ham10000_bbox / README.md
abaryan's picture
Update HAM10000 dataset with accurate bbox annotations
4a8167e verified
metadata
license: cc
task_categories:
  - image-classification
  - image-segmentation
language:
  - en
tags:
  - ISIC
  - HAM10000
  - dermatology
  - medical
  - skin-disease
  - bbox
  - spatial-annotations
size_categories:
  - 1K<n<10K
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
      - split: test
        path: data/test-*
dataset_info:
  features:
    - name: image
      dtype: image
    - name: lesion_id
      dtype: string
    - name: image_id
      dtype: string
    - name: diagnosis
      dtype: string
    - name: dx_type
      dtype: string
    - name: age
      dtype: float32
    - name: sex
      dtype: string
    - name: localization
      dtype: string
    - name: bbox
      sequence: float32
    - name: area_coverage
      dtype: float32
  splits:
    - name: train
      num_bytes: 3004910314.4
      num_examples: 8012
    - name: test
      num_bytes: 751227578.6
      num_examples: 2003
  download_size: 3755966729
  dataset_size: 3756137893

HAM10000 with Spatial Annotations and Bounding Box Coordinates

Enhanced version of HAM10000 dataset with bounding box coordinates and spatial descriptions for skin lesion localization.

Dataset Description

This dataset extends the original HAM10000 dermatology dataset with:

  • Bounding box coordinates for lesion localization
  • Spatial descriptions (e.g., "located in center-center region")
  • Area coverage statistics
  • Mask availability flags

Features

  • image: RGB skin lesion images
  • diagnosis: Skin condition diagnosis codes (mel, nv, bkl, etc.)
  • bbox: [x1, y1, x2, y2] bounding box coordinates
  • spatial_description: Natural language location descriptions
  • area_coverage: Lesion area relative to image size
  • localization: Body part location
  • age/sex: Patient demographics

Usage

from datasets import load_dataset

dataset = load_dataset("abaryan/ham10000_bbox")
train_data = dataset["train"]

# Access image and annotations
sample = train_data[0]
image = sample["image"]
bbox = sample["bbox"]
description = sample["spatial_description"]

Citation

Based on original HAM10000 dataset. Enhanced with spatial annotations for vision-language model training. """