bug_id
stringlengths
1
3
task_id
stringlengths
64
64
function_signature
stringlengths
15
364
prompt_chat
stringlengths
471
20.2k
code
stringlengths
44
19.8k
defective
bool
2 classes
project
stringclasses
17 values
prompt_complete
stringlengths
3.07k
22.8k
49
000bd8114192f589e849a9f2a68d4edaaec806bd8ed37b6cb678ad8842453d82
public Object generateId(Object forPojo)
I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function: ```java public Object generateId(Object forPojo) { // 04-Jun-2016, tatu: As per [databind#1255], need to consider possibility of // id being generated for "alwaysAsId", but not being written as POJO; regardless, // need to use existing id if there is one: id = generator.generateId(forPojo); return id; } ```
public Object generateId(Object forPojo) { // 04-Jun-2016, tatu: As per [databind#1255], need to consider possibility of // id being generated for "alwaysAsId", but not being written as POJO; regardless, // need to use existing id if there is one: id = generator.generateId(forPojo); return id; }
true
JacksonDatabind
/** * Perform a binary search on a sorted array to find the position of a specified element. */ int binarySearch(int arr[], int l, int r, int x) { if (r >= l) { int mid = l + (r + l) / 2; if (arr[mid] == x) return mid; if (arr[mid] > x) return binarySearch(arr, l, mid - 1, x); return binarySearch(arr, mid + 1, r, x); } return -1; } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: A. Yes, it has defects /** * Counts the number of set bits in the binary representation of a given integer. */ public class BITCOUNT { public static int bitcount(int n) { int count = 0; while (n != 0) { n = (n & (n - 1)); count++; } return count; } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: B. No, it doesn't have defects /** * A method that finds and returns the kth smallest element in an unsorted array. */ public class KTH { public static Integer kth(ArrayList<Integer> arr, int k) { int pivot = arr.get(0); ArrayList<Integer> below, above; below = new ArrayList<Integer>(arr.size()); above = new ArrayList<Integer>(arr.size()); for (Integer x : arr) { if (x < pivot) { below.add(x); } else if (x > pivot) { above.add(x); } } int num_less = below.size(); int num_lessoreq = arr.size() - above.size(); if (k < num_less) { return kth(below, k); } else if (k >= num_lessoreq) { return kth(above, k-num_lessoreq); } else { return pivot; } } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: B. No, it doesn't have defects /** * A method that sorts an ArrayList of integers using the Merge Sort algorithm. */ public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) { if (arr.size() <= 1) { // <= 1 in correct version return arr; } else { int middle = arr.size() / 2; ArrayList<Integer> left = new ArrayList<Integer>(100); left.addAll(arr.subList(0,middle)); left = mergesort(left); ArrayList<Integer> right = new ArrayList<Integer>(100); right.addAll(arr.subList(middle, arr.size())); right = mergesort(right); return merge(left, left); } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: A. Yes, it has defects public Object generateId(Object forPojo) { // 04-Jun-2016, tatu: As per [databind#1255], need to consider possibility of // id being generated for "alwaysAsId", but not being written as POJO; regardless, // need to use existing id if there is one: id = generator.generateId(forPojo); return id; } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer:
56
005766411469575f53bb173eea8c7bf90dde1a7f0a41babdf02122b2f96f7975
public int[] getCounts(int index)
I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function: ```java /** * Convert to multidimensional counter. * * @param index Index in unidimensional counter. * @return the multidimensional counts. * @throws OutOfRangeException if {@code index} is not between * {@code 0} and the value returned by {@link #getSize()} (excluded). */ public int[] getCounts(int index) { if (index < 0 || index >= totalSize) { throw new OutOfRangeException(index, 0, totalSize); } final int[] indices = new int[dimension]; int count = 0; for (int i = 0; i < last; i++) { int idx = 0; final int offset = uniCounterOffset[i]; while (count <= index) { count += offset; ++idx; } --idx; count -= offset; indices[i] = idx; } indices[last] = index - count; return indices; } ```
public int[] getCounts(int index) { if (index < 0 || index >= totalSize) { throw new OutOfRangeException(index, 0, totalSize); } final int[] indices = new int[dimension]; int count = 0; for (int i = 0; i < last; i++) { int idx = 0; final int offset = uniCounterOffset[i]; while (count <= index) { count += offset; ++idx; } --idx; count -= offset; indices[i] = idx; } indices[last] = index - count; return indices; }
false
Math
/** * Perform a binary search on a sorted array to find the position of a specified element. */ int binarySearch(int arr[], int l, int r, int x) { if (r >= l) { int mid = l + (r + l) / 2; if (arr[mid] == x) return mid; if (arr[mid] > x) return binarySearch(arr, l, mid - 1, x); return binarySearch(arr, mid + 1, r, x); } return -1; } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: A. Yes, it has defects /** * Counts the number of set bits in the binary representation of a given integer. */ public class BITCOUNT { public static int bitcount(int n) { int count = 0; while (n != 0) { n = (n & (n - 1)); count++; } return count; } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: B. No, it doesn't have defects /** * A method that finds and returns the kth smallest element in an unsorted array. */ public class KTH { public static Integer kth(ArrayList<Integer> arr, int k) { int pivot = arr.get(0); ArrayList<Integer> below, above; below = new ArrayList<Integer>(arr.size()); above = new ArrayList<Integer>(arr.size()); for (Integer x : arr) { if (x < pivot) { below.add(x); } else if (x > pivot) { above.add(x); } } int num_less = below.size(); int num_lessoreq = arr.size() - above.size(); if (k < num_less) { return kth(below, k); } else if (k >= num_lessoreq) { return kth(above, k-num_lessoreq); } else { return pivot; } } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: B. No, it doesn't have defects /** * A method that sorts an ArrayList of integers using the Merge Sort algorithm. */ public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) { if (arr.size() <= 1) { // <= 1 in correct version return arr; } else { int middle = arr.size() / 2; ArrayList<Integer> left = new ArrayList<Integer>(100); left.addAll(arr.subList(0,middle)); left = mergesort(left); ArrayList<Integer> right = new ArrayList<Integer>(100); right.addAll(arr.subList(middle, arr.size())); right = mergesort(right); return merge(left, left); } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: A. Yes, it has defects /** * Convert to multidimensional counter. * * @param index Index in unidimensional counter. * @return the multidimensional counts. * @throws OutOfRangeException if {@code index} is not between * {@code 0} and the value returned by {@link #getSize()} (excluded). */ public int[] getCounts(int index) { if (index < 0 || index >= totalSize) { throw new OutOfRangeException(index, 0, totalSize); } final int[] indices = new int[dimension]; int count = 0; for (int i = 0; i < last; i++) { int idx = 0; final int offset = uniCounterOffset[i]; while (count <= index) { count += offset; ++idx; } --idx; count -= offset; indices[i] = idx; } indices[last] = index - count; return indices; } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer:
9
009c707abb74fee8886efd9438bf903d296c8a30fda3f2d2eba55ba6d536e836
public static byte[] encodeBase64(byte[] binaryData, boolean isChunked, boolean urlSafe, int maxResultSize)
I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function: ```java /** * Encodes binary data using the base64 algorithm, optionally chunking the output into 76 character blocks. * * @param binaryData * Array containing binary data to encode. * @param isChunked * if <code>true</code> this encoder will chunk the base64 output into 76 character blocks * @param urlSafe * if <code>true</code> this encoder will emit - and _ instead of the usual + and / characters. * @param maxResultSize * The maximum result size to accept. * @return Base64-encoded data. * @throws IllegalArgumentException * Thrown when the input array needs an output array bigger than maxResultSize * @since 1.4 */ public static byte[] encodeBase64(byte[] binaryData, boolean isChunked, boolean urlSafe, int maxResultSize) { if (binaryData == null || binaryData.length == 0) { return binaryData; } long len = getEncodeLength(binaryData, isChunked ? MIME_CHUNK_SIZE : 0, CHUNK_SEPARATOR); if (len > maxResultSize) { throw new IllegalArgumentException("Input array too big, the output array would be bigger (" + len + ") than the specified maxium size of " + maxResultSize); } Base64 b64 = isChunked ? new Base64(urlSafe) : new Base64(0, CHUNK_SEPARATOR, urlSafe); return b64.encode(binaryData); } ```
public static byte[] encodeBase64(byte[] binaryData, boolean isChunked, boolean urlSafe, int maxResultSize) { if (binaryData == null || binaryData.length == 0) { return binaryData; } long len = getEncodeLength(binaryData, isChunked ? MIME_CHUNK_SIZE : 0, CHUNK_SEPARATOR); if (len > maxResultSize) { throw new IllegalArgumentException("Input array too big, the output array would be bigger (" + len + ") than the specified maxium size of " + maxResultSize); } Base64 b64 = isChunked ? new Base64(urlSafe) : new Base64(0, CHUNK_SEPARATOR, urlSafe); return b64.encode(binaryData); }
false
Codec
/** * Perform a binary search on a sorted array to find the position of a specified element. */ int binarySearch(int arr[], int l, int r, int x) { if (r >= l) { int mid = l + (r + l) / 2; if (arr[mid] == x) return mid; if (arr[mid] > x) return binarySearch(arr, l, mid - 1, x); return binarySearch(arr, mid + 1, r, x); } return -1; } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: A. Yes, it has defects /** * Counts the number of set bits in the binary representation of a given integer. */ public class BITCOUNT { public static int bitcount(int n) { int count = 0; while (n != 0) { n = (n & (n - 1)); count++; } return count; } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: B. No, it doesn't have defects /** * A method that finds and returns the kth smallest element in an unsorted array. */ public class KTH { public static Integer kth(ArrayList<Integer> arr, int k) { int pivot = arr.get(0); ArrayList<Integer> below, above; below = new ArrayList<Integer>(arr.size()); above = new ArrayList<Integer>(arr.size()); for (Integer x : arr) { if (x < pivot) { below.add(x); } else if (x > pivot) { above.add(x); } } int num_less = below.size(); int num_lessoreq = arr.size() - above.size(); if (k < num_less) { return kth(below, k); } else if (k >= num_lessoreq) { return kth(above, k-num_lessoreq); } else { return pivot; } } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: B. No, it doesn't have defects /** * A method that sorts an ArrayList of integers using the Merge Sort algorithm. */ public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) { if (arr.size() <= 1) { // <= 1 in correct version return arr; } else { int middle = arr.size() / 2; ArrayList<Integer> left = new ArrayList<Integer>(100); left.addAll(arr.subList(0,middle)); left = mergesort(left); ArrayList<Integer> right = new ArrayList<Integer>(100); right.addAll(arr.subList(middle, arr.size())); right = mergesort(right); return merge(left, left); } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: A. Yes, it has defects /** * Encodes binary data using the base64 algorithm, optionally chunking the output into 76 character blocks. * * @param binaryData * Array containing binary data to encode. * @param isChunked * if <code>true</code> this encoder will chunk the base64 output into 76 character blocks * @param urlSafe * if <code>true</code> this encoder will emit - and _ instead of the usual + and / characters. * @param maxResultSize * The maximum result size to accept. * @return Base64-encoded data. * @throws IllegalArgumentException * Thrown when the input array needs an output array bigger than maxResultSize * @since 1.4 */ public static byte[] encodeBase64(byte[] binaryData, boolean isChunked, boolean urlSafe, int maxResultSize) { if (binaryData == null || binaryData.length == 0) { return binaryData; } long len = getEncodeLength(binaryData, isChunked ? MIME_CHUNK_SIZE : 0, CHUNK_SEPARATOR); if (len > maxResultSize) { throw new IllegalArgumentException("Input array too big, the output array would be bigger (" + len + ") than the specified maxium size of " + maxResultSize); } Base64 b64 = isChunked ? new Base64(urlSafe) : new Base64(0, CHUNK_SEPARATOR, urlSafe); return b64.encode(binaryData); } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer:
44
00d45f48dfdcff13baeaca61654b0467fae727dfc323d7f3c67af5b8b5e266db
public ChecksumCalculatingInputStream(final Checksum checksum, final InputStream in)
I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function: ```java public ChecksumCalculatingInputStream(final Checksum checksum, final InputStream in) { this.checksum = checksum; this.in = in; } ```
public ChecksumCalculatingInputStream(final Checksum checksum, final InputStream in) { this.checksum = checksum; this.in = in; }
true
Compress
/** * Perform a binary search on a sorted array to find the position of a specified element. */ int binarySearch(int arr[], int l, int r, int x) { if (r >= l) { int mid = l + (r + l) / 2; if (arr[mid] == x) return mid; if (arr[mid] > x) return binarySearch(arr, l, mid - 1, x); return binarySearch(arr, mid + 1, r, x); } return -1; } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: A. Yes, it has defects /** * Counts the number of set bits in the binary representation of a given integer. */ public class BITCOUNT { public static int bitcount(int n) { int count = 0; while (n != 0) { n = (n & (n - 1)); count++; } return count; } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: B. No, it doesn't have defects /** * A method that finds and returns the kth smallest element in an unsorted array. */ public class KTH { public static Integer kth(ArrayList<Integer> arr, int k) { int pivot = arr.get(0); ArrayList<Integer> below, above; below = new ArrayList<Integer>(arr.size()); above = new ArrayList<Integer>(arr.size()); for (Integer x : arr) { if (x < pivot) { below.add(x); } else if (x > pivot) { above.add(x); } } int num_less = below.size(); int num_lessoreq = arr.size() - above.size(); if (k < num_less) { return kth(below, k); } else if (k >= num_lessoreq) { return kth(above, k-num_lessoreq); } else { return pivot; } } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: B. No, it doesn't have defects /** * A method that sorts an ArrayList of integers using the Merge Sort algorithm. */ public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) { if (arr.size() <= 1) { // <= 1 in correct version return arr; } else { int middle = arr.size() / 2; ArrayList<Integer> left = new ArrayList<Integer>(100); left.addAll(arr.subList(0,middle)); left = mergesort(left); ArrayList<Integer> right = new ArrayList<Integer>(100); right.addAll(arr.subList(middle, arr.size())); right = mergesort(right); return merge(left, left); } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: A. Yes, it has defects public ChecksumCalculatingInputStream(final Checksum checksum, final InputStream in) { this.checksum = checksum; this.in = in; } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer:
64
0158d98cfe414fb8a3a32ae6d96b1f61a405dfb4990b3823d1a57a8895dffe26
@Override protected VectorialPointValuePair doOptimize() throws FunctionEvaluationException, OptimizationException, IllegalArgumentException
I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function: ```java /** {@inheritDoc} */ @Override protected VectorialPointValuePair doOptimize() throws FunctionEvaluationException, OptimizationException, IllegalArgumentException { // arrays shared with the other private methods solvedCols = Math.min(rows, cols); diagR = new double[cols]; jacNorm = new double[cols]; beta = new double[cols]; permutation = new int[cols]; lmDir = new double[cols]; // local point double delta = 0; double xNorm = 0; double[] diag = new double[cols]; double[] oldX = new double[cols]; double[] oldRes = new double[rows]; double[] work1 = new double[cols]; double[] work2 = new double[cols]; double[] work3 = new double[cols]; // evaluate the function at the starting point and calculate its norm updateResidualsAndCost(); // outer loop lmPar = 0; boolean firstIteration = true; VectorialPointValuePair current = new VectorialPointValuePair(point, objective); while (true) { incrementIterationsCounter(); // compute the Q.R. decomposition of the jacobian matrix VectorialPointValuePair previous = current; updateJacobian(); qrDecomposition(); // compute Qt.res qTy(residuals); // now we don't need Q anymore, // so let jacobian contain the R matrix with its diagonal elements for (int k = 0; k < solvedCols; ++k) { int pk = permutation[k]; jacobian[k][pk] = diagR[pk]; } if (firstIteration) { // scale the point according to the norms of the columns // of the initial jacobian xNorm = 0; for (int k = 0; k < cols; ++k) { double dk = jacNorm[k]; if (dk == 0) { dk = 1.0; } double xk = dk * point[k]; xNorm += xk * xk; diag[k] = dk; } xNorm = Math.sqrt(xNorm); // initialize the step bound delta delta = (xNorm == 0) ? initialStepBoundFactor : (initialStepBoundFactor * xNorm); } // check orthogonality between function vector and jacobian columns double maxCosine = 0; if (cost != 0) { for (int j = 0; j < solvedCols; ++j) { int pj = permutation[j]; double s = jacNorm[pj]; if (s != 0) { double sum = 0; for (int i = 0; i <= j; ++i) { sum += jacobian[i][pj] * residuals[i]; } maxCosine = Math.max(maxCosine, Math.abs(sum) / (s * cost)); } } } if (maxCosine <= orthoTolerance) { // convergence has been reached return current; } // rescale if necessary for (int j = 0; j < cols; ++j) { diag[j] = Math.max(diag[j], jacNorm[j]); } // inner loop for (double ratio = 0; ratio < 1.0e-4;) { // save the state for (int j = 0; j < solvedCols; ++j) { int pj = permutation[j]; oldX[pj] = point[pj]; } double previousCost = cost; double[] tmpVec = residuals; residuals = oldRes; oldRes = tmpVec; // determine the Levenberg-Marquardt parameter determineLMParameter(oldRes, delta, diag, work1, work2, work3); // compute the new point and the norm of the evolution direction double lmNorm = 0; for (int j = 0; j < solvedCols; ++j) { int pj = permutation[j]; lmDir[pj] = -lmDir[pj]; point[pj] = oldX[pj] + lmDir[pj]; double s = diag[pj] * lmDir[pj]; lmNorm += s * s; } lmNorm = Math.sqrt(lmNorm); // on the first iteration, adjust the initial step bound. if (firstIteration) { delta = Math.min(delta, lmNorm); } // evaluate the function at x + p and calculate its norm updateResidualsAndCost(); current = new VectorialPointValuePair(point, objective); // compute the scaled actual reduction double actRed = -1.0; if (0.1 * cost < previousCost) { double r = cost / previousCost; actRed = 1.0 - r * r; } // compute the scaled predicted reduction // and the scaled directional derivative for (int j = 0; j < solvedCols; ++j) { int pj = permutation[j]; double dirJ = lmDir[pj]; work1[j] = 0; for (int i = 0; i <= j; ++i) { work1[i] += jacobian[i][pj] * dirJ; } } double coeff1 = 0; for (int j = 0; j < solvedCols; ++j) { coeff1 += work1[j] * work1[j]; } double pc2 = previousCost * previousCost; coeff1 = coeff1 / pc2; double coeff2 = lmPar * lmNorm * lmNorm / pc2; double preRed = coeff1 + 2 * coeff2; double dirDer = -(coeff1 + coeff2); // ratio of the actual to the predicted reduction ratio = (preRed == 0) ? 0 : (actRed / preRed); // update the step bound if (ratio <= 0.25) { double tmp = (actRed < 0) ? (0.5 * dirDer / (dirDer + 0.5 * actRed)) : 0.5; if ((0.1 * cost >= previousCost) || (tmp < 0.1)) { tmp = 0.1; } delta = tmp * Math.min(delta, 10.0 * lmNorm); lmPar /= tmp; } else if ((lmPar == 0) || (ratio >= 0.75)) { delta = 2 * lmNorm; lmPar *= 0.5; } // test for successful iteration. if (ratio >= 1.0e-4) { // successful iteration, update the norm firstIteration = false; xNorm = 0; for (int k = 0; k < cols; ++k) { double xK = diag[k] * point[k]; xNorm += xK * xK; } xNorm = Math.sqrt(xNorm); // tests for convergence. // we use the vectorial convergence checker } else { // failed iteration, reset the previous values cost = previousCost; for (int j = 0; j < solvedCols; ++j) { int pj = permutation[j]; point[pj] = oldX[pj]; } tmpVec = residuals; residuals = oldRes; oldRes = tmpVec; } if (checker==null) { if (((Math.abs(actRed) <= costRelativeTolerance) && (preRed <= costRelativeTolerance) && (ratio <= 2.0)) || (delta <= parRelativeTolerance * xNorm)) { return current; } } else { if (checker.converged(getIterations(), previous, current)) { return current; } } // tests for termination and stringent tolerances // (2.2204e-16 is the machine epsilon for IEEE754) if ((Math.abs(actRed) <= 2.2204e-16) && (preRed <= 2.2204e-16) && (ratio <= 2.0)) { throw new OptimizationException(LocalizedFormats.TOO_SMALL_COST_RELATIVE_TOLERANCE, costRelativeTolerance); } else if (delta <= 2.2204e-16 * xNorm) { throw new OptimizationException(LocalizedFormats.TOO_SMALL_PARAMETERS_RELATIVE_TOLERANCE, parRelativeTolerance); } else if (maxCosine <= 2.2204e-16) { throw new OptimizationException(LocalizedFormats.TOO_SMALL_ORTHOGONALITY_TOLERANCE, orthoTolerance); } } } } ```
@Override protected VectorialPointValuePair doOptimize() throws FunctionEvaluationException, OptimizationException, IllegalArgumentException { // arrays shared with the other private methods solvedCols = Math.min(rows, cols); diagR = new double[cols]; jacNorm = new double[cols]; beta = new double[cols]; permutation = new int[cols]; lmDir = new double[cols]; // local point double delta = 0; double xNorm = 0; double[] diag = new double[cols]; double[] oldX = new double[cols]; double[] oldRes = new double[rows]; double[] work1 = new double[cols]; double[] work2 = new double[cols]; double[] work3 = new double[cols]; // evaluate the function at the starting point and calculate its norm updateResidualsAndCost(); // outer loop lmPar = 0; boolean firstIteration = true; VectorialPointValuePair current = new VectorialPointValuePair(point, objective); while (true) { incrementIterationsCounter(); // compute the Q.R. decomposition of the jacobian matrix VectorialPointValuePair previous = current; updateJacobian(); qrDecomposition(); // compute Qt.res qTy(residuals); // now we don't need Q anymore, // so let jacobian contain the R matrix with its diagonal elements for (int k = 0; k < solvedCols; ++k) { int pk = permutation[k]; jacobian[k][pk] = diagR[pk]; } if (firstIteration) { // scale the point according to the norms of the columns // of the initial jacobian xNorm = 0; for (int k = 0; k < cols; ++k) { double dk = jacNorm[k]; if (dk == 0) { dk = 1.0; } double xk = dk * point[k]; xNorm += xk * xk; diag[k] = dk; } xNorm = Math.sqrt(xNorm); // initialize the step bound delta delta = (xNorm == 0) ? initialStepBoundFactor : (initialStepBoundFactor * xNorm); } // check orthogonality between function vector and jacobian columns double maxCosine = 0; if (cost != 0) { for (int j = 0; j < solvedCols; ++j) { int pj = permutation[j]; double s = jacNorm[pj]; if (s != 0) { double sum = 0; for (int i = 0; i <= j; ++i) { sum += jacobian[i][pj] * residuals[i]; } maxCosine = Math.max(maxCosine, Math.abs(sum) / (s * cost)); } } } if (maxCosine <= orthoTolerance) { // convergence has been reached return current; } // rescale if necessary for (int j = 0; j < cols; ++j) { diag[j] = Math.max(diag[j], jacNorm[j]); } // inner loop for (double ratio = 0; ratio < 1.0e-4;) { // save the state for (int j = 0; j < solvedCols; ++j) { int pj = permutation[j]; oldX[pj] = point[pj]; } double previousCost = cost; double[] tmpVec = residuals; residuals = oldRes; oldRes = tmpVec; // determine the Levenberg-Marquardt parameter determineLMParameter(oldRes, delta, diag, work1, work2, work3); // compute the new point and the norm of the evolution direction double lmNorm = 0; for (int j = 0; j < solvedCols; ++j) { int pj = permutation[j]; lmDir[pj] = -lmDir[pj]; point[pj] = oldX[pj] + lmDir[pj]; double s = diag[pj] * lmDir[pj]; lmNorm += s * s; } lmNorm = Math.sqrt(lmNorm); // on the first iteration, adjust the initial step bound. if (firstIteration) { delta = Math.min(delta, lmNorm); } // evaluate the function at x + p and calculate its norm updateResidualsAndCost(); current = new VectorialPointValuePair(point, objective); // compute the scaled actual reduction double actRed = -1.0; if (0.1 * cost < previousCost) { double r = cost / previousCost; actRed = 1.0 - r * r; } // compute the scaled predicted reduction // and the scaled directional derivative for (int j = 0; j < solvedCols; ++j) { int pj = permutation[j]; double dirJ = lmDir[pj]; work1[j] = 0; for (int i = 0; i <= j; ++i) { work1[i] += jacobian[i][pj] * dirJ; } } double coeff1 = 0; for (int j = 0; j < solvedCols; ++j) { coeff1 += work1[j] * work1[j]; } double pc2 = previousCost * previousCost; coeff1 = coeff1 / pc2; double coeff2 = lmPar * lmNorm * lmNorm / pc2; double preRed = coeff1 + 2 * coeff2; double dirDer = -(coeff1 + coeff2); // ratio of the actual to the predicted reduction ratio = (preRed == 0) ? 0 : (actRed / preRed); // update the step bound if (ratio <= 0.25) { double tmp = (actRed < 0) ? (0.5 * dirDer / (dirDer + 0.5 * actRed)) : 0.5; if ((0.1 * cost >= previousCost) || (tmp < 0.1)) { tmp = 0.1; } delta = tmp * Math.min(delta, 10.0 * lmNorm); lmPar /= tmp; } else if ((lmPar == 0) || (ratio >= 0.75)) { delta = 2 * lmNorm; lmPar *= 0.5; } // test for successful iteration. if (ratio >= 1.0e-4) { // successful iteration, update the norm firstIteration = false; xNorm = 0; for (int k = 0; k < cols; ++k) { double xK = diag[k] * point[k]; xNorm += xK * xK; } xNorm = Math.sqrt(xNorm); // tests for convergence. // we use the vectorial convergence checker } else { // failed iteration, reset the previous values cost = previousCost; for (int j = 0; j < solvedCols; ++j) { int pj = permutation[j]; point[pj] = oldX[pj]; } tmpVec = residuals; residuals = oldRes; oldRes = tmpVec; } if (checker==null) { if (((Math.abs(actRed) <= costRelativeTolerance) && (preRed <= costRelativeTolerance) && (ratio <= 2.0)) || (delta <= parRelativeTolerance * xNorm)) { return current; } } else { if (checker.converged(getIterations(), previous, current)) { return current; } } // tests for termination and stringent tolerances // (2.2204e-16 is the machine epsilon for IEEE754) if ((Math.abs(actRed) <= 2.2204e-16) && (preRed <= 2.2204e-16) && (ratio <= 2.0)) { throw new OptimizationException(LocalizedFormats.TOO_SMALL_COST_RELATIVE_TOLERANCE, costRelativeTolerance); } else if (delta <= 2.2204e-16 * xNorm) { throw new OptimizationException(LocalizedFormats.TOO_SMALL_PARAMETERS_RELATIVE_TOLERANCE, parRelativeTolerance); } else if (maxCosine <= 2.2204e-16) { throw new OptimizationException(LocalizedFormats.TOO_SMALL_ORTHOGONALITY_TOLERANCE, orthoTolerance); } } } }
true
Math
/** * Perform a binary search on a sorted array to find the position of a specified element. */ int binarySearch(int arr[], int l, int r, int x) { if (r >= l) { int mid = l + (r + l) / 2; if (arr[mid] == x) return mid; if (arr[mid] > x) return binarySearch(arr, l, mid - 1, x); return binarySearch(arr, mid + 1, r, x); } return -1; } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: A. Yes, it has defects /** * Counts the number of set bits in the binary representation of a given integer. */ public class BITCOUNT { public static int bitcount(int n) { int count = 0; while (n != 0) { n = (n & (n - 1)); count++; } return count; } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: B. No, it doesn't have defects /** * A method that finds and returns the kth smallest element in an unsorted array. */ public class KTH { public static Integer kth(ArrayList<Integer> arr, int k) { int pivot = arr.get(0); ArrayList<Integer> below, above; below = new ArrayList<Integer>(arr.size()); above = new ArrayList<Integer>(arr.size()); for (Integer x : arr) { if (x < pivot) { below.add(x); } else if (x > pivot) { above.add(x); } } int num_less = below.size(); int num_lessoreq = arr.size() - above.size(); if (k < num_less) { return kth(below, k); } else if (k >= num_lessoreq) { return kth(above, k-num_lessoreq); } else { return pivot; } } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: B. No, it doesn't have defects /** * A method that sorts an ArrayList of integers using the Merge Sort algorithm. */ public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) { if (arr.size() <= 1) { // <= 1 in correct version return arr; } else { int middle = arr.size() / 2; ArrayList<Integer> left = new ArrayList<Integer>(100); left.addAll(arr.subList(0,middle)); left = mergesort(left); ArrayList<Integer> right = new ArrayList<Integer>(100); right.addAll(arr.subList(middle, arr.size())); right = mergesort(right); return merge(left, left); } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: A. Yes, it has defects /** {@inheritDoc} */ @Override protected VectorialPointValuePair doOptimize() throws FunctionEvaluationException, OptimizationException, IllegalArgumentException { // arrays shared with the other private methods solvedCols = Math.min(rows, cols); diagR = new double[cols]; jacNorm = new double[cols]; beta = new double[cols]; permutation = new int[cols]; lmDir = new double[cols]; // local point double delta = 0; double xNorm = 0; double[] diag = new double[cols]; double[] oldX = new double[cols]; double[] oldRes = new double[rows]; double[] work1 = new double[cols]; double[] work2 = new double[cols]; double[] work3 = new double[cols]; // evaluate the function at the starting point and calculate its norm updateResidualsAndCost(); // outer loop lmPar = 0; boolean firstIteration = true; VectorialPointValuePair current = new VectorialPointValuePair(point, objective); while (true) { incrementIterationsCounter(); // compute the Q.R. decomposition of the jacobian matrix VectorialPointValuePair previous = current; updateJacobian(); qrDecomposition(); // compute Qt.res qTy(residuals); // now we don't need Q anymore, // so let jacobian contain the R matrix with its diagonal elements for (int k = 0; k < solvedCols; ++k) { int pk = permutation[k]; jacobian[k][pk] = diagR[pk]; } if (firstIteration) { // scale the point according to the norms of the columns // of the initial jacobian xNorm = 0; for (int k = 0; k < cols; ++k) { double dk = jacNorm[k]; if (dk == 0) { dk = 1.0; } double xk = dk * point[k]; xNorm += xk * xk; diag[k] = dk; } xNorm = Math.sqrt(xNorm); // initialize the step bound delta delta = (xNorm == 0) ? initialStepBoundFactor : (initialStepBoundFactor * xNorm); } // check orthogonality between function vector and jacobian columns double maxCosine = 0; if (cost != 0) { for (int j = 0; j < solvedCols; ++j) { int pj = permutation[j]; double s = jacNorm[pj]; if (s != 0) { double sum = 0; for (int i = 0; i <= j; ++i) { sum += jacobian[i][pj] * residuals[i]; } maxCosine = Math.max(maxCosine, Math.abs(sum) / (s * cost)); } } } if (maxCosine <= orthoTolerance) { // convergence has been reached return current; } // rescale if necessary for (int j = 0; j < cols; ++j) { diag[j] = Math.max(diag[j], jacNorm[j]); } // inner loop for (double ratio = 0; ratio < 1.0e-4;) { // save the state for (int j = 0; j < solvedCols; ++j) { int pj = permutation[j]; oldX[pj] = point[pj]; } double previousCost = cost; double[] tmpVec = residuals; residuals = oldRes; oldRes = tmpVec; // determine the Levenberg-Marquardt parameter determineLMParameter(oldRes, delta, diag, work1, work2, work3); // compute the new point and the norm of the evolution direction double lmNorm = 0; for (int j = 0; j < solvedCols; ++j) { int pj = permutation[j]; lmDir[pj] = -lmDir[pj]; point[pj] = oldX[pj] + lmDir[pj]; double s = diag[pj] * lmDir[pj]; lmNorm += s * s; } lmNorm = Math.sqrt(lmNorm); // on the first iteration, adjust the initial step bound. if (firstIteration) { delta = Math.min(delta, lmNorm); } // evaluate the function at x + p and calculate its norm updateResidualsAndCost(); current = new VectorialPointValuePair(point, objective); // compute the scaled actual reduction double actRed = -1.0; if (0.1 * cost < previousCost) { double r = cost / previousCost; actRed = 1.0 - r * r; } // compute the scaled predicted reduction // and the scaled directional derivative for (int j = 0; j < solvedCols; ++j) { int pj = permutation[j]; double dirJ = lmDir[pj]; work1[j] = 0; for (int i = 0; i <= j; ++i) { work1[i] += jacobian[i][pj] * dirJ; } } double coeff1 = 0; for (int j = 0; j < solvedCols; ++j) { coeff1 += work1[j] * work1[j]; } double pc2 = previousCost * previousCost; coeff1 = coeff1 / pc2; double coeff2 = lmPar * lmNorm * lmNorm / pc2; double preRed = coeff1 + 2 * coeff2; double dirDer = -(coeff1 + coeff2); // ratio of the actual to the predicted reduction ratio = (preRed == 0) ? 0 : (actRed / preRed); // update the step bound if (ratio <= 0.25) { double tmp = (actRed < 0) ? (0.5 * dirDer / (dirDer + 0.5 * actRed)) : 0.5; if ((0.1 * cost >= previousCost) || (tmp < 0.1)) { tmp = 0.1; } delta = tmp * Math.min(delta, 10.0 * lmNorm); lmPar /= tmp; } else if ((lmPar == 0) || (ratio >= 0.75)) { delta = 2 * lmNorm; lmPar *= 0.5; } // test for successful iteration. if (ratio >= 1.0e-4) { // successful iteration, update the norm firstIteration = false; xNorm = 0; for (int k = 0; k < cols; ++k) { double xK = diag[k] * point[k]; xNorm += xK * xK; } xNorm = Math.sqrt(xNorm); // tests for convergence. // we use the vectorial convergence checker } else { // failed iteration, reset the previous values cost = previousCost; for (int j = 0; j < solvedCols; ++j) { int pj = permutation[j]; point[pj] = oldX[pj]; } tmpVec = residuals; residuals = oldRes; oldRes = tmpVec; } if (checker==null) { if (((Math.abs(actRed) <= costRelativeTolerance) && (preRed <= costRelativeTolerance) && (ratio <= 2.0)) || (delta <= parRelativeTolerance * xNorm)) { return current; } } else { if (checker.converged(getIterations(), previous, current)) { return current; } } // tests for termination and stringent tolerances // (2.2204e-16 is the machine epsilon for IEEE754) if ((Math.abs(actRed) <= 2.2204e-16) && (preRed <= 2.2204e-16) && (ratio <= 2.0)) { throw new OptimizationException(LocalizedFormats.TOO_SMALL_COST_RELATIVE_TOLERANCE, costRelativeTolerance); } else if (delta <= 2.2204e-16 * xNorm) { throw new OptimizationException(LocalizedFormats.TOO_SMALL_PARAMETERS_RELATIVE_TOLERANCE, parRelativeTolerance); } else if (maxCosine <= 2.2204e-16) { throw new OptimizationException(LocalizedFormats.TOO_SMALL_ORTHOGONALITY_TOLERANCE, orthoTolerance); } } } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer:
69
01aaeb035d01d4c8d1d27f08b006c3795b07c44d885803cc0661356ebeeb7b73
public RealMatrix getCorrelationPValues() throws MathException
I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function: ```java /** * Returns a matrix of p-values associated with the (two-sided) null * hypothesis that the corresponding correlation coefficient is zero. * <p><code>getCorrelationPValues().getEntry(i,j)</code> is the probability * that a random variable distributed as <code>t<sub>n-2</sub></code> takes * a value with absolute value greater than or equal to <br> * <code>|r|((n - 2) / (1 - r<sup>2</sup>))<sup>1/2</sup></code></p> * <p>The values in the matrix are sometimes referred to as the * <i>significance</i> of the corresponding correlation coefficients.</p> * * @return matrix of p-values * @throws MathException if an error occurs estimating probabilities */ public RealMatrix getCorrelationPValues() throws MathException { TDistribution tDistribution = new TDistributionImpl(nObs - 2); int nVars = correlationMatrix.getColumnDimension(); double[][] out = new double[nVars][nVars]; for (int i = 0; i < nVars; i++) { for (int j = 0; j < nVars; j++) { if (i == j) { out[i][j] = 0d; } else { double r = correlationMatrix.getEntry(i, j); double t = Math.abs(r * Math.sqrt((nObs - 2)/(1 - r * r))); out[i][j] = 2 * tDistribution.cumulativeProbability(-t); } } } return new BlockRealMatrix(out); } ```
public RealMatrix getCorrelationPValues() throws MathException { TDistribution tDistribution = new TDistributionImpl(nObs - 2); int nVars = correlationMatrix.getColumnDimension(); double[][] out = new double[nVars][nVars]; for (int i = 0; i < nVars; i++) { for (int j = 0; j < nVars; j++) { if (i == j) { out[i][j] = 0d; } else { double r = correlationMatrix.getEntry(i, j); double t = Math.abs(r * Math.sqrt((nObs - 2)/(1 - r * r))); out[i][j] = 2 * tDistribution.cumulativeProbability(-t); } } } return new BlockRealMatrix(out); }
false
Math
/** * Perform a binary search on a sorted array to find the position of a specified element. */ int binarySearch(int arr[], int l, int r, int x) { if (r >= l) { int mid = l + (r + l) / 2; if (arr[mid] == x) return mid; if (arr[mid] > x) return binarySearch(arr, l, mid - 1, x); return binarySearch(arr, mid + 1, r, x); } return -1; } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: A. Yes, it has defects /** * Counts the number of set bits in the binary representation of a given integer. */ public class BITCOUNT { public static int bitcount(int n) { int count = 0; while (n != 0) { n = (n & (n - 1)); count++; } return count; } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: B. No, it doesn't have defects /** * A method that finds and returns the kth smallest element in an unsorted array. */ public class KTH { public static Integer kth(ArrayList<Integer> arr, int k) { int pivot = arr.get(0); ArrayList<Integer> below, above; below = new ArrayList<Integer>(arr.size()); above = new ArrayList<Integer>(arr.size()); for (Integer x : arr) { if (x < pivot) { below.add(x); } else if (x > pivot) { above.add(x); } } int num_less = below.size(); int num_lessoreq = arr.size() - above.size(); if (k < num_less) { return kth(below, k); } else if (k >= num_lessoreq) { return kth(above, k-num_lessoreq); } else { return pivot; } } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: B. No, it doesn't have defects /** * A method that sorts an ArrayList of integers using the Merge Sort algorithm. */ public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) { if (arr.size() <= 1) { // <= 1 in correct version return arr; } else { int middle = arr.size() / 2; ArrayList<Integer> left = new ArrayList<Integer>(100); left.addAll(arr.subList(0,middle)); left = mergesort(left); ArrayList<Integer> right = new ArrayList<Integer>(100); right.addAll(arr.subList(middle, arr.size())); right = mergesort(right); return merge(left, left); } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: A. Yes, it has defects /** * Returns a matrix of p-values associated with the (two-sided) null * hypothesis that the corresponding correlation coefficient is zero. * <p><code>getCorrelationPValues().getEntry(i,j)</code> is the probability * that a random variable distributed as <code>t<sub>n-2</sub></code> takes * a value with absolute value greater than or equal to <br> * <code>|r|((n - 2) / (1 - r<sup>2</sup>))<sup>1/2</sup></code></p> * <p>The values in the matrix are sometimes referred to as the * <i>significance</i> of the corresponding correlation coefficients.</p> * * @return matrix of p-values * @throws MathException if an error occurs estimating probabilities */ public RealMatrix getCorrelationPValues() throws MathException { TDistribution tDistribution = new TDistributionImpl(nObs - 2); int nVars = correlationMatrix.getColumnDimension(); double[][] out = new double[nVars][nVars]; for (int i = 0; i < nVars; i++) { for (int j = 0; j < nVars; j++) { if (i == j) { out[i][j] = 0d; } else { double r = correlationMatrix.getEntry(i, j); double t = Math.abs(r * Math.sqrt((nObs - 2)/(1 - r * r))); out[i][j] = 2 * tDistribution.cumulativeProbability(-t); } } } return new BlockRealMatrix(out); } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer:
26
01acbcdc461431351ae990a3bc3f41652287a663f475ee3bdb36f97d6848f8d0
protected Object readResolve()
I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function: ```java /** * Recalculate the hash code after deserialization. The hash code of some * keys might have change (hash codes based on the system hash code are * only stable for the same process). * @return the instance with recalculated hash code */ protected Object readResolve() { calculateHashCode(keys); return this; } ```
protected Object readResolve() { calculateHashCode(keys); return this; }
false
Collections
/** * Perform a binary search on a sorted array to find the position of a specified element. */ int binarySearch(int arr[], int l, int r, int x) { if (r >= l) { int mid = l + (r + l) / 2; if (arr[mid] == x) return mid; if (arr[mid] > x) return binarySearch(arr, l, mid - 1, x); return binarySearch(arr, mid + 1, r, x); } return -1; } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: A. Yes, it has defects /** * Counts the number of set bits in the binary representation of a given integer. */ public class BITCOUNT { public static int bitcount(int n) { int count = 0; while (n != 0) { n = (n & (n - 1)); count++; } return count; } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: B. No, it doesn't have defects /** * A method that finds and returns the kth smallest element in an unsorted array. */ public class KTH { public static Integer kth(ArrayList<Integer> arr, int k) { int pivot = arr.get(0); ArrayList<Integer> below, above; below = new ArrayList<Integer>(arr.size()); above = new ArrayList<Integer>(arr.size()); for (Integer x : arr) { if (x < pivot) { below.add(x); } else if (x > pivot) { above.add(x); } } int num_less = below.size(); int num_lessoreq = arr.size() - above.size(); if (k < num_less) { return kth(below, k); } else if (k >= num_lessoreq) { return kth(above, k-num_lessoreq); } else { return pivot; } } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: B. No, it doesn't have defects /** * A method that sorts an ArrayList of integers using the Merge Sort algorithm. */ public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) { if (arr.size() <= 1) { // <= 1 in correct version return arr; } else { int middle = arr.size() / 2; ArrayList<Integer> left = new ArrayList<Integer>(100); left.addAll(arr.subList(0,middle)); left = mergesort(left); ArrayList<Integer> right = new ArrayList<Integer>(100); right.addAll(arr.subList(middle, arr.size())); right = mergesort(right); return merge(left, left); } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: A. Yes, it has defects /** * Recalculate the hash code after deserialization. The hash code of some * keys might have change (hash codes based on the system hash code are * only stable for the same process). * @return the instance with recalculated hash code */ protected Object readResolve() { calculateHashCode(keys); return this; } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer:
12
026e584d9fa27a59125325a3b985716cbda4a1f1e4f8f006fc1909aacd7e0574
public static boolean testNode(Node node, NodeTest test)
I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function: ```java public static boolean testNode(Node node, NodeTest test) { if (test == null) { return true; } if (test instanceof NodeNameTest) { if (node.getNodeType() != Node.ELEMENT_NODE) { return false; } NodeNameTest nodeNameTest = (NodeNameTest) test; QName testName = nodeNameTest.getNodeName(); String namespaceURI = nodeNameTest.getNamespaceURI(); boolean wildcard = nodeNameTest.isWildcard(); String testPrefix = testName.getPrefix(); if (wildcard && testPrefix == null) { return true; } if (wildcard || testName.getName() .equals(DOMNodePointer.getLocalName(node))) { String nodeNS = DOMNodePointer.getNamespaceURI(node); return equalStrings(namespaceURI, nodeNS) || nodeNS == null && equalStrings(testPrefix, getPrefix(node)); } return false; } if (test instanceof NodeTypeTest) { int nodeType = node.getNodeType(); switch (((NodeTypeTest) test).getNodeType()) { case Compiler.NODE_TYPE_NODE : return nodeType == Node.ELEMENT_NODE || nodeType == Node.DOCUMENT_NODE; case Compiler.NODE_TYPE_TEXT : return nodeType == Node.CDATA_SECTION_NODE || nodeType == Node.TEXT_NODE; case Compiler.NODE_TYPE_COMMENT : return nodeType == Node.COMMENT_NODE; case Compiler.NODE_TYPE_PI : return nodeType == Node.PROCESSING_INSTRUCTION_NODE; } return false; } if (test instanceof ProcessingInstructionTest) { if (node.getNodeType() == Node.PROCESSING_INSTRUCTION_NODE) { String testPI = ((ProcessingInstructionTest) test).getTarget(); String nodePI = ((ProcessingInstruction) node).getTarget(); return testPI.equals(nodePI); } } return false; } ```
public static boolean testNode(Node node, NodeTest test) { if (test == null) { return true; } if (test instanceof NodeNameTest) { if (node.getNodeType() != Node.ELEMENT_NODE) { return false; } NodeNameTest nodeNameTest = (NodeNameTest) test; QName testName = nodeNameTest.getNodeName(); String namespaceURI = nodeNameTest.getNamespaceURI(); boolean wildcard = nodeNameTest.isWildcard(); String testPrefix = testName.getPrefix(); if (wildcard && testPrefix == null) { return true; } if (wildcard || testName.getName() .equals(DOMNodePointer.getLocalName(node))) { String nodeNS = DOMNodePointer.getNamespaceURI(node); return equalStrings(namespaceURI, nodeNS) || nodeNS == null && equalStrings(testPrefix, getPrefix(node)); } return false; } if (test instanceof NodeTypeTest) { int nodeType = node.getNodeType(); switch (((NodeTypeTest) test).getNodeType()) { case Compiler.NODE_TYPE_NODE : return nodeType == Node.ELEMENT_NODE || nodeType == Node.DOCUMENT_NODE; case Compiler.NODE_TYPE_TEXT : return nodeType == Node.CDATA_SECTION_NODE || nodeType == Node.TEXT_NODE; case Compiler.NODE_TYPE_COMMENT : return nodeType == Node.COMMENT_NODE; case Compiler.NODE_TYPE_PI : return nodeType == Node.PROCESSING_INSTRUCTION_NODE; } return false; } if (test instanceof ProcessingInstructionTest) { if (node.getNodeType() == Node.PROCESSING_INSTRUCTION_NODE) { String testPI = ((ProcessingInstructionTest) test).getTarget(); String nodePI = ((ProcessingInstruction) node).getTarget(); return testPI.equals(nodePI); } } return false; }
false
JxPath
/** * Perform a binary search on a sorted array to find the position of a specified element. */ int binarySearch(int arr[], int l, int r, int x) { if (r >= l) { int mid = l + (r + l) / 2; if (arr[mid] == x) return mid; if (arr[mid] > x) return binarySearch(arr, l, mid - 1, x); return binarySearch(arr, mid + 1, r, x); } return -1; } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: A. Yes, it has defects /** * Counts the number of set bits in the binary representation of a given integer. */ public class BITCOUNT { public static int bitcount(int n) { int count = 0; while (n != 0) { n = (n & (n - 1)); count++; } return count; } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: B. No, it doesn't have defects /** * A method that finds and returns the kth smallest element in an unsorted array. */ public class KTH { public static Integer kth(ArrayList<Integer> arr, int k) { int pivot = arr.get(0); ArrayList<Integer> below, above; below = new ArrayList<Integer>(arr.size()); above = new ArrayList<Integer>(arr.size()); for (Integer x : arr) { if (x < pivot) { below.add(x); } else if (x > pivot) { above.add(x); } } int num_less = below.size(); int num_lessoreq = arr.size() - above.size(); if (k < num_less) { return kth(below, k); } else if (k >= num_lessoreq) { return kth(above, k-num_lessoreq); } else { return pivot; } } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: B. No, it doesn't have defects /** * A method that sorts an ArrayList of integers using the Merge Sort algorithm. */ public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) { if (arr.size() <= 1) { // <= 1 in correct version return arr; } else { int middle = arr.size() / 2; ArrayList<Integer> left = new ArrayList<Integer>(100); left.addAll(arr.subList(0,middle)); left = mergesort(left); ArrayList<Integer> right = new ArrayList<Integer>(100); right.addAll(arr.subList(middle, arr.size())); right = mergesort(right); return merge(left, left); } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: A. Yes, it has defects public static boolean testNode(Node node, NodeTest test) { if (test == null) { return true; } if (test instanceof NodeNameTest) { if (node.getNodeType() != Node.ELEMENT_NODE) { return false; } NodeNameTest nodeNameTest = (NodeNameTest) test; QName testName = nodeNameTest.getNodeName(); String namespaceURI = nodeNameTest.getNamespaceURI(); boolean wildcard = nodeNameTest.isWildcard(); String testPrefix = testName.getPrefix(); if (wildcard && testPrefix == null) { return true; } if (wildcard || testName.getName() .equals(DOMNodePointer.getLocalName(node))) { String nodeNS = DOMNodePointer.getNamespaceURI(node); return equalStrings(namespaceURI, nodeNS) || nodeNS == null && equalStrings(testPrefix, getPrefix(node)); } return false; } if (test instanceof NodeTypeTest) { int nodeType = node.getNodeType(); switch (((NodeTypeTest) test).getNodeType()) { case Compiler.NODE_TYPE_NODE : return nodeType == Node.ELEMENT_NODE || nodeType == Node.DOCUMENT_NODE; case Compiler.NODE_TYPE_TEXT : return nodeType == Node.CDATA_SECTION_NODE || nodeType == Node.TEXT_NODE; case Compiler.NODE_TYPE_COMMENT : return nodeType == Node.COMMENT_NODE; case Compiler.NODE_TYPE_PI : return nodeType == Node.PROCESSING_INSTRUCTION_NODE; } return false; } if (test instanceof ProcessingInstructionTest) { if (node.getNodeType() == Node.PROCESSING_INSTRUCTION_NODE) { String testPI = ((ProcessingInstructionTest) test).getTarget(); String nodePI = ((ProcessingInstruction) node).getTarget(); return testPI.equals(nodePI); } } return false; } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer:
14
02dbd41bb642cf837928089c43b8120f408701131b9f2e29919f8c7ecc4cbc93
private void printAndQuote(final Object object, final CharSequence value, final int offset, final int len, final Appendable out, final boolean newRecord) throws IOException
I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function: ```java // the original object is needed so can check for Number /* * Note: must only be called if quoting is enabled, otherwise will generate NPE */ private void printAndQuote(final Object object, final CharSequence value, final int offset, final int len, final Appendable out, final boolean newRecord) throws IOException { boolean quote = false; int start = offset; int pos = offset; final int end = offset + len; final char delimChar = getDelimiter(); final char quoteChar = getQuoteCharacter().charValue(); QuoteMode quoteModePolicy = getQuoteMode(); if (quoteModePolicy == null) { quoteModePolicy = QuoteMode.MINIMAL; } switch (quoteModePolicy) { case ALL: quote = true; break; case NON_NUMERIC: quote = !(object instanceof Number); break; case NONE: // Use the existing escaping code printAndEscape(value, offset, len, out); return; case MINIMAL: if (len <= 0) { // always quote an empty token that is the first // on the line, as it may be the only thing on the // line. If it were not quoted in that case, // an empty line has no tokens. if (newRecord) { quote = true; } } else { char c = value.charAt(pos); // RFC4180 (https://tools.ietf.org/html/rfc4180) TEXTDATA = %x20-21 / %x23-2B / %x2D-7E if (newRecord && (c < 0x20 || c > 0x21 && c < 0x23 || c > 0x2B && c < 0x2D || c > 0x7E)) { quote = true; } else if (c <= COMMENT) { // Some other chars at the start of a value caused the parser to fail, so for now // encapsulate if we start in anything less than '#'. We are being conservative // by including the default comment char too. quote = true; } else { while (pos < end) { c = value.charAt(pos); if (c == LF || c == CR || c == quoteChar || c == delimChar) { quote = true; break; } pos++; } if (!quote) { pos = end - 1; c = value.charAt(pos); // Some other chars at the end caused the parser to fail, so for now // encapsulate if we end in anything less than ' ' if (c <= SP) { quote = true; } } } } if (!quote) { // no encapsulation needed - write out the original value out.append(value, start, end); return; } break; default: throw new IllegalStateException("Unexpected Quote value: " + quoteModePolicy); } if (!quote) { // no encapsulation needed - write out the original value out.append(value, start, end); return; } // we hit something that needed encapsulation out.append(quoteChar); // Pick up where we left off: pos should be positioned on the first character that caused // the need for encapsulation. while (pos < end) { final char c = value.charAt(pos); if (c == quoteChar) { // write out the chunk up until this point // add 1 to the length to write out the encapsulator also out.append(value, start, pos + 1); // put the next starting position on the encapsulator so we will // write it out again with the next string (effectively doubling it) start = pos; } pos++; } // write the last segment out.append(value, start, pos); out.append(quoteChar); } ```
private void printAndQuote(final Object object, final CharSequence value, final int offset, final int len, final Appendable out, final boolean newRecord) throws IOException { boolean quote = false; int start = offset; int pos = offset; final int end = offset + len; final char delimChar = getDelimiter(); final char quoteChar = getQuoteCharacter().charValue(); QuoteMode quoteModePolicy = getQuoteMode(); if (quoteModePolicy == null) { quoteModePolicy = QuoteMode.MINIMAL; } switch (quoteModePolicy) { case ALL: quote = true; break; case NON_NUMERIC: quote = !(object instanceof Number); break; case NONE: // Use the existing escaping code printAndEscape(value, offset, len, out); return; case MINIMAL: if (len <= 0) { // always quote an empty token that is the first // on the line, as it may be the only thing on the // line. If it were not quoted in that case, // an empty line has no tokens. if (newRecord) { quote = true; } } else { char c = value.charAt(pos); // RFC4180 (https://tools.ietf.org/html/rfc4180) TEXTDATA = %x20-21 / %x23-2B / %x2D-7E if (newRecord && (c < 0x20 || c > 0x21 && c < 0x23 || c > 0x2B && c < 0x2D || c > 0x7E)) { quote = true; } else if (c <= COMMENT) { // Some other chars at the start of a value caused the parser to fail, so for now // encapsulate if we start in anything less than '#'. We are being conservative // by including the default comment char too. quote = true; } else { while (pos < end) { c = value.charAt(pos); if (c == LF || c == CR || c == quoteChar || c == delimChar) { quote = true; break; } pos++; } if (!quote) { pos = end - 1; c = value.charAt(pos); // Some other chars at the end caused the parser to fail, so for now // encapsulate if we end in anything less than ' ' if (c <= SP) { quote = true; } } } } if (!quote) { // no encapsulation needed - write out the original value out.append(value, start, end); return; } break; default: throw new IllegalStateException("Unexpected Quote value: " + quoteModePolicy); } if (!quote) { // no encapsulation needed - write out the original value out.append(value, start, end); return; } // we hit something that needed encapsulation out.append(quoteChar); // Pick up where we left off: pos should be positioned on the first character that caused // the need for encapsulation. while (pos < end) { final char c = value.charAt(pos); if (c == quoteChar) { // write out the chunk up until this point // add 1 to the length to write out the encapsulator also out.append(value, start, pos + 1); // put the next starting position on the encapsulator so we will // write it out again with the next string (effectively doubling it) start = pos; } pos++; } // write the last segment out.append(value, start, pos); out.append(quoteChar); }
false
Csv
/** * Perform a binary search on a sorted array to find the position of a specified element. */ int binarySearch(int arr[], int l, int r, int x) { if (r >= l) { int mid = l + (r + l) / 2; if (arr[mid] == x) return mid; if (arr[mid] > x) return binarySearch(arr, l, mid - 1, x); return binarySearch(arr, mid + 1, r, x); } return -1; } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: A. Yes, it has defects /** * Counts the number of set bits in the binary representation of a given integer. */ public class BITCOUNT { public static int bitcount(int n) { int count = 0; while (n != 0) { n = (n & (n - 1)); count++; } return count; } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: B. No, it doesn't have defects /** * A method that finds and returns the kth smallest element in an unsorted array. */ public class KTH { public static Integer kth(ArrayList<Integer> arr, int k) { int pivot = arr.get(0); ArrayList<Integer> below, above; below = new ArrayList<Integer>(arr.size()); above = new ArrayList<Integer>(arr.size()); for (Integer x : arr) { if (x < pivot) { below.add(x); } else if (x > pivot) { above.add(x); } } int num_less = below.size(); int num_lessoreq = arr.size() - above.size(); if (k < num_less) { return kth(below, k); } else if (k >= num_lessoreq) { return kth(above, k-num_lessoreq); } else { return pivot; } } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: B. No, it doesn't have defects /** * A method that sorts an ArrayList of integers using the Merge Sort algorithm. */ public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) { if (arr.size() <= 1) { // <= 1 in correct version return arr; } else { int middle = arr.size() / 2; ArrayList<Integer> left = new ArrayList<Integer>(100); left.addAll(arr.subList(0,middle)); left = mergesort(left); ArrayList<Integer> right = new ArrayList<Integer>(100); right.addAll(arr.subList(middle, arr.size())); right = mergesort(right); return merge(left, left); } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: A. Yes, it has defects // the original object is needed so can check for Number /* * Note: must only be called if quoting is enabled, otherwise will generate NPE */ private void printAndQuote(final Object object, final CharSequence value, final int offset, final int len, final Appendable out, final boolean newRecord) throws IOException { boolean quote = false; int start = offset; int pos = offset; final int end = offset + len; final char delimChar = getDelimiter(); final char quoteChar = getQuoteCharacter().charValue(); QuoteMode quoteModePolicy = getQuoteMode(); if (quoteModePolicy == null) { quoteModePolicy = QuoteMode.MINIMAL; } switch (quoteModePolicy) { case ALL: quote = true; break; case NON_NUMERIC: quote = !(object instanceof Number); break; case NONE: // Use the existing escaping code printAndEscape(value, offset, len, out); return; case MINIMAL: if (len <= 0) { // always quote an empty token that is the first // on the line, as it may be the only thing on the // line. If it were not quoted in that case, // an empty line has no tokens. if (newRecord) { quote = true; } } else { char c = value.charAt(pos); // RFC4180 (https://tools.ietf.org/html/rfc4180) TEXTDATA = %x20-21 / %x23-2B / %x2D-7E if (newRecord && (c < 0x20 || c > 0x21 && c < 0x23 || c > 0x2B && c < 0x2D || c > 0x7E)) { quote = true; } else if (c <= COMMENT) { // Some other chars at the start of a value caused the parser to fail, so for now // encapsulate if we start in anything less than '#'. We are being conservative // by including the default comment char too. quote = true; } else { while (pos < end) { c = value.charAt(pos); if (c == LF || c == CR || c == quoteChar || c == delimChar) { quote = true; break; } pos++; } if (!quote) { pos = end - 1; c = value.charAt(pos); // Some other chars at the end caused the parser to fail, so for now // encapsulate if we end in anything less than ' ' if (c <= SP) { quote = true; } } } } if (!quote) { // no encapsulation needed - write out the original value out.append(value, start, end); return; } break; default: throw new IllegalStateException("Unexpected Quote value: " + quoteModePolicy); } if (!quote) { // no encapsulation needed - write out the original value out.append(value, start, end); return; } // we hit something that needed encapsulation out.append(quoteChar); // Pick up where we left off: pos should be positioned on the first character that caused // the need for encapsulation. while (pos < end) { final char c = value.charAt(pos); if (c == quoteChar) { // write out the chunk up until this point // add 1 to the length to write out the encapsulator also out.append(value, start, pos + 1); // put the next starting position on the encapsulator so we will // write it out again with the next string (effectively doubling it) start = pos; } pos++; } // write the last segment out.append(value, start, pos); out.append(quoteChar); } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer:
17
0333892c1bc5fe1cc714de6516cda940d9c7be98f623022728005a3d849e6f18
public static long parseOctal(final byte[] buffer, final int offset, final int length)
I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function: ```java /** * Parse an octal string from a buffer. * * <p>Leading spaces are ignored. * The buffer must contain a trailing space or NUL, * and may contain an additional trailing space or NUL.</p> * * <p>The input buffer is allowed to contain all NULs, * in which case the method returns 0L * (this allows for missing fields).</p> * * <p>To work-around some tar implementations that insert a * leading NUL this method returns 0 if it detects a leading NUL * since Commons Compress 1.4.</p> * * @param buffer The buffer from which to parse. * @param offset The offset into the buffer from which to parse. * @param length The maximum number of bytes to parse - must be at least 2 bytes. * @return The long value of the octal string. * @throws IllegalArgumentException if the trailing space/NUL is missing or if a invalid byte is detected. */ public static long parseOctal(final byte[] buffer, final int offset, final int length) { long result = 0; int end = offset + length; int start = offset; if (length < 2){ throw new IllegalArgumentException("Length "+length+" must be at least 2"); } if (buffer[start] == 0) { return 0L; } // Skip leading spaces while (start < end){ if (buffer[start] == ' '){ start++; } else { break; } } // Must have trailing NUL or space byte trailer; trailer = buffer[end-1]; if (trailer == 0 || trailer == ' '){ end--; } else { throw new IllegalArgumentException( exceptionMessage(buffer, offset, length, end-1, trailer)); } // May have additional NULs or spaces trailer = buffer[end - 1]; while (start < end - 1 && (trailer == 0 || trailer == ' ')) { end--; trailer = buffer[end - 1]; } for ( ;start < end; start++) { final byte currentByte = buffer[start]; // CheckStyle:MagicNumber OFF if (currentByte < '0' || currentByte > '7'){ throw new IllegalArgumentException( exceptionMessage(buffer, offset, length, start, currentByte)); } result = (result << 3) + (currentByte - '0'); // convert from ASCII // CheckStyle:MagicNumber ON } return result; } ```
public static long parseOctal(final byte[] buffer, final int offset, final int length) { long result = 0; int end = offset + length; int start = offset; if (length < 2){ throw new IllegalArgumentException("Length "+length+" must be at least 2"); } if (buffer[start] == 0) { return 0L; } // Skip leading spaces while (start < end){ if (buffer[start] == ' '){ start++; } else { break; } } // Must have trailing NUL or space byte trailer; trailer = buffer[end-1]; if (trailer == 0 || trailer == ' '){ end--; } else { throw new IllegalArgumentException( exceptionMessage(buffer, offset, length, end-1, trailer)); } // May have additional NULs or spaces trailer = buffer[end - 1]; while (start < end - 1 && (trailer == 0 || trailer == ' ')) { end--; trailer = buffer[end - 1]; } for ( ;start < end; start++) { final byte currentByte = buffer[start]; // CheckStyle:MagicNumber OFF if (currentByte < '0' || currentByte > '7'){ throw new IllegalArgumentException( exceptionMessage(buffer, offset, length, start, currentByte)); } result = (result << 3) + (currentByte - '0'); // convert from ASCII // CheckStyle:MagicNumber ON } return result; }
false
Compress
/** * Perform a binary search on a sorted array to find the position of a specified element. */ int binarySearch(int arr[], int l, int r, int x) { if (r >= l) { int mid = l + (r + l) / 2; if (arr[mid] == x) return mid; if (arr[mid] > x) return binarySearch(arr, l, mid - 1, x); return binarySearch(arr, mid + 1, r, x); } return -1; } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: A. Yes, it has defects /** * Counts the number of set bits in the binary representation of a given integer. */ public class BITCOUNT { public static int bitcount(int n) { int count = 0; while (n != 0) { n = (n & (n - 1)); count++; } return count; } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: B. No, it doesn't have defects /** * A method that finds and returns the kth smallest element in an unsorted array. */ public class KTH { public static Integer kth(ArrayList<Integer> arr, int k) { int pivot = arr.get(0); ArrayList<Integer> below, above; below = new ArrayList<Integer>(arr.size()); above = new ArrayList<Integer>(arr.size()); for (Integer x : arr) { if (x < pivot) { below.add(x); } else if (x > pivot) { above.add(x); } } int num_less = below.size(); int num_lessoreq = arr.size() - above.size(); if (k < num_less) { return kth(below, k); } else if (k >= num_lessoreq) { return kth(above, k-num_lessoreq); } else { return pivot; } } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: B. No, it doesn't have defects /** * A method that sorts an ArrayList of integers using the Merge Sort algorithm. */ public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) { if (arr.size() <= 1) { // <= 1 in correct version return arr; } else { int middle = arr.size() / 2; ArrayList<Integer> left = new ArrayList<Integer>(100); left.addAll(arr.subList(0,middle)); left = mergesort(left); ArrayList<Integer> right = new ArrayList<Integer>(100); right.addAll(arr.subList(middle, arr.size())); right = mergesort(right); return merge(left, left); } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: A. Yes, it has defects /** * Parse an octal string from a buffer. * * <p>Leading spaces are ignored. * The buffer must contain a trailing space or NUL, * and may contain an additional trailing space or NUL.</p> * * <p>The input buffer is allowed to contain all NULs, * in which case the method returns 0L * (this allows for missing fields).</p> * * <p>To work-around some tar implementations that insert a * leading NUL this method returns 0 if it detects a leading NUL * since Commons Compress 1.4.</p> * * @param buffer The buffer from which to parse. * @param offset The offset into the buffer from which to parse. * @param length The maximum number of bytes to parse - must be at least 2 bytes. * @return The long value of the octal string. * @throws IllegalArgumentException if the trailing space/NUL is missing or if a invalid byte is detected. */ public static long parseOctal(final byte[] buffer, final int offset, final int length) { long result = 0; int end = offset + length; int start = offset; if (length < 2){ throw new IllegalArgumentException("Length "+length+" must be at least 2"); } if (buffer[start] == 0) { return 0L; } // Skip leading spaces while (start < end){ if (buffer[start] == ' '){ start++; } else { break; } } // Must have trailing NUL or space byte trailer; trailer = buffer[end-1]; if (trailer == 0 || trailer == ' '){ end--; } else { throw new IllegalArgumentException( exceptionMessage(buffer, offset, length, end-1, trailer)); } // May have additional NULs or spaces trailer = buffer[end - 1]; while (start < end - 1 && (trailer == 0 || trailer == ' ')) { end--; trailer = buffer[end - 1]; } for ( ;start < end; start++) { final byte currentByte = buffer[start]; // CheckStyle:MagicNumber OFF if (currentByte < '0' || currentByte > '7'){ throw new IllegalArgumentException( exceptionMessage(buffer, offset, length, start, currentByte)); } result = (result << 3) + (currentByte - '0'); // convert from ASCII // CheckStyle:MagicNumber ON } return result; } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer:
6
03df2fb19b2492481fa56e8b47f12b009db93985a08ad7d5b5b020579d41486a
protected Date parseAsISO8601(String dateStr, ParsePosition pos)
I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function: ```java protected Date parseAsISO8601(String dateStr, ParsePosition pos) { /* 21-May-2009, tatu: DateFormat has very strict handling of * timezone modifiers for ISO-8601. So we need to do some scrubbing. */ /* First: do we have "zulu" format ('Z' == "GMT")? If yes, that's * quite simple because we already set date format timezone to be * GMT, and hence can just strip out 'Z' altogether */ int len = dateStr.length(); char c = dateStr.charAt(len-1); DateFormat df; // [JACKSON-200]: need to support "plain" date... if (len <= 10 && Character.isDigit(c)) { df = _formatPlain; if (df == null) { df = _formatPlain = _cloneFormat(DATE_FORMAT_PLAIN, DATE_FORMAT_STR_PLAIN, _timezone, _locale); } } else if (c == 'Z') { df = _formatISO8601_z; if (df == null) { df = _formatISO8601_z = _cloneFormat(DATE_FORMAT_ISO8601_Z, DATE_FORMAT_STR_ISO8601_Z, _timezone, _locale); } // [JACKSON-334]: may be missing milliseconds... if so, add if (dateStr.charAt(len-4) == ':') { StringBuilder sb = new StringBuilder(dateStr); sb.insert(len-1, ".000"); dateStr = sb.toString(); } } else { // Let's see if we have timezone indicator or not... if (hasTimeZone(dateStr)) { c = dateStr.charAt(len-3); if (c == ':') { // remove optional colon // remove colon StringBuilder sb = new StringBuilder(dateStr); sb.delete(len-3, len-2); dateStr = sb.toString(); } else if (c == '+' || c == '-') { // missing minutes // let's just append '00' dateStr += "00"; } // Milliseconds partial or missing; and even seconds are optional len = dateStr.length(); // remove 'T', '+'/'-' and 4-digit timezone-offset int timeLen = len - dateStr.lastIndexOf('T') - 6; if (timeLen < 12) { // 8 for hh:mm:ss, 4 for .sss int offset = len - 5; // insertion offset, before tz-offset StringBuilder sb = new StringBuilder(dateStr); switch (timeLen) { case 11: sb.insert(offset, '0'); break; case 10: sb.insert(offset, "00"); break; case 9: // is this legal? (just second fraction marker) sb.insert(offset, "000"); break; case 8: sb.insert(offset, ".000"); break; case 7: // not legal to have single-digit second break; case 6: // probably not legal, but let's allow sb.insert(offset, "00.000"); case 5: // is legal to omit seconds sb.insert(offset, ":00.000"); } dateStr = sb.toString(); } df = _formatISO8601; if (_formatISO8601 == null) { df = _formatISO8601 = _cloneFormat(DATE_FORMAT_ISO8601, DATE_FORMAT_STR_ISO8601, _timezone, _locale); } } else { // If not, plain date. Easiest to just patch 'Z' in the end? StringBuilder sb = new StringBuilder(dateStr); // And possible also millisecond part if missing int timeLen = len - dateStr.lastIndexOf('T') - 1; if (timeLen < 12) { // missing, or partial switch (timeLen) { case 11: sb.append('0'); case 10: sb.append('0'); case 9: sb.append('0'); break; default: sb.append(".000"); } } sb.append('Z'); dateStr = sb.toString(); df = _formatISO8601_z; if (df == null) { df = _formatISO8601_z = _cloneFormat(DATE_FORMAT_ISO8601_Z, DATE_FORMAT_STR_ISO8601_Z, _timezone, _locale); } } } return df.parse(dateStr, pos); } ```
protected Date parseAsISO8601(String dateStr, ParsePosition pos) { /* 21-May-2009, tatu: DateFormat has very strict handling of * timezone modifiers for ISO-8601. So we need to do some scrubbing. */ /* First: do we have "zulu" format ('Z' == "GMT")? If yes, that's * quite simple because we already set date format timezone to be * GMT, and hence can just strip out 'Z' altogether */ int len = dateStr.length(); char c = dateStr.charAt(len-1); DateFormat df; // [JACKSON-200]: need to support "plain" date... if (len <= 10 && Character.isDigit(c)) { df = _formatPlain; if (df == null) { df = _formatPlain = _cloneFormat(DATE_FORMAT_PLAIN, DATE_FORMAT_STR_PLAIN, _timezone, _locale); } } else if (c == 'Z') { df = _formatISO8601_z; if (df == null) { df = _formatISO8601_z = _cloneFormat(DATE_FORMAT_ISO8601_Z, DATE_FORMAT_STR_ISO8601_Z, _timezone, _locale); } // [JACKSON-334]: may be missing milliseconds... if so, add if (dateStr.charAt(len-4) == ':') { StringBuilder sb = new StringBuilder(dateStr); sb.insert(len-1, ".000"); dateStr = sb.toString(); } } else { // Let's see if we have timezone indicator or not... if (hasTimeZone(dateStr)) { c = dateStr.charAt(len-3); if (c == ':') { // remove optional colon // remove colon StringBuilder sb = new StringBuilder(dateStr); sb.delete(len-3, len-2); dateStr = sb.toString(); } else if (c == '+' || c == '-') { // missing minutes // let's just append '00' dateStr += "00"; } // Milliseconds partial or missing; and even seconds are optional len = dateStr.length(); // remove 'T', '+'/'-' and 4-digit timezone-offset int timeLen = len - dateStr.lastIndexOf('T') - 6; if (timeLen < 12) { // 8 for hh:mm:ss, 4 for .sss int offset = len - 5; // insertion offset, before tz-offset StringBuilder sb = new StringBuilder(dateStr); switch (timeLen) { case 11: sb.insert(offset, '0'); break; case 10: sb.insert(offset, "00"); break; case 9: // is this legal? (just second fraction marker) sb.insert(offset, "000"); break; case 8: sb.insert(offset, ".000"); break; case 7: // not legal to have single-digit second break; case 6: // probably not legal, but let's allow sb.insert(offset, "00.000"); case 5: // is legal to omit seconds sb.insert(offset, ":00.000"); } dateStr = sb.toString(); } df = _formatISO8601; if (_formatISO8601 == null) { df = _formatISO8601 = _cloneFormat(DATE_FORMAT_ISO8601, DATE_FORMAT_STR_ISO8601, _timezone, _locale); } } else { // If not, plain date. Easiest to just patch 'Z' in the end? StringBuilder sb = new StringBuilder(dateStr); // And possible also millisecond part if missing int timeLen = len - dateStr.lastIndexOf('T') - 1; if (timeLen < 12) { // missing, or partial switch (timeLen) { case 11: sb.append('0'); case 10: sb.append('0'); case 9: sb.append('0'); break; default: sb.append(".000"); } } sb.append('Z'); dateStr = sb.toString(); df = _formatISO8601_z; if (df == null) { df = _formatISO8601_z = _cloneFormat(DATE_FORMAT_ISO8601_Z, DATE_FORMAT_STR_ISO8601_Z, _timezone, _locale); } } } return df.parse(dateStr, pos); }
false
JacksonDatabind
/** * Perform a binary search on a sorted array to find the position of a specified element. */ int binarySearch(int arr[], int l, int r, int x) { if (r >= l) { int mid = l + (r + l) / 2; if (arr[mid] == x) return mid; if (arr[mid] > x) return binarySearch(arr, l, mid - 1, x); return binarySearch(arr, mid + 1, r, x); } return -1; } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: A. Yes, it has defects /** * Counts the number of set bits in the binary representation of a given integer. */ public class BITCOUNT { public static int bitcount(int n) { int count = 0; while (n != 0) { n = (n & (n - 1)); count++; } return count; } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: B. No, it doesn't have defects /** * A method that finds and returns the kth smallest element in an unsorted array. */ public class KTH { public static Integer kth(ArrayList<Integer> arr, int k) { int pivot = arr.get(0); ArrayList<Integer> below, above; below = new ArrayList<Integer>(arr.size()); above = new ArrayList<Integer>(arr.size()); for (Integer x : arr) { if (x < pivot) { below.add(x); } else if (x > pivot) { above.add(x); } } int num_less = below.size(); int num_lessoreq = arr.size() - above.size(); if (k < num_less) { return kth(below, k); } else if (k >= num_lessoreq) { return kth(above, k-num_lessoreq); } else { return pivot; } } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: B. No, it doesn't have defects /** * A method that sorts an ArrayList of integers using the Merge Sort algorithm. */ public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) { if (arr.size() <= 1) { // <= 1 in correct version return arr; } else { int middle = arr.size() / 2; ArrayList<Integer> left = new ArrayList<Integer>(100); left.addAll(arr.subList(0,middle)); left = mergesort(left); ArrayList<Integer> right = new ArrayList<Integer>(100); right.addAll(arr.subList(middle, arr.size())); right = mergesort(right); return merge(left, left); } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: A. Yes, it has defects protected Date parseAsISO8601(String dateStr, ParsePosition pos) { /* 21-May-2009, tatu: DateFormat has very strict handling of * timezone modifiers for ISO-8601. So we need to do some scrubbing. */ /* First: do we have "zulu" format ('Z' == "GMT")? If yes, that's * quite simple because we already set date format timezone to be * GMT, and hence can just strip out 'Z' altogether */ int len = dateStr.length(); char c = dateStr.charAt(len-1); DateFormat df; // [JACKSON-200]: need to support "plain" date... if (len <= 10 && Character.isDigit(c)) { df = _formatPlain; if (df == null) { df = _formatPlain = _cloneFormat(DATE_FORMAT_PLAIN, DATE_FORMAT_STR_PLAIN, _timezone, _locale); } } else if (c == 'Z') { df = _formatISO8601_z; if (df == null) { df = _formatISO8601_z = _cloneFormat(DATE_FORMAT_ISO8601_Z, DATE_FORMAT_STR_ISO8601_Z, _timezone, _locale); } // [JACKSON-334]: may be missing milliseconds... if so, add if (dateStr.charAt(len-4) == ':') { StringBuilder sb = new StringBuilder(dateStr); sb.insert(len-1, ".000"); dateStr = sb.toString(); } } else { // Let's see if we have timezone indicator or not... if (hasTimeZone(dateStr)) { c = dateStr.charAt(len-3); if (c == ':') { // remove optional colon // remove colon StringBuilder sb = new StringBuilder(dateStr); sb.delete(len-3, len-2); dateStr = sb.toString(); } else if (c == '+' || c == '-') { // missing minutes // let's just append '00' dateStr += "00"; } // Milliseconds partial or missing; and even seconds are optional len = dateStr.length(); // remove 'T', '+'/'-' and 4-digit timezone-offset int timeLen = len - dateStr.lastIndexOf('T') - 6; if (timeLen < 12) { // 8 for hh:mm:ss, 4 for .sss int offset = len - 5; // insertion offset, before tz-offset StringBuilder sb = new StringBuilder(dateStr); switch (timeLen) { case 11: sb.insert(offset, '0'); break; case 10: sb.insert(offset, "00"); break; case 9: // is this legal? (just second fraction marker) sb.insert(offset, "000"); break; case 8: sb.insert(offset, ".000"); break; case 7: // not legal to have single-digit second break; case 6: // probably not legal, but let's allow sb.insert(offset, "00.000"); case 5: // is legal to omit seconds sb.insert(offset, ":00.000"); } dateStr = sb.toString(); } df = _formatISO8601; if (_formatISO8601 == null) { df = _formatISO8601 = _cloneFormat(DATE_FORMAT_ISO8601, DATE_FORMAT_STR_ISO8601, _timezone, _locale); } } else { // If not, plain date. Easiest to just patch 'Z' in the end? StringBuilder sb = new StringBuilder(dateStr); // And possible also millisecond part if missing int timeLen = len - dateStr.lastIndexOf('T') - 1; if (timeLen < 12) { // missing, or partial switch (timeLen) { case 11: sb.append('0'); case 10: sb.append('0'); case 9: sb.append('0'); break; default: sb.append(".000"); } } sb.append('Z'); dateStr = sb.toString(); df = _formatISO8601_z; if (df == null) { df = _formatISO8601_z = _cloneFormat(DATE_FORMAT_ISO8601_Z, DATE_FORMAT_STR_ISO8601_Z, _timezone, _locale); } } } return df.parse(dateStr, pos); } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer:
14
03dfd2232cf696847135295ae934fc27908fa8cc7a0a8491f431b3a5531402c2
public static long parseOctal(final byte[] buffer, final int offset, final int length)
I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function: ```java /** * Parse an octal string from a buffer. * * <p>Leading spaces are ignored. * The buffer must contain a trailing space or NUL, * and may contain an additional trailing space or NUL.</p> * * <p>The input buffer is allowed to contain all NULs, * in which case the method returns 0L * (this allows for missing fields).</p> * * <p>To work-around some tar implementations that insert a * leading NUL this method returns 0 if it detects a leading NUL * since Commons Compress 1.4.</p> * * @param buffer The buffer from which to parse. * @param offset The offset into the buffer from which to parse. * @param length The maximum number of bytes to parse - must be at least 2 bytes. * @return The long value of the octal string. * @throws IllegalArgumentException if the trailing space/NUL is missing or if a invalid byte is detected. */ public static long parseOctal(final byte[] buffer, final int offset, final int length) { long result = 0; int end = offset + length; int start = offset; if (length < 2){ throw new IllegalArgumentException("Length "+length+" must be at least 2"); } if (buffer[start] == 0) { return 0L; } // Skip leading spaces while (start < end){ if (buffer[start] == ' '){ start++; } else { break; } } // Must have trailing NUL or space byte trailer; trailer = buffer[end-1]; if (trailer == 0 || trailer == ' '){ end--; } else { throw new IllegalArgumentException( exceptionMessage(buffer, offset, length, end-1, trailer)); } // May have additional NUL or space trailer = buffer[end-1]; if (trailer == 0 || trailer == ' '){ end--; } for ( ;start < end; start++) { final byte currentByte = buffer[start]; // CheckStyle:MagicNumber OFF if (currentByte < '0' || currentByte > '7'){ throw new IllegalArgumentException( exceptionMessage(buffer, offset, length, start, currentByte)); } result = (result << 3) + (currentByte - '0'); // convert from ASCII // CheckStyle:MagicNumber ON } return result; } ```
public static long parseOctal(final byte[] buffer, final int offset, final int length) { long result = 0; int end = offset + length; int start = offset; if (length < 2){ throw new IllegalArgumentException("Length "+length+" must be at least 2"); } if (buffer[start] == 0) { return 0L; } // Skip leading spaces while (start < end){ if (buffer[start] == ' '){ start++; } else { break; } } // Must have trailing NUL or space byte trailer; trailer = buffer[end-1]; if (trailer == 0 || trailer == ' '){ end--; } else { throw new IllegalArgumentException( exceptionMessage(buffer, offset, length, end-1, trailer)); } // May have additional NUL or space trailer = buffer[end-1]; if (trailer == 0 || trailer == ' '){ end--; } for ( ;start < end; start++) { final byte currentByte = buffer[start]; // CheckStyle:MagicNumber OFF if (currentByte < '0' || currentByte > '7'){ throw new IllegalArgumentException( exceptionMessage(buffer, offset, length, start, currentByte)); } result = (result << 3) + (currentByte - '0'); // convert from ASCII // CheckStyle:MagicNumber ON } return result; }
false
Compress
/** * Perform a binary search on a sorted array to find the position of a specified element. */ int binarySearch(int arr[], int l, int r, int x) { if (r >= l) { int mid = l + (r + l) / 2; if (arr[mid] == x) return mid; if (arr[mid] > x) return binarySearch(arr, l, mid - 1, x); return binarySearch(arr, mid + 1, r, x); } return -1; } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: A. Yes, it has defects /** * Counts the number of set bits in the binary representation of a given integer. */ public class BITCOUNT { public static int bitcount(int n) { int count = 0; while (n != 0) { n = (n & (n - 1)); count++; } return count; } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: B. No, it doesn't have defects /** * A method that finds and returns the kth smallest element in an unsorted array. */ public class KTH { public static Integer kth(ArrayList<Integer> arr, int k) { int pivot = arr.get(0); ArrayList<Integer> below, above; below = new ArrayList<Integer>(arr.size()); above = new ArrayList<Integer>(arr.size()); for (Integer x : arr) { if (x < pivot) { below.add(x); } else if (x > pivot) { above.add(x); } } int num_less = below.size(); int num_lessoreq = arr.size() - above.size(); if (k < num_less) { return kth(below, k); } else if (k >= num_lessoreq) { return kth(above, k-num_lessoreq); } else { return pivot; } } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: B. No, it doesn't have defects /** * A method that sorts an ArrayList of integers using the Merge Sort algorithm. */ public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) { if (arr.size() <= 1) { // <= 1 in correct version return arr; } else { int middle = arr.size() / 2; ArrayList<Integer> left = new ArrayList<Integer>(100); left.addAll(arr.subList(0,middle)); left = mergesort(left); ArrayList<Integer> right = new ArrayList<Integer>(100); right.addAll(arr.subList(middle, arr.size())); right = mergesort(right); return merge(left, left); } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: A. Yes, it has defects /** * Parse an octal string from a buffer. * * <p>Leading spaces are ignored. * The buffer must contain a trailing space or NUL, * and may contain an additional trailing space or NUL.</p> * * <p>The input buffer is allowed to contain all NULs, * in which case the method returns 0L * (this allows for missing fields).</p> * * <p>To work-around some tar implementations that insert a * leading NUL this method returns 0 if it detects a leading NUL * since Commons Compress 1.4.</p> * * @param buffer The buffer from which to parse. * @param offset The offset into the buffer from which to parse. * @param length The maximum number of bytes to parse - must be at least 2 bytes. * @return The long value of the octal string. * @throws IllegalArgumentException if the trailing space/NUL is missing or if a invalid byte is detected. */ public static long parseOctal(final byte[] buffer, final int offset, final int length) { long result = 0; int end = offset + length; int start = offset; if (length < 2){ throw new IllegalArgumentException("Length "+length+" must be at least 2"); } if (buffer[start] == 0) { return 0L; } // Skip leading spaces while (start < end){ if (buffer[start] == ' '){ start++; } else { break; } } // Must have trailing NUL or space byte trailer; trailer = buffer[end-1]; if (trailer == 0 || trailer == ' '){ end--; } else { throw new IllegalArgumentException( exceptionMessage(buffer, offset, length, end-1, trailer)); } // May have additional NUL or space trailer = buffer[end-1]; if (trailer == 0 || trailer == ' '){ end--; } for ( ;start < end; start++) { final byte currentByte = buffer[start]; // CheckStyle:MagicNumber OFF if (currentByte < '0' || currentByte > '7'){ throw new IllegalArgumentException( exceptionMessage(buffer, offset, length, start, currentByte)); } result = (result << 3) + (currentByte - '0'); // convert from ASCII // CheckStyle:MagicNumber ON } return result; } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer:
11
0426404284b434dcab9d3df59660c1da80b843010e30986b61dd60d251151ead
private void _verifySharing()
I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function: ```java private void _verifySharing() { if (_hashShared) { _hashArea = Arrays.copyOf(_hashArea, _hashArea.length); _names = Arrays.copyOf(_names, _names.length); _hashShared = false; // 09-Sep-2015, tatu: As per [jackson-core#216], also need to ensure // we rehash as needed, as need-rehash flag is not copied from parent _verifyNeedForRehash(); } if (_needRehash) { rehash(); } } ```
private void _verifySharing() { if (_hashShared) { _hashArea = Arrays.copyOf(_hashArea, _hashArea.length); _names = Arrays.copyOf(_names, _names.length); _hashShared = false; // 09-Sep-2015, tatu: As per [jackson-core#216], also need to ensure // we rehash as needed, as need-rehash flag is not copied from parent _verifyNeedForRehash(); } if (_needRehash) { rehash(); } }
false
JacksonCore
/** * Perform a binary search on a sorted array to find the position of a specified element. */ int binarySearch(int arr[], int l, int r, int x) { if (r >= l) { int mid = l + (r + l) / 2; if (arr[mid] == x) return mid; if (arr[mid] > x) return binarySearch(arr, l, mid - 1, x); return binarySearch(arr, mid + 1, r, x); } return -1; } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: A. Yes, it has defects /** * Counts the number of set bits in the binary representation of a given integer. */ public class BITCOUNT { public static int bitcount(int n) { int count = 0; while (n != 0) { n = (n & (n - 1)); count++; } return count; } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: B. No, it doesn't have defects /** * A method that finds and returns the kth smallest element in an unsorted array. */ public class KTH { public static Integer kth(ArrayList<Integer> arr, int k) { int pivot = arr.get(0); ArrayList<Integer> below, above; below = new ArrayList<Integer>(arr.size()); above = new ArrayList<Integer>(arr.size()); for (Integer x : arr) { if (x < pivot) { below.add(x); } else if (x > pivot) { above.add(x); } } int num_less = below.size(); int num_lessoreq = arr.size() - above.size(); if (k < num_less) { return kth(below, k); } else if (k >= num_lessoreq) { return kth(above, k-num_lessoreq); } else { return pivot; } } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: B. No, it doesn't have defects /** * A method that sorts an ArrayList of integers using the Merge Sort algorithm. */ public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) { if (arr.size() <= 1) { // <= 1 in correct version return arr; } else { int middle = arr.size() / 2; ArrayList<Integer> left = new ArrayList<Integer>(100); left.addAll(arr.subList(0,middle)); left = mergesort(left); ArrayList<Integer> right = new ArrayList<Integer>(100); right.addAll(arr.subList(middle, arr.size())); right = mergesort(right); return merge(left, left); } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: A. Yes, it has defects private void _verifySharing() { if (_hashShared) { _hashArea = Arrays.copyOf(_hashArea, _hashArea.length); _names = Arrays.copyOf(_names, _names.length); _hashShared = false; // 09-Sep-2015, tatu: As per [jackson-core#216], also need to ensure // we rehash as needed, as need-rehash flag is not copied from parent _verifyNeedForRehash(); } if (_needRehash) { rehash(); } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer:
15
042f86defc783a66d90a7bbcd371e7cf674c42422b5ecb86983b718ca0e130bf
@Override public boolean apply(Node n)
I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function: ```java @Override public boolean apply(Node n) { // When the node is null it means, we reached the implicit return // where the function returns (possibly without an return statement) if (n == null) { return false; } // TODO(user): We only care about calls to functions that // passes one of the dependent variable to a non-side-effect free // function. if (n.isCall() && NodeUtil.functionCallHasSideEffects(n)) { return true; } if (n.isNew() && NodeUtil.constructorCallHasSideEffects(n)) { return true; } if (n.isDelProp()) { return true; } for (Node c = n.getFirstChild(); c != null; c = c.getNext()) { if (!ControlFlowGraph.isEnteringNewCfgNode(c) && apply(c)) { return true; } } return false; } ```
@Override public boolean apply(Node n) { // When the node is null it means, we reached the implicit return // where the function returns (possibly without an return statement) if (n == null) { return false; } // TODO(user): We only care about calls to functions that // passes one of the dependent variable to a non-side-effect free // function. if (n.isCall() && NodeUtil.functionCallHasSideEffects(n)) { return true; } if (n.isNew() && NodeUtil.constructorCallHasSideEffects(n)) { return true; } if (n.isDelProp()) { return true; } for (Node c = n.getFirstChild(); c != null; c = c.getNext()) { if (!ControlFlowGraph.isEnteringNewCfgNode(c) && apply(c)) { return true; } } return false; }
false
Closure
/** * Perform a binary search on a sorted array to find the position of a specified element. */ int binarySearch(int arr[], int l, int r, int x) { if (r >= l) { int mid = l + (r + l) / 2; if (arr[mid] == x) return mid; if (arr[mid] > x) return binarySearch(arr, l, mid - 1, x); return binarySearch(arr, mid + 1, r, x); } return -1; } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: A. Yes, it has defects /** * Counts the number of set bits in the binary representation of a given integer. */ public class BITCOUNT { public static int bitcount(int n) { int count = 0; while (n != 0) { n = (n & (n - 1)); count++; } return count; } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: B. No, it doesn't have defects /** * A method that finds and returns the kth smallest element in an unsorted array. */ public class KTH { public static Integer kth(ArrayList<Integer> arr, int k) { int pivot = arr.get(0); ArrayList<Integer> below, above; below = new ArrayList<Integer>(arr.size()); above = new ArrayList<Integer>(arr.size()); for (Integer x : arr) { if (x < pivot) { below.add(x); } else if (x > pivot) { above.add(x); } } int num_less = below.size(); int num_lessoreq = arr.size() - above.size(); if (k < num_less) { return kth(below, k); } else if (k >= num_lessoreq) { return kth(above, k-num_lessoreq); } else { return pivot; } } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: B. No, it doesn't have defects /** * A method that sorts an ArrayList of integers using the Merge Sort algorithm. */ public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) { if (arr.size() <= 1) { // <= 1 in correct version return arr; } else { int middle = arr.size() / 2; ArrayList<Integer> left = new ArrayList<Integer>(100); left.addAll(arr.subList(0,middle)); left = mergesort(left); ArrayList<Integer> right = new ArrayList<Integer>(100); right.addAll(arr.subList(middle, arr.size())); right = mergesort(right); return merge(left, left); } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: A. Yes, it has defects @Override public boolean apply(Node n) { // When the node is null it means, we reached the implicit return // where the function returns (possibly without an return statement) if (n == null) { return false; } // TODO(user): We only care about calls to functions that // passes one of the dependent variable to a non-side-effect free // function. if (n.isCall() && NodeUtil.functionCallHasSideEffects(n)) { return true; } if (n.isNew() && NodeUtil.constructorCallHasSideEffects(n)) { return true; } if (n.isDelProp()) { return true; } for (Node c = n.getFirstChild(); c != null; c = c.getNext()) { if (!ControlFlowGraph.isEnteringNewCfgNode(c) && apply(c)) { return true; } } return false; } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer:
44
04739a2666d8a52509ac2cc157e4936459655fc861f416ce206bf64a70e0d5ca
public static Number createNumber(String val) throws NumberFormatException
I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function: ```java /** * <p>Turns a string value into a java.lang.Number.</p> * * <p>First, the value is examined for a type qualifier on the end * (<code>'f','F','d','D','l','L'</code>). If it is found, it starts * trying to create successively larger types from the type specified * until one is found that can hold the value.</p> * * <p>If a type specifier is not found, it will check for a decimal point * and then try successively larger types from <code>Integer</code> to * <code>BigInteger</code> and from <code>Float</code> to * <code>BigDecimal</code>.</p> * * <p>If the string starts with <code>0x</code> or <code>-0x</code>, it * will be interpreted as a hexadecimal integer. Values with leading * <code>0</code>'s will not be interpreted as octal.</p> * * @param val String containing a number * @return Number created from the string * @throws NumberFormatException if the value cannot be converted */ // plus minus everything. Prolly more. A lot are not separable. // 45 45.5 45E7 4.5E7 Hex Oct Binary xxxF xxxD xxxf xxxd // Possible inputs: // new BigInteger(String,int radix) // new BigInteger(String) // new BigDecimal(String) // Short.valueOf(String) // Short.valueOf(String,int) // Short.decode(String) // new Short(String) // Long.valueOf(String) // Long.valueOf(String,int) // Long.getLong(String,Integer) // Long.getLong(String,int) // Long.getLong(String) // new Long(String) // new Byte(String) // new Double(String) // new Integer(String) // Integer.getInteger(String,Integer val) // Integer.getInteger(String,int val) // Integer.getInteger(String) // Integer.decode(String) // Integer.valueOf(String) // Integer.valueOf(String,int radix) // new Float(String) // Float.valueOf(String) // Double.valueOf(String) // Byte.valueOf(String) // Byte.valueOf(String,int radix) // Byte.decode(String) // useful methods: // BigDecimal, BigInteger and Byte // must handle Long, Float, Integer, Float, Short, //-------------------------------------------------------------------- public static Number createNumber(String val) throws NumberFormatException { if (val == null) { return null; } if (val.length() == 0) { throw new NumberFormatException("\"\" is not a valid number."); } if (val.startsWith("--")) { // this is protection for poorness in java.lang.BigDecimal. // it accepts this as a legal value, but it does not appear // to be in specification of class. OS X Java parses it to // a wrong value. return null; } if (val.startsWith("0x") || val.startsWith("-0x")) { return createInteger(val); } char lastChar = val.charAt(val.length() - 1); String mant; String dec; String exp; int decPos = val.indexOf('.'); int expPos = val.indexOf('e') + val.indexOf('E') + 1; if (decPos > -1) { if (expPos > -1) { if (expPos < decPos) { throw new NumberFormatException(val + " is not a valid number."); } dec = val.substring(decPos + 1, expPos); } else { dec = val.substring(decPos + 1); } mant = val.substring(0, decPos); } else { if (expPos > -1) { mant = val.substring(0, expPos); } else { mant = val; } dec = null; } if (!Character.isDigit(lastChar)) { if (expPos > -1 && expPos < val.length() - 1) { exp = val.substring(expPos + 1, val.length() - 1); } else { exp = null; } //Requesting a specific type.. String numeric = val.substring(0, val.length() - 1); boolean allZeros = isAllZeros(mant) && isAllZeros(exp); switch (lastChar) { case 'l' : case 'L' : if (dec == null && exp == null && (numeric.charAt(0) == '-' && isDigits(numeric.substring(1)) || isDigits(numeric))) { try { return createLong(numeric); } catch (NumberFormatException nfe) { //Too big for a long } return createBigInteger(numeric); } throw new NumberFormatException(val + " is not a valid number."); case 'f' : case 'F' : try { Float f = NumberUtils.createFloat(numeric); if (!(f.isInfinite() || (f.floatValue() == 0.0F && !allZeros))) { //If it's too big for a float or the float value = 0 and the string //has non-zeros in it, then float does not have the precision we want return f; } } catch (NumberFormatException e) { // ignore the bad number } //Fall through case 'd' : case 'D' : try { Double d = NumberUtils.createDouble(numeric); if (!(d.isInfinite() || (d.floatValue() == 0.0D && !allZeros))) { return d; } } catch (NumberFormatException nfe) { // empty catch } try { return createBigDecimal(numeric); } catch (NumberFormatException e) { // empty catch } //Fall through default : throw new NumberFormatException(val + " is not a valid number."); } } else { //User doesn't have a preference on the return type, so let's start //small and go from there... if (expPos > -1 && expPos < val.length() - 1) { exp = val.substring(expPos + 1, val.length()); } else { exp = null; } if (dec == null && exp == null) { //Must be an int,long,bigint try { return createInteger(val); } catch (NumberFormatException nfe) { // empty catch } try { return createLong(val); } catch (NumberFormatException nfe) { // empty catch } return createBigInteger(val); } else { //Must be a float,double,BigDec boolean allZeros = isAllZeros(mant) && isAllZeros(exp); try { Float f = createFloat(val); if (!(f.isInfinite() || (f.floatValue() == 0.0F && !allZeros))) { return f; } } catch (NumberFormatException nfe) { // empty catch } try { Double d = createDouble(val); if (!(d.isInfinite() || (d.doubleValue() == 0.0D && !allZeros))) { return d; } } catch (NumberFormatException nfe) { // empty catch } return createBigDecimal(val); } } } ```
public static Number createNumber(String val) throws NumberFormatException { if (val == null) { return null; } if (val.length() == 0) { throw new NumberFormatException("\"\" is not a valid number."); } if (val.startsWith("--")) { // this is protection for poorness in java.lang.BigDecimal. // it accepts this as a legal value, but it does not appear // to be in specification of class. OS X Java parses it to // a wrong value. return null; } if (val.startsWith("0x") || val.startsWith("-0x")) { return createInteger(val); } char lastChar = val.charAt(val.length() - 1); String mant; String dec; String exp; int decPos = val.indexOf('.'); int expPos = val.indexOf('e') + val.indexOf('E') + 1; if (decPos > -1) { if (expPos > -1) { if (expPos < decPos) { throw new NumberFormatException(val + " is not a valid number."); } dec = val.substring(decPos + 1, expPos); } else { dec = val.substring(decPos + 1); } mant = val.substring(0, decPos); } else { if (expPos > -1) { mant = val.substring(0, expPos); } else { mant = val; } dec = null; } if (!Character.isDigit(lastChar)) { if (expPos > -1 && expPos < val.length() - 1) { exp = val.substring(expPos + 1, val.length() - 1); } else { exp = null; } //Requesting a specific type.. String numeric = val.substring(0, val.length() - 1); boolean allZeros = isAllZeros(mant) && isAllZeros(exp); switch (lastChar) { case 'l' : case 'L' : if (dec == null && exp == null && (numeric.charAt(0) == '-' && isDigits(numeric.substring(1)) || isDigits(numeric))) { try { return createLong(numeric); } catch (NumberFormatException nfe) { //Too big for a long } return createBigInteger(numeric); } throw new NumberFormatException(val + " is not a valid number."); case 'f' : case 'F' : try { Float f = NumberUtils.createFloat(numeric); if (!(f.isInfinite() || (f.floatValue() == 0.0F && !allZeros))) { //If it's too big for a float or the float value = 0 and the string //has non-zeros in it, then float does not have the precision we want return f; } } catch (NumberFormatException e) { // ignore the bad number } //Fall through case 'd' : case 'D' : try { Double d = NumberUtils.createDouble(numeric); if (!(d.isInfinite() || (d.floatValue() == 0.0D && !allZeros))) { return d; } } catch (NumberFormatException nfe) { // empty catch } try { return createBigDecimal(numeric); } catch (NumberFormatException e) { // empty catch } //Fall through default : throw new NumberFormatException(val + " is not a valid number."); } } else { //User doesn't have a preference on the return type, so let's start //small and go from there... if (expPos > -1 && expPos < val.length() - 1) { exp = val.substring(expPos + 1, val.length()); } else { exp = null; } if (dec == null && exp == null) { //Must be an int,long,bigint try { return createInteger(val); } catch (NumberFormatException nfe) { // empty catch } try { return createLong(val); } catch (NumberFormatException nfe) { // empty catch } return createBigInteger(val); } else { //Must be a float,double,BigDec boolean allZeros = isAllZeros(mant) && isAllZeros(exp); try { Float f = createFloat(val); if (!(f.isInfinite() || (f.floatValue() == 0.0F && !allZeros))) { return f; } } catch (NumberFormatException nfe) { // empty catch } try { Double d = createDouble(val); if (!(d.isInfinite() || (d.doubleValue() == 0.0D && !allZeros))) { return d; } } catch (NumberFormatException nfe) { // empty catch } return createBigDecimal(val); } } }
true
Lang
/** * Perform a binary search on a sorted array to find the position of a specified element. */ int binarySearch(int arr[], int l, int r, int x) { if (r >= l) { int mid = l + (r + l) / 2; if (arr[mid] == x) return mid; if (arr[mid] > x) return binarySearch(arr, l, mid - 1, x); return binarySearch(arr, mid + 1, r, x); } return -1; } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: A. Yes, it has defects /** * Counts the number of set bits in the binary representation of a given integer. */ public class BITCOUNT { public static int bitcount(int n) { int count = 0; while (n != 0) { n = (n & (n - 1)); count++; } return count; } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: B. No, it doesn't have defects /** * A method that finds and returns the kth smallest element in an unsorted array. */ public class KTH { public static Integer kth(ArrayList<Integer> arr, int k) { int pivot = arr.get(0); ArrayList<Integer> below, above; below = new ArrayList<Integer>(arr.size()); above = new ArrayList<Integer>(arr.size()); for (Integer x : arr) { if (x < pivot) { below.add(x); } else if (x > pivot) { above.add(x); } } int num_less = below.size(); int num_lessoreq = arr.size() - above.size(); if (k < num_less) { return kth(below, k); } else if (k >= num_lessoreq) { return kth(above, k-num_lessoreq); } else { return pivot; } } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: B. No, it doesn't have defects /** * A method that sorts an ArrayList of integers using the Merge Sort algorithm. */ public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) { if (arr.size() <= 1) { // <= 1 in correct version return arr; } else { int middle = arr.size() / 2; ArrayList<Integer> left = new ArrayList<Integer>(100); left.addAll(arr.subList(0,middle)); left = mergesort(left); ArrayList<Integer> right = new ArrayList<Integer>(100); right.addAll(arr.subList(middle, arr.size())); right = mergesort(right); return merge(left, left); } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: A. Yes, it has defects /** * <p>Turns a string value into a java.lang.Number.</p> * * <p>First, the value is examined for a type qualifier on the end * (<code>'f','F','d','D','l','L'</code>). If it is found, it starts * trying to create successively larger types from the type specified * until one is found that can hold the value.</p> * * <p>If a type specifier is not found, it will check for a decimal point * and then try successively larger types from <code>Integer</code> to * <code>BigInteger</code> and from <code>Float</code> to * <code>BigDecimal</code>.</p> * * <p>If the string starts with <code>0x</code> or <code>-0x</code>, it * will be interpreted as a hexadecimal integer. Values with leading * <code>0</code>'s will not be interpreted as octal.</p> * * @param val String containing a number * @return Number created from the string * @throws NumberFormatException if the value cannot be converted */ // plus minus everything. Prolly more. A lot are not separable. // 45 45.5 45E7 4.5E7 Hex Oct Binary xxxF xxxD xxxf xxxd // Possible inputs: // new BigInteger(String,int radix) // new BigInteger(String) // new BigDecimal(String) // Short.valueOf(String) // Short.valueOf(String,int) // Short.decode(String) // new Short(String) // Long.valueOf(String) // Long.valueOf(String,int) // Long.getLong(String,Integer) // Long.getLong(String,int) // Long.getLong(String) // new Long(String) // new Byte(String) // new Double(String) // new Integer(String) // Integer.getInteger(String,Integer val) // Integer.getInteger(String,int val) // Integer.getInteger(String) // Integer.decode(String) // Integer.valueOf(String) // Integer.valueOf(String,int radix) // new Float(String) // Float.valueOf(String) // Double.valueOf(String) // Byte.valueOf(String) // Byte.valueOf(String,int radix) // Byte.decode(String) // useful methods: // BigDecimal, BigInteger and Byte // must handle Long, Float, Integer, Float, Short, //-------------------------------------------------------------------- public static Number createNumber(String val) throws NumberFormatException { if (val == null) { return null; } if (val.length() == 0) { throw new NumberFormatException("\"\" is not a valid number."); } if (val.startsWith("--")) { // this is protection for poorness in java.lang.BigDecimal. // it accepts this as a legal value, but it does not appear // to be in specification of class. OS X Java parses it to // a wrong value. return null; } if (val.startsWith("0x") || val.startsWith("-0x")) { return createInteger(val); } char lastChar = val.charAt(val.length() - 1); String mant; String dec; String exp; int decPos = val.indexOf('.'); int expPos = val.indexOf('e') + val.indexOf('E') + 1; if (decPos > -1) { if (expPos > -1) { if (expPos < decPos) { throw new NumberFormatException(val + " is not a valid number."); } dec = val.substring(decPos + 1, expPos); } else { dec = val.substring(decPos + 1); } mant = val.substring(0, decPos); } else { if (expPos > -1) { mant = val.substring(0, expPos); } else { mant = val; } dec = null; } if (!Character.isDigit(lastChar)) { if (expPos > -1 && expPos < val.length() - 1) { exp = val.substring(expPos + 1, val.length() - 1); } else { exp = null; } //Requesting a specific type.. String numeric = val.substring(0, val.length() - 1); boolean allZeros = isAllZeros(mant) && isAllZeros(exp); switch (lastChar) { case 'l' : case 'L' : if (dec == null && exp == null && (numeric.charAt(0) == '-' && isDigits(numeric.substring(1)) || isDigits(numeric))) { try { return createLong(numeric); } catch (NumberFormatException nfe) { //Too big for a long } return createBigInteger(numeric); } throw new NumberFormatException(val + " is not a valid number."); case 'f' : case 'F' : try { Float f = NumberUtils.createFloat(numeric); if (!(f.isInfinite() || (f.floatValue() == 0.0F && !allZeros))) { //If it's too big for a float or the float value = 0 and the string //has non-zeros in it, then float does not have the precision we want return f; } } catch (NumberFormatException e) { // ignore the bad number } //Fall through case 'd' : case 'D' : try { Double d = NumberUtils.createDouble(numeric); if (!(d.isInfinite() || (d.floatValue() == 0.0D && !allZeros))) { return d; } } catch (NumberFormatException nfe) { // empty catch } try { return createBigDecimal(numeric); } catch (NumberFormatException e) { // empty catch } //Fall through default : throw new NumberFormatException(val + " is not a valid number."); } } else { //User doesn't have a preference on the return type, so let's start //small and go from there... if (expPos > -1 && expPos < val.length() - 1) { exp = val.substring(expPos + 1, val.length()); } else { exp = null; } if (dec == null && exp == null) { //Must be an int,long,bigint try { return createInteger(val); } catch (NumberFormatException nfe) { // empty catch } try { return createLong(val); } catch (NumberFormatException nfe) { // empty catch } return createBigInteger(val); } else { //Must be a float,double,BigDec boolean allZeros = isAllZeros(mant) && isAllZeros(exp); try { Float f = createFloat(val); if (!(f.isInfinite() || (f.floatValue() == 0.0F && !allZeros))) { return f; } } catch (NumberFormatException nfe) { // empty catch } try { Double d = createDouble(val); if (!(d.isInfinite() || (d.doubleValue() == 0.0D && !allZeros))) { return d; } } catch (NumberFormatException nfe) { // empty catch } return createBigDecimal(val); } } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer:
45
04d155999360524fd46b44fc324a483c0db95ea565f9c99743f83d0e5d139894
public OpenMapRealMatrix(int rowDimension, int columnDimension)
I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function: ```java /** * Build a sparse matrix with the supplied row and column dimensions. * * @param rowDimension Number of rows of the matrix. * @param columnDimension Number of columns of the matrix. */ public OpenMapRealMatrix(int rowDimension, int columnDimension) { super(rowDimension, columnDimension); this.rows = rowDimension; this.columns = columnDimension; this.entries = new OpenIntToDoubleHashMap(0.0); } ```
public OpenMapRealMatrix(int rowDimension, int columnDimension) { super(rowDimension, columnDimension); this.rows = rowDimension; this.columns = columnDimension; this.entries = new OpenIntToDoubleHashMap(0.0); }
true
Math
/** * Perform a binary search on a sorted array to find the position of a specified element. */ int binarySearch(int arr[], int l, int r, int x) { if (r >= l) { int mid = l + (r + l) / 2; if (arr[mid] == x) return mid; if (arr[mid] > x) return binarySearch(arr, l, mid - 1, x); return binarySearch(arr, mid + 1, r, x); } return -1; } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: A. Yes, it has defects /** * Counts the number of set bits in the binary representation of a given integer. */ public class BITCOUNT { public static int bitcount(int n) { int count = 0; while (n != 0) { n = (n & (n - 1)); count++; } return count; } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: B. No, it doesn't have defects /** * A method that finds and returns the kth smallest element in an unsorted array. */ public class KTH { public static Integer kth(ArrayList<Integer> arr, int k) { int pivot = arr.get(0); ArrayList<Integer> below, above; below = new ArrayList<Integer>(arr.size()); above = new ArrayList<Integer>(arr.size()); for (Integer x : arr) { if (x < pivot) { below.add(x); } else if (x > pivot) { above.add(x); } } int num_less = below.size(); int num_lessoreq = arr.size() - above.size(); if (k < num_less) { return kth(below, k); } else if (k >= num_lessoreq) { return kth(above, k-num_lessoreq); } else { return pivot; } } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: B. No, it doesn't have defects /** * A method that sorts an ArrayList of integers using the Merge Sort algorithm. */ public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) { if (arr.size() <= 1) { // <= 1 in correct version return arr; } else { int middle = arr.size() / 2; ArrayList<Integer> left = new ArrayList<Integer>(100); left.addAll(arr.subList(0,middle)); left = mergesort(left); ArrayList<Integer> right = new ArrayList<Integer>(100); right.addAll(arr.subList(middle, arr.size())); right = mergesort(right); return merge(left, left); } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: A. Yes, it has defects /** * Build a sparse matrix with the supplied row and column dimensions. * * @param rowDimension Number of rows of the matrix. * @param columnDimension Number of columns of the matrix. */ public OpenMapRealMatrix(int rowDimension, int columnDimension) { super(rowDimension, columnDimension); this.rows = rowDimension; this.columns = columnDimension; this.entries = new OpenIntToDoubleHashMap(0.0); } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer:
21
068d55466571807d31d50cb8e91b4398b4b895756f6a1bf4979c8609e3409375
public RectangularCholeskyDecomposition(RealMatrix matrix, double small) throws NonPositiveDefiniteMatrixException
I want you to act as a code defect detector, where I'll provide you with a Java function and it will be your responsibility to analyze it for potential issues based on the provided function code. Please respond with either "A. Yes, there are defects" or "B. No, there are no defects" based on your assessment. Let's get started with our first potentially flawed Java function: ```java /** * Decompose a symmetric positive semidefinite matrix. * * @param matrix Symmetric positive semidefinite matrix. * @param small Diagonal elements threshold under which column are * considered to be dependent on previous ones and are discarded. * @exception NonPositiveDefiniteMatrixException if the matrix is not * positive semidefinite. */ public RectangularCholeskyDecomposition(RealMatrix matrix, double small) throws NonPositiveDefiniteMatrixException { final int order = matrix.getRowDimension(); final double[][] c = matrix.getData(); final double[][] b = new double[order][order]; int[] index = new int[order]; for (int i = 0; i < order; ++i) { index[i] = i; } int r = 0; for (boolean loop = true; loop;) { // find maximal diagonal element int swapR = r; for (int i = r + 1; i < order; ++i) { int ii = index[i]; int isr = index[swapR]; if (c[ii][ii] > c[isr][isr]) { swapR = i; } } // swap elements if (swapR != r) { final int tmpIndex = index[r]; index[r] = index[swapR]; index[swapR] = tmpIndex; final double[] tmpRow = b[r]; b[r] = b[swapR]; b[swapR] = tmpRow; } // check diagonal element int ir = index[r]; if (c[ir][ir] < small) { if (r == 0) { throw new NonPositiveDefiniteMatrixException(c[ir][ir], ir, small); } // check remaining diagonal elements for (int i = r; i < order; ++i) { if (c[index[i]][index[i]] < -small) { // there is at least one sufficiently negative diagonal element, // the symmetric positive semidefinite matrix is wrong throw new NonPositiveDefiniteMatrixException(c[index[i]][index[i]], i, small); } } // all remaining diagonal elements are close to zero, we consider we have // found the rank of the symmetric positive semidefinite matrix ++r; loop = false; } else { // transform the matrix final double sqrt = FastMath.sqrt(c[ir][ir]); b[r][r] = sqrt; final double inverse = 1 / sqrt; final double inverse2 = 1 / c[ir][ir]; for (int i = r + 1; i < order; ++i) { final int ii = index[i]; final double e = inverse * c[ii][ir]; b[i][r] = e; c[ii][ii] -= c[ii][ir] * c[ii][ir] * inverse2; for (int j = r + 1; j < i; ++j) { final int ij = index[j]; final double f = c[ii][ij] - e * b[j][r]; c[ii][ij] = f; c[ij][ii] = f; } } // prepare next iteration loop = ++r < order; } } // build the root matrix rank = r; root = MatrixUtils.createRealMatrix(order, r); for (int i = 0; i < order; ++i) { for (int j = 0; j < r; ++j) { root.setEntry(index[i], j, b[i][j]); } } } ```
public RectangularCholeskyDecomposition(RealMatrix matrix, double small) throws NonPositiveDefiniteMatrixException { final int order = matrix.getRowDimension(); final double[][] c = matrix.getData(); final double[][] b = new double[order][order]; int[] index = new int[order]; for (int i = 0; i < order; ++i) { index[i] = i; } int r = 0; for (boolean loop = true; loop;) { // find maximal diagonal element int swapR = r; for (int i = r + 1; i < order; ++i) { int ii = index[i]; int isr = index[swapR]; if (c[ii][ii] > c[isr][isr]) { swapR = i; } } // swap elements if (swapR != r) { final int tmpIndex = index[r]; index[r] = index[swapR]; index[swapR] = tmpIndex; final double[] tmpRow = b[r]; b[r] = b[swapR]; b[swapR] = tmpRow; } // check diagonal element int ir = index[r]; if (c[ir][ir] < small) { if (r == 0) { throw new NonPositiveDefiniteMatrixException(c[ir][ir], ir, small); } // check remaining diagonal elements for (int i = r; i < order; ++i) { if (c[index[i]][index[i]] < -small) { // there is at least one sufficiently negative diagonal element, // the symmetric positive semidefinite matrix is wrong throw new NonPositiveDefiniteMatrixException(c[index[i]][index[i]], i, small); } } // all remaining diagonal elements are close to zero, we consider we have // found the rank of the symmetric positive semidefinite matrix ++r; loop = false; } else { // transform the matrix final double sqrt = FastMath.sqrt(c[ir][ir]); b[r][r] = sqrt; final double inverse = 1 / sqrt; final double inverse2 = 1 / c[ir][ir]; for (int i = r + 1; i < order; ++i) { final int ii = index[i]; final double e = inverse * c[ii][ir]; b[i][r] = e; c[ii][ii] -= c[ii][ir] * c[ii][ir] * inverse2; for (int j = r + 1; j < i; ++j) { final int ij = index[j]; final double f = c[ii][ij] - e * b[j][r]; c[ii][ij] = f; c[ij][ii] = f; } } // prepare next iteration loop = ++r < order; } } // build the root matrix rank = r; root = MatrixUtils.createRealMatrix(order, r); for (int i = 0; i < order; ++i) { for (int j = 0; j < r; ++j) { root.setEntry(index[i], j, b[i][j]); } } }
false
Math
/** * Perform a binary search on a sorted array to find the position of a specified element. */ int binarySearch(int arr[], int l, int r, int x) { if (r >= l) { int mid = l + (r + l) / 2; if (arr[mid] == x) return mid; if (arr[mid] > x) return binarySearch(arr, l, mid - 1, x); return binarySearch(arr, mid + 1, r, x); } return -1; } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: A. Yes, it has defects /** * Counts the number of set bits in the binary representation of a given integer. */ public class BITCOUNT { public static int bitcount(int n) { int count = 0; while (n != 0) { n = (n & (n - 1)); count++; } return count; } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: B. No, it doesn't have defects /** * A method that finds and returns the kth smallest element in an unsorted array. */ public class KTH { public static Integer kth(ArrayList<Integer> arr, int k) { int pivot = arr.get(0); ArrayList<Integer> below, above; below = new ArrayList<Integer>(arr.size()); above = new ArrayList<Integer>(arr.size()); for (Integer x : arr) { if (x < pivot) { below.add(x); } else if (x > pivot) { above.add(x); } } int num_less = below.size(); int num_lessoreq = arr.size() - above.size(); if (k < num_less) { return kth(below, k); } else if (k >= num_lessoreq) { return kth(above, k-num_lessoreq); } else { return pivot; } } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: B. No, it doesn't have defects /** * A method that sorts an ArrayList of integers using the Merge Sort algorithm. */ public static ArrayList<Integer> mergesort(ArrayList<Integer> arr) { if (arr.size() <= 1) { // <= 1 in correct version return arr; } else { int middle = arr.size() / 2; ArrayList<Integer> left = new ArrayList<Integer>(100); left.addAll(arr.subList(0,middle)); left = mergesort(left); ArrayList<Integer> right = new ArrayList<Integer>(100); right.addAll(arr.subList(middle, arr.size())); right = mergesort(right); return merge(left, left); } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer: A. Yes, it has defects /** * Decompose a symmetric positive semidefinite matrix. * * @param matrix Symmetric positive semidefinite matrix. * @param small Diagonal elements threshold under which column are * considered to be dependent on previous ones and are discarded. * @exception NonPositiveDefiniteMatrixException if the matrix is not * positive semidefinite. */ public RectangularCholeskyDecomposition(RealMatrix matrix, double small) throws NonPositiveDefiniteMatrixException { final int order = matrix.getRowDimension(); final double[][] c = matrix.getData(); final double[][] b = new double[order][order]; int[] index = new int[order]; for (int i = 0; i < order; ++i) { index[i] = i; } int r = 0; for (boolean loop = true; loop;) { // find maximal diagonal element int swapR = r; for (int i = r + 1; i < order; ++i) { int ii = index[i]; int isr = index[swapR]; if (c[ii][ii] > c[isr][isr]) { swapR = i; } } // swap elements if (swapR != r) { final int tmpIndex = index[r]; index[r] = index[swapR]; index[swapR] = tmpIndex; final double[] tmpRow = b[r]; b[r] = b[swapR]; b[swapR] = tmpRow; } // check diagonal element int ir = index[r]; if (c[ir][ir] < small) { if (r == 0) { throw new NonPositiveDefiniteMatrixException(c[ir][ir], ir, small); } // check remaining diagonal elements for (int i = r; i < order; ++i) { if (c[index[i]][index[i]] < -small) { // there is at least one sufficiently negative diagonal element, // the symmetric positive semidefinite matrix is wrong throw new NonPositiveDefiniteMatrixException(c[index[i]][index[i]], i, small); } } // all remaining diagonal elements are close to zero, we consider we have // found the rank of the symmetric positive semidefinite matrix ++r; loop = false; } else { // transform the matrix final double sqrt = FastMath.sqrt(c[ir][ir]); b[r][r] = sqrt; final double inverse = 1 / sqrt; final double inverse2 = 1 / c[ir][ir]; for (int i = r + 1; i < order; ++i) { final int ii = index[i]; final double e = inverse * c[ii][ir]; b[i][r] = e; c[ii][ii] -= c[ii][ir] * c[ii][ir] * inverse2; for (int j = r + 1; j < i; ++j) { final int ij = index[j]; final double f = c[ii][ij] - e * b[j][r]; c[ii][ij] = f; c[ij][ii] = f; } } // prepare next iteration loop = ++r < order; } } // build the root matrix rank = r; root = MatrixUtils.createRealMatrix(order, r); for (int i = 0; i < order; ++i) { for (int j = 0; j < r; ++j) { root.setEntry(index[i], j, b[i][j]); } } } Question: Please determine whether the above-mentioned Java function has any defects? A. Yes, it has defects B. No, it doesn't have defects Answer:
README.md exists but content is empty.
Downloads last month
43