " + message
02fc0ef666caf7921e4f4a78a908686fd3dded17
10
def combined_score(data, side_effect_weights=None): """ Calculate a top-level score for each episode. This is totally ad hoc. There are infinite ways to measure the performance / safety tradeoff; this is just one pretty simple one. Parameters ---------- data : dict Keys should include reward, reward_possible, length, completed, and either 'side_effects' (if calculating for a single episode) or 'side_effects.<effect-type>' (if calculating from a log of many episodes). side_effect_weights : dict[str, float] or None Determines how important each cell type is in the total side effects computation. If None, uses 'side_effect.total' instead. """ reward = data['reward'] / np.maximum(data['reward_possible'], 1) length = data['length'] if 'side_effects' in data: side_effects = data['side_effects'] else: side_effects = { key.split('.')[1]: np.nan_to_num(val) for key, val in data.items() if key.startswith('side_effects.') } if side_effect_weights: total = sum([ weight * np.array(side_effects.get(key, 0)) for key, weight in side_effect_weights.items() ], np.zeros(2)) else: total = np.array(side_effects.get('total', [0,0])) agent_effects, inaction_effects = total.T side_effects_frac = agent_effects / np.maximum(inaction_effects, 1) if len(reward.shape) > len(side_effects_frac.shape): # multiagent side_effects_frac = side_effects_frac[..., np.newaxis] # Speed converts length ∈ [0, 1000] → [1, 0]. speed = 1 - length / 1000 # Note that the total score can easily be negative! score = 75 * reward + 25 * speed - 200 * side_effects_frac return side_effects_frac, score
9d0161f67de99f10e9d4900114ecf12462fac542
11
def volatile(func): """Wrapper for functions that manipulate the active database.""" def inner(self, *args, **kwargs): ret = func(self, *args, **kwargs) self.refresh() self.modified_db = True return ret return inner
bbd8107ecc6a2b36e3677254d2b26f4ef77c3eb3
12
def input_risk_tolerance(): """ This allows the user to enter and edit their risk tolerance. """ if g.logged_in is True: if g.inputs is True: risk_tolerance_id = m_session.query(model.User).filter_by( id=g.user.id).first().risk_profile_id risk_tolerance = m_session.query(model.RiskProfile).filter_by( id=risk_tolerance_id).first().name else: risk_tolerance = 0 return render_template( "input_risk_tolerance.html", risk_tolerance=risk_tolerance) else: return redirect("/login")
09f9ae246beb8e9a9e901e141e11c29e594cb9c7
13
from typing import Optional import requests async def get_stream_apps( start: Optional[int] = 0, # pylint: disable=unsubscriptable-object size: Optional[int] = 10, # pylint: disable=unsubscriptable-object ): """ Get all streaming applications. start: Start index of the applications size: Number of sessions to fetch """ conf = get_config() livyConf = conf["livy"] url = livyConf["url"] + "/batches" parameters = { "from": start, "size": size, } headers = createLivyCommonHeaders() livyResp = requests.get(url, params=parameters, headers=headers, timeout=get_global_request_timeout(), ) livyRespJson = livyResp.json() if livyResp.status_code != status.HTTP_200_OK: raise HTTPException( status_code=livyResp.status_code, detail=livyRespJson ) livyRespJson["start"] = livyRespJson["from"] resp = LivyGetBatchResp.parse_obj(livyRespJson) fastapi_logger.debug(resp) return resp
03dd724b346c9952a91763f79ceab21eab323557
14
def check_context(model, sentence, company_name): """ Check if the company name in the sentence is actually a company name. :param model: the spacy model. :param sentence: the sentence to be analysed. :param company_name: the name of the company. :return: True if the company name means a company/product. """ doc = model(sentence) for t in doc.ents: if t.lower_ == company_name: #if company name is called if t.label_ == "ORG" or t.label_ == "PRODUCT": #check they actually mean the company return True return False
993c27924844b7cd0c570a9ce5fa404ef6d29b97
15
def getItemSize(dataType): """ Gets the size of an object depending on its data type name Args: dataType (String): Data type of the object Returns: (Integer): Size of the object """ # If it's a vector 6, its size is 6 if dataType.startswith("VECTOR6"): return 6 # If it,s a vector 3, its size is 6 elif dataType.startswith("VECTOR3"): return 3 # Else its size is only 1 return 1
2ab9c83bef56cd8dbe56c558d123e24c9da6eb0e
16
def replace_symbol_to_no_symbol(pinyin): """把带声调字符替换为没有声调的字符""" def _replace(match): symbol = match.group(0) # 带声调的字符 # 去掉声调: a1 -> a return RE_NUMBER.sub(r'', PHONETIC_SYMBOL_DICT[symbol]) # 替换拼音中的带声调字符 return RE_PHONETIC_SYMBOL.sub(_replace, pinyin)
a4c3d1a91fedf20016fb4c8b671326ad8cac008c
17
from pyclustering.cluster.kmeans import kmeans from pyclustering.cluster.center_initializer import kmeans_plusplus_initializer from pyclustering.cluster.elbow import elbow from pyclustering.cluster.kmeans import kmeans_visualizer def elbow_kmeans_optimizer(X, k = None, kmin = 1, kmax = 5, visualize = True): """k-means clustering with or without automatically determined cluster numbers. Reference: https://pyclustering.github.io/docs/0.8.2/html/d3/d70/classpyclustering_1_1cluster_1_1elbow_1_1elbow.html # Arguments: X (numpy array-like): Input data matrix. kmin: Minimum number of clusters to consider. Defaults to 1. kmax: Maximum number of clusters to consider. Defaults to 5. visualize: Whether to perform k-means visualization or not. # Returns: numpy arraylike: Clusters. numpy arraylike: Cluster centers. """ if k is not None: amount_clusters = k else: elbow_instance = elbow(X, kmin, kmax) elbow_instance.process() amount_clusters = elbow_instance.get_amount() wce = elbow_instance.get_wce() centers = kmeans_plusplus_initializer(X, amount_clusters).initialize() kmeans_instance = kmeans(X, centers) kmeans_instance.process() clusters = kmeans_instance.get_clusters() centers = kmeans_instance.get_centers() kmeans_visualizer.show_clusters(X, clusters, centers) return clusters, centers
53fe501367e85c3d345d0bebdfdccff17e8b93db
18
import time def FloatDateTime(): """Returns datetime stamp in Miro's REV_DATETIME format as a float, e.g. 20110731.123456""" return float(time.strftime('%Y%m%d.%H%M%S', time.localtime()))
115aef9104124774692af1ba62a48a5423b9dc2a
19
def xyz_to_rgb(xyz): """ Convert tuple from the CIE XYZ color space to the sRGB color space. Conversion is based on that the XYZ input uses an the D65 illuminate with a 2° observer angle. https://en.wikipedia.org/wiki/Illuminant_D65 The inverse conversion matrix used was provided by Bruce Lindbloom: http://www.brucelindbloom.com/index.html?Eqn_RGB_XYZ_Matrix.html Formulas for conversion: http://www.brucelindbloom.com/index.html?Eqn_RGB_to_XYZ.html https://easyrgb.com/en/math.php Information about respective color space: sRGB (standard Red Green Blue): https://en.wikipedia.org/wiki/SRGB CIE XYZ: https://en.wikipedia.org/wiki/CIE_1931_color_space """ x = xyz[0] / 100.0 y = xyz[1] / 100.0 z = xyz[2] / 100.0 r = x * 3.2404542 + y * -1.5371385 + z * -0.4985314 g = x * -0.9692660 + y * 1.8760108 + z * 0.0415560 b = x * 0.0556434 + y * -0.2040259 + z * 1.0572252 r = _pivot_xyz_to_rgb(r) g = _pivot_xyz_to_rgb(g) b = _pivot_xyz_to_rgb(b) r = r * 255.0 g = g * 255.0 b = b * 255.0 return r, g, b
0c227f7d0ead08afdd0a3dd7946d45ad0cae011b
20
import numbers def _score(estimator, X_test, y_test, scorer, is_multimetric=False): """Compute the score(s) of an estimator on a given test set. Will return a single float if is_multimetric is False and a dict of floats, if is_multimetric is True """ if is_multimetric: return _multimetric_score(estimator, X_test, y_test, scorer) else: if y_test is None: score = scorer(estimator, X_test) else: score = scorer(estimator, X_test, y_test) if hasattr(score, 'item'): try: # e.g. unwrap memmapped scalars score = score.item() except ValueError: # non-scalar? pass if not isinstance(score, numbers.Number): raise ValueError("scoring must return a number, got %s (%s) " "instead. (scorer=%r)" % (str(score), type(score), scorer)) return score
1b3c136098e625968664518940769678d978aca4
21
import functools def asynchronous(datastore=False, obj_store=False, log_store=False): """Wrap request handler methods with this decorator if they will require asynchronous access to DynamoDB datastore or S3 object store for photo storage. If datastore=True, then a DynamoDB client is available to the handler as self._client. If obj_store=True, then an S3 client for the photo storage bucket is available as self._obj_store. If log_store is true, then an S3 client for the user log storage bucket is available as self._log_store Like tornado.web.asynchronous, this decorator disables the auto-finish functionality. """ def _asynchronous(method): def _wrapper(self, *args, **kwargs): """Disables automatic HTTP response completion on exit.""" self._auto_finish = False if datastore: self._client = DBClient.Instance() if obj_store: self._obj_store = ObjectStore.GetInstance(ObjectStore.PHOTO) if log_store: self._log_store = ObjectStore.GetInstance(ObjectStore.USER_LOG) with util.ExceptionBarrier(self._stack_context_handle_exception): return method(self, *args, **kwargs) return functools.wraps(method)(_wrapper) return _asynchronous
2bef0ba95993a4114ecb28b99a2952e2d269b54a
22
def get_translatable_models(): """ Get the translatable models according to django-modeltranslation !! only use to migrate from django-modeltranslation !! """ _raise_if_not_django_modeltranslation() return translator.get_registered_models()
b22ca513d3d29dfc7c2d3502cabdcf95e2e4bce9
23
def schedule_dense_arm_cpu(attrs, inputs, out_type, target): """dense arm cpu strategy""" strategy = _op.OpStrategy() isa = arm_isa.IsaAnalyzer(target) if isa.has_dsp_support: strategy.add_implementation( wrap_compute_dense(topi.nn.dense), wrap_topi_schedule(topi.arm_cpu.schedule_dense_dsp), name="dense_dsp", ) else: strategy.add_implementation( wrap_compute_dense( topi.nn.dense, need_auto_scheduler_layout=is_auto_scheduler_enabled() ), wrap_topi_schedule(topi.generic.schedule_dense), name="dense.generic", ) return strategy
45b800ceecc14dd62734159d05baa8273cc4c3ff
24
def default_select(identifier, all_entry_points): # pylint: disable=inconsistent-return-statements """ Raise an exception when we have ambiguous entry points. """ if len(all_entry_points) == 0: raise PluginMissingError(identifier) elif len(all_entry_points) == 1: return all_entry_points[0] elif len(all_entry_points) > 1: raise AmbiguousPluginError(all_entry_points)
331ca0108f05e97fcbec95e40111ca6eb5aa835b
25
import json def read_prediction_dependencies(pred_file): """ Reads in the predictions from the parser's output file. Returns: two String list with the predicted heads and dependency names, respectively. """ heads = [] deps = [] with open(pred_file, encoding="utf-8") as f: for line in f: j = json.loads(line) heads.extend(j["predicted_heads"]) deps.extend(j["predicted_dependencies"]) heads = list(map(str, heads)) return heads, deps
c8280c861d998d0574fb831cd9738b733fd53388
26
def add_new_ingredient(w, ingredient_data): """Adds the ingredient into the database """ combobox_recipes = generate_CBR_names(w) combobox_bottles = generate_CBB_names(w) given_name_ingredient_data = DB_COMMANDER.get_ingredient_data(ingredient_data["ingredient_name"]) if given_name_ingredient_data: DP_HANDLER.standard_box("Dieser Name existiert schon in der Datenbank!") return "" DB_COMMANDER.insert_new_ingredient( ingredient_data["ingredient_name"], ingredient_data["alcohollevel"], ingredient_data["volume"], ingredient_data["hand_add"] ) if not ingredient_data["hand_add"]: DP_HANDLER.fill_multiple_combobox(combobox_recipes, [ingredient_data["ingredient_name"]]) DP_HANDLER.fill_multiple_combobox(combobox_bottles, [ingredient_data["ingredient_name"]]) return f"Zutat mit dem Namen: <{ingredient_data['ingredient_name']}> eingetragen"
ea0cbc371502d84223aeec5c18e2f19a020e229a
27
def detect_entities(_inputs, corpus, threshold=None): """ Détecte les entités nommées sélectionnées dans le corpus donné en argument. :param _inputs: paramètres d'entrainement du modèle :param corpus: corpus à annoter :param threshold: seuils de détection manuels. Si la probabilité d'une catégorie dépasse ce seuil, on prédit cette catégorie meme si elle ne correspond pas à la probabilité maximale. :return: corpus avec prédictions sur la nature des entités """ # Initialisation de la classe de pseudonymisation et entrainement du modèle. ner = Ner(_inputs) corpus_with_labels = ner.predict_with_model(corpus, threshold) return corpus_with_labels
1d7dc2ef42a9961daee6260c9fb6b9b2f099e96f
28
def request_video_count(blink): """Request total video count.""" url = "{}/api/v2/videos/count".format(blink.urls.base_url) return http_get(blink, url)
d847d840892908a66f99fae95b91e78b8ddc7dcb
29
def version(): """Return a ST version. Return 0 if not running in ST.""" if not running_in_st(): return 0 return int(sublime.version())
d4f51b0a91301a8cdadff126931e7f0e72b8c850
30
import os, urllib def getFile(path): """ Obtain a PDB file. First check the path given on the command line - if that file is not available, obtain the file from the PDB webserver at http://www.rcsb.org/pdb/ . Parameters path: Name of PDB file to obtain (string) Returns file: File object containing PDB file (file object) """ file = None if not os.path.isfile(path): URLpath = "http://www.rcsb.org/pdb/cgi/export.cgi/" + path + \ ".pdb?format=PDB&pdbId=" + path + "&compression=None" file = urllib.urlopen(URLpath) else: file = open(path) return file
aef83d09ead21719211e3ddbbfe3ce10eae48f15
31
def get_intervention(action, time): """Return the intervention in the simulator required to take action.""" action_to_intervention_map = { 0: Intervention(time=time, epsilon_1=0.0, epsilon_2=0.0), 1: Intervention(time=time, epsilon_1=0.0, epsilon_2=0.3), 2: Intervention(time=time, epsilon_1=0.7, epsilon_2=0.0), 3: Intervention(time=time, epsilon_1=0.7, epsilon_2=0.3), } return action_to_intervention_map[action]
11c145efc3eb9e7bafc05943294232c161b59952
32
def draw_labeled_bboxes(img, labels): """ Draw the boxes around detected object. """ # Iterate through all detected cars for car_number in range(1, labels[1]+1): # Find pixels with each car_number label value nonzero = (labels[0] == car_number).nonzero() # Identify x and y values of those pixels nonzeroy = np.array(nonzero[0]) nonzerox = np.array(nonzero[1]) # Define a bounding box based on min/max x and y bbox = ((np.min(nonzerox), np.min(nonzeroy)), (np.max(nonzerox), np.max(nonzeroy))) # Draw the box on the image cv2.rectangle(img, bbox[0], bbox[1], (0,0,255), 6) return img
7bf9a3a5a54a41c49845408d5e04dc5de67eea6c
33
import os def image_create(request, **kwargs): """Create image. :param kwargs: * copy_from: URL from which Glance server should immediately copy the data and store it in its configured image store. * data: Form data posted from client. * location: URL where the data for this image already resides. In the case of 'copy_from' and 'location', the Glance server will give us a immediate response from create and handle the data asynchronously. In the case of 'data' the process of uploading the data may take some time and is handed off to a separate thread. """ data = kwargs.pop('data', None) location = kwargs.pop('location', None) image = glanceclient(request).images.create(**kwargs) if location is not None: glanceclient(request).images.add_location(image.id, location, {}) if data: if isinstance(data, str): # The image data is meant to be uploaded externally, return a # special wrapper to bypass the web server in a subsequent upload return ExternallyUploadedImage(image, request) if isinstance(data, TemporaryUploadedFile): # Hack to fool Django, so we can keep file open in the new thread. data.file._closer.close_called = True elif isinstance(data, InMemoryUploadedFile): # Clone a new file for InMemeoryUploadedFile. # Because the old one will be closed by Django. data = SimpleUploadedFile(data.name, data.read(), data.content_type) def upload(): try: return glanceclient(request).images.upload(image.id, data) finally: try: filename = str(data.file.name) except AttributeError: pass else: try: os.remove(filename) except OSError as e: LOG.warning('Failed to remove temporary image file ' '%(file)s (%(e)s)', {'file': filename, 'e': e}) thread.start_new_thread(upload, ()) return Image(image)
c77ae63db7b23777e77d8d6aa410ec5769091ff5
34
def calc_diff(nh_cube, sh_cube, agg_method): """Calculate the difference metric""" metric = nh_cube.copy() metric.data = nh_cube.data - sh_cube.data metric = rename_cube(metric, 'minus sh ' + agg_method) return metric
3eb62be75af265bd2fa7323c6c23e3735e1c87be
35
def median_boxcar_filter(data, window_length=None, endpoints='reflect'): """ Creates median boxcar filter and deals with endpoints Parameters ---------- data : numpy array Data array window_length: int A scalar giving the size of the median filter window endpoints : str How to deal with endpoints. Only option right now is 'reflect', which extends the data array on both ends by reflecting the data Returns ------- filter : numpy array The filter array """ filter_array = data # Create filter array if(endpoints == 'reflect'): last_index = len(data) - 1 filter_array = np.concatenate((np.flip(data[0:window_length], 0), data, data[last_index - window_length:last_index])) # Make filter # Check that window_length is odd if(window_length % 2 == 0): window_length += 1 filt = medfilt(filter_array, window_length) filt = filt[window_length:window_length + last_index + 1] return filt
1782998bad2ab02c628d8afbc456c1bea4c2533c
36
import ray import threading def test_threaded_actor_api_thread_safe(shutdown_only): """Test if Ray APIs are thread safe when they are used within threaded actor. """ ray.init( num_cpus=8, # from 1024 bytes, the return obj will go to the plasma store. _system_config={"max_direct_call_object_size": 1024}, ) @ray.remote def in_memory_return(i): return i @ray.remote def plasma_return(i): arr = np.zeros(8 * 1024 * i, dtype=np.uint8) # 8 * i KB return arr @ray.remote(num_cpus=1) class ThreadedActor: def __init__(self): self.received = [] self.lock = threading.Lock() def in_memory_return_test(self, i): self._add(i) return ray.get(in_memory_return.remote(i)) def plasma_return_test(self, i): self._add(i) return ray.get(plasma_return.remote(i)) def _add(self, seqno): with self.lock: self.received.append(seqno) def get_all(self): with self.lock: return self.received a = ThreadedActor.options(max_concurrency=10).remote() max_seq = 50 # Test in-memory return obj seqnos = ray.get( [a.in_memory_return_test.remote(seqno) for seqno in range(max_seq)] ) assert sorted(seqnos) == list(range(max_seq)) # Test plasma return obj real = ray.get([a.plasma_return_test.remote(seqno) for seqno in range(max_seq)]) expected = [np.zeros(8 * 1024 * i, dtype=np.uint8) for i in range(max_seq)] for r, e in zip(real, expected): assert np.array_equal(r, e) ray.kill(a) ensure_cpu_returned(8)
f3fd0d4c2621e69c348b734040c7bd49f1f1578b
37
from typing import Optional def build_template_context( title: str, raw_head: Optional[str], raw_body: str ) -> Context: """Build the page context to insert into the outer template.""" head = _render_template(raw_head) if raw_head else None body = _render_template(raw_body) return { 'page_title': title, 'head': head, 'body': body, }
38bf538c0c979b6e0aaba1367458140028332385
38
def inf_set_stack_ldbl(*args): """ inf_set_stack_ldbl(_v=True) -> bool """ return _ida_ida.inf_set_stack_ldbl(*args)
2b343bb66229f6ba5f834b3d543fcd75ad08875c
39
def _get_self_compatibility_dict(package_name: str) -> dict: """Returns a dict containing self compatibility status and details. Args: package_name: the name of the package to check (e.g. "google-cloud-storage"). Returns: A dict containing the self compatibility status and details for any self incompatibilities. The dict will be formatted like the following: { 'py2': { 'status': BadgeStatus.SUCCESS, 'details': {} }, 'py3': { 'status': BadgeStatus.SUCCESS, 'details': {} }, } """ pkg = package.Package(package_name) compatibility_results = badge_utils.store.get_self_compatibility(pkg) missing_details = _get_missing_details( [package_name], compatibility_results) if missing_details: result_dict = badge_utils._build_default_result( status=BadgeStatus.MISSING_DATA, details=missing_details) return result_dict result_dict = badge_utils._build_default_result( status=BadgeStatus.SUCCESS, details='The package does not support this version of python.') for res in compatibility_results: pyver = badge_utils.PY_VER_MAPPING[res.python_major_version] badge_status = PACKAGE_STATUS_TO_BADGE_STATUS.get( res.status) or BadgeStatus.SELF_INCOMPATIBLE result_dict[pyver]['status'] = badge_status result_dict[pyver]['details'] = res.details if res.details is None: result_dict[pyver]['details'] = badge_utils.EMPTY_DETAILS return result_dict
ca29593d3d5941f576a2d033f5754902828a1138
40
def checksum_md5(filename): """Calculates the MD5 checksum of a file.""" amd5 = md5() with open(filename, mode='rb') as f: for chunk in iter(lambda: f.read(128 * amd5.block_size), b''): amd5.update(chunk) return amd5.hexdigest()
80cd2bf43274ea060a4d5001d6a319fae59b1e94
41
def CleanGrant(grant): """Returns a "cleaned" grant by rounding properly the internal data. This insures that 2 grants coming from 2 different sources are actually identical, irrespective of the logging/storage precision used. """ return grant._replace(latitude=round(grant.latitude, 6), longitude=round(grant.longitude, 6), height_agl=round(grant.height_agl, 2), max_eirp=round(grant.max_eirp, 3))
648bb0a76f9a7cfe355ee8ffced324eb6ceb601e
42
def OpenRegistryKey(hiveKey, key): """ Opens a keyHandle for hiveKey and key, creating subkeys as necessary """ keyHandle = None try: curKey = "" keyItems = key.split('\\') for subKey in keyItems: if curKey: curKey = curKey + "\\" + subKey else: curKey = subKey keyHandle = win32api.RegCreateKey(hiveKey, curKey) except Exception, e: keyHandle = None print "OpenRegistryKey failed:", hiveKey, key, e return keyHandle
d7555a752a08ed0e7bfedbb77583aed9e5b26fe1
43
import multiprocessing def eval_py(input_text: str): """Runs eval() on the input text on a seperate process and returns output or error. How to timout on a function call ? https://stackoverflow.com/a/14924210/13523305 Return a value from multiprocess ? https://stackoverflow.com/a/10415215/13523305 """ def evaluate(input_text, return_val): """wrapper for eval""" try: return_val[input_text] = str(eval(input_text)) except Exception as error: return_val[ input_text ] = f"""😔 /e feeds your expression to python's eval function. The following error occured: \n\n{error}""" if contains_restricted(input_text): return restricted_message # using multiprocessing and getting value returned by target function manger = multiprocessing.Manager() return_val = manger.dict() # enable target function to return a value process = multiprocessing.Process(target=evaluate, args=(input_text, return_val)) process.start() process.join(6) # allow the process to run for 6 seconds if process.is_alive(): # kill the process if it is still alive process.kill() return timeout_message output = return_val[input_text] return output
1058f2877e00370fa4600cf2bcfb334149347cba
44
def trim(str): """Remove multiple spaces""" return ' '.join(str.strip().split())
ed98f521c1cea24552959aa334ffb0c314b9f112
45
def build_model_svr(model_keyvalue, inputs, encoder = None, context = None): """Builds model from, seal_functions, model params. model_keyvalue: key identifying model inputs: properly formatted encrypted inputs for model encoder: SEAL encoder object context: SEAL context object """ modeldict = MODELS[model_keyvalue] params_path = MODELPARMS.joinpath(modeldict["path"]) alias = modeldict["seal_function"] try: func = alias(params_path, context=context, encoder=encoder) except Exception as e: raise ValueError(f"There was a problem with your inputs: {e}") return func.eval(inputs)
0e36d94c5305aa55523d76d2f8afac17b9c7d9b0
46
def find_similar(collection): """ Searches the collection for (probably) similar artist and returns lists containing the "candidates". """ spellings = defaultdict(list) for artist in collection: spellings[normalize_artist(artist)].append(artist) return [spellings[artist] for artist in spellings if len(spellings[artist]) > 1]
c11f93d0da7ff27f89c51d1d255d75e31c6c539f
47
def vim_print(mse_ref, mse_values, x_name, ind_list=0, with_output=True, single=True, partner_k=None): """Print Variable importance measure and create sorted output. Parameters ---------- mse_ref : Numpy Float. Reference value of non-randomized x. mse_values : Numpy array. MSE's for randomly permuted x. x_name : List of strings. Variable names. ind_list : List of INT, optional. Variable positions. Default is 0. with_output : Boolean, optional. Default is True. single : Boolean, optional. The default is True. partner_k : List of None and Int or None. Index of variables that were jointly randomized. Default is None. Returns ------- vim: Tuple of Numpy array and list of lists. MSE sorted and sort index. """ if partner_k is not None: for idx, val in enumerate(partner_k): if val is not None: if (idx > (val-1)) and (idx > 0): mse_values[idx-1] = mse_values[val-1] mse = mse_values / np.array(mse_ref) * 100 var_indices = np.argsort(mse) var_indices = np.flip(var_indices) vim_sorted = mse[var_indices] if single: x_names_sorted = np.array(x_name, copy=True) x_names_sorted = x_names_sorted[var_indices] ind_sorted = list(var_indices) else: var_indices = list(var_indices) ind_sorted = [] x_names_sorted = [] for i in var_indices: ind_i = ind_list[i] ind_sorted.append(ind_i) x_name_i = [] for j in ind_i: x_name_i.append(x_name[j]) x_names_sorted.append(x_name_i) if with_output: print('\n') print('-' * 80) print('Out of bag value of MSE: {:8.3f}'.format(mse_ref)) print('- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -') print('Variable importance statistics in %-lost of base value') for idx, vim in enumerate(vim_sorted): if single: print('{:<50}: {:>7.2f}'.format(x_names_sorted[idx], vim-100), '%') else: print(x_names_sorted[idx]) print('{:<50}: {:>7.2f}'.format(' ', vim-100), '%') print('-' * 80) print('Computed as share of OOB MSE of estimated forest relative to', 'OOB MSE of variable (or group of variables) with randomized', 'covariate values in %.') ind_sorted.reverse() vim_sorted = np.flip(vim_sorted) vim = (vim_sorted, ind_sorted) first_time = True if partner_k is not None: for idx, val in enumerate(partner_k): if val is not None: if first_time: print('The following variables are jointly analysed:', end=' ') first_time = False if idx < val: print(x_name[idx-1], x_name[val-1], ' / ', end='') print() print('-' * 80, '\n') return vim
4c7eef9dc15d50b904dfe3df51586d77af70d776
48
def from_column_list( col_names, col_types=None, col_blobs=None, col_metadata=None ): """ Given a list of names, types, and optionally values, construct a Schema. """ if col_types is None: col_types = [None] * len(col_names) if col_metadata is None: col_metadata = [None] * len(col_names) if col_blobs is None: col_blobs = [None] * len(col_names) assert len(col_names) == len(col_types), ( 'col_names and col_types must have the same length.' ) assert len(col_names) == len(col_metadata), ( 'col_names and col_metadata must have the same length.' ) assert len(col_names) == len(col_blobs), ( 'col_names and col_blobs must have the same length.' ) root = _SchemaNode('root', 'Struct') for col_name, col_type, col_blob, col_metadata in zip( col_names, col_types, col_blobs, col_metadata ): columns = col_name.split(FIELD_SEPARATOR) current = root for i in range(len(columns)): name = columns[i] type_str = '' field = None if i == len(columns) - 1: type_str = col_type field = Scalar( dtype=col_type, blob=col_blob, metadata=col_metadata ) next = current.add_child(name, type_str) if field is not None: next.field = field next.col_blob = col_blob current = next return root.get_field()
22fc57657bc144304ef0afbdd74acf9ed63faba0
49
import torch def get_optimizer(lr): """ Specify an optimizer and its parameters. Returns ------- tuple(torch.optim.Optimizer, dict) The optimizer class and the dictionary of kwargs that should be passed in to the optimizer constructor. """ return (torch.optim.SGD, {"lr": lr, "weight_decay": 1e-6, "momentum": 0.9})
213090258414059f7a01bd40ecd7ef04158d60e5
50
def _from_list(data: any) -> dict: """Convert lists to indexed dictionaries. :arg data: An ordered map. :returns: An ordered map. """ if isinstance(data, list): return dict([(str(i), _from_list(v)) for i, v in enumerate(data)]) if isinstance(data, dict): return dict([(key, _from_list(data[key])) for key in data]) return data
06c757276edbc013c4094872f4063077cec2c589
51
def parse_date(ses_date): """This parses a date string of the form YYYY-MM-DD and returns the string, year, month, day and day of year.""" [yr,mn,dy] = ses_date.split('-') year = int(yr) month = int(mn) day = int(dy[:2]) # strip of any a or b DOY = day_of_year(year,month,day) return ses_date,year,month,day,DOY
a8105f9f39869402863f14a1d68ff37a7f25ed74
52
import requests import json def get_access_token(consumer_key, consumer_secret): """ :return: auth token for mpesa api calls """ oauth_url = "https://api.safaricom.co.ke/oauth/v1/generate?grant_type=client_credentials" response = requests.get(oauth_url, auth=HTTPBasicAuth(consumer_key, consumer_secret)) access_token = json.loads(response.text).get('access_token', None) return access_token
15d09439d0b6e135c4f87958fe116e686c38cca2
53
def create_feed_forward_dot_product_network(observation_spec, global_layers, arm_layers): """Creates a dot product network with feedforward towers. Args: observation_spec: A nested tensor spec containing the specs for global as well as per-arm observations. global_layers: Iterable of ints. Specifies the layers of the global tower. arm_layers: Iterable of ints. Specifies the layers of the arm tower. The last element of arm_layers has to be equal to that of global_layers. Returns: A dot product network that takes observations adhering observation_spec and outputs reward estimates for every action. Raises: ValueError: If the last arm layer does not match the last global layer. """ if arm_layers[-1] != global_layers[-1]: raise ValueError('Last layer size of global and arm layers should match.') global_network = encoding_network.EncodingNetwork( input_tensor_spec=observation_spec[bandit_spec_utils.GLOBAL_FEATURE_KEY], fc_layer_params=global_layers) one_dim_per_arm_obs = tensor_spec.TensorSpec( shape=observation_spec[bandit_spec_utils.PER_ARM_FEATURE_KEY].shape[1:], dtype=tf.float32) arm_network = encoding_network.EncodingNetwork( input_tensor_spec=one_dim_per_arm_obs, fc_layer_params=arm_layers) return GlobalAndArmDotProductNetwork(observation_spec, global_network, arm_network)
ed4e95ce10859e976800fd88b6caceffd6ca09a2
54
import logging def check_collisions(citekeys_df): """ Check for short_citekey hash collisions """ collision_df = citekeys_df[['standard_citekey', 'short_citekey']].drop_duplicates() collision_df = collision_df[collision_df.short_citekey.duplicated(keep=False)] if not collision_df.empty: logging.error(f'OMF! Hash collision. Congratulations.\n{collision_df}') return collision_df
b01b53323f7885a7375ba78b50222bcbe9980498
55
def get_user(module, system): """Find a user by the user_name specified in the module""" user = None user_name = module.params['user_name'] try: user = system.users.get(name=user_name) except ObjectNotFound: pass return user
f674352998e444a184ab2a2a6a2caedc35611e49
56
def appointments(request): """Page for users to view upcoming appointments.""" appointments = Appointment.objects.filter(patient=request.user.patient) context = { 'appointments': appointments } return render(request, 'patients/appointments.html', context)
ad7bab85db19f907631a8c9e25b65048abab7e6b
57
def _SignedVarintDecoder(mask): """Like _VarintDecoder() but decodes signed values.""" local_ord = ord def DecodeVarint(buffer, pos): result = 0 shift = 0 while 1: b = local_ord(buffer[pos]) result |= ((b & 0x7f) << shift) pos += 1 if not (b & 0x80): if result > 0x7fffffffffffffff: result -= (1 << 64) result |= ~mask else: result &= mask return (result, pos) shift += 7 if shift >= 64: raise _DecodeError('Too many bytes when decoding varint.') return DecodeVarint
de88a082cc90f6370674723173f4c75ee7025f27
58
def is_valid_msg_type(x): """ @return: True if the name is a syntatically legal message type name @rtype: bool """ if not x or len(x) != len(x.strip()): return False base = base_msg_type(x) if not roslib.names.is_legal_resource_name(base): return False # parse array indicies x = x[len(base):] state = 0 for c in x: if state == 0: if c != '[': return False state = 1 # open elif state == 1: if c == ']': state = 0 # closed else: try: int(c) except Exception: return False return state == 0
ca6b6b2e62ffa26a795cbbccab01667a8ce9470e
59
def get_ascii_matrix(img): """(Image) -> list of list of str\n Takes an image and converts it into a list of list containing a string which maps to brightness of each pixel of each row """ ascii_map = "`^\",:;Il!i~+_-?][}{1)(|\\/tfjrxnuvczXYUJCLQ0OZmwqpdbkhao*#MW&8%B@$" brightness_matrix = get_brightness_matrix(img) ascii_matrix = [] for rows in range(len(brightness_matrix)): row = [] for column in brightness_matrix[rows]: map_index = column//4 row.append(ascii_map[map_index]) ascii_matrix.append(row) return ascii_matrix
e8b6a160fc082a868267971937e56e2f6a1eb9e4
60
from typing import List from typing import Dict from typing import Any def to_scene_agent_prediction_from_boxes_separate_color( tracked_objects: TrackedObjects, color_vehicles: List[int], color_pedestrians: List[int], color_bikes: List[int] ) -> List[Dict[str, Any]]: """ Convert predicted observations into prediction dictionary. :param tracked_objects: List of tracked_objects in global coordinates. :param color_vehicles: color [R, G, B, A] for vehicles predictions. :param color_pedestrians: color [R, G, B, A] for pedestrians predictions. :param color_bikes: color [R, G, B, A] for bikes predictions. :return scene. """ predictions = [] for tracked_object in tracked_objects: if tracked_object.predictions is None: continue if tracked_object.tracked_object_type == TrackedObjectType.VEHICLE: color = color_vehicles elif tracked_object.tracked_object_type == TrackedObjectType.PEDESTRIAN: color = color_pedestrians elif tracked_object.tracked_object_type == TrackedObjectType.BICYCLE: color = color_bikes else: color = [0, 0, 0, 255] predictions.append(_to_scene_agent_prediction(tracked_object, color)) return predictions
728d471fbc15957c57f4b3a6da68bfffdbf875ac
61
def stretch(snd_array, factor, window_size, h): """ Stretches/shortens a sound, by some factor. """ phase = np.zeros(window_size) hanning_window = np.hanning(window_size) result = np.zeros( len(snd_array) /factor + window_size) for i in np.arange(0, len(snd_array)-(window_size+h), h*factor): # two potentially overlapping subarrays a1 = snd_array[i: i + window_size] a2 = snd_array[i + h: i + window_size + h] # the spectra of these arrays s1 = np.fft.fft(hanning_window * a1) s2 = np.fft.fft(hanning_window * a2) # rephase all frequencies phase = (phase + np.angle(s2/s1)) % 2*np.pi a2_rephased = np.fft.ifft(np.abs(s2)*np.exp(1j*phase)) i2 = int(i/factor) result[i2 : i2 + window_size] += hanning_window*a2_rephased result = ((2**(16-4)) * result/result.max()) # normalize (16bit) return result.astype('int16')
aeb12b6da26de9630eec9ad84caf9f30bd6f1f71
62
def guess_encoding(text): """ Given bytes, determine the character set encoding @return: dict with encoding and confidence """ if not text: return {'confidence': 0, 'encoding': None} enc = detect_charset(text) cset = enc['encoding'] if cset.lower() == 'iso-8859-2': # Anomoaly -- chardet things Hungarian (iso-8850-2) is # a close match for a latin-1 document. At least the quotes match # Other Latin-xxx variants will likely match, but actually be Latin1 # or win-1252. see Chardet explanation for poor reliability of Latin-1 detection # enc['encoding'] = CHARDET_LATIN2_ENCODING return enc
f58d652b7a77652ace1c27b315fc81ac82726a03
63
def is_edit_end_without_next(line, configs): """ Is the line indicates that 'edit' section ends without 'next' end marker (special case)? - config vdom edit <name> ... end :param line: A str represents a line in configurations output :param configs: A stack (list) holding config node objects """ if len(configs) > 1: (parent, child) = (configs[-2], configs[-1]) # (config, edit) if parent.end_re.match(line) and parent.name == "vdom" and \ parent.type == NT_CONFIG and child.type == NT_EDIT: return True return False
0398fc86ee7911686bfdaa0cdf6431f53db1ccba
64
def get_live_args(request, script=False, typed=False): """ Get live args input by user | request --> [[str], [str]]""" arg_string = list(request.form.values())[0] if script: return parse_command_line_args(arg_string) if typed: try: all_args = parse_type_args(arg_string) except Exception as e: #Doesn't matter what the exception is. #raise e #Uncomment for testing return ('Parsing Error', e) else: all_args = parse_args(arg_string) args = all_args[0] kwargs = all_args[1] all_args = [args, kwargs] print(all_args) return all_args
9e56043760e9ac263a737166c796640170a6174c
65
import codecs import csv def open_csv(path): """open_csv.""" _lines = [] with codecs.open(path, encoding='utf8') as fs: for line in csv.reader(fs): if len(line) == 3: _lines.append(line) return _lines
501ff4a2a1a242439c21d3131cecd407dcfa36af
66
from typing import Union from pathlib import Path from typing import Dict def parse_metadata(metadata_filepath: Union[str, Path]) -> Dict: """Parse the metadata file retreived from the BEACO2N site Args: metadata_filepath: Path of raw CSV metadata file pipeline: Are we running as part of the pipeline? If True return the parsed site information dictionary. Returns: dict: Dictionary of site metadata """ metadata_filepath = Path(metadata_filepath).resolve() raw_metadata = pd.read_csv(metadata_filepath) site_metadata = aDict() try: for index, row in raw_metadata.iterrows(): site_name = row["node_name_long"].lower().replace(" ", "") site_data = site_metadata[site_name] site_data["long_name"] = row["node_name_long"] site_data["id"] = row["id"] site_data["latitude"] = round(row["lat"], 5) site_data["longitude"] = round(row["lng"], 5) site_data["magl"] = check_nan(row["height_above_ground"]) site_data["masl"] = check_nan(row["height_above_sea"]) site_data["deployed"] = check_date(row["deployed"]) site_data["node_folder_id"] = row["node_folder_id"] except Exception as e: raise ValueError(f"Can't read metadata file, please ensure it has expected columns. Error: {e}") # Convert to a normal dict metadata: Dict = site_metadata.to_dict() return metadata
321e9abb82172ee7d06423d2703ec2499aefbee9
67
def unit_norm(model,axis=0): """ Constrains the weights incident to each hidden unit to have unit norm. Args: axis (int):axis along which to calculate weight norms. model : the model contains weights need to setting the constraints. """ def apply_constraint(t: Tensor): w_data = None if isinstance(t, tf.Variable): w_data = t.value().detach() else: w_data = t.copy().detach() param_applied = w_data/ (epsilon() +sqrt(reduce_sum(square(w_data),axis=axis,keepdims=True))) param_applied = param_applied.detach() return param_applied if is_tensor(model): model = apply_constraint(model) elif isinstance(model, Layer): for name, param in model.named_parameters(): if 'bias' not in name and param is not None and param.trainable == True: param.assign(apply_constraint(param))
ffe517f2f883541d5d3736a2bb3263e6349ffe18
68
def responsive_units(spike_times, spike_clusters, event_times, pre_time=[0.5, 0], post_time=[0, 0.5], alpha=0.05): """ Determine responsive neurons by doing a Wilcoxon Signed-Rank test between a baseline period before a certain task event (e.g. stimulus onset) and a period after the task event. Parameters ---------- spike_times : 1D array spike times (in seconds) spike_clusters : 1D array cluster ids corresponding to each event in `spikes` event_times : 1D array times (in seconds) of the events from the two groups pre_time : two-element array time (in seconds) preceding the event to get the baseline (e.g. [0.5, 0.2] would be a window starting 0.5 seconds before the event and ending at 0.2 seconds before the event) post_time : two-element array time (in seconds) to follow the event times alpha : float alpha to use for statistical significance Returns ------- significant_units : ndarray an array with the indices of clusters that are significatly modulated stats : 1D array the statistic of the test that was performed p_values : ndarray the p-values of all the clusters cluster_ids : ndarray cluster ids of the p-values """ # Get spike counts for baseline and event timewindow baseline_times = np.column_stack(((event_times - pre_time[0]), (event_times - pre_time[1]))) baseline_counts, cluster_ids = get_spike_counts_in_bins(spike_times, spike_clusters, baseline_times) times = np.column_stack(((event_times + post_time[0]), (event_times + post_time[1]))) spike_counts, cluster_ids = get_spike_counts_in_bins(spike_times, spike_clusters, times) # Do statistics p_values = np.empty(spike_counts.shape[0]) stats = np.empty(spike_counts.shape[0]) for i in range(spike_counts.shape[0]): if np.sum(baseline_counts[i, :] - spike_counts[i, :]) == 0: p_values[i] = 1 stats[i] = 0 else: stats[i], p_values[i] = wilcoxon(baseline_counts[i, :], spike_counts[i, :]) # Perform FDR correction for multiple testing sig_units, p_values, _, _ = multipletests(p_values, alpha, method='fdr_bh') significant_units = cluster_ids[sig_units] return significant_units, stats, p_values, cluster_ids
10493948d8fc710a95e1267b4543bc63cdebc661
69
def create_link(seconds, image_name, size): """ Function returns temporary link to the image """ token = signing.dumps([str(timezone.now() + timedelta(seconds=int(seconds))), image_name, size]) return settings.SERVER_PATH + reverse("image:dynamic-image", kwargs={"token": token})
e0ede3b6a28e1bfa3a69d8019b0141cd85b77cce
70
def read_one_hot_labels(filename): """Read topic labels from file in one-hot form :param filename: name of input file :return: topic labels (one-hot DataFrame, M x N) """ return pd.read_csv(filename, dtype=np.bool)
df6f0be241c8f5016ff66d02a54c899298055bd7
71
def make_randint_list(start, stop, length=10): """ Makes a list of randomly generated integers Args: start: lowest integer to be generated randomly. stop: highest integer to be generated randomly. length: length of generated list. Returns: list of random numbers between start and stop of length length """ return [randint(start, stop) for i in range(length)]
6ac9a20b9c5c87d9eff2b13a461cf266381961e2
72
def merge(intervals: list[list[int]]) -> list[list[int]]: """Generate a new schedule with non-overlapping intervals by merging intervals which overlap Complexity: n = len(intervals) Time: O(nlogn) for the initial sort Space: O(n) for the worst case of no overlapping intervals Examples: >>> merge(intervals=[[1,3],[2,6],[8,10],[15,18]]) [[1, 6], [8, 10], [15, 18]] >>> merge(intervals=[[1,4],[4,5]]) [[1, 5]] >>> merge(intervals=[[1,4]]) [[1, 4]] """ ## EDGE CASES ## if len(intervals) <= 1: return intervals """ALGORITHM""" ## INITIALIZE VARS ## intervals.sort(key=lambda k: k[0]) # sort on start times # DS's/res merged_intervals = [] # MERGE INTERVALS prev_interval, remaining_intervals = intervals[0], intervals[1:] for curr_interval in remaining_intervals: # if prev interval end >= curr interval start if prev_interval[1] >= curr_interval[0]: # adjust new prev interval prev_interval[1] = max(prev_interval[1], curr_interval[1]) else: merged_intervals.append(prev_interval) prev_interval = curr_interval merged_intervals.append(prev_interval) return merged_intervals
49a9d7d461ba67ec3b5f839331c2a13d9fc068d0
73
def df_drop_duplicates(df, ignore_key_pattern="time"): """ Drop duplicates from dataframe ignore columns with keys containing defined pattern. :param df: :param noinfo_key_pattern: :return: """ ks = df_drop_keys_contains(df, ignore_key_pattern) df = df.drop_duplicates(ks) return df
babd7be3ef66cef81a5a2192cf781afd2f96aca9
74
def get_mediawiki_flow_graph(limit, period): """ :type limit int :type period int :rtype: list[dict] """ # https://kibana5.wikia-inc.com/goto/e6ab16f694b625d5b87833ae794f5989 # goreplay is running in RES (check SJC logs only) rows = ElasticsearchQuery( es_host=ELASTICSEARCH_HOST, period=period, index_prefix='logstash-mediawiki' ).query_by_string( query='"Wikia internal request" AND @fields.environment: "prod" ' 'AND @fields.datacenter: "sjc" ' 'AND @fields.http_url_path: *', fields=[ '@context.source', '@fields.http_url_path', ], limit=limit ) # extract required fields only # (u'user-permissions', 'api:query::users') # (u'1', 'nirvana:EmailControllerDiscussionReply::handle') rows = [ ( row.get('@context', {})['source'], normalize_mediawiki_url(row.get('@fields', {})['http_url_path']) ) for row in rows if row.get('@context', {}).get('source') is not None ] # process the logs def _map(item): return '{}-{}'.format(item[0], item[1]) def _reduce(items): first = items[0] source = first[0] target = first[1] return { 'source': source if source != '1' else 'internal', 'edge': 'http', 'target': target, # the following is optional 'metadata': '{:.3f} reqs per sec'.format(1. * len(items) / period) } return logs_map_and_reduce(rows, _map, _reduce)
c82976c24d80f7784f32e36666f791fed4ada769
75
def bsplslib_Unperiodize(*args): """ :param UDirection: :type UDirection: bool :param Degree: :type Degree: int :param Mults: :type Mults: TColStd_Array1OfInteger & :param Knots: :type Knots: TColStd_Array1OfReal & :param Poles: :type Poles: TColgp_Array2OfPnt :param Weights: :type Weights: TColStd_Array2OfReal & :param NewMults: :type NewMults: TColStd_Array1OfInteger & :param NewKnots: :type NewKnots: TColStd_Array1OfReal & :param NewPoles: :type NewPoles: TColgp_Array2OfPnt :param NewWeights: :type NewWeights: TColStd_Array2OfReal & :rtype: void """ return _BSplSLib.bsplslib_Unperiodize(*args)
0fad8703881304c9d169feb4ce58f31b29d1703b
76
def genomic_del3_abs_37(genomic_del3_37_loc): """Create test fixture absolute copy number variation""" return { "type": "AbsoluteCopyNumber", "_id": "ga4gh:VAC.Pv9I4Dqk69w-tX0axaikVqid-pozxU74", "subject": genomic_del3_37_loc, "copies": {"type": "Number", "value": 2} }
ed417f1b0eba79a5db717bd16ca79dd85c55c381
77
import os def write_data_to_file(training_data_files, out_file, image_shape, truth_dtype=np.uint8, subject_ids=None, normalize=True, crop=True): """ Takes in a set of training images and writes those images to an hdf5 file. :param training_data_files: List of tuples containing the training data files. The modalities should be listed in the same order in each tuple. The last item in each tuple must be the labeled image. Example: [('sub1-T1.nii.gz', 'sub1-T2.nii.gz', 'sub1-truth.nii.gz'), ('sub2-T1.nii.gz', 'sub2-T2.nii.gz', 'sub2-truth.nii.gz')] :param out_file: Where the hdf5 file will be written to. :param image_shape: Shape of the images that will be saved to the hdf5 file. :param truth_dtype: Default is 8-bit unsigned integer. :return: Location of the hdf5 file with the image data written to it. """ n_samples = len(training_data_files) n_channels = len(training_data_files[0]) - 1 # n_channels is actually the number of modalities we have try: if not normalize: hdf5_file, data_storage, truth_storage, affine_storage, normalization_storage = \ create_data_file(out_file, n_channels=n_channels, n_samples=n_samples, image_shape=image_shape, normalize=normalize, storage_names=('data', 'truth', 'index', 'normalization')) else: hdf5_file, data_storage, truth_storage, affine_storage = create_data_file(out_file, n_channels=n_channels, n_samples=n_samples, image_shape=image_shape, normalize=normalize) normalization_storage = None except Exception as e: # If something goes wrong, delete the incomplete data file os.remove(out_file) raise e write_image_data_to_file(training_data_files, data_storage, truth_storage, image_shape, truth_dtype=truth_dtype, n_channels=n_channels, affine_storage=affine_storage, crop=crop, normalization_storage=normalization_storage) if subject_ids: hdf5_file.create_array(hdf5_file.root, 'subject_ids', obj=subject_ids) if normalize: normalize_data_storage(data_storage) hdf5_file.close() return out_file
b90261a855926afc99ef0af95ba026daf34d8d43
78
def get_configinfo(env): """Returns a list of dictionaries containing the `name` and `options` of each configuration section. The value of `options` is a list of dictionaries containing the `name`, `value` and `modified` state of each configuration option. The `modified` value is True if the value differs from its default. :since: version 1.1.2 """ all_options = {} for (section, name), option in \ Option.get_registry(env.compmgr).iteritems(): all_options.setdefault(section, {})[name] = option sections = [] for section in env.config.sections(env.compmgr): options = [] for name, value in env.config.options(section, env.compmgr): registered = all_options.get(section, {}).get(name) if registered: default = registered.default normalized = registered.normalize(value) else: default = u'' normalized = unicode(value) options.append({'name': name, 'value': value, 'modified': normalized != default}) options.sort(key=lambda o: o['name']) sections.append({'name': section, 'options': options}) sections.sort(key=lambda s: s['name']) return sections
c96b784f389af7c043977fbc1707840ef56a6486
79
def given_energy(n, ef_energy): """ Calculate and return the value of given energy using given values of the params How to Use: Give arguments for ef_energy and n parameters *USE KEYWORD ARGUMENTS FOR EASY USE, OTHERWISE IT'LL BE HARD TO UNDERSTAND AND USE.' Parameters: ef_energy (int):effective energy in Joule n (int): efficiency Returns: int: the value of given energy in Joule """ gv_energy = ef_energy / n return gv_energy
98095581bfaf4b8a6dbf59dce86b02e3f1fa6002
80
def sequence_sigmoid_cross_entropy(labels, logits, sequence_length, average_across_batch=True, average_across_timesteps=False, average_across_classes=True, sum_over_batch=False, sum_over_timesteps=True, sum_over_classes=False, time_major=False, stop_gradient_to_label=False, name=None): """Computes sigmoid cross entropy for each time step of sequence predictions. Args: labels: Target class distributions. - If :attr:`time_major` is `False` (default), this must be a\ Tensor of shape `[batch_size, max_time(, num_classes)]`. - If `time_major` is `True`, this must be a Tensor of shape\ `[max_time, batch_size(, num_classes)]`. Each row of `labels` should be a valid probability distribution, otherwise, the computation of the gradient will be incorrect. logits: Unscaled log probabilities having the same shape as with :attr:`labels`. sequence_length: A Tensor of shape `[batch_size]`. Time steps beyond the respective sequence lengths will have zero losses. average_across_timesteps (bool): If set, average the loss across the time dimension. Must not set `average_across_timesteps` and `sum_over_timesteps` at the same time. average_across_batch (bool): If set, average the loss across the batch dimension. Must not set `average_across_batch`' and `sum_over_batch` at the same time. average_across_classes (bool): If set, average the loss across the class dimension (if exists). Must not set `average_across_classes`' and `sum_over_classes` at the same time. Ignored if :attr:`logits` is a 2D Tensor. sum_over_timesteps (bool): If set, sum the loss across the time dimension. Must not set `average_across_timesteps` and `sum_over_timesteps` at the same time. sum_over_batch (bool): If set, sum the loss across the batch dimension. Must not set `average_across_batch` and `sum_over_batch` at the same time. sum_over_classes (bool): If set, sum the loss across the class dimension. Must not set `average_across_classes` and `sum_over_classes` at the same time. Ignored if :attr:`logits` is a 2D Tensor. time_major (bool): The shape format of the inputs. If `True`, :attr:`labels` and :attr:`logits` must have shape `[max_time, batch_size, ...]`. If `False` (default), they must have shape `[batch_size, max_time, ...]`. stop_gradient_to_label (bool): If set, gradient propagation to :attr:`labels` will be disabled. name (str, optional): A name for the operation. Returns: A Tensor containing the loss, of rank 0, 1, or 2 depending on the arguments :attr:`{average_across}/{sum_over}_{timesteps}/{batch}/{classes}`. For example, if the class dimension does not exist, and - If :attr:`sum_over_timesteps` and :attr:`average_across_batch` \ are `True` (default), the return Tensor is of rank 0. - If :attr:`average_across_batch` is `True` and other arguments are \ `False`, the return Tensor is of shape `[max_time]`. """ with tf.name_scope(name, "sequence_sigmoid_cross_entropy"): if stop_gradient_to_label: labels = tf.stop_gradient(labels) losses = tf.nn.sigmoid_cross_entropy_with_logits( labels=labels, logits=logits) rank = shapes.get_rank(logits) or shapes.get_rank(labels) if rank is None: raise ValueError( 'Cannot determine the rank of `logits` or `labels`.') losses = mask_and_reduce( losses, sequence_length, rank=rank, average_across_batch=average_across_batch, average_across_timesteps=average_across_timesteps, average_across_remaining=average_across_classes, sum_over_batch=sum_over_batch, sum_over_timesteps=sum_over_timesteps, sum_over_remaining=sum_over_classes, time_major=time_major) return losses
7eaea7dc8c416f0a37f0d6668ec175725f1fea04
81
import math import torch def stats(func): """Stats printing and exception handling decorator""" def inner(*args): try: code, decoded, res = func(*args) except ValueError as err: print(err) else: if FORMATTING: code_length = 0 for el in code: code_length += len(el) compression_rate = 24 * img.shape[0] * img.shape[1] / code_length print(f"Code length: {code_length}") else: compression_rate = 24 * img.shape[0] * img.shape[1] / len(code) code_length = len(code) print(f"Code length: {code_length}") #Convert RGB to YCbCr color_conv = RGBYCbCr() img_ycbcr = color_conv.forward(img) decoded_ycbcr = color_conv.forward(decoded) #Calculate MSE and PSNR, Y:U:V = 6:1:1 MSE_y = ((img_ycbcr[:,:,0].astype(int)-decoded_ycbcr[:,:,0].astype(int))**2).mean() MSE_u = ((img_ycbcr[:,:,1].astype(int)-decoded_ycbcr[:,:,1].astype(int))**2).mean() MSE_v = ((img_ycbcr[:,:,2].astype(int)-decoded_ycbcr[:,:,2].astype(int))**2).mean() PSNR_y = 10 * math.log10((255*255)/MSE_y) PSNR_u = 10 * math.log10((255*255)/MSE_u) PSNR_v = 10 * math.log10((255*255)/MSE_v) PSNR = (PSNR_y * 6 + PSNR_u + PSNR_v)/8 #Call the functions of SSIM, MS-SSIM, VIF D_1 = SSIM(channels=1) D_2 = MS_SSIM(channels=1) D_3 = VIFs(channels=3) # spatial domain VIF #To get 4-dimension torch tensors, (N, 3, H, W), divide by 255 to let the range between (0,1) torch_decoded = torch.FloatTensor(decoded.astype(int).swapaxes(0,2).swapaxes(1,2)).unsqueeze(0)/255 torch_img = torch.FloatTensor(img.astype(int).swapaxes(0,2).swapaxes(1,2)).unsqueeze(0)/255 torch_decoded_ycbcr = torch.FloatTensor(decoded_ycbcr.astype(int).swapaxes(0,2).swapaxes(1,2)).unsqueeze(0)/255 torch_img_ycbcr = torch.FloatTensor(img_ycbcr.astype(int).swapaxes(0,2).swapaxes(1,2)).unsqueeze(0)/255 #Calculate SSIM, MS-SSIM, VIF #SSIM on luma channel SSIM_value = D_1(torch_decoded_ycbcr[:, [0], :, :] , torch_img_ycbcr[:, [0], :, :], as_loss=False) #MS-SSIM on luma channel MS_SSIM_value = D_2(torch_decoded_ycbcr[:, [0], :, :], torch_img_ycbcr[:, [0], :, :], as_loss=False) #VIF on spatial domain VIF_value = D_3(torch_decoded, torch_img, as_loss=False) #print(D_3(torch_img, torch_img, as_loss=False)) #Print out the results #print(f"Mean squared error: {MSE}") print(f"General PSNR: {PSNR}") print(f"SSIM: {SSIM_value}") print(f"MS_SSIM: {MS_SSIM_value}") print(f"VIF: {VIF_value}") print(f"Compression rate: {compression_rate} bits/nt") # plt.imshow(decoded) # plt.show() # io.imsave(str(compression_rate) + ".png", decoded) return code, decoded, res, compression_rate, PSNR, SSIM_value, MS_SSIM_value, VIF_value return inner
99e39e204238d09bd7275ac29089898ff3d22f6a
82
import asyncio async def async_unload_entry(hass: HomeAssistant, entry: ConfigEntry) -> bool: """Unload a config entry.""" unload_ok = all( await asyncio.gather( *[ hass.config_entries.async_forward_entry_unload(entry, platform) for platform in PLATFORMS ] ) ) if unload_ok: config_data = hass.data[DOMAIN].pop(entry.entry_id) await config_data[CONF_CLIENT].async_client_close() return unload_ok
f44f9d9f3a566794547571563ae94ce433082d6d
83
def get_ucp_worker_info(): """Gets information on the current UCX worker, obtained from `ucp_worker_print_info`. """ return _get_ctx().ucp_worker_info()
c40a0debcc769422b4cd8cd03018b57dd7efe224
84
from datetime import datetime def check_can_collect_payment(id): """ Check if participant can collect payment this is true if : - They have been signed up for a year - They have never collected payment before or their last collection was more than 5 months ago """ select = "SELECT time_sign_up FROM SESSION_INFO WHERE user_id = (%s)" time_sign_up = db.execute(select, (id,), 1) one_year_after_sign_up = time_sign_up[0][0] + timedelta(weeks=43) select = "SELECT date_collected,next_collection from TASK_COMPLETED WHERE user_id = (%s)" date_collected = db.execute(select, (id,), 1) can_collect_payment = False #if one_year_after_sign_up < datetime.now() and user_type and next_collection[0][0] and next_collection[0][0] < datetime.now(): if one_year_after_sign_up < datetime.now() and len(date_collected) >= 1 and (date_collected[0][0] == None or date_collected[0][0] < (datetime.now() - timedelta(weeks=22))): can_collect_payment = True date_collected = date_collected[0][0] elif len(date_collected) > 1: date_collected = date_collected[0][0] return (can_collect_payment,date_collected,time_sign_up)
a057b6599bfd5417a17de1672b4ccf2023991e6e
85
def plus_tensor(wx, wy, wz=np.array([0, 0, 1])): """Calculate the plus polarization tensor for some basis.c.f., eq. 2 of https://arxiv.org/pdf/1710.03794.pdf""" e_plus = np.outer(wx, wx) - np.outer(wy, wy) return e_plus
c5632dcfffa9990c8416b77ff0df728ae46c34bc
86
import json def duplicate_objects(dup_infos): """Duplicate an object with optional transformations. Args: dup_infos (list[dict]): A list of duplication infos. Each info is a dictionary, containing the following data: original (str): Name of the object to duplicate. name (str): Desired name for the duplicate. translation (f,f,f): Translation float tuple or None if not to change. rotation (f,f,f): Rotation float tuple or None if not to change. scale (f,f,f): 3d scale float tuple or None if not to change. Returns: list[tuple (str, str)]: The first element of each tuple contains the return 'code' of the operation, which can be - 'Ok' If no problem occured. - 'NotFound' If the original could not be found. - 'Renamed' If the name was changed by the editor. - 'Failed' If something else problematic happened. The second element is None, unless the editor 'Renamed' the object, in which case it contains the editor-assigned name. If the return value is 'Renamed', the calling function must assign the returned name to the original object in the Program or find a new fitting name and assign it to the duplicated object using the :func:`renameObject` function with the returned string as name. .. seealso:: :func:`renameObject` :func:`getFreeName` """ infos_str = json.dumps(dup_infos) msg = "DuplicateObjects " + infos_str result = connection.send_message(msg) results = json.parse(result) return results
d8281eb6862cd7e022907bc479b03fc74cb3c78c
87
def _list_data_objects(request, model, serializer): """a factory method for querying and receiving database objects""" obj = model.objects.all() ser = serializer(obj, many=True) return Response(ser.data, status=status.HTTP_200_OK)
80f43efdf1d09e73fda7be8ee5f8e37a163892f7
88
import configparser def load_conf(file='./config', section='SYNTH_DATA'): """load configuration Args: file (str, optional): path to conf file. Defaults to './config'. section (str, optional): name of section. Defaults to 'SYNTH_DATA'. Returns: [str]: params of configuration """ log_message('Load configuration.') config = configparser.ConfigParser() resource = config.read(file) if 0 == resource: log_message('Error: cannot read configuration file.') exit(1) params = {} options = config.options(section) for opt in options: params[opt] = config.get(section, opt) log_message(' - %s: %s' % (opt, params[opt])) return params
a30240e98d9fd1cdc1bc7746566fdb07b842a8dc
89
import math def distance(a, b): """ Computes a :param a: :param b: :return: """ x = a[0] - b[0] y = a[1] - b[1] return math.sqrt(x ** 2 + y ** 2)
60b637771cd215a4cf83761a142fb6fdeb84d96e
90
def approve_pipelines_for_publishing(pipeline_ids): # noqa: E501 """approve_pipelines_for_publishing :param pipeline_ids: Array of pipeline IDs to be approved for publishing. :type pipeline_ids: List[str] :rtype: None """ pipe_exts: [ApiPipelineExtension] = load_data(ApiPipelineExtension) pipe_ext_ids = {p.id for p in pipe_exts} missing_pipe_ext_ids = set(pipeline_ids) - pipe_ext_ids for id in missing_pipe_ext_ids: store_data(ApiPipelineExtension(id=id)) update_multiple(ApiPipelineExtension, [], "publish_approved", False) if pipeline_ids: update_multiple(ApiPipelineExtension, pipeline_ids, "publish_approved", True) return None, 200
e5ae4dfc0889fc95e3343a01111323eec43e1f93
91
def make_tokenizer_module(tokenizer): """tokenizer module""" tokenizers = {} cursors = {} @ffi.callback("int(int, const char *const*, sqlite3_tokenizer **)") def xcreate(argc, argv, ppTokenizer): if hasattr(tokenizer, "__call__"): args = [ffi.string(x).decode("utf-8") for x in argv[0:argc]] tk = tokenizer(args) else: tk = tokenizer th = ffi.new_handle(tk) tkn = ffi.new("sqlite3_tokenizer *") tkn.t = th tokenizers[tkn] = th ppTokenizer[0] = tkn return SQLITE_OK @ffi.callback("int(sqlite3_tokenizer *)") def xdestroy(pTokenizer): tkn = pTokenizer del tokenizers[tkn] return SQLITE_OK @ffi.callback( "int(sqlite3_tokenizer*, const char *, int, sqlite3_tokenizer_cursor **)" ) def xopen(pTokenizer, pInput, nInput, ppCursor): cur = ffi.new("sqlite3_tokenizer_cursor *") tokenizer = ffi.from_handle(pTokenizer.t) i = ffi.string(pInput).decode("utf-8") tokens = [(n.encode("utf-8"), b, e) for n, b, e in tokenizer.tokenize(i) if n] tknh = ffi.new_handle(iter(tokens)) cur.pTokenizer = pTokenizer cur.tokens = tknh cur.pos = 0 cur.offset = 0 cursors[cur] = tknh ppCursor[0] = cur return SQLITE_OK @ffi.callback( "int(sqlite3_tokenizer_cursor*, const char **, int *, int *, int *, int *)" ) def xnext(pCursor, ppToken, pnBytes, piStartOffset, piEndOffset, piPosition): try: cur = pCursor[0] tokens = ffi.from_handle(cur.tokens) normalized, inputBegin, inputEnd = next(tokens) ppToken[0] = ffi.from_buffer(normalized) pnBytes[0] = len(normalized) piStartOffset[0] = inputBegin piEndOffset[0] = inputEnd cur.offset = inputEnd piPosition[0] = cur.pos cur.pos += 1 except StopIteration: return SQLITE_DONE return SQLITE_OK @ffi.callback("int(sqlite3_tokenizer_cursor *)") def xclose(pCursor): tk = ffi.from_handle(pCursor.pTokenizer.t) on_close = getattr(tk, "on_close", None) if on_close and hasattr(on_close, "__call__"): on_close() del cursors[pCursor] return SQLITE_OK tokenizer_module = ffi.new( "sqlite3_tokenizer_module*", [0, xcreate, xdestroy, xopen, xclose, xnext] ) tokenizer_modules[tokenizer] = ( tokenizer_module, xcreate, xdestroy, xopen, xclose, xnext, ) return tokenizer_module
73f38b71f15b286a95a195296c5c265ba2da87f9
92
def looping_call(interval, callable): """ Returns a greenlet running your callable in a loop and an Event you can set to terminate the loop cleanly. """ ev = Event() def loop(interval, callable): while not ev.wait(timeout=interval): callable() return gevent.spawn(loop, interval, callable), ev
0df2a822c2eb56b8479224b0463bf9a2ad34f1e7
93
def rsquared_adj(r, nobs, df_res, has_constant=True): """ Compute the adjusted R^2, coefficient of determination. Args: r (float): rsquared value nobs (int): number of observations the model was fit on df_res (int): degrees of freedom of the residuals (nobs - number of model params) has_constant (bool): whether the fitted model included a constant (intercept) Returns: float: adjusted coefficient of determination """ if has_constant: return 1.0 - (nobs - 1) / df_res * (1.0 - r) else: return 1.0 - nobs / df_res * (1.0 - r)
8d466437db7ec9de9bc7ee1d9d50a3355479209d
94
def metadata_factory(repo, json=False, **kwargs): """ This generates a layout you would expect for metadata storage with files. :type json: bool :param json: if True, will return string instead. """ output = { "baseline_filename": None, "crontab": "0 0 * * *", "exclude_regex": None, "plugins": { "AWSKeyDetector": {}, "ArtifactoryDetector": {}, "Base64HighEntropyString": { "base64_limit": 4.5, }, "BasicAuthDetector": {}, "HexHighEntropyString": { "hex_limit": 3, }, "KeywordDetector": { 'keyword_exclude': None }, "MailchimpDetector": {}, "PrivateKeyDetector": {}, "SlackDetector": {}, "StripeDetector": {}, }, "repo": repo, "sha": 'sha256-hash', } output.update(kwargs) if json: return json_module.dumps(output, indent=2, sort_keys=True) return output
8dc0cd4cb5aa194c915146efbe0a743b5047561d
95
from typing import Optional from typing import Sequence def inpand(clip: vs.VideoNode, sw: int, sh: Optional[int] = None, mode: XxpandMode = XxpandMode.RECTANGLE, thr: Optional[int] = None, planes: int | Sequence[int] | None = None) -> vs.VideoNode: """ Calls std.Minimum in order to shrink each pixel with the smallest value in its 3x3 neighbourhood from the desired width and height. :param clip: Source clip. :param sw: Shrinking shape width. :param sh: Shrinking shape height. If not specified, default to sw. :param mode: Shape form. Ellipses are combinations of rectangles and losanges and look more like octogons. Losanges are truncated (not scaled) when sw and sh are not equal. :param thr: Allows to limit how much pixels are changed. Output pixels will not become less than ``input - threshold``. The default is no limit. :param planes: Specifies which planes will be processed. Any unprocessed planes will be simply copied. :return: Transformed clip """ return morpho_transfo(clip, core.std.Minimum, sw, sh, mode, thr, planes)
67d05b2ef31fdc3b544d063a571d39a1c1a3ecf8
96
def _extract_aggregate_functions(before_aggregate): """Converts `before_aggregate` to aggregation functions. Args: before_aggregate: The first result of splitting `after_broadcast` on `intrinsic_defs.FEDERATED_AGGREGATE`. Returns: `zero`, `accumulate`, `merge` and `report` as specified by `canonical_form.CanonicalForm`. All are instances of `building_blocks.CompiledComputation`. Raises: transformations.CanonicalFormCompilationError: If we extract an ASTs of the wrong type. """ # See `get_iterative_process_for_canonical_form()` above for the meaning of # variable names used in the code below. zero_index_in_before_aggregate_result = 1 zero_tff = transformations.select_output_from_lambda( before_aggregate, zero_index_in_before_aggregate_result).result accumulate_index_in_before_aggregate_result = 2 accumulate_tff = transformations.select_output_from_lambda( before_aggregate, accumulate_index_in_before_aggregate_result).result merge_index_in_before_aggregate_result = 3 merge_tff = transformations.select_output_from_lambda( before_aggregate, merge_index_in_before_aggregate_result).result report_index_in_before_aggregate_result = 4 report_tff = transformations.select_output_from_lambda( before_aggregate, report_index_in_before_aggregate_result).result zero = transformations.consolidate_and_extract_local_processing(zero_tff) accumulate = transformations.consolidate_and_extract_local_processing( accumulate_tff) merge = transformations.consolidate_and_extract_local_processing(merge_tff) report = transformations.consolidate_and_extract_local_processing(report_tff) return zero, accumulate, merge, report
22aff3c077b94c5eae8841448c2a55bbfa311487
97
def _make_system(A, M, x0, b): """Make a linear system Ax = b Args: A (cupy.ndarray or cupyx.scipy.sparse.spmatrix or cupyx.scipy.sparse.LinearOperator): sparse or dense matrix. M (cupy.ndarray or cupyx.scipy.sparse.spmatrix or cupyx.scipy.sparse.LinearOperator): preconditioner. x0 (cupy.ndarray): initial guess to iterative method. b (cupy.ndarray): right hand side. Returns: tuple: It returns (A, M, x, b). A (LinaerOperator): matrix of linear system M (LinearOperator): preconditioner x (cupy.ndarray): initial guess b (cupy.ndarray): right hand side. """ fast_matvec = _make_fast_matvec(A) A = _interface.aslinearoperator(A) if fast_matvec is not None: A = _interface.LinearOperator(A.shape, matvec=fast_matvec, rmatvec=A.rmatvec, dtype=A.dtype) if A.shape[0] != A.shape[1]: raise ValueError('expected square matrix (shape: {})'.format(A.shape)) if A.dtype.char not in 'fdFD': raise TypeError('unsupprted dtype (actual: {})'.format(A.dtype)) n = A.shape[0] if not (b.shape == (n,) or b.shape == (n, 1)): raise ValueError('b has incompatible dimensions') b = b.astype(A.dtype).ravel() if x0 is None: x = cupy.zeros((n,), dtype=A.dtype) else: if not (x0.shape == (n,) or x0.shape == (n, 1)): raise ValueError('x0 has incompatible dimensions') x = x0.astype(A.dtype).ravel() if M is None: M = _interface.IdentityOperator(shape=A.shape, dtype=A.dtype) else: fast_matvec = _make_fast_matvec(M) M = _interface.aslinearoperator(M) if fast_matvec is not None: M = _interface.LinearOperator(M.shape, matvec=fast_matvec, rmatvec=M.rmatvec, dtype=M.dtype) if A.shape != M.shape: raise ValueError('matrix and preconditioner have different shapes') return A, M, x, b
37d877dc8522a476c1ff0be34db01fe8d711dbb7
98
from typing import List def merge_intersecting_segments(segments: List[Segment]) -> List[Segment]: """ Merges intersecting segments from the list. """ sorted_by_start = sorted(segments, key=lambda segment: segment.start) merged = [] for segment in sorted_by_start: if not merged: merged.append(Segment(segment.start, segment.end)) continue last_merged = merged[-1] if segment.start <= last_merged.end: last_merged.end = max(last_merged.end, segment.end) else: merged.append(Segment(segment.start, segment.end)) return merged
e18498d9a9695b2c5796fb6e006f375541f704c7
99
README.md exists but content is empty.
Downloads last month
37