content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import time def test(ipu_estimator, args, x_test, y_test): """ Test the model on IPU by loading weights from the final checkpoint in the given `args.model_dir`. """ def input_fn(): dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test)) dataset = dataset.prefetch(len(x_test)).cache() dataset = dataset.batch(args.batch_size, drop_remainder=True) return dataset num_test_examples = len(x_test) steps = num_test_examples // args.batch_size # IPUEstimator requires no remainder; batches_per_step must divide steps steps -= steps % args.batches_per_step print(f"Evaluating on {steps * args.batch_size} examples") # Set up profiling hook hooks = [] if args.profile: hooks.append(ProfilerHook(ipu_estimator.model_dir, name='eval')) t0 = time.time() metrics = ipu_estimator.evaluate(input_fn=input_fn, steps=steps, hooks=hooks) t1 = time.time() test_loss = metrics["loss"] test_accuracy = metrics["accuracy"] duration_seconds = t1 - t0 print("Test loss: {:g}".format(test_loss)) print("Test accuracy: {:.2f}%".format(100 * test_accuracy)) print(f"Took {duration_seconds:.2f} seconds to compile and run")
083c2c830315ccf2602109a4a3e718cecd1b6760
3,658,028
def _get_service(): """Gets service instance to start API searches. Returns: A Google API Service used to send requests. """ # Create the AI Platform service object. # To authenticate set the environment variable # GOOGLE_APPLICATION_CREDENTIALS=<path_to_service_account_file> return googleapiclient.discovery.build('ml', 'v1')
5d79698216626eff9618dc55b6b651a5da3f5187
3,658,029
def giq(scores, targets, I, ordered, cumsum, penalties, randomized, allow_zero_sets): """ Generalized inverse quantile conformity score function. E from equation (7) in Romano, Sesia, Candes. Find the minimum tau in [0, 1] such that the correct label enters. """ E = -np.ones((scores.shape[0],)) for i in range(scores.shape[0]): E[i] = get_tau( scores[i : i + 1, :], targets[i].item(), I[i : i + 1, :], ordered[i : i + 1, :], cumsum[i : i + 1, :], penalties[0, :], randomized=randomized, allow_zero_sets=allow_zero_sets, ) return E
99a877053cf095622184cbbd9043b742c6ae076f
3,658,030
def findUser(userId): """ :param userId: :return: The user obj Finds a particular user from a dataset. """ return user_collection.find_one({"user_id": userId})
ffca934689c554993ca5d33005a32e4f9afe48cd
3,658,031
def sub_sample_map(data, aug_map, n_input, n_output, n_teach, buffer): """ Expands an augmentation map to produce indexes that will allow targets values of previous outputs to be used as inputs """ n_io = n_input + n_output n_req = n_io teach_range = range(n_teach) tf_map = [] for map_ in aug_map: sample = data[map_["orig_sample_idx"]] n = len(sample) i = np.random.randint(n - n_io - n_teach - buffer) j = i + n_req + n_teach + buffer new_map_ = {"strt_idx": i, "end_idx": j, **map_} tf_map.append(new_map_) return tf_map
05f88939ad2e293e3370f5585ad30f1d9d6256d1
3,658,032
def rcGetBBModelEnum(): """ Get the BeagleBone model as member of the BBModel Enum. """ return BBModel(rcGetBBModel())
90cf6857f2754a1947d017a1a57b11790d534c05
3,658,035
def ordToString(ordList): """Use this function to convert ord values to strings.""" newStrList = [] cstr = "" for cint in ordList: cstr += chr(cint) if cint == 44: newStrList.append(cstr[:-1]) cstr = "" return newStrList
5a836f7fe34803744de90aa2608e3d99a081c7ff
3,658,036
def get_test_data_for_successful_build(): """Returns a test data set of test suites and cases that passed. """ return _get_test_data(["PASSED", "PASSED", "PASSED"])
8969d33f887dcc7c7f7fb8148cbcfc7a4eb4d7c1
3,658,037
import re import logging def fromOldAdjacencyList(adjlist, group=False, saturateH=False): """ Convert a pre-June-2014 string adjacency list `adjlist` into a set of :class:`Atom` and :class:`Bond` objects. It can read both "old style" that existed for years, an the "intermediate style" that existed for a few months in 2014, with the extra column of integers for lone pairs. """ atoms = [] atomdict = {} bonds = {} try: adjlist = adjlist.strip() lines = adjlist.splitlines() if adjlist == '' or len(lines) == 0: raise InvalidAdjacencyListError('Empty adjacency list.') # Skip the first line if it contains a label if len(lines[0].split()) == 1: label = lines.pop(0) if len(lines) == 0: raise InvalidAdjacencyListError('No atoms specified in adjacency list.') mistake1 = re.compile('\{[^}]*\s+[^}]*\}') atomicMultiplicities = {} # these are no longer stored on atoms, so we make a separate dictionary # Iterate over the remaining lines, generating Atom or GroupAtom objects for line in lines: # Sometimes people put spaces after commas, which messes up the # parse-by-whitespace. Examples include '{Cd, Ct}'. if mistake1.search(line): raise InvalidAdjacencyListError( "Shouldn't have spaces inside braces: {0}".format(mistake1.search(line).group()) ) # Sometimes commas are used to delimit bonds in the bond list, # so replace them just in case line = line.replace('},{', '} {') data = line.split() # Skip if blank line if len(data) == 0: continue # First item is index for atom # Sometimes these have a trailing period (as if in a numbered list), # so remove it just in case aid = int(data[0].strip('.')) # If second item starts with '*', then atom is labeled label = ''; index = 1 if data[1][0] == '*': label = data[1] index += 1 # Next is the element or functional group element # A list can be specified with the {,} syntax atomType = data[index] if atomType[0] == '{': atomType = atomType[1:-1].split(',') else: atomType = [atomType] index += 1 # Next is the electron state radicalElectrons = []; atomSpinMultiplicity = [] elecState = data[index].upper() if elecState[0] == '{': elecState = elecState[1:-1].split(',') else: elecState = [elecState] for e in elecState: if e == '0': radicalElectrons.append(0); atomSpinMultiplicity.append(1) elif e == '1': radicalElectrons.append(1); atomSpinMultiplicity.append(2) elif e == '2': radicalElectrons.append(2); atomSpinMultiplicity.append(1) radicalElectrons.append(2); atomSpinMultiplicity.append(3) elif e == '2S': radicalElectrons.append(2); atomSpinMultiplicity.append(1) elif e == '2T': radicalElectrons.append(2); atomSpinMultiplicity.append(3) elif e == '3': radicalElectrons.append(3); atomSpinMultiplicity.append(4) elif e == '3D': radicalElectrons.append(3); atomSpinMultiplicity.append(2) elif e == '3Q': radicalElectrons.append(3); atomSpinMultiplicity.append(4) elif e == '4': radicalElectrons.append(4); atomSpinMultiplicity.append(5) elif e == '4S': radicalElectrons.append(4); atomSpinMultiplicity.append(1) elif e == '4T': radicalElectrons.append(4); atomSpinMultiplicity.append(3) elif e == '4V': radicalElectrons.append(4); atomSpinMultiplicity.append(5) elif e == 'X': radicalElectrons.extend([0,1,2,2]) atomSpinMultiplicity.extend([1,2,1,3]) index += 1 # Next number defines the number of lone electron pairs (if provided) lonePairsOfElectrons = -1 if len(data) > index: lpState = data[index] if lpState[0] == '{': # this is the start of the chemical bonds - no lone pair info was provided lonePairsOfElectrons = -1 else: if lpState == '0': lonePairsOfElectrons = 0 if lpState == '1': lonePairsOfElectrons = 1 if lpState == '2': lonePairsOfElectrons = 2 if lpState == '3': lonePairsOfElectrons = 3 if lpState == '4': lonePairsOfElectrons = 4 index += 1 else: # no bonds or lone pair info provided. lonePairsOfElectrons = -1 # Create a new atom based on the above information if group: # charge currently not allowed atom = GroupAtom(atomType=atomType, radicalElectrons=sorted(set(radicalElectrons)), charge=[0], label=label, lonePairs=(None if lonePairsOfElectrons==-1 else [lonePairsOfElectrons]) ) else: atom = Atom(element=atomType[0], radicalElectrons=radicalElectrons[0], charge=0, label=label, lonePairs=lonePairsOfElectrons ) atomicMultiplicities[atom] = atomSpinMultiplicity # Add the atom to the list atoms.append(atom) atomdict[aid] = atom # Process list of bonds bonds[aid] = {} for datum in data[index:]: # Sometimes commas are used to delimit bonds in the bond list, # so strip them just in case datum = datum.strip(',') aid2, comma, order = datum[1:-1].partition(',') aid2 = int(aid2) if aid == aid2: raise InvalidAdjacencyListError('Attempted to create a bond between atom {0:d} and itself.'.format(aid)) if order[0] == '{': order = order[1:-1].split(',') else: order = [order] bonds[aid][aid2] = order if group: multiplicity = None else: multiplicity = 1 for atom in atoms: multiplicity += max(atomicMultiplicities[atom]) - 1 # Check consistency using bonddict for atom1 in bonds: for atom2 in bonds[atom1]: if atom2 not in bonds: raise InvalidAdjacencyListError('Atom {0:d} not in bond dictionary.'.format(atom2)) elif atom1 not in bonds[atom2]: raise InvalidAdjacencyListError('Found bond between {0:d} and {1:d}, but not the reverse.'.format(atom1, atom2)) elif bonds[atom1][atom2] != bonds[atom2][atom1]: raise InvalidAdjacencyListError('Found bonds between {0:d} and {1:d}, but of different orders "{2}" and "{3}".'.format(atom1, atom2, bonds[atom1][atom2], bonds[atom2][atom1])) # Convert bonddict to use Atom[group] and Bond[group] objects atomkeys = atomdict.keys() atomkeys.sort() for aid1 in atomkeys: atomkeys2 = bonds[aid1].keys() atomkeys2.sort() for aid2 in atomkeys2: if aid1 < aid2: atom1 = atomdict[aid1] atom2 = atomdict[aid2] order = bonds[aid1][aid2] if group: bond = GroupBond(atom1, atom2, order) elif len(order) == 1: bond = Bond(atom1, atom2, order[0]) else: raise InvalidAdjacencyListError('Multiple bond orders specified for an atom in a Molecule.') atom1.edges[atom2] = bond atom2.edges[atom1] = bond if saturateH and not group: # Add explicit hydrogen atoms to complete structure if desired valences = {'H': 1, 'C': 4, 'O': 2, 'N': 3, 'S': 2, 'Si': 4, 'Cl': 1, 'He': 0, 'Ne': 0, 'Ar': 0} orders = {'S': 1, 'D': 2, 'T': 3, 'B': 1.5} newAtoms = [] for atom in atoms: try: valence = valences[atom.symbol] except KeyError: raise InvalidAdjacencyListError('Cannot add hydrogens to adjacency list: Unknown valence for atom "{0}".'.format(atom.symbol)) radical = atom.radicalElectrons order = 0 for atom2, bond in atom.bonds.items(): order += orders[bond.order] count = valence - radical - int(order) for i in range(count): a = Atom(element='H', radicalElectrons=0, charge=0, label='') b = Bond(atom, a, 'S') newAtoms.append(a) atom.bonds[a] = b a.bonds[atom] = b atoms.extend(newAtoms) # Calculate the number of lone pair electrons requiring molecule with all hydrogen atoms present if not group and lonePairsOfElectrons == -1: orders = {'S': 1, 'D': 2, 'T': 3, 'B': 1.5} for atom in atoms: radical = atom.radicalElectrons order = 0 for atom2, bond in atom.bonds.items(): order += orders[bond.order] lonePairs = (1 if atom.symbol == 'H' or atom.symbol == 'He' else 4) - order - radical atom.setLonePairs(lonePairs) atom.updateCharge() elif not group: for atom in atoms: atom.updateCharge() except InvalidAdjacencyListError: logging.error("Troublesome adjacency list:\n" + adjlist) raise return atoms, multiplicity
0c54ee172948437f9cb075c5880eb7eb25d2893f
3,658,038
def read_arg_optional( src, args, n_optional=-1, tolerance=0, mode=MODE_NON_MATH, skip_math=False): """Read next optional argument from buffer. If the command has remaining optional arguments, look for: a. A spacer. Skip the spacer if it exists. b. A bracket delimiter. If the optional argument is bracket-delimited, the contents of the bracket group are used as the argument. :param Buffer src: a buffer of tokens :param TexArgs args: existing arguments to extend :param int n_optional: Number of optional arguments. If < 0, all valid bracket groups will be captured. :param int tolerance: error tolerance level (only supports 0 or 1) :param str mode: math or not math mode :return: number of remaining optional arguments :rtype: int """ while n_optional != 0: spacer = read_spacer(src) if not (src.hasNext() and src.peek().category == TC.BracketBegin): if spacer: src.backward(1) break args.append(read_arg(src, next(src), tolerance=tolerance, mode=mode, skip_math=skip_math)) n_optional -= 1 return n_optional
641fe9ab9a96b6e59e15b115abe843fa09a07659
3,658,039
def searcheduxapian_ajax_get_schlagwort(request, item_container): """ moegliche Schlagworte """ schlagworte = get_schlagworte(request.GET['query']) res = '<items>\n' for schlagwort in schlagworte: res += '<schlagwort>\n<name><![CDATA[%s]]></name>\n</schlagwort>\n' % schlagwort.name res += '</items>\n' return HttpResponse(res, mimetype="text/xml; charset=utf-8")
5a248ced5006d49f2dc303c68957d07ba187c3d5
3,658,040
def expanded_X_y_sample_weights(X, y_proba, expand_factor=10, sample_weight=None, shuffle=True, random_state=None): """ scikit-learn can't optimize cross-entropy directly if target probability values are not indicator vectors. As a workaround this function expands the dataset according to target probabilities. ``expand_factor=None`` means no dataset expansion. """ rng = check_random_state(random_state) if expand_factor: if sample_weight is not None: X, y, sample_weight = zip(*expand_dataset(X, y_proba, factor=expand_factor, random_state=rng, extra_arrays=[ sample_weight ])) else: X, y = zip(*expand_dataset(X, y_proba, factor=expand_factor, random_state=rng)) else: y = y_proba.argmax(axis=1) if isinstance(X, (list, tuple)) and len(X) and issparse(X[0]): X = vstack(X) if shuffle: if sample_weight is not None: X, y, sample_weight = _shuffle(X, y, sample_weight, random_state=rng) else: X, y = _shuffle(X, y, random_state=rng) return X, y, sample_weight
7398062d3eb75fa68c39e20415b944e58a20387e
3,658,041
def refine_uniformly(dom, seg): """ Refine all edges of the given domain and segmentation. :param dom: Domain to refine :type dom: :class:`viennagrid.Domain` :param seg: Segmentation of the domain to refine :type seg: :class:`viennagrid.Segmentation` :returns: A two-element tuple containing the output domain and segmentation after the refinement. :raises: TypeError """ try: config = dom.config dom = dom._domain except AttributeError: raise TypeError('parameter at position 1 is not a valid domain') try: seg = seg._segmentation except AttributeError: raise TypeError('parameter at position 2 is not a valid domain') refined_result = viennagrid.wrapper.refine_uniformly(dom, seg) refined_domain = viennagrid.Domain(config) refined_domain._domain = refined_result[0] refined_segmentation = viennagrid.Segmentation(refined_domain) refined_segmentation._segmentation = refined_result[1] return (refined_domain, refined_segmentation)
623b9fc2fa6c83133ca1e01714fecba7e70ab95e
3,658,042
def rename_tuning(name, new_name): """rename tuning""" session = tables.get_session() if session is None: return False, 'connect' try: tuning_table = TuningTable() if not tuning_table.check_exist_by_name(TuningTable, name, session): return False, 'tuning not exist' if tuning_table.check_exist_by_name(TuningTable, new_name, session): return False, 'duplicate' tuning_table.update_tuning_name(name, new_name, session) session.commit() except SQLAlchemyError as err: LOGGER.error('Rename tuning failed: %s', err) return False, 'error' finally: session.close() return True, ''
1ea1498483fc9abe0bb5be7a7c892c6a171b5df9
3,658,043
import re def _xfsdump_output(data): """ Parse CLI output of the xfsdump utility. """ out = {} summary = [] summary_block = False for line in [l.strip() for l in data.split("\n") if l.strip()]: line = re.sub("^xfsdump: ", "", line) if line.startswith("session id:"): out["Session ID"] = line.split(" ")[-1] elif line.startswith("session label:"): out["Session label"] = re.sub("^session label: ", "", line) elif line.startswith("media file size"): out["Media size"] = re.sub(r"^media file size\s+", "", line) elif line.startswith("dump complete:"): out["Dump complete"] = re.sub(r"^dump complete:\s+", "", line) elif line.startswith("Dump Status:"): out["Status"] = re.sub(r"^Dump Status:\s+", "", line) elif line.startswith("Dump Summary:"): summary_block = True continue if line.startswith(" ") and summary_block: summary.append(line.strip()) elif not line.startswith(" ") and summary_block: summary_block = False if summary: out["Summary"] = " ".join(summary) return out
dbc7fbf9dced99b83a7dc5917c473a1dee16d749
3,658,045
def get_current(): """Return the currently running interpreter.""" id = _interpreters.get_current() return Interpreter(id)
0949280d364cc6f2935b9109c19c508ed06352b8
3,658,046
def csstext(text: str, cls: str, span: bool=False, header: bool=False) -> str: """ Custom build HTML text element. """ if span: tag = 'span' elif header: tag = 'h1' else: tag = 'p' return f'<{tag} class="{cls}">{str(text)}</{tag}>'
0833fd9d83143e09b5c234e193a8e53ef653112b
3,658,047
def trans_exam_list_to_colum(example_list, headers=None): """ 将example列表转换成以列表示的形式,用于适配输出附加信息 :param example_list: example 列表 :param headers: 需要的属性,默认为("question", "answer", "yes_or_no") :return: {header1:[...],header2:[...],...} """ if headers is None: headers = ("question", "answer", "yes_or_no") result = {} for header in headers: result[header] = [] for example in example_list: for header in headers: result[header].append(getattr(example, header, "")) return result
ff5a2e5f6e27ce0a32717e55ba35dbd864a11dbb
3,658,048
def member(): """ RESTful CRUD Controller """ return s3_rest_controller()
2f14df1f9b97ee4777c2ce0740207c691aedb1c2
3,658,049
from datetime import datetime def _now(): """Get EST localized now datetime.""" return EST_TIMEZONE.localize(datetime.datetime.now())
a7a62b5f5febdbacab0c0ac1e6ef0de843f09a11
3,658,050
def pydantic_model_to_pandas(pydantic_model_input) -> pd.DataFrame: """ Function that transforms <pydantic.BaseModel> child objects to <pandas.DataFrame> objects :param pydantic_model_input: Input validator for API """ return dict_to_pandas(pydantic_model_input.dict())
8397c39d7c760ad44565a7b89013d95c241413ed
3,658,051
def calculate_pair_energy(coordinates, i_particle, box_length, cutoff): """ Calculate the interaction energy of a particle with its environment (all other particles in the system) - rewrite Parameters ---------- coordinates : list The coordinates for all particles in the system i_particle : int The particle number for which to calculate the energy cutoff : float The simulation cutoff. Beyond this distance, interactions are not calculated. Returns ------- e_total : float The pairwise interaction energy of he i_th particle with all other particles in the system. """ e_total = 0.0 i_position = coordinates[i_particle] distance_array = calculate_distance(coordinates, i_position, box_length) # Just so we don't use it for calculation distance_array[i_particle] = cutoff*2 less_than_cutoff = distance_array[distance_array < cutoff] interaction_energies = calculate_LJ(less_than_cutoff) e_total = np.sum(interaction_energies) return e_total
42150ff5282731b13e4ac512c08fd71566f0bdb4
3,658,052
def simulation_activation(model, parcel_df, aerosols_panel): """ Given the DataFrame output from a parcel model simulation, compute activation kinetic limitation diagnostics. Parameters ---------- model : ParcelModel The ParcelModel parcel_df : DataFrame used to generate the results to be analyzed The DataFrame containing the parcel's thermodynamic trajectory aerosols_panel : Panel A Panel collection of DataFrames containing the aerosol size evolution Returns ------- act_stats : DataFrame A DataFrame containing the activation statistics """ initial_row = parcel_df.iloc[0] Smax_i, T_i = initial_row['S'], initial_row['T'] acts = {'eq': [], 'kn': [], 'alpha': [], 'phi': []} initial_aerosols = model.aerosols N_all_modes = np.sum([aer.total_N for aer in initial_aerosols]) N_fracs = {aer.species: aer.total_N/N_all_modes for aer in initial_aerosols} for i in range(len(parcel_df)): row_par = parcel_df.iloc[i] rows_aer = {key: aerosols_panel[key].iloc[i] for key in aerosols_panel} # Update thermo T_i = row_par['T'] if row_par['S'] > Smax_i: Smax_i = row_par['S'] eq_tot, kn_tot, alpha_tot, phi_tot = 0., 0., 0., 0. for aerosol in initial_aerosols: N_frac = N_fracs[aerosol.species] rs = rows_aer[aerosol.species] eq, kn, alpha, phi = binned_activation(Smax_i, T_i, rs, aerosol) eq_tot += eq*N_frac kn_tot += kn*N_frac alpha_tot += alpha*N_frac phi_tot += phi*N_frac acts['kn'].append(kn_tot) acts['eq'].append(eq_tot) acts['alpha'].append(alpha_tot) acts['phi'].append(phi_tot) acts_total = pd.DataFrame(acts, index=parcel_df.index) return acts_total
41461da13062177124ca4ebedc801ff5d574fbb8
3,658,053
def create_config( case=None, Exp='Dummy', Type='Tor', Lim=None, Bump_posextent=[np.pi/4., np.pi/4], R=None, r=None, elong=None, Dshape=None, divlow=None, divup=None, nP=None, returnas=None, strict=None, SavePath='./', path=_path_testcases, ): """ Create easily a tofu.geom.Config object In tofu, a Config (short for geometrical configuration) refers to the 3D geometry of a fusion device. It includes, at least, a simple 2D polygon describing the first wall of the fusion chamber, and can also include other structural elements (tiles, limiters...) that can be non-axisymmetric. To create a simple Config, provide either the name of a reference test case, of a set of geometrical parameters (major radius, elongation...). This is just a tool for fast testing, if you want to create a custom config, use directly tofu.geom.Config and provide the parameters you want. Parameters ---------- case : str The name of a reference test case, if provided, this arguments is sufficient, the others are ignored Exp : str The name of the experiment Type : str The type of configuration (toroidal 'Tor' or linear 'Lin') Lim_Bump: list The angular (poloidal) limits, in the cross-section of the extension of the outer bumper R : float The major radius of the center of the cross-section r : float The minor radius of the cross-section elong: float An elongation parameter (in [-1;1]) Dshape: float A parameter specifying the D-shape of the cross-section (in [-1;1]) divlow: bool A flag specifying whether to include a lower divertor-like shape divup: bool A flag specifying whether to include an upper divertor-like shape nP: int Number of points used to describe the cross-section polygon out: str FLag indicating whether to return: - 'dict' : the polygons as a dictionary of np.ndarrays - 'object': the configuration as a tofu.geom.Config instance returnas: object / dict Flag indicating whether to return the config as: - object: a Config instance - dict: a dict of Struct instances strict: bool Flag indicating whether to raise an error if a Struct cannot be loaded Otherwise only raises a warning path: str Absolute path where to find the test case data SavePath: str The default path used for saving Struct and Config objects returned by the routine. Return ------ conf: tofu.geom.Config / dict Depending on the value of parameter out, either: - the tofu.geom.Config object created - a dictionary of the polygons and their pos/extent (if any) """ lp = [R, r, elong, Dshape, divlow, divup, nP] lpstr = '[R, r, elong, Dshape, divlow, divup, nP]' lc = [case is not None, any([pp is not None for pp in lp])] if np.sum(lc) > 1: msg = ("Please provide either:\n" + "\t- case: the name of a pre-defined config\n" + "\t- geometrical parameters {}\n\n".format(lpstr)) raise Exception(msg) elif not any(lc): msg = get_available_config(verb=False, returnas=str) raise Exception(msg) # Get config, either from known case or geometrical parameterization if case is not None: conf = _create_config_testcase( config=case, path=path, returnas=returnas, strict=strict, ) else: poly, pbump, pbaffle = _compute_VesPoly(R=R, r=r, elong=elong, Dshape=Dshape, divlow=divlow, divup=divup, nP=nP) if returnas == 'dict': conf = {'Ves':{'Poly':poly}, 'Baffle':{'Poly':pbaffle}, 'Bumper':{'Poly':pbump, 'pos':Bump_posextent[0], 'extent':Bump_posextent[1]}} else: ves = _core.Ves(Poly=poly, Type=Type, Lim=Lim, Exp=Exp, Name='Ves', SavePath=SavePath) baf = _core.PFC(Poly=pbaffle, Type=Type, Lim=Lim, Exp=Exp, Name='Baffle', color='b', SavePath=SavePath) bump = _core.PFC(Poly=pbump, Type=Type, pos=Bump_posextent[0], extent=Bump_posextent[1], Exp=Exp, Name='Bumper', color='g', SavePath=SavePath) conf = _core.Config(Name='Dummy', Exp=Exp, lStruct=[ves,baf,bump], SavePath=SavePath) return conf
e9f855ff614cd511f730afd34c34e1d610b06a43
3,658,055
def is_project_description(description): """Validates the specified project description. A valid description is simply a non-empty string. Args: description (str): A project description to validate. Returns: <bool, str|None>: A pair containing the value True if the specified description is valid, False otherwise; and an error message in case the description is invalid. """ try: return (False, "A project description must be a non-empty string.") if is_empty_string(description) else (True, None) except TypeError: return (False, "The 'description' argument must be a string.")
ef831f2ddeede75bb1dbd0730dccacba3e379c2b
3,658,056
import json def remove_friend(): """ Accepts an existing friend request. """ data = json.loads(request.data) friend_id = data['id'] user = interface.get_user_by_id(get_jwt_identity()) friend = interface.get_user_by_id(friend_id) interface.remove_friendship(user, friend) return '', 200
0d5e2c390d5da7ff1869d907bbe85bcda80a9513
3,658,057
import functools import logging def ensure_configured(func): """Modify a function to call ``basicConfig`` first if no handlers exist.""" @functools.wraps(func) def wrapper(*args, **kwargs): if len(logging.root.handlers) == 0: basicConfig() return func(*args, **kwargs) return wrapper
2c04afd53ab9c7341fc4913485a8a1f7f7e7e1b3
3,658,058
from typing import Dict from typing import Any from typing import Optional from typing import Type def get_loss(dataset_properties: Dict[str, Any], name: Optional[str] = None) -> Type[Loss]: """ Utility function to get losses for the given dataset properties. If name is mentioned, checks if the loss is compatible with the dataset properties and returns the specific loss Args: dataset_properties (Dict[str, Any]): Dictionary containing properties of the dataset. Must contain task_type and output_type as strings. name (Optional[str]): name of the specific loss Returns: Type[torch.nn.modules.loss._Loss] """ assert 'task_type' in dataset_properties, \ "Expected dataset_properties to have task_type got {}".format(dataset_properties.keys()) assert 'output_type' in dataset_properties, \ "Expected dataset_properties to have output_type got {}".format(dataset_properties.keys()) task = STRING_TO_TASK_TYPES[dataset_properties['task_type']] output_type = STRING_TO_OUTPUT_TYPES[dataset_properties['output_type']] supported_losses = get_supported_losses(task, output_type) if name is not None: if name not in supported_losses.keys(): raise ValueError("Invalid name entered for task {}, and output type {} currently supported losses" " for task include {}".format(dataset_properties['task_type'], dataset_properties['output_type'], list(supported_losses.keys()))) else: loss = supported_losses[name] else: loss = get_default(task) return loss
a9f75d6e2c35a0b9472e3fdc046f72eb1188e48d
3,658,059
def ten_to_base(value : int, base): """Converts a given decimal value into the specified base. :param value: The number to convert :param base: The base to convert the specified number to :return: The converted value in the specified base """ # Check if the base is 10, return the value if base == 10: return value # Keep track of the remainders, which will be the new digits in the specified base remainders = [] # Divide the value by the base until the number is 0 while value != 0: remainders.append(value % base) value //= base # Reverse the order of the remainders and turn each digit # into the proper value from the BASES string remainders.reverse() for i in range(len(remainders)): remainders[i] = BASES[remainders[i]] return "".join(remainders)
2f5ba92af48fe2ce19dbcb6001afadfde2514373
3,658,060
def get_style(selector, name): """ Returns the resolved CSS style for the given property name. :param selector: :param name: """ if not get_instance(): raise Exception("You need to start a browser first with open_browser()") return get_style_g(get_instance(), selector, name)
903e4abc09dc196d0d1dbbbb3c58869e3c0beb78
3,658,061
import inspect def argmod(*args): """ Decorator that intercepts and modifies function arguments. Args: from_param (str|list): A parameter or list of possible parameters that should be modified using `modifier_func`. Passing a list of possible parameters is useful when a function's parameter names have changed, but you still want to support the old parameter names. to_param (str): Optional. If given, to_param will be used as the parameter name for the modified argument. If not given, to_param will default to the last parameter given in `from_param`. modifier_func (callable): The function used to modify the `from_param`. Returns: function: A function that modifies the given `from_param` before the function is called. """ from_param = listify(args[0]) to_param = from_param[-1] if len(args) < 3 else args[1] modifier_func = args[-1] def _decorator(func): try: argspec = inspect.getfullargspec(unwrap(func)) except AttributeError: argspec = inspect.getargspec(unwrap(func)) if to_param not in argspec.args: return func arg_index = argspec.args.index(to_param) @wraps(func) def _modifier(*args, **kwargs): kwarg = False for arg in from_param: if arg in kwargs: kwarg = arg break if kwarg: kwargs[to_param] = modifier_func(kwargs.pop(kwarg)) elif arg_index < len(args): args = list(args) args[arg_index] = modifier_func(args[arg_index]) return func(*args, **kwargs) return _modifier return _decorator
5824d20568a3913be59941df0e4f657f05f08cc0
3,658,062
def group_update(group_id, group_min, group_max, desired): """ Test with invalid input >>> group_update('foo', 2, 1, 4) {} """ if group_min > group_max or desired < group_min or desired > group_max: return {} try: client = boto3.client('autoscaling') response = client.update_auto_scaling_group( AutoScalingGroupName=group_id, MinSize=group_min, MaxSize=group_max, DesiredCapacity=desired) except botocore.exceptions.ClientError: print "Autoscaling client error: update_auto_scaling_group" sys.exit(127) return response
77eef10b7db604a3aa2e32bdd0d226fb44cf07ab
3,658,063
def remove_bookmark(request, id): """ This view deletes a bookmark. If requested via ajax it also returns the add bookmark form to replace the drop bookmark form. """ bookmark = get_object_or_404(Bookmark, id=id, user=request.user) if request.method == "POST": bookmark.delete() if not is_xhr(request): messages.success(request, "Bookmark removed") if request.POST.get("next"): return HttpResponseRedirect(request.POST.get("next")) return HttpResponse("Deleted") return render( request, "admin_tools/menu/add_bookmark_form.html", context={ "url": request.POST.get("next"), "title": "**title**", # replaced on the javascript side }, ) return render( request, "admin_tools/menu/delete_confirm.html", context={"bookmark": bookmark, "title": "Delete Bookmark"}, )
9c8442d5a313e7babf71b9f9a4c41452c65c5aab
3,658,064
def parse_propa(blob): """Creates new blob entries for the given blob keys""" if "track_in" in blob.keys(): muon = blob["track_in"] blob["Muon"] = Table( { "id": np.array(muon)[:, 0].astype(int), "pos_x": np.array(muon)[:, 1], "pos_y": np.array(muon)[:, 2], "pos_z": np.array(muon)[:, 3], "dir_x": np.array(muon)[:, 4], "dir_y": np.array(muon)[:, 5], "dir_z": np.array(muon)[:, 6], "energy": np.array(muon)[:, 7], "time": np.array(muon)[:, 8], "particle_id": np.array(muon)[:, 9].astype(int), "is_charm": np.array(muon)[:, 10].astype(int), "mother_pid": np.array(muon)[:, 11].astype(int), "grandmother_pid": np.array(muon)[:, 11].astype(int), }, h5loc="muon", ) blob["MuonMultiplicity"] = Table( {"muon_multiplicity": len(np.array(muon)[:, 6])}, h5loc="muon_multiplicity" ) if "neutrino" in blob.keys(): nu = blob["neutrino"] blob["Neutrino"] = Table( { "id": np.array(nu)[:, 0].astype(int), "pos_x": np.array(nu)[:, 1], "pos_y": np.array(nu)[:, 2], "pos_z": np.array(nu)[:, 3], "dir_x": np.array(nu)[:, 4], "dir_y": np.array(nu)[:, 5], "dir_z": np.array(nu)[:, 6], "energy": np.array(nu)[:, 7], "time": np.array(nu)[:, 8], "particle_id": np.array(nu)[:, 9].astype(int), "is_charm": np.array(nu)[:, 10].astype(int), "mother_pid": np.array(nu)[:, 11].astype(int), "grandmother_pid": np.array(nu)[:, 11].astype(int), }, h5loc="nu", ) blob["NeutrinoMultiplicity"] = Table( { "total": len(np.array(nu)[:, 6]), "nue": len(np.array(nu)[:, 6][np.array(nu)[:, 9] == 12]), "anue": len(np.array(nu)[:, 6][np.array(nu)[:, 9] == -12]), "numu": len(np.array(nu)[:, 6][np.array(nu)[:, 9] == 14]), "anumu": len(np.array(nu)[:, 6][np.array(nu)[:, 9] == -14]), }, h5loc="nu_multiplicity", ) if ("track_in" or "neutrino") in blob.keys(): blob["Weights"] = Table( { "w1": blob["weights"][0][0], "w2": blob["weights"][0][1], "w3": blob["weights"][0][2], }, h5loc="weights", ) if "track_primary" in blob.keys(): primary = blob["track_primary"] blob["Primary"] = Table( { "id": np.array(primary)[:, 0].astype(int), "pos_x": np.array(primary)[:, 1], "pos_y": np.array(primary)[:, 2], "pos_z": np.array(primary)[:, 3], "dir_x": np.array(primary)[:, 4], "dir_y": np.array(primary)[:, 5], "dir_z": np.array(primary)[:, 6], "energy": np.array(primary)[:, 7], "time": np.array(primary)[:, 8], "particle_id": np.array(primary)[:, 9].astype(int), }, h5loc="primary", ) return blob
ae7993d6e51287b6a88d125f63ef7d6edd001cf1
3,658,065
def parseParams(opt): """Parse a set of name=value parameters in the input value. Return list of (name,value) pairs. Raise ValueError if a parameter is badly formatted. """ params = [] for nameval in opt: try: name, val = nameval.split("=") except ValueError: raise ValueError("Bad name=value format for '%s'" % nameval) params.append((name, val)) return params
b932f74c8e5502ebdd7a8749c2de4b30921d518b
3,658,066
from ._sparse_array import SparseArray def asnumpy(a, dtype=None, order=None): """Returns a dense numpy array from an arbitrary source array. Args: a: Arbitrary object that can be converted to :class:`numpy.ndarray`. order ({'C', 'F', 'A'}): The desired memory layout of the output array. When ``order`` is 'A', it uses 'F' if ``a`` is fortran-contiguous and 'C' otherwise. Returns: numpy.ndarray: Converted array on the host memory. """ if isinstance(a, SparseArray): a = a.todense() return np.array(a, dtype=dtype, copy=False, order=order)
54bea22ab6fe8327b3a4df93ac9e4447b4d65fec
3,658,067
def get_next_cpi_date(): """ Get next CPI release date """ df = pd.read_html(r"https://www.bls.gov/schedule/news_release/cpi.htm")[0][:-1] df["Release Date"] = pd.to_datetime(df["Release Date"], errors='coerce') df = df[df["Release Date"] >= current_date].iloc[0] df['Release Date'] = df['Release Date'].strftime('%Y-%m-%d') return df
e23b9bea0996ac442115163729ffeed1407e52b5
3,658,068
from typing import Tuple from datetime import datetime def date_arithmetic() -> Tuple[datetime, datetime, int]: """ This function is used to calculate what is the date after 3 days is given and the differences between two given dates """ date1: str = "Feb 27, 2020" date_2020: datetime = datetime.strptime( date1, "%b %d, %Y") + timedelta(3) date2: str = "Feb 27, 2019" date_2019: datetime = datetime.strptime( date2, "%b %d, %Y") + timedelta(3) date3: str = "Feb 1, 2019" date4: str = "Sep 30, 2019" days_passed: int = datetime.strptime( date3, "%b %d, %Y") - datetime.strptime(date4, "%b %d, %Y") three_days_after_02272020: datetime = date_2020.strftime("%b %d, %Y") three_days_after_02272019: datetime = date_2019.strftime("%b %d, %Y") days_passed_02012019_09302019: int = abs(days_passed.days) return three_days_after_02272020, three_days_after_02272019, days_passed_02012019_09302019
1e2d4681578ccab11612771589a46f22246071eb
3,658,069
def get_words_from_line_list(text): """ Applies Translations and returns the list of words from the text document """ text = text.translate(translation_table) word_list = [x for x in text.split() if x not in set(stopwords.words('english'))] return word_list
aaa2a1476e887aa6a7d477d67528f838d6f229b9
3,658,070
def _get_name(dist): """Attempts to get a distribution's short name, excluding the name scope.""" return getattr(dist, 'parameters', {}).get('name', dist.name)
fd57e523c1a84a36f9ed56236e4b8db1e887575c
3,658,071
def compute_mean_std(all_X): """Return an approximate mean and std for every feature""" concatenated = np.concatenate(all_X, axis=0).astype(np.float64) mean = np.mean(concatenated, axis=0) std = np.std(concatenated, axis=0) std[std == 0] = 1 return mean, std
b102a045705efdab8d9783e04da192ec30e167f7
3,658,072
def GenerateConfig(context): """Generates configuration.""" key_ring = { 'name': 'keyRing', 'type': 'gcp-types/cloudkms-v1:projects.locations.keyRings', 'properties': { 'parent': 'projects/' + context.env['project'] + '/locations/' + context.properties['region'], 'keyRingId': context.env['deployment'] + '-key-ring' } } crypto_key = { 'name': 'cryptoKey', 'type': 'gcp-types/cloudkms-v1:projects.locations.keyRings.cryptoKeys', 'properties': { 'parent': '$(ref.keyRing.name)', 'cryptoKeyId': context.env['deployment'] + '-crypto-key', 'purpose': 'ENCRYPT_DECRYPT' } } resources = [key_ring, crypto_key] outputs = [{ 'name': 'primaryVersion', 'value': '$(ref.cryptoKey.primary)' }] return { 'resources': resources, 'outputs': outputs }
257b7217c1a08bba46866aff0b7faa1a03fe7fdc
3,658,073
def get_valid_collapsed_products(products, limit): """wraps around collapse_products and respecting a limit to ensure that uncomplete products are not collapsed """ next_min_scanid = get_next_min_scanid(products, limit) collapsed_products = [] for scanid, scan in groupby(products, itemgetter('ScanID')): if scanid == next_min_scanid: continue collapsed_products.extend(collapse_products(list(scan))) return collapsed_products, next_min_scanid
df3ffa503855a020c7c011aa58cba20243e19be4
3,658,074
def get_imd(): """Fetches data about LA IMD status. The "local concentration" measure is used - this gives higher weight to particularly deprived areas Source: http://www.gov.uk/government/statistics/english-indices-of-deprivation-2019 """ imd = pd.read_csv( PROJECT_DIR / "inputs/data/societal-wellbeing_imd2019_indicesbyla.csv", usecols=[1, 2], skiprows=7, ) return imd
4e2495dda505bde8dd8ccf62234730a7227ffa97
3,658,075
def read_bgr(file): """指定ファイルからBGRイメージとして読み込む. # Args: file: イメージファイル名. # Returns: 成功したらイメージ、失敗したら None. """ return cv2.imread(file, cv2.IMREAD_COLOR)
ee96842899ffefa0508218d0a4b721f2ae5a7efb
3,658,076
def _remove_none_from_post_data_additional_rules_list(json): """ removes hidden field value from json field "additional_rules" list, which is there to ensure field exists for editing purposes :param json: this is data that is going to be posted """ data = json additional_rules = json.get("additional_rules", None) if additional_rules and "None" in additional_rules: new_additional_rules = [] for rule in additional_rules: if rule != "None": new_additional_rules.append(rule) data["additional_rules"] = new_additional_rules return data
c82aa568f82ba4abcb8f4e6f9c770969277d078f
3,658,077
import traceback def add_email(request, pk): """ This Endpoint will add the email id into the person contact details. It expects personId in URL param. """ try: request_data = request.data email = request_data.get("email") person = Person.objects.filter(id=pk).last() if email: Email.objects.create( email=email, person_id=person.id ) serializer = PersonDetailSerializer(person) return Response(serializer.data, status=status.HTTP_202_ACCEPTED) except: print(traceback.format_exc()) return Response(status=status.HTTP_500_INTERNAL_SERVER_ERROR)
5669b442e7ef4fb3e5a22053c368e6a4b68cfeef
3,658,078
from typing import Any def coords_extracter(): """Exctract coords to send command to robot. To be executed inside of xarm_hand_control module.""" SKIPPED_COMMANDS = 5 COEFF = 22 current = [0] def coords_to_command(data: Any): current[0] += 1 if current[0] < SKIPPED_COMMANDS: return current[0] = 0 if np.linalg.norm(data[0:2], 2) < 0.05: return x = data[0] * COEFF / 1000 z = data[1] * COEFF / 1000 # speed = np.linalg.norm(data, ord=2) * COEFF * 50 # speed = int(speed) # # speed = np.log(speed) * COEFF # mvacc = speed * 10 speed = 500 mvacc = speed * 10 command = Command( x=x, y=0.0, z=z, speed=speed, acc=mvacc, is_radian=True, is_cartesian=True, is_relative=True, ) # print(command) send_command(command) return coords_to_command
930cef91e517751da3c3fb441543ab736be6aa23
3,658,079
def NO_MERGE(writer, segments): """This policy does not merge any existing segments. """ return segments
0742365f30d59cb219ac60483b867180bd910ba8
3,658,080
def build_ntwk(p, s_params): """ Construct a network object from the model and simulation params. """ np.random.seed(s_params['RNG_SEED']) # set membrane properties n = p['N_PC'] + p['N_INH'] t_m = cc( [np.repeat(p['T_M_PC'], p['N_PC']), np.repeat(p['T_M_INH'], p['N_INH'])]) e_l = cc( [np.repeat(p['E_L_PC'], p['N_PC']), np.repeat(p['E_L_INH'], p['N_INH'])]) v_th = cc( [np.repeat(p['V_TH_PC'], p['N_PC']), np.repeat(p['V_TH_INH'], p['N_INH'])]) v_r = cc( [np.repeat(p['V_R_PC'], p['N_PC']), np.repeat(p['V_R_INH'], p['N_INH'])]) t_rp = cc( [np.repeat(p['T_R_PC'], p['N_PC']), np.repeat(p['T_R_INH'], p['N_INH'])]) # set latent nrn positions lb = [-s_params['BOX_W']/2, -s_params['BOX_H']/2] ub = [s_params['BOX_W']/2, s_params['BOX_H']/2] # sample evenly spaced place fields ## E cells pfxs_e, pfys_e = cxn.apx_lattice(lb, ub, p['N_PC'], randomize=True) ## I cells pfxs_i, pfys_i = cxn.apx_lattice(lb, ub, p['N_INH'], randomize=True) ## join E & I place fields pfxs = cc([pfxs_e, pfxs_i]) pfys = cc([pfys_e, pfys_i]) # make upstream ws if p['W_PC_PL'] > 0: w_pc_pl_flat = np.random.lognormal( *lognormal_mu_sig(p['W_PC_PL'], p['S_PC_PL']), p['N_PC']) else: w_pc_pl_flat = np.zeros(p['N_PC']) if p['W_PC_G'] > 0: w_pc_g_flat = np.random.lognormal( *lognormal_mu_sig(p['W_PC_G'], p['S_PC_G']), p['N_PC']) else: w_pc_g_flat = np.zeros(p['N_PC']) ws_up_temp = { 'E': { ('PC', 'PL'): np.diag(w_pc_pl_flat), ('PC', 'G'): np.diag(w_pc_g_flat), }, } targs_up = cc([np.repeat('PC', p['N_PC']), np.repeat('INH', p['N_INH'])]) srcs_up = cc([np.repeat('PL', p['N_PC']), np.repeat('G', p['N_PC'])]) ws_up = join_w(targs_up, srcs_up, ws_up_temp) # make rcr ws w_pc_pc = cxn.make_w_pc_pc(pfxs[:p['N_PC']], pfys[:p['N_PC']], p) w_inh_pc = cxn.make_w_inh_pc( pfxs_inh=pfxs[-p['N_INH']:], pfys_inh=pfys[-p['N_INH']:], pfxs_pc=pfxs[:p['N_PC']], pfys_pc=pfys[:p['N_PC']], p=p) w_pc_inh = cxn.make_w_pc_inh( pfxs_pc=pfxs[:p['N_PC']], pfys_pc=pfys[:p['N_PC']], pfxs_inh=pfxs[-p['N_INH']:], pfys_inh=pfys[-p['N_INH']:], p=p) ws_rcr_temp = { 'E': { ('PC', 'PC'): w_pc_pc, ('INH', 'PC'): w_inh_pc, }, 'I': { ('PC', 'INH'): w_pc_inh, }, } targs_rcr = cc([np.repeat('PC', p['N_PC']), np.repeat('INH', p['N_INH'])]) ws_rcr = join_w(targs_rcr, targs_rcr, ws_rcr_temp) # make ntwk ntwk = LIFNtwk( t_m=t_m, e_l=e_l, v_th=v_th, v_r=v_r, t_r=t_rp, es_syn={'E': p['E_E'], 'I': p['E_I']}, ts_syn={'E': p['T_E'], 'I': p['T_I']}, ws_up=ws_up, ws_rcr=ws_rcr) ntwk.pfxs = pfxs ntwk.pfys = pfys ntwk.types_up = srcs_up ntwk.types_rcr = targs_rcr ntwk.n_pc = p['N_PC'] ntwk.n_inh = p['N_INH'] ntwk.n_g = p['N_PC'] ntwk.n_inp = p['N_PC'] ntwk.n_rcr = p['N_PC'] + p['N_INH'] ntwk.n_up = 2 * p['N_PC'] ntwk.types_up_slc = { 'PL': slice(0, p['N_PC']), 'G': slice(p['N_PC'], 2*p['N_PC']) } ntwk.types_rcr_slc = { 'PC': slice(0, p['N_PC']), 'INH': slice(p['N_PC'], p['N_PC'] + p['N_INH']) } return ntwk
88a5b5c73edf015d9b2b4137db874252f63a3571
3,658,082
def createAaronWorld(): """ Create an empty world as an example to build future projects from. """ # Set up a barebones project project = makeBasicProject() # Create sprite sheet for the player sprite player_sprite_sheet = addSpriteSheet(project, "actor_animated.png", "actor_animated", "actor_animated") project.settings["playerSpriteSheetId"] = player_sprite_sheet["id"] # add a sprite we can use for the rocks a_rock_sprite = addSpriteSheet(project, "rock.png", "rock", "static") a_dog_sprite = addSpriteSheet(project, "dog.png", "dog", "static") # Add a background image default_bkg = makeBackground("placeholder.png", "placeholder") project.backgrounds.append(default_bkg) a_scene = makeScene(f"Scene", default_bkg) project.scenes.append(a_scene) actor = makeActor(a_rock_sprite, 9, 8) a_scene['actors'].append(actor) dog_actor = makeActor(a_dog_sprite, 5, 5) dog_script = [] element = makeElement() element["command"] = "EVENT_ACTOR_EMOTE" element["args"] = { "actorId": "player", "emoteId": "1" } dog_script.append(element) element = makeElement() element["command"] = "EVENT_END" dog_script.append(element) dog_actor["script"] = dog_script a_scene['actors'].append(dog_actor) # Add some music project.music.append(makeMusic("template", "template.mod")) # Set the starting scene project.settings["startSceneId"] = project.scenes[0]["id"] return project
7326aee61ee4977ccc422955fbd33c6a51b13e37
3,658,083
def builtin_ljustify(s, w, p): """Left-justify a string to a given width with a given padding character.""" sv = s.convert(BStr()).value pv = p.convert(BStr()).value return BStr(sv.ljust(w.value, pv))
dda28d65d1916a7e01aa36e7b90ee5ba98329c58
3,658,084
def get_effective_router(appname): """Returns a private copy of the effective router for the specified application""" if not routers or appname not in routers: return None return Storage(routers[appname])
dd0e3ccc8d05864b5a324541129845e5f82c2669
3,658,086
def is_activated(user_id): """Checks if a user has activated their account. Returns True or false""" cur = getDb().cursor() cur.execute('SELECT inactive FROM users where user_id=%s', (user_id,)) inactive = cur.fetchone()[0] cur.close() return False if inactive is 1 else True
704a5c3462be3612e5cd44057ee082d612ae8aa9
3,658,087
import base64 import json def _encode(dictionary): """Encodes any arbitrary dictionary into a pagination token. Args: dictionary: (dict) Dictionary to basee64-encode Returns: (string) encoded page token representing a page of items """ # Strip ugly base64 padding. return base64.urlsafe_b64encode(json.dumps(dictionary)).rstrip('=')
e9a490e659a3a0e6d546fd2ab4dd89a5f6a748af
3,658,088
def selectPlate(plates, jdRange, normalise=False, scope='all'): """From a list of simulated plates, returns the optimal one.""" # Gets the JD range for the following night nextNightJDrange = _getNextNightRange(jdRange) # First we exclude plates without new exposures plates = [plate for plate in plates if plate._after['nNewExposures'] > 0] # Sorts plates by inverse plate completion. plates = sorted(plates, reverse=True, key=lambda plate: plate.getPlateCompletion() if plate.getPlateCompletion() <= 1 else 1. / plate.getPlateCompletion()) if len(plates) == 0: return None # If we are scheduling only plugged plates, we rather plug a new plate # unless we can observe a plugged plate at least for a whole set. availableTime = (jdRange[1] - jdRange[0]) * 24. completionIncrease = np.array( [plate._after['completion'] - plate._before['completion'] for plate in plates]) # minSchedulingTime ensures that if the remaining time < length of a set, # we still use the plugged plates, if any. if scope == 'plugged': if (availableTime > minSchedulingTime and np.all(completionIncrease == 0)): return None else: # If no plate has been observed for a whole set, we try to use first # plates that are already plugged. if np.all(completionIncrease == 0): pluggedPlates = [plate for plate in plates if plate.isPlugged] if len(pluggedPlates) > 0: plates = pluggedPlates # If plugger, tries to select only plates at APO if scope == 'plugged': platesAtAPO = [plate for plate in plates if plate.getLocation() == 'APO'] if len(platesAtAPO) > 0: plates = platesAtAPO # Now tries to select only plates that have been marked. markedPlates = [ plate for plate in plates if 'Accepted' in [status.label for status in plate.statuses] ] if len(markedPlates) > 0: plates = markedPlates # We check if any of the plate is complete after the simulation. # If so, we return the one with fewer new exposures. completePlates = [plate for plate in plates if plate._after['completion'] > plate.completion_factor] nNewExposures = [plate._after['nNewExposures'] for plate in completePlates] if len(completePlates) > 0: return completePlates[np.argmin(nNewExposures)] # We record the real completion before and after. We will normalise the # other completions based on our scheduling logic. for plate in plates: plate._before['realCompletion'] = plate._before['completion'] plate._before['realCompletion+'] = plate._before['completion+'] plate._after['realCompletion'] = plate._after['completion'] plate._after['realCompletion+'] = plate._after['completion+'] # If normalise=True, we divide the several completion values by the # length of the observing window for the plate, normalised by the length # of the minimum plate window. The effect of this is that plates with short # observing windows get comparatively larger completions and, thus, have # higher chance of being selected. This is good for plugged plates, as it # tries to schedule first plates with short windows even if other plates # could be completed at the time. # We also increase the completion of plates for which we have patched sets, # while we penalise those with incomplete sets. With this logic, we hope # that plates are observed when their incomplete sets can be patched. if normalise: _normaliseWindowLength(plates, jdRange, factor=1.0, apply=True) # We also normalise using the following night, if possible. if nextNightJDrange is not None: _normaliseWindowLength(plates, nextNightJDrange, factor=nextNightFactor, apply=True) # Now we normalise plate completion using a metric that gives higher # priority to plates for which we have patched incomplete sets. patchedSetFactor = [] for plate in plates: nSetsFactor = 0 for ss in plate.sets: if not ss.isMock: nNewExps = 0 for exp in ss.totoroExposures: if hasattr(exp, '_tmp') and exp._tmp: nNewExps += 1 setComplete = ss.getStatus()[0] in ['Good', 'Excellent'] if setComplete and nNewExps == 0: pass else: if nNewExps > 0: nSetsFactor += 2 * nNewExps if setComplete: nSetsFactor *= 2 else: nSetsFactor -= 1 patchedSetFactor.append(1. + patchSetFactor * nSetsFactor) _completionFactor(plates, patchedSetFactor) # We add the priority into the mix platePriorities = np.array([plate.priority for plate in plates]) - 5. _completionFactor(plates, 1 + platePriorityFactor * platePriorities) ancillaryPriorities = [] for plate in plates: if hasattr(plate, 'ancillary_weight'): ancillaryPriorities.append(plate.ancillary_weight) else: ancillaryPriorities.append(1) _completionFactor(plates, np.array(ancillaryPriorities)) # Selects the plates that have the largest increase in completion completionIncrease = [plate._after['completion'] - plate._before['completion'] for plate in plates if plate.completion_factor <= 1.] if len(completionIncrease) == 0: for plate in plates: if plate.completion_factor > 1: completionIncrease.append( plate._after['completion'] - plate._before['completion']) completionIncrease = np.array(completionIncrease) plates = np.array(plates) maxCompletionIncrease = np.max(completionIncrease) plates = plates[np.where(completionIncrease == maxCompletionIncrease)] if len(plates) == 1: return plates[0] # If maxCompletionIncrease is 0, it means that no plate has been # observed for at least a set. In this case, if possible, we want to use # a plate that already has signal. if maxCompletionIncrease == 0: platesWithSignal = [plate for plate in plates if plate._before['completion+'] > 0] if len(platesWithSignal) > 0: plates = platesWithSignal # If several plates have maximum completion increase, use the incomplete # sets to break the tie. completionIncreasePlus = np.array( [plate._after['completion+'] - plate._before['completion+'] for plate in plates]) return plates[np.argmax(completionIncreasePlus)]
f48207a9be002e6b2295d4100e02ffaddde779e8
3,658,090
from typing import Union def get_events( raw: mne.io.BaseRaw, event_picks: Union[str, list[str], list[tuple[str, str]]], ) -> tuple[np.ndarray, dict]: """Get events from given Raw instance and event id.""" if isinstance(event_picks, str): event_picks = [event_picks] events = None for event_pick in event_picks: if isinstance(event_pick, str): event_id = {event_pick: 1} else: event_id = {event_pick[0]: 1, event_pick[1]: -1} try: events, _ = mne.events_from_annotations( raw=raw, event_id=event_id, verbose=True, ) return events, event_id except ValueError as error: print(error) _, event_id_found = mne.events_from_annotations( raw=raw, verbose=False, ) raise ValueError( f"None of the given `event_picks´ found: {event_picks}." f"Possible events: {*event_id_found.keys(),}" )
d1b5c961160848607a40cfcb5b2ba8a47625ab21
3,658,091
def transplant(root, u, v): """ 注意, 这里要返回root, 不然修改不了 """ if u.parent == None: root = v elif u.parent.left == u: u.parent.left = v else: u.parent.right = v if v: v.parent = u.parent return root
cadf0433399e428596d1d0d4ab200e4d79285d21
3,658,092
def is_head_moderator(): """ Returns true if invoking author is a Head Moderator (role). """ async def predicate(ctx: Context): if not any(config.HEAD_MOD_ROLE in role.id for role in ctx.author.roles): raise NotStaff("The command `{}` can only be used by a Head Moderator.".format(ctx.invoked_with)) return True return commands.check(predicate)
22f80251190d914d38052e67ca8fe47279eab833
3,658,093
def compute_adj_matrices(type, normalize=True): """ Computes adjacency matrices 'n', 'd' or 's' used in GCRAM. """ # Get channel names raw = mne.io.read_raw_edf('dataset/physionet.org/files/eegmmidb/1.0.0/S001/S001R01.edf', preload=True, verbose=False).to_data_frame() ch_names = raw.columns[2:] n_channels = 64 # Compute channel position distances using electrode positions. Required for computing 'd' and 's' adjacency matrices ch_pos_1010 = get_sensor_pos(ch_names) ch_pos_1010_names = [] ch_pos_1010_dist = [] for name, value in ch_pos_1010.items(): ch_pos_1010_names.append(name) ch_pos_1010_dist.append(value) ch_pos_1010_dist = np.array(ch_pos_1010_dist) # Compute adjacency matrices if type=='n': A = n_graph() elif type=='d': A = d_graph(n_channels, ch_pos_1010_dist) elif type=='s': A = s_graph(n_channels, ch_pos_1010_dist) # Normalize adjacency matrices if normalize: A = normalize_adj(A) A = np.array(A, dtype=np.float32) return A
cecf0c94c5d1efe6c6210949736377d5d7d454c4
3,658,094
def hasNonAsciiCharacters(sText): """ Returns True is specified string has non-ASCII characters, False if ASCII only. """ sTmp = unicode(sText, errors='ignore') if isinstance(sText, str) else sText; return not all(ord(ch) < 128 for ch in sTmp);
c1627d1a0a26e7c4d4e04c84085197ba44b5e640
3,658,096
def draw_matches(image_1, image_1_keypoints, image_2, image_2_keypoints, matches): """ Draws the matches between the image_1 and image_2. (Credit: GT CP2017 course provided source) Params: image_1: The first image (can be color or grayscale). image_1_keypoints: The image_1 keypoints. image_2: The image to search in (can be color or grayscale) image_2_keypoints: The image_2 keypoints. Returns: output: Image with a line drawn between matched keypoints. """ # Compute number of channels. num_channels = 1 if len(image_1.shape) == 3: num_channels = image_1.shape[2] # Separation between images. margin = 10 # Create an array that will fit both images (with a margin of 10 to # separate the two images) joined_image = np.zeros((max(image_1.shape[0], image_2.shape[0]), image_1.shape[1] + image_2.shape[1] + margin, 3)) if num_channels == 1: for channel_idx in range(3): joined_image[:image_1.shape[0], :image_1.shape[1], channel_idx] = image_1 joined_image[:image_2.shape[0], image_1.shape[1] + margin:, channel_idx] = image_2 else: joined_image[:image_1.shape[0], :image_1.shape[1]] = image_1 joined_image[:image_2.shape[0], image_1.shape[1] + margin:] = image_2 for match in matches: image_1_point = (int(image_1_keypoints[match.queryIdx].pt[0]), int(image_1_keypoints[match.queryIdx].pt[1])) image_2_point = (int(image_2_keypoints[match.trainIdx].pt[0] + image_1.shape[1] + margin), int(image_2_keypoints[match.trainIdx].pt[1])) rgb = (np.random.rand(3) * 255).astype(np.int) cv2.circle(joined_image, image_1_point, 5, rgb, thickness=-1) cv2.circle(joined_image, image_2_point, 5, rgb, thickness=-1) cv2.line(joined_image, image_1_point, image_2_point, rgb, thickness=3) return joined_image
d2984de4c542fca7dda3863ad934e9eddc14a375
3,658,097
def copy_ttl_in(): """ COPY_TTL_IN Action """ return _action("COPY_TTL_IN")
a01acb2645e033ad658435e9ca0323aec10b720c
3,658,098
import torch from typing import Optional def neuron_weight( layer: str, weight: torch.Tensor, x: Optional[int] = None, y: Optional[int] = None, batch: Optional[int] = None, ) -> Objective: """Linearly weighted channel activation at one location as objective :param layer: Name of the layer :type layer: str :param weight: A torch.Tensor of same length as the number of channels :type weight: torch.Tensor :param x: x-position, defaults to None :type x: Optional[int], optional :param y: y-position, defaults to None :type y: Optional[int], optional :param batch: which position at the batch dimension of the image tensor this objective is applied to, defaults to None :type batch: Optional[int], optional :return: Objective to optimize input for a linearly weighted channel activation at one location :rtype: Objective """ @handle_batch(batch) def inner(model): layer_t = model(layer) layer_t = _extract_act_pos(layer_t, x, y) if weight is None: return -layer_t.mean() else: return -(layer_t.squeeze() * weight).mean() return inner
646966613249a02468e00b91157fd43459d246bb
3,658,099
def genargs() -> ArgumentParser: """ Generate an input string parser :return: parser """ parser = ArgumentParser() parser.add_argument("indir", help="Location of input shexj files") parser.add_argument("outdir", help="Location of output shexc files") parser.add_argument("-s", "--save", help="Save edited shexj image before conversion", action="store_true") return parser
1958d772e316212f90d6e3b84c5452e4fc02f2da
3,658,100
def get_model_name(factory_class): """Get model fixture name by factory.""" return ( inflection.underscore(factory_class._meta.model.__name__) if not isinstance(factory_class._meta.model, str) else factory_class._meta.model)
1021f287803b5e6dd9231503d8ddab15c355a800
3,658,101
def GetSpatialFeatures(img, size=(32, 32), isFeatureVector=True): """ Extracts spatial features of the image. param: img: Source image param: size: Target image size param: isFeatureVector: Indication if the result needs to be unrolled into a feature vector returns: Spatial features """ resizedImg = cv2.resize(img, size) if isFeatureVector: return resizedImg.ravel() else: return resizedImg
36d864bddb125f7cb13c4bd800076733ab939d58
3,658,102
import html import logging import re def html_to_text(content): """Filter out HTML from the text.""" text = content['text'] try: text = html.document_fromstring(text).text_content() except etree.Error as e: logging.error( 'Syntax error while processing {}: {}\n\n' 'Falling back to regexes'.format(text, e)) text = re.sub(r'<[^>]*>', '', text) text = _to_unicode(text) content['text'] = text return content
43fc18400ef121bf12f683da03763dff229d45ae
3,658,103
async def get_robot_positions() -> control.RobotPositionsResponse: """ Positions determined experimentally by issuing move commands. Change pipette position offsets the mount to the left or right such that a user can easily access the pipette mount screws with a screwdriver. Attach tip position places either pipette roughly in the front-center of the deck area """ robot_positions = control.RobotPositions( change_pipette=control.ChangePipette( target=control.MotionTarget.mount, left=[300, 40, 30], right=[95, 40, 30] ), attach_tip=control.AttachTip( target=control.MotionTarget.pipette, point=[200, 90, 150] ), ) return control.RobotPositionsResponse(positions=robot_positions)
816f1794231aa2690665caa8eae26c301d55b198
3,658,104
def compute_basis(normal): """ Compute an orthonormal basis for a vector. """ u = [0.0, 0.0, 0.0] v = [0.0, 0.0, 0.0] u[0] = -normal[1] u[1] = normal[0] u[2] = 0.0 if ((u[0] == 0.0) and (u[1] == 0.0)): u[0] = 1.0 mag = vector_mag(u) if (mag == 0.0): return for i in range(0, 3): u[i] = u[i] / mag v = cross_product(normal, u) mag = vector_mag(v) if (mag != 0.0): for i in range(0, 3): v[i] = v[i] / mag return u, v
3623a80fcb86d506e5f9e2f94d98a69a2831b2a5
3,658,105
def do_LEE_correction(max_local_sig, u1, u2, exp_phi_1, exp_phi_2): """ Return the global p-value for an observed local significance after correcting for the look-elsewhere effect given expected Euler characteristic exp_phi_1 above level u1 and exp_phi_2 above level u2 """ n1, n2 = get_coefficients(u1,u2,exp_phi_1, exp_phi_2) this_global_p = global_pvalue(max_local_sig**2, n1, n2) print ' n1, n2 =', n1, n2 print ' local p_value = %f, local significance = %f' %(norm.cdf(-max_local_sig), max_local_sig) print 'global p_value = %f, global significance = %f' %(this_global_p, -norm.ppf(this_global_p)) return this_global_p
53ee295261d58c59aa1a0a667ec7ded2e986c256
3,658,106
def _check_password(request, mail_pass, uid): """ [メソッド概要] パスワードチェック """ error_msg = {} if len(mail_pass) <= 0: error_msg['mailPw'] = get_message('MOSJA10004', request.user.get_lang_mode()) logger.user_log('LOSI10012', request=request) logger.logic_log('LOSM17015', request=request) else: password_hash = OaseCommon.oase_hash(mail_pass) user = User.objects.get(user_id=uid) if not user: error_msg['mailPw'] = get_message('MOSJA32010', request.user.get_lang_mode()) logger.user_log('LOSI10013', request=request) logger.logic_log('LOSM17001', request=request) if user and user.password != password_hash: error_msg['mailPw'] = get_message('MOSJA32038', request.user.get_lang_mode()) logger.user_log('LOSI10013', request=request) logger.logic_log('LOSM17016', request=request) return error_msg
8753d0ed32db0c501f2f18af9ea88253b7a1add7
3,658,107
def _read_wb_indicator(indicator: str, start: int, end: int) -> pd.DataFrame: """Read an indicator from WB""" return pd.read_feather(config.paths.data + rf"/{indicator}_{start}_{end}.feather")
87a52d5f683fc9795a7baf9ff81f2961567c3a13
3,658,108
def scatter_raster_plot(spike_amps, spike_depths, spike_times, n_amp_bins=10, cmap='BuPu', subsample_factor=100, display=False): """ Prepare data for 2D raster plot of spikes with colour and size indicative of spike amplitude :param spike_amps: :param spike_depths: :param spike_times: :param n_amp_bins: no. of colour and size bins into which to split amplitude data :param cmap: :param subsample_factor: factor by which to subsample data when too many points for efficient display :param display: generate figure :return: ScatterPlot object, if display=True also returns matplotlib fig and ax objects """ amp_range = np.quantile(spike_amps, [0, 0.9]) amp_bins = np.linspace(amp_range[0], amp_range[1], n_amp_bins) color_bin = np.linspace(0.0, 1.0, n_amp_bins + 1) colors = (cm.get_cmap(cmap)(color_bin)[np.newaxis, :, :3][0]) spike_amps = spike_amps[0:-1:subsample_factor] spike_colors = np.zeros((spike_amps.size, 3)) spike_size = np.zeros(spike_amps.size) for iA in range(amp_bins.size): if iA == (amp_bins.size - 1): idx = np.where(spike_amps > amp_bins[iA])[0] # Make saturated spikes the darkest colour spike_colors[idx] = colors[-1] else: idx = np.where((spike_amps > amp_bins[iA]) & (spike_amps <= amp_bins[iA + 1]))[0] spike_colors[idx] = [*colors[iA]] spike_size[idx] = iA / (n_amp_bins / 8) data = ScatterPlot(x=spike_times[0:-1:subsample_factor], y=spike_depths[0:-1:subsample_factor], c=spike_amps * 1e6, cmap='BuPu') data.set_ylim((0, 3840)) data.set_color(color=spike_colors) data.set_clim(clim=amp_range * 1e6) data.set_marker_size(marker_size=spike_size) data.set_labels(title='Spike times vs Spike depths', xlabel='Time (s)', ylabel='Distance from probe tip (um)', clabel='Spike amplitude (uV)') if display: fig, ax = plot_scatter(data.convert2dict()) return data.convert2dict(), fig, ax return data
a72da0b1faacb5e13da51a2dc192778d956eb7e5
3,658,110
def is_pack_real(*args): """ is_pack_real(F) -> bool 'FF_PACKREAL' @param F (C++: flags_t) """ return _ida_bytes.is_pack_real(*args)
64e3ecf58607cf7c363e84a7e5a69ce0c76e8acc
3,658,111
import ast from typing import List from typing import Tuple def _get_sim205(node: ast.UnaryOp) -> List[Tuple[int, int, str]]: """Get a list of all calls of the type "not (a <= b)".""" errors: List[Tuple[int, int, str]] = [] if ( not isinstance(node.op, ast.Not) or not isinstance(node.operand, ast.Compare) or len(node.operand.ops) != 1 or not isinstance(node.operand.ops[0], ast.LtE) ): return errors comparison = node.operand left = to_source(comparison.left) right = to_source(comparison.comparators[0]) errors.append( (node.lineno, node.col_offset, SIM205.format(a=left, b=right)) ) return errors
f0efdf0b10a0d4ec8a4a75772277169aa708e005
3,658,112
from typing import Union def parse_boolean(val: str) -> Union[str, bool]: """Try to parse a string into boolean. The string is returned as-is if it does not look like a boolean value. """ val = val.lower() if val in ('y', 'yes', 't', 'true', 'on', '1'): return True if val in ('n', 'no', 'f', 'false', 'off', '0'): return False return val
e2cbda5a849e1166e0f2a3953220c93d1f3ba119
3,658,113
import csv from datetime import datetime def load_users(usertable): """ `usertable` is the path to a CSV with the following fields: user.* account.organisation SELECT user.*, account.organisation FROM user LEFT JOIN account ON user.account_id = account.id; """ users = [] with open(usertable) as f: reader = csv.reader(f) next(reader) # skip headers for row in reader: fields = iter(row) _ = next(fields) # id email = next(fields) hash = next(fields) password_invalid = bool(int(next(fields))) salt = next(fields) first_name = next(fields) last_name = next(fields) is_verified = bool(int(next(fields))) is_admin = bool(int(next(fields))) _ = next(fields) # verification_uuid _ = next(fields) # account_id created = datetime.datetime.strptime(next(fields), DATE_FORMAT) updated = datetime.datetime.strptime(next(fields), DATE_FORMAT) # from user.account: organisation = next(fields) # not importing these: if password_invalid or not is_verified or (is_admin and email == 'admin@scionlab.org'): print('Warning: not importing user %s' % email) continue encoded = reencode_password(salt, hash) users.append(UserDef(email, encoded, first_name, last_name, organisation, created, updated)) return users
44c1dad255e2d8152fadbb53523a53002af95001
3,658,114
def get_progress_status_view(request): """Get progress status of a given task Each submitted task is identified by an ID defined when the task is created """ if 'progress_id' not in request.params: raise HTTPBadRequest("Missing argument") return get_progress_status(request.params['progress_id'])
4e68fc45443443187032ce06552e97895316be41
3,658,115
def pretty_param_string(param_ids: "collection") -> str: """Creates a nice string showing the parameters in the given collection""" return ' '.join(sorted(param_ids, key=utilize_params_util.order_param_id))
10f955480fcf760317f78d478c837c93df598e08
3,658,116
def _center_crop(image, size): """Crops to center of image with specified `size`.""" # Reference: https://github.com/mlperf/inference/blob/master/v0.5/classification_and_detection/python/dataset.py#L144 # pylint: disable=line-too-long height = tf.shape(image)[0] width = tf.shape(image)[1] out_height = size out_width = size # Reference code: # left = (width - out_width) / 2 # right = (width + out_width) / 2 # top = (height - out_height) / 2 # bottom = (height + out_height) / 2 # img = img.crop((left, top, right, bottom)) offset_height = tf.to_int32((height - out_height) / 2) offset_width = tf.to_int32((width - out_width) / 2) image = tf.image.crop_to_bounding_box( image, offset_height, offset_width, target_height=out_height, target_width=out_width, ) return image
2409d06945e77633f70de3e76f7152f61a9eaacf
3,658,117
def resample(ts, values, num_samples): """Convert a list of times and a list of values to evenly spaced samples with linear interpolation""" assert np.all(np.diff(ts) > 0) ts = normalize(ts) return np.interp(np.linspace(0.0, 1.0, num_samples), ts, values)
9453bba67add0307276ff71e85605812af337379
3,658,118
def supports_color(stream) -> bool: # type: ignore """Determine whether an output stream (e.g. stdout/stderr) supports displaying colored text. A stream that is redirected to a file does not support color. """ return stream.isatty() and hasattr(stream, "isatty")
4a427d6725206ef33b3f4da0ace6f2d6c3db78a9
3,658,120
from typing import Union from typing import Optional from typing import Tuple from typing import Dict from typing import List from bs4 import BeautifulSoup def parse_repo_links( html: Union[str, bytes], base_url: Optional[str] = None, from_encoding: Optional[str] = None, ) -> Tuple[Dict[str, str], List[Link]]: """ .. versionadded:: 0.7.0 Parse an HTML page from a simple repository and return a ``(metadata, links)`` pair. The ``metadata`` element is a ``Dict[str, str]``. Currently, the only key that may appear in it is ``"repository_version"``, which maps to the repository version reported by the HTML page in accordance with :pep:`629`. If the HTML page does not contain a repository version, this key is absent from the `dict`. The ``links`` element is a list of `Link` objects giving the hyperlinks found in the HTML page. :param html: the HTML to parse :type html: str or bytes :param Optional[str] base_url: an optional URL to join to the front of the links' URLs (usually the URL of the page being parsed) :param Optional[str] from_encoding: an optional hint to Beautiful Soup as to the encoding of ``html`` when it is `bytes` (usually the ``charset`` parameter of the response's :mailheader:`Content-Type` header) :rtype: Tuple[Dict[str, str], List[Link]] :raises UnsupportedRepoVersionError: if the repository version has a greater major component than the supported repository version """ soup = BeautifulSoup(html, "html.parser", from_encoding=from_encoding) base_tag = soup.find("base", href=True) if base_tag is not None: if base_url is None: base_url = base_tag["href"] else: base_url = urljoin(base_url, base_tag["href"]) if base_url is None: def basejoin(url: str) -> str: return url else: def basejoin(url: str) -> str: assert isinstance(base_url, str) return urljoin(base_url, url) metadata = {} pep629_meta = soup.find( "meta", attrs={"name": "pypi:repository-version", "content": True}, ) if pep629_meta is not None: metadata["repository_version"] = pep629_meta["content"] check_repo_version(metadata["repository_version"]) links = [] for link in soup.find_all("a", href=True): links.append( Link( text="".join(link.strings).strip(), url=basejoin(link["href"]), attrs=link.attrs, ) ) return (metadata, links)
556ba2bb728c26668548d4f714dc12b1cf2b48bd
3,658,121
def calc_kappa4Franci(T_K, a_H, a_H2CO3s): """ Calculates kappa4 in the PWP equation using approach from Franci's code. Parameters ---------- T_K : float temperature Kelvin a_H : float activity of hydrogen (mol/L) a_H2CO3s : float activity of carbonic acid (mol/L) Returns ------- kappa4 : float constant kappa4 in the PWP equation (cm^4/mmol/s) Notes ----- See more info under documentation for pwpRateFranci(). """ K_2 = calc_K_2(T_K) K_c = calc_K_c(T_K) kappa1 = calc_kappa1(T_K) kappa2 = calc_kappa2(T_K) kappa3 = calc_kappa3(T_K) kappa4 = (K_2/K_c)*(kappa1 + 1/a_H*(kappa2*a_H2CO3s + kappa3) ) return kappa4
a5dcab9d871c7e78031ec74fef5f172e2a37f51b
3,658,122
def get_candidates_from_single_line(single_line_address, out_spatial_reference, max_locations): """ parses the single line address and passes it to the AGRC geocoding service and then returns the results as an array of candidates """ try: parsed_address = Address(single_line_address) except Exception: return [] return make_request( parsed_address.normalized, parsed_address.zip_code or parsed_address.city, out_spatial_reference, max_locations )
a2e4c68dc5a27dea98951bfe61c5e10ff887091a
3,658,123
def create_store(): """Gathers all the necessary info to create a new store""" print("What is the name of the store?") store_name = raw_input('> ') return receipt.Store(store_name)
a9b78c73712b9ec3ed39f5851b970aa97e5d3575
3,658,124
def vgg11_bn_vib(cutting_layer, logger, num_client = 1, num_class = 10, initialize_different = False, adds_bottleneck = False, bottleneck_option = "C8S1"): """VGG 11-layer model (configuration "A") with batch normalization""" return VGG_vib(make_layers(cutting_layer,cfg['A'], batch_norm=True, adds_bottleneck = adds_bottleneck, bottleneck_option = bottleneck_option), logger, num_client = num_client, num_class = num_class, initialize_different = initialize_different)
bf893f1e720aae92275abc961675a83c507425ee
3,658,125
from pathlib import Path def get_conf_paths(project_metadata): """ Get conf paths using the default kedro patterns, and the CONF_ROOT directory set in the projects settings.py """ configure_project(project_metadata.package_name) session = KedroSession.create(project_metadata.package_name) _activate_session(session, force=True) context = session.load_context() pats = ("catalog*", "catalog*/**", "**/catalog*") conf_paths = context.config_loader._lookup_config_filepaths(Path(context.config_loader.conf_paths[0]), pats, set()) return conf_paths
f001dc7d6991c57f32afb3d8d6e607d24bfd61cd
3,658,126
import numpy import ctypes def _mat_ptrs(a): """Creates an array of pointers to matrices Args: a: A batch of matrices on GPU Returns: GPU array of pointers to matrices """ return cuda.to_gpu(numpy.arange( a.ptr, a.ptr + a.shape[0] * a.strides[0], a.strides[0], dtype=ctypes.c_void_p))
1b56c7b9cbc368612fb0f0f7ecd647b5045773a2
3,658,127
def file_upload_quota_broken(request): """ You can't change handlers after reading FILES; this view shouldn't work. """ response = file_upload_echo(request) request.upload_handlers.insert(0, QuotaUploadHandler()) return response
ed9dab36b4f67a58e90542411474da733887f4b4
3,658,128
def create_LED_indicator_rect(**kwargs) -> QPushButton: """ Useful kwargs: text: str, icon: QIcon, checked: bool, parent checked=False -> LED red checked=True -> LED green """ button = QPushButton(checkable=True, enabled=False, **kwargs) button.setStyleSheet(SS_LED_INDICATOR_RECT) return button
3323a225b3f9ac6e687bb3a3d1c5f9d6a4459384
3,658,129
def getAlignments(infile): """ read a PSL file and return a list of PslRow objects """ psls = [] with open(infile, 'r') as f: for psl in readPsls(f): psls.append(psl) return psls
00d6c0c4e44dd3de46c3bc7f38d40fd169311164
3,658,131
import numpy def get_ring_kernel(zs,Rs): """Represents the potential influence due to a line charge density a distance *delta_z* away, at which the azimuthally symmetric charge distribution has a radius *R*.""" Logger.write('Computing ring kernels over %i x %i points...'%((len(zs),)*2)) #Form index enumerations diag_inds=numpy.diag_indices(len(zs)) triud_inds=numpy.triu_indices(len(zs),k=0) triu_inds=numpy.triu_indices(len(zs),k=1) #upper triangle tril_inds=[triu_inds[1],triu_inds[0]] #lower triangle global den1,den2 K=numpy.zeros((len(zs),)*2,dtype=numpy.float) #position "2" corresponds to test charge (rows) #position "1" corresponds to origin of field (columns) zs2=zs.reshape((len(zs),1)); zs1=zs.reshape((1,len(zs))) Rs2=Rs.reshape((len(zs),1)); Rs1=Rs.reshape((1,len(zs))) dr2=(Rs1-Rs2)**2 dz2=(zs1-zs2)**2 rmod2=(Rs1+Rs2)**2 den1=numpy.sqrt(dz2+dr2) dzs=list(numpy.diff(zs)); dzs=numpy.array(dzs+[dzs[-1]]) dRs=list(numpy.diff(Rs)); dRs=numpy.array(dRs+[dRs[-1]]) #fill in diagonal with non-vanishing separation, #proportional to geometric mean of z-bins and local radial difference den1[diag_inds]=numpy.sqrt(dRs**2+dzs**2) arg1=-(4*Rs1*Rs2)/den1**2 den2=numpy.sqrt(dz2+rmod2) arg2=+(4*Rs1*Rs2)/den2**2 #Get elliptic function values ellipk_triud=interp_ellipk(arg1[triud_inds]) ellipk2_triud=interp_ellipk(arg2[triud_inds]) K[triud_inds]=(ellipk_triud/den1[triud_inds]+\ ellipk2_triud/den2[triud_inds])/numpy.pi K[tril_inds]=K[triu_inds] return K
5cdbeb80c8658334245e4fa93f3acf9ac0f9dbc9
3,658,132
def dsdh_h(P, h, region = 0): """ Derivative of specific entropy [kJ kg / kg K kJ] w.r.t specific enthalpy at constant pressure""" if region is 0: region = idRegion_h(P, h) if region is 1: return region1.dsdh_h(P, h) elif region is 2: return region2.dsdh_h(P, h) elif region is 4: return region4.dsdh_h(P, h) else: return 0.000
0ecc9d783524873c2d8537e105c7d5e8814ec80c
3,658,133
from datetime import datetime def floor_datetime(dt, unit, n_units=1): """Floor a datetime to nearest n units. For example, if we want to floor to nearest three months, starting with 2016-05-06-yadda, it will go to 2016-04-01. Or, if starting with 2016-05-06-11:45:06 and rounding to nearest fifteen minutes, it will result in 2016-05-06-11:45:00. """ if unit == "years": new_year = dt.year - (dt.year - 1) % n_units return datetime.datetime(new_year, 1, 1, 0, 0, 0) elif unit == "months": new_month = dt.month - (dt.month - 1) % n_units return datetime.datetime(dt.year, new_month, 1, 0, 0, 0) elif unit == "weeks": _, isoweek, _ = dt.isocalendar() new_week = isoweek - (isoweek - 1) % n_units return datetime.datetime.strptime( "%d %02d 1" % (dt.year, new_week), "%Y %W %w" ) elif unit == "days": new_day = dt.day - dt.day % n_units return datetime.datetime(dt.year, dt.month, new_day, 0, 0, 0) elif unit == "hours": new_hour = dt.hour - dt.hour % n_units return datetime.datetime(dt.year, dt.month, dt.day, new_hour, 0, 0) elif unit == "minutes": new_minute = dt.minute - dt.minute % n_units return datetime.datetime( dt.year, dt.month, dt.day, dt.hour, new_minute, 0 ) elif unit == "seconds": new_second = dt.second - dt.second % n_units return datetime.datetime( dt.year, dt.month, dt.day, dt.hour, dt.minute, new_second ) else: msg = "Unknown unit type {}".format(unit) raise ValueError(msg)
8c4b61b29bf9f254e2da46097e498834b54e960f
3,658,134
def get_dataset_descriptor(project_id, dataset_id): """Get the descriptor for the dataset with given identifier.""" try: dataset = api.datasets.get_dataset_descriptor( project_id=project_id, dataset_id=dataset_id ) if not dataset is None: return jsonify(dataset) except ValueError as ex: raise srv.InvalidRequest(str(ex)) raise srv.ResourceNotFound('unknown project \'' + project_id + '\' or dataset \'' + dataset_id + '\'')
776c7f72730f52e07cf33a6f6b4c7a949810323d
3,658,135
def pe41(): """ >>> pe41() 7652413 """ primes = Primes(1000000) for perm in permutations(range(7, 0, -1)): n = list_num(perm) if primes.is_prime(n): return n return -1
bec7969b96f617848f8771dc6d85faf4b01ea648
3,658,136
def transit_flag(body, time, nsigma=2.0): """Return a flag that indicates if times occured near transit of a celestial body. Parameters ---------- body : skyfield.starlib.Star Skyfield representation of a celestial body. time : np.ndarray[ntime,] Unix timestamps. nsigma : float Number of sigma to flag on either side of transit. Returns ------- flag : np.ndarray[ntime,] Boolean flag that is True if the times occur within nsigma of transit and False otherwise. """ time = np.atleast_1d(time) obs = ephemeris.chime # Create boolean flag flag = np.zeros(time.size, dtype=np.bool) # Find transit times transit_times = obs.transit_times( body, time[0] - 24.0 * 3600.0, time[-1] + 24.0 * 3600.0 ) # Loop over transit times for ttrans in transit_times: # Compute source coordinates sf_time = ephemeris.unix_to_skyfield_time(ttrans) pos = obs.skyfield_obs().at(sf_time).observe(body) alt = pos.apparent().altaz()[0] dec = pos.cirs_radec(sf_time)[1] # Make sure body is above horizon if alt.radians > 0.0: # Estimate the amount of time the body is in the primary beam # as +/- nsigma sigma, where sigma denotes the width of the # primary beam. We use the lowest frequency and E-W (or X) polarisation, # since this is the most conservative (largest sigma). window_deg = nsigma * cal_utils.guess_fwhm( 400.0, pol="X", dec=dec.radians, sigma=True ) window_sec = window_deg * 240.0 * ephemeris.SIDEREAL_S # Flag +/- window_sec around transit time begin = ttrans - window_sec end = ttrans + window_sec flag |= (time >= begin) & (time <= end) # Return boolean flag indicating times near transit return flag
271378e0a6558491f73968200fcb24ec694f8cbe
3,658,137
def _parse_port_ranges(pool_str): """Given a 'N-P,X-Y' description of port ranges, return a set of ints.""" ports = set() for range_str in pool_str.split(','): try: a, b = range_str.split('-', 1) start, end = int(a), int(b) except ValueError: log.error('Ignoring unparsable port range %r.', range_str) continue if start < 1 or end > 65535: log.error('Ignoring out of bounds port range %r.', range_str) continue ports.update(set(range(start, end + 1))) return ports
6926b326ea301f21e2282edda3bc16169ebe90b4
3,658,138