abdullah's picture
Add files using upload-large-folder tool
89c8873 verified
raw
history blame
54.4 kB
1
00:00:00,890 --> 00:00:04,110
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ุงู„ูŠูˆู… ุฅู† ุดุงุก ุงู„ู„ู‡ ุจู†ูƒู…ู„ ููŠ
2
00:00:04,110 --> 00:00:07,990
ุดุจุชุฑ ุณุจุนุฉ Transcendental Functions ุณูƒุดู† ุณุจุนุฉ
3
00:00:07,990 --> 00:00:14,590
ุซู„ุงุซุฉ ุฑุงุญ ู†ุงุฎุฏ ุงู„ูŠูˆู… ู†ุตู ุงู„ุณูƒุดู† ุฌุฒุก ู…ู†ู‡ ุณูƒุดู† ุณุจุนุฉ
4
00:00:14,590 --> 00:00:19,130
ุซู„ุงุซุฉ ุจุญูƒูŠ ุนู† ุงู„ู€ Exponential Function ุณูˆุงุก ูƒุงู†ุช
5
00:00:19,130 --> 00:00:21,730
ุงู„ู„ูŠ ุจู†ุณู…ูŠู‡ุง ุงู„ู€ Nature ุงู„ู€ Exponential Function ุฃูˆ
6
00:00:21,730 --> 00:00:24,870
ุงู„ู€ General Exponential Function ูˆูƒู…ุงู† ุฑุงุญ ู†ุญูƒูŠ ุนู†
7
00:00:24,870 --> 00:00:29,120
ุงู„ู€ Inverse ู„ู„ู€ General Exponential Function ูŠุนู†ูŠ
8
00:00:29,120 --> 00:00:34,240
ุงู„ู…ูˆุถูˆุน ู‡ุฐุง ุทูˆูŠู„ ุดูˆูŠู‘ุฉ ุงู„ุชูƒุงุดู† ุงู„ุจุนุถ ูุจุชูƒูˆู†ูˆุง
9
00:00:34,240 --> 00:00:37,440
ุชู†ุชุจู‡ูˆุง ุฅู„ูŠู‡ ุฑุงุญ ุงู„ูŠูˆู… ู†ุญูƒูŠ ุงู„ุฌุฒุก ุงู„ุฃูˆู„ ู…ู†ู‡ ุนู† ุงู„ู€
10
00:00:37,440 --> 00:00:43,200
Exponential ูู‚ุท ุฃูˆู„ ุดูŠุก ุจุฏู†ุง ู†ุนุฑู ุงู„ู„ูŠ ู‡ูˆ ุงู„
11
00:00:43,200 --> 00:00:46,920
Inverse ู„ู„ู€ Ln X ุฅูŠุด ู‡ูˆ ุงู„ู€ Inverse ุชุจุน Ln X
12
00:00:46,920 --> 00:00:50,720
ุทุจุนุงู‹ Ln X ุจู†ุนุฑู ุฅู†ู‡ Ln X ู‡ูŠ Increasing
13
00:00:50,720 --> 00:00:54,590
Function ูˆุงู„ู€ Domain ู„ู‡ุง ู…ู† ุตูุฑ ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ูˆ ุงู„
14
00:00:54,590 --> 00:00:57,650
Range ู„ู‡ุง ู…ู† ุณุงู„ุจ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ
15
00:00:57,650 --> 00:01:00,530
ูˆุจุงู„ุชุงู„ูŠ ุจู…ุง ุฃู†ู‘ ู‡ูŠ Increasing Function ูŠุจู‚ู‰ ู‡ูŠ One
16
00:01:00,530 --> 00:01:04,030
to One ูˆุจุงู„ุชุงู„ูŠ ููŠ ู„ู‡ุง Inverse ู…ุซู„ุงู‹ ู„ูˆ ุจุฏู†ุง ู†ุตู†ุนู‡
17
00:01:04,030 --> 00:01:07,590
ู„ุฃู† Ln Inverse X ุทุจุนุงู‹ ุงู„ู€ Domain ุชุจุนู‡ุง ุฑุงุญ ูŠูƒูˆู† ู‡ูˆ
18
00:01:07,590 --> 00:01:11,550
ุงู„ู€ Range ุชุจุน ุงู„ู€ Ln ุงู„ู„ูŠ ู‡ูˆ ูƒู„ ุงู„ุฃุนุฏุงุฏ ุงู„ุญู‚ูŠู‚ูŠุฉ ูˆ
19
00:01:11,550 --> 00:01:13,910
ุงู„ู€ Range ู„ู‡ุง ู…ู† ุตูุฑ ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ
20
00:01:21,240 --> 00:01:27,080
ุจู†ุฑุณู… ุฎุท Y ุชุณุงูˆูŠ X ูˆุจู†ุนูƒุณู‡ุง ุนู„ูŠู‡ุง ุจู†ุฑุณู… Ln X
21
00:01:27,080 --> 00:01:31,580
ูˆุจู†ุนูƒุณู‡ุง ุนู„ู‰ ุฎุท Y ุชุณุงูˆูŠ X ุงู„ู„ูŠ ุฑุงุญ ู†ุดูˆูู‡ ูˆุฑุฏู†ุง ูƒู…ุงู†
22
00:01:31,580 --> 00:01:36,760
ุดูˆูŠู‘ุฉ ุจุงู„ุฑุณู… ุจุณ ู†ุงุฎุฐ ุดูˆูŠู‘ุฉ ู…ุนู„ูˆู…ุงุช ู„ุฃู† ู„ูˆ ุฃุฌูŠู†ุง
23
00:01:36,760 --> 00:01:40,380
Limit ู„ู€ Ln Inverse X ู„ู…ุง X ุชุคูˆู„ ู„ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ุทุจุนุงู‹ Ln
24
00:01:40,380 --> 00:01:45,030
Inverse ู…ุนุฑูุฉ ู…ู† ุณุงู„ุจ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ุจุชุฑูˆุญ
25
00:01:45,030 --> 00:01:48,950
ู„ู„ุณูุฑ ูˆู…ุง ู„ุง ู†ู‡ุงูŠุฉ ุจุชุฑูˆุญ ู„ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ูŠุนู†ูŠ ุงู„ู€ Ln
26
00:01:48,950 --> 00:01:56,390
Inverse ููŠ ุงู„ุณุงู„ุจ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ุงู„ู€ Limit ู„ู‡ุง ุตูุฑ ูˆููŠ
27
00:01:56,390 --> 00:02:01,030
ุงู„ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ูุจุงู„ุชุงู„ูŠ ุงู„ู€ Ln Inverse ู„ู†
28
00:02:01,030 --> 00:02:04,450
ุงู„ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ู„ูƒู† ุงู„ู€ Ln Inverse ู„ู„ุณุงู„ุจ
29
00:02:04,450 --> 00:02:10,490
ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ุจุฑุฌุน ุตูุฑ ูŠุนู†ูŠ ุนูƒุณ ุงู„ู€ Ln ุนูƒุณ ุงู„ู€ Ln ุงู„ุขู†
30
00:02:10,490 --> 00:02:14,870
Ln Inverse ู‡ุฐู‡ ุจุฏู†ุง ู†ุฑู…ุฒ ู„ู‡ุง ุจุฑู…ุฒ ุขุฎุฑ ุจุฏู„ ู…ุง ู†ูƒุชุจู‡ุง
31
00:02:14,870 --> 00:02:19,530
Ln Inverse ุจู‡ุฐุง ุงู„ุดูƒู„ ุจุฏู†ุง ู†ุฑู…ุฒ ู„ู‡ุง ุจุฑู…ุฒ E X
32
00:02:19,530 --> 00:02:26,190
Exponential of X E X ูŠุนู†ูŠ Exponential of X ุฅุฐุง
33
00:02:26,190 --> 00:02:31,650
ู‡ุฐู‡ Exponential of X ู‡ูŠ ุฑู…ุฒ ู„ู€ Ln Inverse X ู„ู€ Ln Inverse
34
00:02:31,650 --> 00:02:38,040
X ุงู„ุขู† ุจุฏู†ุง ู†ุซุจุช ุฃู†ู‘ ุงู„ู€ Exponential of X ู‡ูŠ E
35
00:02:38,040 --> 00:02:42,820
Exponential ู‡ูŠ E ุจุฑุฉ ุนู† E ูŠุนู†ูŠ E Exponential of X
36
00:02:42,820 --> 00:02:47,440
ู‡ูŠ E with X ุงู„ุขู† ุชุนุงู„ูˆุง ู†ุดูˆู ูƒุฏู‡ ุฃูˆู„ ุดูŠุก ุงู„ุนุฏุฏ ุงู„ู„ูŠ
37
00:02:47,440 --> 00:02:52,780
ู‡ูˆ E was defined to satisfy the equation Ln E
38
00:02:52,780 --> 00:02:56,300
ูŠุณุงูˆูŠ ูˆุงุญุฏ ุจู†ุนุฑู ุฃู†ู‘ Ln E ูŠุณุงูˆูŠ ูˆุงุญุฏ ุฃุฎุฐู†ุง ุงู„ู€
39
00:02:56,300 --> 00:03:02,960
Section ุงู„ู„ูŠ ูุงุช ู„ู‡ ุฃุฎุฐู†ุง ุงู„ู€ E ู…ู† ู‡ุฐู‡ ุงู„ู€ E ู‡ูŠ ุงู„ู€
40
00:03:02,960 --> 00:03:06,260
Exponential of ูˆุงุญุฏ ูŠุนู†ูŠ ู…ู† ู‡ู†ุง ุงู„ู€ E ุงู„ู€ Ln
41
00:03:06,260 --> 00:03:08,920
ุจุชุฃุฎุฐ ุงู„ู€ E ุจุชูˆุฏูŠู‡ุง ู„ู„ูˆุงุญุฏ ูˆุจุงู„ุชุงู„ูŠ ุงู„ู€ Inverse
42
00:03:08,920 --> 00:03:11,840
ุงู„ู€ Ln Inverse ุจุชุฃุฎุฐ ุงู„ูˆุงุญุฏ ุจุชุฑุฌุนู‡ุง ุฅูŠุด ู„ู„ู€ E
43
00:03:11,840 --> 00:03:14,500
ุงู„ู€ Ln Inverse ู‡ูŠ ุงู„ู€ Exponential ูŠุนู†ูŠ ุงู„ู€
44
00:03:14,500 --> 00:03:18,480
Exponential ู„ู„ูˆุงุญุฏ ูŠุชุณุงูˆูŠ ุฅูŠุด E ูˆุจุงู„ุชุงู„ูŠ E of ูˆุงุญุฏ
45
00:03:18,480 --> 00:03:22,760
ูŠุณุงูˆูŠ E ูŠุนู†ูŠ ู„ูˆ ุดูุช ูŠุนู†ูŠ E ู‚ูˆู‘ุฉ ูˆุงุญุฏ ูŠุนู†ูŠ ูŠุนู†ูŠ ู„ูˆ
46
00:03:22,760 --> 00:03:25,380
ุดูŠู„ุช ุงู„ูˆุงุญุฏ ู…ู† ู‡ู†ุง ูˆุญุทูŠุช ุจุฏู„ู‡ุง X ุจุชุตูŠุฑ
47
00:03:25,380 --> 00:03:29,160
Exponential of X ุจุชุตูŠุฑ ู‡ุฐู‡ E ุจุฏู„ ุฃุณ ูˆุงุญุฏ ุจู†ุญุท
48
00:03:29,160 --> 00:03:34,500
ุฅูŠุด X ูŠุนู†ูŠ ู…ุซู„ุงู‹ ุจุฏู†ุง E ุชุฑุจูŠุน ู‡ูŠ Exponential ู„ู€ 2 E
49
00:03:34,500 --> 00:03:38,400
ุชูƒุนูŠุจ ู‡ูŠ ุงู„ู€ Exponential ู„ู€ 3 E ุฃุณ ุณุงู„ุจ ูˆุงุญุฏ ู‡ูŠ ุงู„ู€
50
00:03:38,400 --> 00:03:40,980
Exponential ู„ู€ ุณุงู„ุจ ูˆุงุญุฏ ูˆู‡ูƒุฐุง E ุฃุณ ู†ุตู ู‡ูŠ ุงู„ู€
51
00:03:40,980 --> 00:03:45,620
Exponential ู„ู„ู†ุตู
52
00:03:45,620 --> 00:03:47,020
ูŠุนู†ูŠ ุฌุฐุฑ ุงู„ู€ E
53
00:03:50,610 --> 00:03:55,650
ูุจุงู„ุชุงู„ูŠ ุฅุฐุง ู…ุนู†ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุฃู†ู‘ ู…ู…ูƒู† ุฃู†ุง ุฃุฑูุน ุงู„ู€
54
00:03:55,650 --> 00:04:00,950
E ุฃุณ R ู„ุฃูŠู‘ Positive Number E ุทุจุนุงู‹ ุงู„ู€ E ู‡ุฐู‡ ู‡ูŠ ุฃุตู„ุงู‹
55
00:04:00,950 --> 00:04:07,370
ุชู‚ุฑูŠุจุงู‹ ู„ู€ 2.7 ู…ู† 10 E ุฃุณ R ุจุฑุถู‡ ุจุชูƒูˆู† ุนุฏุฏ ู…ูˆุฌุจ E
56
00:04:07,370 --> 00:04:14,170
ุจู…ุง ุฃู†ู‘ู‡ุง ู‡ูŠ ุฃุตู„ุงู‹ ุงู„ู€ E ู…ูˆุฌุจุฉ ูˆุงู„ู€ R ุฃูŠู‘ ุนุฏุฏ ุญู‚ูŠู‚ูŠ ุจู…ุง ุฃู†ู‘
57
00:04:14,170 --> 00:04:18,030
E ู…ูˆุฌุจุฉ ูˆุญุชู‰ ู„ูˆ ูƒุงู†ุช ุนุฏุฏ ุณุงู„ุจ ู‡ู†ุง ุจูŠุจู‚ู‰ E ุฃุณ R
58
00:04:18,030 --> 00:04:22,330
ู…ูˆุฌุจุฉ ู…ุซู„ุงู‹ ู‡ู†ุง ู‚ู„ู†ุง E ุฃุณ ุณุงู„ุจ ุงุซู†ูŠู† ุฅูŠุด ูŠุณุงูˆูŠ ูˆุงุญุฏ
59
00:04:22,330 --> 00:04:27,570
ุนู„ู‰ E ุชุฑุจูŠุน ู…ูˆุฌุจุฉ E ุฃุณ ู†ุตู ู…ูˆุฌุจุฉ E ุชุฑุจูŠุน ู…ูˆุฌุจุฉ ูˆ
60
00:04:27,570 --> 00:04:31,670
ู‡ูƒุฐุง ุจู…ุง ุฃู†ู‘ ุงู„ู€ E ู†ูุณู‡ุง ู…ูˆุฌุจุฉ ูู€ E ุฃุฑูุนู‡ุง ุฃุณ ุฃูŠู‘ ุนุฏุฏ
61
00:04:31,670 --> 00:04:36,310
ุณูˆุงุก ูƒุงู† ู…ูˆุฌุจ ุฃูˆ ุณุงู„ุจ ุจูŠุจู‚ู‰ ู…ูˆุฌุจุฉ So we can take
62
00:04:36,310 --> 00:04:40,230
the Logarithm of E ุฃุณ R ุฅุฐุง ุจู…ุง ุฃู†ู‘ E ุฃุณ R ุฏุงุฆู…ุงู‹
63
00:04:40,230 --> 00:04:44,430
ู…ูˆุฌุจุฉ ุฅุฐุง ู…ู…ูƒู† ุฃู†ุง ุขุฎุฐ ู„ู‡ุง ุงู„ู€ Ln ู„ู† E ุฃูุณ R
64
00:04:44,430 --> 00:04:49,230
ุฅุฐุง ู…ุนู†ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… E ุฃูุณ R ู„ูˆ ุฌุฆุช ุฃุฎุฐุช ู„ู‡ุง Ln E
65
00:04:49,230 --> 00:04:52,970
ุฃูุณ R ูŠุจู‚ู‰ ู‡ู†ุง ู…ุนุฑูุฉ ู„ู† ู„ุฃู† ู‡ุฐุง ุงู„ุนุฏุฏ ู…ูˆุฌุจ E
66
00:04:52,970 --> 00:04:57,170
ุฃูุณ R ู…ูˆุฌุจุฉ ุจุงุณุชุฎุฏุงู… ู‚ูˆุงู†ูŠู† Ln ุฅูŠุด ุจุชุตูŠุฑ ุงู„ู€ R ู‡ู†ุง
67
00:04:57,170 --> 00:05:02,810
ุจุชูŠุฌูŠ ู‡ู†ุง ูุจุชุตูŠุฑ R Ln E Ln E ูˆุงุญุฏ ุชุทู„ุน ู…ุน
68
00:05:02,810 --> 00:05:07,930
ุฅูŠุด R ุฅุฐุง ุงู„ู€ Ln ุนู…ู„ู†ุง ู„ู‡ุง Composite ู…ุน ุงู„ู€ E ุฃูุณ R
69
00:05:07,930 --> 00:05:10,310
ุฅูŠุด ุทู„ุนุช R ุทู„ุนุช ุฅูŠุด R
70
00:05:14,690 --> 00:05:20,910
ุงู„ุขู† ู„ูˆ ุฌุฆุช ุฃู†ุง E ุฃูุณ R ุฅุฐุง ุงู„ู€ E ุฃูุณ R ู‡ูŠ ุนุจุงุฑุฉ
71
00:05:20,910 --> 00:05:25,490
ุนู† ุงู„ู€ Exponential of R ุฅุฐุง
72
00:05:25,490 --> 00:05:30,520
ุงู„ู€ E ู„ูˆ ุฃุฑูุนู‡ุง ู„ุฃูŠู‘ ุนุฏุฏ ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงู„ู€ E ุฃูุณ R
73
00:05:30,520 --> 00:05:33,520
ูˆุงู„ุชูŠ ุฃุซุจุชู†ุงู‡ุง ู…ู† ู‡ู†ุง E ู„ุฃู†ู‡ุง ุชุณุงูˆูŠ E Exponential
74
00:05:33,520 --> 00:05:37,540
of ูˆุงุญุฏ ุฃุดูŠู„ ุงู„ูˆุงุญุฏ ูˆุฃุถุน ุจุฏู„ู‡ ุฃูŠู‘ ู…ุชุบูŠุฑ ุชุธู‡ุฑ E ุฃูุณ
75
00:05:37,540 --> 00:05:41,680
ู‡ุฐุง ุงู„ู…ุชุบูŠุฑ ูˆุจุงู„ุชุงู„ูŠ ุงู„ู€ Exponential of R ู‡ูŠ ุนุจุงุฑุฉ
76
00:05:41,680 --> 00:05:44,680
ุนู† E ุฃูุณ R ูˆุจุงู„ุชุงู„ูŠ ุฃุซุจุชู†ุง ู‡ู†ุง ุฃู†ู‘ ุงู„ู€ Exponential
77
00:05:44,680 --> 00:05:45,900
ู‡ูŠ ุดูƒู„ E
78
00:05:49,180 --> 00:05:52,960
ูุงู„ู€ Definition ุจู‚ูˆู„ ู„ู€ For every real number X we
79
00:05:52,960 --> 00:05:56,400
define the natural exponential function to be E ุฃุณ
80
00:05:56,400 --> 00:05:59,060
X ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงู„ู€ Exponential of X ุงู„ุดุฑุญ ุงู„ู„ูŠ
81
00:05:59,060 --> 00:06:05,170
ุดุฑุญู†ุงู‡ ู‚ุจู„ ู‡ูŠ ูƒุงู† ูƒู„ู‡ ู‡ุฐุง ูƒู„ู‡ ุฅูŠู‡ุŸ ุจู‚ูˆู„ ู„ูŠ ุนู„ู‰ ุฃู†ู‘ ุงู„ู€
82
00:06:05,170 --> 00:06:09,590
E of X ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงู„ู€ Exponential of X ุฅุฐุง ุฅุฐุง ุงู„ู€
83
00:06:09,590 --> 00:06:13,250
Exponential of X ู‡ูŠ ู…ู†ุŸ ู‡ูŠ ุงู„ู€ Ln Inverse ูƒู…ุงู† ุงู„ู€
84
00:06:13,250 --> 00:06:17,730
Exponential of X ู‡ูˆ Ln Inverse ูŠุนู†ูŠ ุงู„ู€ Inverse
85
00:06:17,730 --> 00:06:22,930
ุชุจุน ุงู„ู€ Ln X ู‡ูŠ E of X ูŠุนู†ูŠ E of X ูˆ Ln X ู‡ู…
86
00:06:22,930 --> 00:06:28,750
Inverse ู„ุจุนุถ ุฅุฐุง ู…ุนู†ุงู‡ ุงู„ู€ E of X and Ln X ุงู„ุงุซู†ุชูŠู†
87
00:06:28,750 --> 00:06:32,230
Inverse ู„ุจุนุถ ูŠุจู‚ู‰ ู„ูˆ ุนู…ู„ุช Composite ุจูŠู† ุงู„ุงุซู†ุชูŠู†
88
00:06:32,490 --> 00:06:35,930
ุจูŠุทู„ุน ุฅูŠู‡ุŸ ุนุดุงู† X ูŠุนู†ูŠ E ู…ุน ุงู„ู€ Ln ุจุฏูŠ ุฃุนู…ู„
89
00:06:35,930 --> 00:06:39,250
Composite ุฃุดูŠู„ ุงู„ู€ X ุชุจุน ุงู„ู€ E ูˆุฃุญุท ุจุฏู„ู‡ุง Ln X
90
00:06:39,250 --> 00:06:43,610
ูŠุนู†ูŠ E ุฃูุณ Ln X ุฅูŠุด ุจูŠุทู„ุนุŸ X ุทุจุนุงู‹ ู‡ู†ุง ู‡ุฐู‡ ูู‚ุท
91
00:06:43,610 --> 00:06:48,360
ู…ุนุฑูุฉ ุฅุฐุง ูƒุงู†ุช ุงู„ู€ X ู…ูˆุฌุจุฉ ู„ุฃู† X ุฏุงุฎู„ ุงู„ู€ Ln ุทูŠุจ ู„ูˆ
92
00:06:48,360 --> 00:06:51,640
ุจุฏุฃุช ุจุงู„ู€ Ln ุจุดูŠู„ ุงู„ู€ X ุชุจุน ุงู„ู€ Ln ูˆุฃุญุท ุจุฏุงู„ู‡ุง E ุฃุณ
93
00:06:51,640 --> 00:06:56,000
X ูุจุชุตูŠุฑ Ln ู…ู† E ุฃุณ XุŒ ุฅูŠุด ุชุณุงูˆูŠุŸ X ุทุจุนุงู‹ ู‡ุฐู‡ ู…ุนุฑูุฉ
94
00:06:56,000 --> 00:07:00,580
For all X ุฅุฐุง ุงู„ู€ Composite ูŠุนู†ูŠ F Composite F
95
00:07:00,580 --> 00:07:03,780
Inverse ุฃูˆ F Inverse Composite F ุจูŠุทู„ุน ุฅูŠุดุŸ ุฌูˆุงุจ X
96
00:07:03,780 --> 00:07:06,120
ู„ุฃู†ู‘ู‡ู… Inverse ู„ุจุนุถ
97
00:07:10,130 --> 00:07:13,270
ุทูŠุจ ู†ูŠุฌูŠ ูŠู‚ูˆู„ ู„ู†ุง ูƒู…ุง ู‚ุจู„ ุดูˆูŠู‘ุฉ ุจุฏู†ุง ู†ุฑุณู… ุงู„ู„ูŠ ู‡ูˆ ุงู„
98
00:07:13,270 --> 00:07:16,550
Exponential Function ุงู„ู€ Exponential Function ู‚ูˆู„ู†ุง
99
00:07:16,550 --> 00:07:19,930
ุจุฏู†ุง ู†ู‚ู„ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ Ln ู‡ูŠ ุฑุณู…ุฉ ุงู„ู€ Ln ูˆุจู†ุฑูˆุญ
100
00:07:19,930 --> 00:07:24,710
ุนุงู…ู„ูŠู† ุงู„ุฎุท Y ุชุณุงูˆูŠ X ูˆุจุฏู†ุง ู†ุนูƒุณ ู‡ุฐุง ุงู„ู€ Ln ุนู„ู‰
101
00:07:24,710 --> 00:07:28,790
ุงู„ุฎุท Y ุชุณุงูˆูŠ X ุงู„ุขู† ููŠ ุนู†ุฏูŠ ู†ู‚ุงุท ู…ุนุฑูˆูุฉ ุงู„ู„ูŠ ู‡ูŠ
102
00:07:28,790 --> 00:07:32,370
ุงู„ูˆุงุญุฏ ู‡ุงุฏูŠ ูˆุงุญุฏ ูˆุตูุฑ ุฅูŠุด ู…ุนูƒูˆุณู‡ุงุŸ ุตูุฑ ูˆูˆุงุญุฏ
103
00:07:32,370 --> 00:07:36,240
ูุงู„ู†ู‚ุทุฉ ู‡ุงุฏูŠ ุจุชูŠุฌูŠ ุฅูŠุด ู‡ู†ุง ุจุนุฏูŠู† ุงู„ุขู† ู‡ุฐุง ุฑุงูŠุญ ุฅูŠุด
104
00:07:36,240 --> 00:07:39,460
ู„ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ูู‡ุฐุง ุจูŠุฑูˆุญ ุฅูŠุดุŸ ู„ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ุจู‡ุฐุง ุงู„ุดูƒู„
105
00:07:39,460 --> 00:07:43,560
ูŠุทู„ุน ู„ููˆู‚ ูŠู‚ุชุฑุจ ู…ู† ุงู„ู€ Y ู„ุฃู† ู‡ุฐุง ุนู…ุงู„ ูŠุนู†ูŠ ู‚ุฑูŠุจ ู…ู†
106
00:07:43,560 --> 00:07:47,820
ุงู„ู€ X ุจุนุฏูŠู† ู‡ู†ุง ู‡ุฐุง ุจูŠุฑูˆุญ ู„ู€ ุตูุฑ ูˆุณุงู„ุจ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ
107
00:07:47,820 --> 00:07:51,500
ู…ุนูƒูˆุณ ุตูุฑ ูˆุณุงู„ุจ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ุณุงู„ุจ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ูˆุตูุฑ
108
00:07:51,500 --> 00:07:56,940
ูุจูŠุฌูŠ ุฅูŠุดุŸ ุงู„ุฌุฒุก ู‡ุฐุง ุฅูŠุดุŸ ุจูŠู‚ุชุฑุจ ู…ู† ุงู„ู€ X Axis ููŠ
109
00:07:56,940 --> 00:08:01,150
ุงู„ุณุงู„ุจ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ู„ูˆ ู„ุงุญุธู†ุง ููŠ ุงู„ุฑุณู… ุฅุฐุง ู‡ุฐู‡ ุนุจุงุฑุฉ
110
00:08:01,150 --> 00:08:05,510
ุนู† ุงู„ู€ Ln Inverse X ุฃูˆ ู‡ูŠ Exponential of X E ุฃุณ X
111
00:08:05,510 --> 00:08:08,690
ูŠุนู†ูŠ ุฑุณู…ุฉ E ุฃุณ X ู„ุงุญุธูˆุง ุงู„ู€ E ุฃุณ X ุฏูˆู…ูŠู†ู‡ุง ูƒู„
112
00:08:08,690 --> 00:08:15,440
ุงู„ุฃุนุฏุงุฏ ุงู„ุญู‚ูŠู‚ูŠุฉ ุฃูŠู‘ ุนุฏุฏ ุญู‚ูŠู‚ูŠ ุฃุฑูุนู‡ ู„ู„ู€ E ู…ูˆุฌูˆุฏ ูˆู„ูƒู†
113
00:08:15,440 --> 00:08:19,020
ุงู„ู€ Range ุชุจุนู‡ุง ูู‚ุท ู…ู† ุตูุฑ ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ุตูุฑ
114
00:08:19,020 --> 00:08:24,000
ู…ูุชูˆุญุฉ ูุจุณ ุจูŠุงุฎุฐ ุงู„ู€ E ุฃุณ X ูู‚ุท ุฃูƒุจุฑ ุฏุงุฆู…ุงู‹ E ุฃุณ X
115
00:08:24,000 --> 00:08:30,240
ุฃูƒุจุฑ ู…ู† ุงู„ุตูุฑ ู„ุงุญุธูˆุง ุจู‡ุฐู‡ ุงู„ุฑุณู…ุฉ ู…ุซู„ุงู‹ ู‡ูŠ ุงู„ู€ E ู„ุฃู†ู‘
116
00:08:30,240 --> 00:08:35,920
ุงู„ู€ E ูŠุณุงูˆูŠ 2.7 ู‡ูŠ ุงู„ูˆุงุญุฏ ู‡ู†ุง ุจุนุฏูŠู† E ุฃุณ ูˆุงุญุฏ E
117
00:08:35,920 --> 00:08:39,300
ุฃุณ ูˆุงุญุฏ ู‡ูŠ ุงู„ูˆุงุญุฏ ูˆู†ุฌูŠ ู„ู„ุฅูŠ ูŠุนู†ูŠ E ุฃุณ ูˆุงุญุฏ ูŠุณุงูˆูŠ
118
00:08:39,300 --> 00:08:43,780
ู‡ูŠ ุฅูŠู‡ุŸ ู‡ูŠ ุตูˆุฑุฉ ุงู„ูˆุงุญุฏ ุตูˆุฑุฉ ู‚ุงุน ููŠ ุงู„ู€ Exponential
119
00:08:43,780 --> 00:08:49,260
ุฅูŠู‡ E ุฃุณ ูˆุงุญุฏ ูˆุชุณุงูˆูŠ ุฅูŠู‡ุŸ E ู‡ูŠ ุฑุณู…ุฉ ุงู„ู€ Ln ู…ุน
120
00:08:49,260 --> 00:08:55,340
ุงู„ู€ Exponential Function ุจู†ุดูˆู ุจุนุถ ุงู„ุฃู…ุซู„ุฉ ู…ุซู„ ูˆุงุญุฏ
121
00:08:55,340 --> 00:09:00,440
ุจูŠู‚ูˆู„ Simplify the expression Ln 3 E ุชุฑุจูŠุน
122
00:09:00,440 --> 00:09:04,100
ุจุฏู†ุง ูŠุง ุฃุฎูˆุงู† ู†ุจุณุท ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุทุจุนุงู‹ ุงู„ู€ Ln 3 ุฃูˆ
123
00:09:04,100 --> 00:09:08,380
E ุชุฑุจูŠุน ุงู„ุงุซู†ุชูŠู† ู…ุถุฑูˆุจูŠู† ููŠ ุจุนุถ ุงู„ู€ Ln ุงู„ุถุฑุจ ุจุชุญูˆู„
124
00:09:08,380 --> 00:09:12,800
ุฅู„ู‰ ุฌู…ุน ูุจุชุตูŠุฑ ู‡ุฐู‡ Ln 3 ุฒุงุฆุฏ Ln E ุชุฑุจูŠุน Ln
125
00:09:12,800 --> 00:09:15,400
E ุชุฑุจูŠุน ู‡ุฏูˆู„ ุงู„ุงุซู†ุชูŠู† Composite ู…ุน ุจุนุถ ุจุชุทู„ุน
126
00:09:15,400 --> 00:09:18,560
ุงุซู†ูŠู† ู‡ุฐุง ุงู„ุฌูˆุงุจ ู‡ุฏูˆู„ ู…ุน ู‡ุฏูˆู„ ุจูŠุทู„ุน ุฅูŠุด ุงู„ู„ูŠ ููˆู‚
127
00:09:18,560 --> 00:09:22,120
ุจูŠุทู„ุน X ุงู„ู„ูŠ ู‡ูŠ ุงู„ุงุซู†ูŠู† ูŠุจู‚ู‰ Ln E ุชุฑุจูŠุน ุงู„ู„ูŠ ู‡ูˆ
128
00:09:22,120 --> 00:09:24,780
ุงุซู†ูŠู† ุฃูˆ ุจุงู„ู‚ูˆุงู†ูŠู† ุงู„ู„ูŠ Ln ุจุชุตูŠุฑ ู‡ุฏูˆู„ ุงุซู†ูŠู† ุจุชูŠุฌูŠ
129
00:09:24,780 --> 00:09:29,160
ู‡ู†ุง ุงุซู†ูŠู† Ln E ูŠุณุงูˆูŠ ุงุซู†ูŠู† ุฃูˆ ุจุงู„ู€ Composite ู‡ุฏูˆู„
130
00:09:29,160 --> 00:09:32,700
Composite ู…ุน ู‡ุฏูˆู„ ู„ุฃู†ู‘ู‡ู… Inverse ู„ุจุนุถ ุจูŠุทู„ุน ุงู„ุนุฏุฏ
131
00:09:32,700 --> 00:09:36,480
ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ู‡ู†ุง ูˆุจู‡ูƒุฐุง Ln 3 ุฒุงุฆุฏ ุฅูŠุดุŸ ุงุซู†ูŠู†
132
00:09:36,480 --> 00:09:43,790
ุจูุตู‘ูู†ุงู‡ุง ุฅู„ู‰ ุฃุจุณุท ุตูˆุฑุฉ ู…ู…ูƒู†ุฉ Example 2 Solve for X E
133
00:09:43,790 --> 00:09:47,110
ุฃุณ 3 ุงู„ุฌุฐุฑ ุงู„ุชุฑุจูŠุนูŠ ู„ู€ X ุฒุงุฆุฏ 1 ูŠุณุงูˆูŠ 4 ุฃู†ุง ุจุฏูŠ
134
00:09:47,110 --> 00:09:52,970
ุฃูˆุฌุฏ X ูˆ X ู…ูˆุฌูˆุฏุฉ ุนู„ู‰ ุฃุณ E ุนุดุงู† ุฃู†ุง ุฃุชุฎู„ุต ู…ู† E ุจุฏูŠ
135
00:09:52,970 --> 00:09:57,450
ุขุฎุฐ Ln ู„ู„ุทุฑููŠู† ูู„ูˆ ุฃุฎุฐุช ุฃู†ุง Ln E ุฃุณ 3 ุงู„ุฌุฐุฑ
136
00:09:57,450 --> 00:10:03,930
ูŠุณุงูˆูŠ Ln 4 ู„ุฃู† Ln ูˆ E ุงู„ุงุซู†ุชูŠู† Inverse ู„ุจุนุถ ูุงู„
137
00:10:03,930 --> 00:10:07,480
Composite ุจูŠู†ู‡ู… ุจูŠุทู„ุน ุงู„ู„ูŠ ููˆู‚ ุงู„ุฃุณ ุงู„ู„ูŠ ููˆู‚ ุฅุฐุง Ln
138
00:10:07,480 --> 00:10:10,660
ู…ุน E ุจุชุถูŠุน ุจุนุถ ูŠุนู†ูŠ ู„ุฃู†ู‘ู‡ู… Inverse ู„ุจุนุถ ูุจุถู„
139
00:10:10,660 --> 00:10:14,520
ุงู„ุฃุณ 3 ุฌุฐุฑ X ุฒุงุฆุฏ ูˆุงุญุฏ Ln 4 ู„ูˆ ุญุทูŠู†ุงู‡ุง
140
00:10:14,520 --> 00:10:19,320
2 Ln 2 ุฃูˆ ุฎู„ูŠู†ุงู‡ุง Ln 4 ุจุชูุฑุฌ ูˆุจู†ู‚ุณู…
141
00:10:19,320 --> 00:10:23,400
ุจุนุฏูŠู† ุนู„ู‰ ุซู„ุงุซุฉ ูˆุจุนุฏูŠู† ุจู†ุฑุจุน ุงู„ุทุฑููŠู† ุจุฑูˆุญ ุงู„ุฌุฐุฑ
142
00:10:23,400 --> 00:10:26,360
ุจูŠุตูŠุฑ X ุฒุงุฆุฏ ูˆุงุญุฏ ูŠุณุงูˆูŠ ุฃุฑุจุนุฉ ุนู„ู‰ ุชุณุนุฉ ู„ู† ุงุซู†ูŠู† ู„ูƒู„
143
00:10:26,360 --> 00:10:30,780
ุชุฑุจูŠุน ูˆุจุงู„ุชุงู„ูŠ X ูŠุณุงูˆูŠ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ู†ุงู‚ุต ูˆุงุญุฏ
144
00:10:30,780 --> 00:10:34,000
example
145
00:10:34,000 --> 00:10:39,250
ุซู„ุงุซุฉ ุจู‚ูˆู„ ู„ูŠ solve the equation ุจุฏูŠ ุฃุญู„ ุงู„ู…ุนุงุฏู„ุฉ
146
00:10:39,250 --> 00:10:43,150
ูŠุนู†ูŠ ุจุฏูŠ ุฃูˆุฌุฏ ู‚ูŠู…ุฉ X ุงู„ู…ุนุงุฏู„ุฉ ุจุชุจุนูุช ุจุชู‚ูˆู„ ู„ูŠ ู„ู† ุงู„ X
147
00:10:43,150 --> 00:10:48,610
ุชุฑุจูŠุน ูŠุณุงูˆูŠ 2 ู„ู† 4 - 6 ู„ู† 2 ูˆุฃู†ุง ุจุฏูŠ ุฃูˆุฌุฏ ู‚ูŠู…ุฉ XุŒ ุงู„ X
148
00:10:48,610 --> 00:10:52,750
ู‡ูŠ ุฏุงุฎู„ ุงู„ ู„ู† ุทุจุนู‹ุง ุจุงู„ุฃูˆู„ ุจุฏูŠ ุฃุจุณุท ุงู„ู…ู‚ุฏุงุฑ ู„ู† X
149
00:10:52,750 --> 00:10:57,680
ุชุฑุจูŠุน ู„ูˆ ุงุณุชุฎุฏู…ู†ุง ู‚ูˆุงู†ูŠู† ู„ู† ุจูŠุตูŠุฑ 2 ู„ู† X ูŠุณุงูˆูŠ ู„ู†
150
00:10:57,680 --> 00:11:01,560
ุงู„ุฃุฑุจุนุฉ ุงู„ู„ูŠ ู‡ูŠ ุงู„ุฃุฑุจุนุฉ ูŠุจู‚ู‰ ุนู† 2 ุชุฑุจูŠุน ูˆุงู„ุชุฑุจูŠุน
151
00:11:01,560 --> 00:11:04,440
ุจุชูŠุฌูŠ ู‡ู†ุง ู…ุน ุงู„ุงุซู†ูŠู† ุงู„ู„ูŠ ุจุชุตูŠุฑ ุฃุฑุจุนุฉ ูŠุนู†ูŠ ุฃุฑุจุนุฉ
152
00:11:04,440 --> 00:11:07,660
ู„ู† ุงุซู†ูŠู† ู†ุงู‚ุต ุณุชุฉ ู„ู† ุงุซู†ูŠู† ู„ุฃู† ู‡ุฐู‡ ู„ู† ุงุซู†ูŠู† ูˆู‡ุฐู‡
153
00:11:07,660 --> 00:11:11,460
ู„ู† ุงุซู†ูŠู† ู†ุงู‚ุต ุณุชุฉ ุฒุงุฆุฏ ุฃุฑุจุนุฉ ุจูŠุทู„ุน ู†ุงู‚ุต ุงุซู†ูŠู† ู„ู†
154
00:11:11,460 --> 00:11:14,640
ุงุซู†ูŠู† ุงุซู†ูŠู† ู‡ุฐู‡ ุจุชุฑูˆุญ ู…ุน ุงุซู†ูŠู† ู‡ุฐู‡ ุจุถู„ ู„ู† ุงู„ X
155
00:11:14,640 --> 00:11:18,460
ูŠุณุงูˆูŠ ู†ุงู‚ุต ู„ู† ุงุซู†ูŠู† ูŠุนู†ูŠ ู†ุงู‚ุต ู„ู† ุงุซู†ูŠู† ูŠุจู‚ู‰ ุนู† ู„ู†
156
00:11:18,460 --> 00:11:21,800
ุงู„ู†ุตู ู„ู† ุงู„ X ูŠุณุงูˆูŠ ู„ู† ุงู„ู†ุตู ู†ุฃุฎุฐ ุงู„ exponential
157
00:11:21,800 --> 00:11:24,800
ู„ู„ุทุฑููŠู† ูˆ ุชุทู„ุน ุงู„ X ุชุจุนุชูŠ ุชุณุงูˆูŠ ู†ุตู
158
00:11:28,890 --> 00:11:34,550
ุณุคุงู„ ุฃุฑุจุนุฉ Solve for Y ุจุฏู†ุง ู†ุญู„ ูŠุนู†ูŠ ุจุงู„ู†ุณุจุฉ ู„ Y
159
00:11:34,550 --> 00:11:38,510
in terms of T ุจุฏู†ุง ู†ูˆุฌุฏ Y as a function of T ูˆู‡ู†ุง
160
00:11:38,510 --> 00:11:41,230
ููŠู‡ ุงู„ู€ length ุนุดุงู† ุฃุชุฎู„ุต ู…ู† ุงู„ู€ length ูˆุงู„
161
00:11:41,230 --> 00:11:44,210
length ูŠุฏุฎู„ู‡ุง Y ุจุฏุฃ ุขุฎุฐ ุงู„ exponential ู„ู„ุทุฑููŠู†
162
00:11:44,210 --> 00:11:48,190
ู„ู„ุทุฑููŠู† ุฃุณ EุŒ E ุฃุณ length ุงู„ุฃุฑุจุน ุฒุงุฆุฏ ุซู„ุงุซุฉ
163
00:11:48,190 --> 00:11:52,360
Y ูŠุณุงูˆูŠ E ุฃุณ ุงุซู†ูŠู† T ุฒุงุฆุฏ ูˆุงุญุฏ ู„ุงุญุธูˆุง ู‡ู†ุง ู„ู…ุง ุจุฑูุน
164
00:11:52,360 --> 00:11:56,200
ุงู„ู€ E ููŠ ูƒุซูŠุฑ ุจูŠุฑู„ุทูˆุง ููŠู‡ุง ุฅู† E ุฃุณ 2T ุฒุงุฆุฏ ูˆุงุญุฏุฉ ุฏู‡
165
00:11:56,200 --> 00:11:59,220
ูƒู„ู‡ ุจู†ุฑูุนู‡ ู„ู‡ ุงู„ุฃุณ ู…ุด ูƒู„ ูˆุงุญุฏ ู„ุญุงู„ู‡ ูŠุนู†ูŠ ู…ุง ุฃู‚ูˆู„ุด E ุฃุณ
166
00:11:59,220 --> 00:12:04,840
2T ุฒุงุฆุฏ E ุฃุณ ูˆุงุญุฏ ู‡ุฐุง ุฎุทุฃ ุดุงุฆุน ุฎู„ูˆุง ุจุงู„ูƒู… ุฅู†ู‡ ู„ุง ุงู„
167
00:12:04,840 --> 00:12:08,680
E ุจู†ุฑูุนู‡ ุงู„ุฃุณ ู‡ุฐุง ูƒู„ู‡ ู‡ุฐุง ุจู†ุฑูุนู‡ ุฅูŠู‡ ุฃุณ E ู…ุด ูƒู„
168
00:12:08,680 --> 00:12:12,220
ูˆุงุญุฏ ู„ุญุงู„ู‡ ุงู„ุขู† ุงู„ E ู…ุน ุงู„ู€ ln ุจุถูŠุนูˆุง ุจุนุถ ู„ุฃู† ุงู„
169
00:12:12,220 --> 00:12:16,840
ุงุซู†ูŠู† ุงู†ูุณ ู„ุจุนุถ ุจูŠุถู„ ู‡ุฐุง ุงู„ู„ูŠ ุฌูˆุง 4 ุฒุงุฆุฏ 3Y ูŠุณุงูˆูŠ
170
00:12:16,840 --> 00:12:22,220
E ุฃุณ 2T ุฒุงุฆุฏ 1 ูˆุจุงู„ุชุงู„ูŠ ุงู„ู€ Y ุชุณุงูˆูŠ E ุฃุณ 2T ุฒุงุฆุฏ
171
00:12:22,220 --> 00:12:24,180
1 ู†ุงู‚ุต 4 ุนู„ู‰ 3
172
00:12:28,350 --> 00:12:31,830
ูƒู…ุงู† ู…ุฑุฉ ุจุฑุถู‡ Solve for Y ุจุฑุถู‡ ุจุฏูŠ ุฃูˆุฌุฏ ู‚ูŠู…ุฉ YุŒ Y
173
00:12:31,830 --> 00:12:35,810
ู…ูˆุฌูˆุฏุฉ ู‡ู†ุง ูˆู…ูˆุฌูˆุฏุฉ ู‡ู†ุง ู„ู† ู†ุงู‚ุต ู„ู† ุทุจุนู‹ุง ู„ู…ุง ูŠูƒูˆู†
174
00:12:35,810 --> 00:12:41,750
ู„ู† ู†ุงู‚ุต ู„ู† ู‡ูˆ ู„ู† ุงู„ู‚ุณู…ุฉ ูุจูŠุตูŠุฑ ู„ู† Y ุฒูŠ 2 ุนู„ู‰ Y
175
00:12:41,750 --> 00:12:45,470
ู†ุงู‚ุต 1 ูŠุณุงูˆูŠ Cos X ูุงู„ุขู† ู„ู† ู‡ุฐู‡
176
00:12:49,320 --> 00:12:54,760
ุจู‚ูˆู„ ู„ู†ุง ู„ู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ุจุขุฎุฐ ู„ู† ุจุฏูŠ ุงู„ู„ูŠ ุฌูˆุง ูุจุขุฎุฐ
177
00:12:54,760 --> 00:12:58,940
ุงู„ู€ EุŒ E ู„ู„ุทุฑููŠู† ูุจูŠุตูŠุฑ E ุฃุณ ู„ู† Y ุฒูŠ 2 ุนู„ู‰ Y ู†ุงู‚ุต
178
00:12:58,940 --> 00:13:02,820
ูˆุงุญุฏ ูŠุณุงูˆูŠ E ุฃุณ cosine ุงู„ู€ E ูˆุงู„ู€ ln ู‚ู„ู†ุง inverse
179
00:13:02,820 --> 00:13:06,140
ู„ุจุนุถ ูุจูŠุทู„ุน ู‡ุฐุง ุงู„ู„ูŠ ุฌูˆุง ูุจูŠุตูŠุฑ Y ุฒูŠ 2 ุนู„ู‰ Y ู†ุงู‚ุต
180
00:13:06,140 --> 00:13:09,880
ูˆุงุญุฏ ูŠุณุงูˆูŠ E ุฃุณ cosine ุงู„ุขู† ุจุฏูŠ Y ูˆ Y ู…ูˆุฌูˆุฏุฉ ููŠ
181
00:13:09,880 --> 00:13:14,120
ุงู„ุฌู‡ุชูŠู† ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ numerator ูˆู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู…ู‚ุงู… ุฅู…ุง ุจุนู…ู„
182
00:13:14,120 --> 00:13:18,500
ู‚ุณู…ุฉ ู…ุทูˆู„ุฉ ุฃูˆ ุจู‚ุณู… ุงู„ู€ numerator ุนู„ู‰ ุงู„ู…ู‚ุงู… ุฃูˆ ุจุญุท ู‡ุฐู‡ y
183
00:13:18,500 --> 00:13:21,880
ู†ุงู‚ุต ูˆุงุญุฏ ุฒุงุฆุฏ ุซู„ุงุซุฉ ุงู„ู€ numerator ุจุนู…ู„ู‡ ุจู‡ุฐุง ุงู„ุดูƒู„ ุนู„ู‰ Y
184
00:13:21,880 --> 00:13:26,000
ู†ุงู‚ุต ูˆุงุญุฏ ูˆุจุฃูˆุฒุน ุงู„ู€ numerator ุนู„ู‰ ุงู„ู…ู‚ุงู… ูุจูŠุตูŠุฑ Y ู†ุงู‚ุต
185
00:13:26,000 --> 00:13:29,040
ูˆุงุญุฏ ุนู„ู‰ Y ู†ุงู‚ุต ูˆุงุญุฏ ุฒุงุฆุฏ ุซู„ุงุซุฉ ุนู„ู‰ Y
186
00:13:29,040 --> 00:13:33,710
ู†ุงู‚ุต ูˆุงุญุฏ ูŠุณุงูˆูŠ E Cos ูˆุจุฃุฌูŠุจ ุงู„ูˆุงุญุฏ ุนู„ู‰ ุงู„ุฌู‡ุฉ
187
00:13:33,710 --> 00:13:37,950
ุงู„ุซุงู†ูŠุฉ ูˆุจุนุฏูŠู† ุจุดู‚ู„ู‡ ูˆุจุฃุถุฑุจ ููŠ ุซู„ุงุซุฉ ูŠุตุจุญ ุงู„ Y
188
00:13:37,950 --> 00:13:41,610
ุชุณุงูˆูŠ ุซู„ุงุซุฉ ุนู„ู‰ E Cos X ู†ุงู‚ุต ูˆุงุญุฏ ูˆุจุนุฏูŠู† ุฒุงุฆุฏ
189
00:13:41,610 --> 00:13:47,250
ูˆุงุญุฏ ูุจู†ุดูˆู
190
00:13:47,250 --> 00:13:51,690
ูŠุจู‚ู‰ ู‡ูŠ ูƒุฏู‡ ูŠุนุฑูู†ุง ุงู„ exponential function ูˆุฅู†ู‡ุง
191
00:13:51,690 --> 00:13:55,630
ู‡ูŠ ุงู„ู€ inverse ู„ู„ู€ logarithm ู„ู„ู€ natural logarithm ูˆ
192
00:13:55,630 --> 00:13:58,090
ุจุฑุถู‡ ุจู†ุณู…ูŠู‡ุง ุงู„ู€ natural exponential function
193
00:13:58,090 --> 00:14:03,320
inverse ู„ู„ู€ natural logarithm ุงู„ุขู† ุจุฏู†ุง ู†ุดูˆู ุฅูŠุด ุงู„
194
00:14:03,320 --> 00:14:08,820
derivative ูˆุงู„ integral ู„ู€ E ุฃุณ X ุฃูˆู„ ุดูŠุก ู„ูˆ ุงุญู†ุง
195
00:14:08,820 --> 00:14:12,540
ุฃุฌูŠู†ุง ู†ุดูˆู ln ุงู„ู€ E ุฃุณ X ุทุจุนู‹ุง ู…ุนุฑูˆู ุฅู†ู‡ ูŠุณุงูˆูŠ X ู„ูˆ
196
00:14:12,540 --> 00:14:18,980
ุฃุฌูŠู†ุง ู†ูุงุถู„ ุงู„ุทุฑููŠู† ln ู‡ุงูŠ ุฅูŠุด ุชูุงุถู„ู‡ุง ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ
197
00:14:18,980 --> 00:14:22,560
ุงู„ู„ูŠ ู‡ูˆ ูˆุงุญุฏ ุฃูˆู„ ุดูŠุก ูˆุงุญุฏ ุนู„ู‰ ุงู„ู„ูŠ ุฌูˆุง ูˆุงุญุฏ ุนู„ู‰ E
198
00:14:22,560 --> 00:14:26,680
ููŠ ุชูุงุถู„ ุงู„ E ุงู„ู„ูŠ ุงุญู†ุง ุจุฏู†ุง ุฅูŠุงู‡ุง ูŠุณุงูˆูŠ ุชูุงุถู„ ุงู„ X
199
00:14:26,680 --> 00:14:30,580
ุงู„ู„ูŠ ู‡ูˆ ูˆุงุญุฏ ุฅุฐุง ุชูุงุถู„ ุงู„ E ุฃุณ X ุจู†ุถุฑุจ ููŠ E ุฃุณ X
200
00:14:30,580 --> 00:14:35,100
ุฅูŠุด ุจูŠุทู„ุน E ุฃุณ X ุฅุฐุง ุงู„ู…ุดุชู‚ุฉ ุชุจุน ุงู„ E ุฃุณ X ู‡ูŠ
201
00:14:35,100 --> 00:14:40,240
ู†ูุณู‡ุง E ุฃุณ X ุทุจ ู„ูˆ ูƒุงู†ุช E ุฃุณ U ูˆ U function of X
202
00:14:40,240 --> 00:14:44,040
ูˆุฃู†ุง ุจุฏูŠ ุชูุงุถู„ ุจุงู„ู†ุณุจุฉ ู„ X ุงู„ E ุจูุงุถู„ู‡ุง ุจุงู„ุฃูˆู„
203
00:14:44,040 --> 00:14:47,400
ุจุงู„ู†ุณุจุฉ ู„ U E ุฃุณ U ูˆุจุนุฏูŠู† ุจู†ุถุฑุจ ููŠ ุชูุงุถู„ ุงู„ U
204
00:14:47,400 --> 00:14:53,160
ุจุงู„ู†ุณุจุฉ ู„ู„ X ุทูŠุจ ุงู„ุชูƒุงู…ู„ ุจู…ุง ุฃู† ุชูุงุถู„ ุงู„ู€ E ู‡ูŠ ุงู„ู€
205
00:14:53,160 --> 00:14:56,640
E ูุจุชุฏูŠ ุชูƒุงู…ู„ ุงู„ุนู…ู„ูŠุฉ ุงู„ุนูƒุณูŠุฉ ุชูƒุงู…ู„ ุงู„ู€ E ุจุฑุถู‡ ู‡ูŠ
206
00:14:56,640 --> 00:15:03,040
ุงู„ู€ EุŒ E ุฃุณ U D U ุชูƒุงู…ู„ู‡ุง E ุฃุณ U ุฒุงุฆุฏ C ู‡ูŠ ุชูุงุถู„
207
00:15:03,040 --> 00:15:07,220
ูˆุชูƒุงู…ู„ ุงู„ E ู†ุดูˆู ุงู„ุฃู…ุซู„ุฉ ุนู„ู‰ ุงู„ุชูุงุถู„ ูˆุงู„ุชูƒุงู…ู„
208
00:15:07,220 --> 00:15:14,500
Find Y' if Y ุชุณุงูˆูŠ ln X ุชุฑุจูŠุน ููŠ E ุฃุณ XุŒ Y' ุชุณุงูˆูŠ
209
00:15:14,500 --> 00:15:17,680
ู‡ูˆ ุงู„ุดูŠุก ุจูŠู† ุชูุงุถู„ ุงู„ ln ู‡ุฐุง ุงู„ chain rule ุชูุงุถู„
210
00:15:17,680 --> 00:15:20,960
ุงู„ ln ุจุนุฏูŠู† ุชูุงุถู„ ุงู„ X ุงู„ู„ูŠ ุฌูˆุง ุชูุงุถู„ ุงู„ ln ูˆุงุญุฏ
211
00:15:20,960 --> 00:15:25,480
ุนู„ู‰ ุงู„ู„ูŠ ุฌูˆุง ูˆุงุญุฏ ุนู„ู‰ X ุชุฑุจูŠุน E ุฃุณ X ููŠ ุชูุงุถู„
212
00:15:25,480 --> 00:15:28,440
ุงู„ X ุงู„ู„ูŠ ู…ุง ุจุฏุงุฎู„ ุงู„ ln ุงู„ุฃูˆู„ู‰ ููŠ ุชูุงุถู„ ุงู„ุซุงู†ูŠุฉ
213
00:15:28,440 --> 00:15:33,080
ุทุจุนู‹ุง ุชูุงุถู„ E ู‡ูŠ ู†ูุณู‡ุง ุฒุงุฆุฏ ุชูุงุถู„ X ุชุฑุจูŠุน 2X ููŠ
214
00:15:33,080 --> 00:15:36,400
ุงู„ E ุทุจุนู‹ุง ู‡ู†ุง ู„ูˆ ุฏุฎู„ู†ุง ู‡ุฐู‡ ุฌูˆุง ุจูŠุตูŠุฑ ู‡ุฐู‡ ุนู„ู‰ ู‡ุฐู‡
215
00:15:36,400 --> 00:15:42,670
ูˆุงุญุฏ ูˆู‡ุฐู‡ ุนู„ู‰ ู‡ุฐู‡ ุจูŠุธู„ ุงุซู†ูŠู† ุนู„ู‰ X ุงู„ุณุคุงู„ ุงู„ุซุงู†ูŠ
216
00:15:42,670 --> 00:15:47,190
ุจุฑุถู‡ dy/dx ููŠ ุชุณุงูˆูŠ E ุฃุณ Tan X ุนู„ู‰ E
217
00:15:47,190 --> 00:15:50,810
ุฃุณ ุงุซู†ูŠู† X ุฒุงุฆุฏ ln ุงู„ XุŒ Y ุจุฑุงูŠู… ูŠุณุงูˆูŠ ุทุจุนู‹ุง ู‡ู†ุง
218
00:15:50,810 --> 00:15:55,510
ู‚ุณู…ุฉ ูุจู†ู‚ูˆู„ ู…ู‚ุงู… ุชุฑุจูŠุน ูู‡ูŠ ู…ู‚ุงู… ุชุฑุจูŠุน ุจุนุฏูŠู† ู…ู‚ุงู…
219
00:15:55,510 --> 00:16:00,030
ููŠ ุชูุงุถู„ ุงู„ numerator ุงู„ numerator ู‡ูˆ E ุฃุณ Tan ูŠุนู†ูŠ E ุฃุณ U ุฅูŠุด
220
00:16:00,030 --> 00:16:04,790
ุชูุงุถู„ ุงู„ E ุฃุณ Tan ุงู„ู„ูŠ E ู†ูุณู‡ุง ุชูุงุถู„ E ุฃุณ Tan X ููŠ
221
00:16:04,790 --> 00:16:09,470
ุชูุงุถู„ ุฅูŠุด ุงู„ู„ูŠ ู‡ูˆ ุงู„ุฃุณ ุงู„ู„ูŠ ุชูุงุถู„ ุงู„ Tan Sec ุชุฑุจูŠุน
222
00:16:09,720 --> 00:16:14,940
ู†ุงู‚ุต ุงู„ numerator E ุฃุณ 2 ููŠ ุชูุงุถู„ ุงู„ู…ู‚ุงู… ุชูุงุถู„ ุงู„ู…ู‚ุงู… E
223
00:16:14,940 --> 00:16:20,000
ุฃุณ 2X ุชูุงุถู„ู‡ุง E ุฃุณ 2X ููŠ ุชูุงุถู„ ุงู„ุฃุณ 2 ุฒูŠ
224
00:16:20,000 --> 00:16:24,300
ุงู„ุชูุงุถู„ ุงู„ู„ูŠ ู‡ูˆ 1 ุนู„ู‰ X ูˆุฎู„ุงุต ุจู†ุณูŠุจู‡ุง ุฏู„ู†ูŠ ู‡ูŠ ูƒุงู†
225
00:16:24,300 --> 00:16:30,990
ู…ุด ุถุฑูˆุฑูŠ ุฃู† ู†ุตูˆุฑู‡ุง Example 3 F of X ูŠุณุงูˆูŠ E ุฃุณ X
226
00:16:30,990 --> 00:16:35,730
ุฒุงุฆุฏ X ุจู‚ูˆู„ ู„ูŠ show that F of X is one to one ูˆ
227
00:16:35,730 --> 00:16:39,570
ุจุฏู†ุง ู†ูˆุฌุฏ ุชูุงุถู„ ุงู„ F inverse ุนู†ุฏ ู‡ุฐู‡ ุงู„ู†ู‚ุทุฉ ุฃูˆู„ ุดูŠุก
228
00:16:39,570 --> 00:16:43,110
ุณุคุงู„ ุฅูŠู‡ุŸ ุนุดุงู† ุฃูƒุจุฑ ุฅู† ุงู„ F of X is one to one ู‡ุฏู‰
229
00:16:43,110 --> 00:16:45,870
ุฃุดูˆู ู‡ู„ ู‡ูŠ increasing ุฃูˆ decreasing ุทุจุนู‹ุง ู‡ุฐู‡ ุฃูˆู„
230
00:16:45,870 --> 00:16:49,950
ุฎุทูˆุฉ ุจู†ุนู…ู„ู‡ุง ุฅู†ู‡ ุจู†ุดูˆู ุงู„ increasing ูˆุงู„
231
00:16:49,950 --> 00:16:53,530
decreasing ุจู†ุฌูŠุจ F prime F prime ุชูุงุถู„ E ุฃุณ X E ุฃุณ
232
00:16:53,530 --> 00:16:57,230
X ุฒุงุฆุฏ ุชูุงุถู„ X ุงู„ู„ูŠ ู‡ูˆ ูˆุงุญุฏ ุทุจุนู‹ุง ุงู„ E ุฏุงุฆู…ุงู‹ ู…ูˆุฌุจุฉ
233
00:16:57,230 --> 00:17:02,130
ูˆุฒุงุฆุฏ ูˆุงุญุฏ ุนุฏุฏ ู…ูˆุฌุจ ูˆุจุงู„ุชุงู„ูŠ ุฏุงุฆู…ุงู‹ ุฃูƒุจุฑ ู…ู† ุงู„ุตูุฑ
234
00:17:02,130 --> 00:17:05,810
ุฅุฐุง ุงู„ F is increasing ูŠุนู†ูŠ ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ F is one
235
00:17:05,810 --> 00:17:10,650
to one ูุจู†ูˆุฌุฏ d F inverse/dx at X ุชุณุงูˆูŠ F of
236
00:17:10,650 --> 00:17:14,090
ln ุงุซู†ูŠู† ln ุงุซู†ูŠู† ุงู„ู„ูŠ ู‡ูŠ ุงู„ A ุชุจุนุชู†ุง ุฅูŠุด ูŠุณุงูˆูŠ
237
00:17:14,090 --> 00:17:18,530
ุจุงู„ู‚ุงู†ูˆู†ุŸ ูˆุงุญุฏ ุนู„ู‰ F prime of X at X ุชุณุงูˆูŠ ln
238
00:17:18,530 --> 00:17:21,770
ุงุซู†ูŠู† F prime ู‡ูŠ ุฌุจู†ุงู‡ุง ู…ู† ู‡ู†ุง ุงู„ู„ูŠ ู‡ูŠ E ุฃุณ X
239
00:17:21,770 --> 00:17:27,100
ุฒุงุฆุฏ ูˆุงุญุฏ ุจู‚ูŠุช ln 2 ุจุดูŠู„ ุงู„ X ูˆุจุฃุญุท ุจุฏุงู„ู‡ุง ln 2
240
00:17:27,100 --> 00:17:30,480
ูุจุชุตูŠุฑ E ุฃุณ ln 2 ูƒูˆู…ุจูˆุฒูŠุช ุจูŠู† ุงู„ ln ูˆุงู„ E ุฅูŠุด
241
00:17:30,480 --> 00:17:33,840
ูŠุณุงูˆูŠ ุงุซู†ูŠู† ู‡ุชุณุงูˆูŠ ุงุซู†ูŠู† ูˆุจุนุฏูŠู† ุฒุงุฆุฏ ูˆุงุญุฏ ุงู„ู„ูŠ
242
00:17:33,840 --> 00:17:40,240
ูŠุณุงูˆูŠ ุซู„ุงุซุฉ ุฅุฐุง ุงู„ุฌูˆุงุจ ุชุจุนู†ุง ุซู„ุงุซุฉ ู‡ุฐู‡ ุชูุถู„ุชู†ูŠุด
243
00:17:40,240 --> 00:17:47,540
ู„ู„ุชูƒุงู…ู„ุงุช evaluate the integral ุงู„ุชูƒุงู…ู„ E 2X - E 2 - X DX
244
00:17:47,540 --> 00:17:51,760
ุงู„ุชูƒุงู…ู„ E 2X
245
00:17:51,760 --> 00:17:58,700
E 2X ุนู„ู‰ ุชูุงุถู„ ุงู„ุฃุณ ุนู„ู‰ ุงุซู†ูŠู† ุฃูˆ ุจู†ุญูˆู„ู‡ุง ู„ U ุจุณ ู…ุด
246
00:17:58,700 --> 00:18:03,320
ุญุงุฑุฒุฉ ู†ุญูˆู„ู‡ุง ู„ U ู„ุฅู†ู‡ ู…ุถุฑูˆุจุฉ ุจ constant ุงุซู†ูŠู† X ููŠ
247
00:18:03,320 --> 00:18:06,260
ุงู„ุชูุงุถู„ ุจู†ุถุฑุจ ููŠ ุงุซู†ูŠู† ููŠ ุงู„ุชูƒุงู…ู„ ุจู†ู‚ุณู… ุนู„ู‰ ุงุซู†ูŠู†
248
00:18:06,830 --> 00:18:10,210
ุจุนุฏูŠู† ุงู„ E ุฃุณ ู†ุงู‚ุต X ุชูƒุงู…ู„ู‡ุง E ุฃุณ ู†ุงู‚ุต X ุนู„ู‰
249
00:18:10,210 --> 00:18:14,410
ุชูุงุถู„ ุงู„ุฃุณ ุงู„ู„ูŠ ู‡ูŠ ุณุงู„ุจ ูุจุชุตูŠุฑ ู‡ู†ุง ุฅูŠุด ู…ูˆุฌุจุฉ ุทุจุนู‹ุง
250
00:18:14,410 --> 00:18:19,870
ููŠ ุงู„ุขุฎุฑ ุจู†ุญุท ุฒุงุฆุฏ C evaluate the integral ุชูƒุงู…ู„ ู…ู†
251
00:18:19,870 --> 00:18:25,410
ู†ุงู‚ุต ูˆุงุญุฏ ู„ุฃุฑุจุนุฉ X E ุฃุณ X ุชุฑุจูŠุน DX ู„ุฃู† ู‡ู†ุง ู„ุฃู† ู‡ุฐู‡
252
00:18:25,410 --> 00:18:29,450
X ุชุฑุจูŠุน function ูุจู†ูุฑุถ ุฅูŠุงู‡ุง ุจู†ุนู…ู„ ุจุงู„ุชุนูˆูŠุถ ู†ูุฑุถ
253
00:18:29,450 --> 00:18:33,210
ุจุงู„ุฃูˆู„ XุŒ U ุชุณุงูˆูŠ X ุชุฑุจูŠุน ูŠุจู‚ู‰ U ุชุณุงูˆูŠ X ุชุฑุจูŠุน ูˆ dU
254
00:18:33,210 --> 00:18:38,230
ุชุณุงูˆูŠ 2X DX ุงู„ุขู† ุฅูŠุด ุจูŠุตูŠุฑ ุงู„ุชูƒุงู…ู„ E ุฃุณ X ุชุฑุจูŠุน
255
00:18:38,230 --> 00:18:43,550
ุฅูŠู‡ E ุฃุณ UุŒ X DX ุงู„ู„ูŠ ู‡ูŠ ุจูŠุตูŠุฑ dU ุนู„ู‰ 2 ูŠุนู†ูŠ ู‡ู†ุง ููŠ
256
00:18:43,550 --> 00:18:48,730
ู†ุตู ุจุฑู‡ ุงู„ุขู† ููŠ ุญุฏูˆุฏ ุชูƒุงู…ู„ ุจู†ุบูŠุฑ ุญุฏูˆุฏ ุงู„ุชูƒุงู…ู„ ู„ู…ุง
257
00:18:48,730 --> 00:18:53,610
ู†ู‚ู„ X ุชุณุงูˆูŠ ุณุงู„ุจ 1 ูุงู„ U ุชุณุงูˆูŠ ูˆุงุญุฏ ู„ู…ุง ุงู„ X ุชุณุงูˆูŠ
258
00:18:53,610 --> 00:18:56,710
ุฃุฑุจุนุฉ ุจุชุตูŠุฑ ุฃุฑุจุนุฉ ุชุฑุจูŠุน ุงู„ U ุชุณุงูˆูŠ 16 ูŠุจู‚ู‰
259
00:18:56,710 --> 00:19:00,670
ุงู„ุชูƒุงู…ู„ ุชุจุนู†ุง ู…ู† ูˆุงุญุฏ ุฅู„ู‰ 16 ุงู„ุขู† ุตุงุฑุช ุงู„ุชูƒุงู…ู„
260
00:19:00,670 --> 00:19:04,770
ูˆุงุญุฏ ุฅู„ู‰ 16 E ุฃุณ U dU ููŠู†ูุฐ ุชูƒุงู…ู„ E ุฃุณ UุŒ E
261
00:19:04,770 --> 00:19:08,650
ุฃุณ U ู†ูุณู‡ุง ู…ู† ูˆุงุญุฏ ุฅู„ู‰ 16 ุจุนุฏูŠู† ุจู†ุนูˆุถ ุนู† ุงู„ U
262
00:19:08,650 --> 00:19:12,350
ู…ู† 16 ู†ุงู‚ุต ุงู„ุชุนูˆูŠุถ U ุชุณุงูˆูŠ ูˆุงุญุฏ E ุฃุณ ูˆุงุญุฏ
263
00:19:16,320 --> 00:19:20,280
ุจุฑุถู‡ ูƒู…ุงู† ุชูƒุงู…ู„ ู…ุญุฏูˆุฏ ุงู„ุชูƒุงู…ู„ ู…ู† ุตูุฑ ุฅู„ู‰ ุจุงูŠ ุนู„ู‰
264
00:19:20,280 --> 00:19:26,220
ุฃุฑุจุนุฉ E ุฃุณ Sec X Sec X Tan X DX ุทุจุนู‹ุง ูˆุงุถุญ ุฅู†ู‡ ุจุฏูŠ
265
00:19:26,220 --> 00:19:31,020
ุขุฎุฐ Sec X ุชุณุงูˆูŠ U ุฅุฐุง ู…ู† ู‡ู†ุง dU ุชุณุงูˆูŠ ุชูุงุถู„ ุงู„ Sec
266
00:19:31,020 --> 00:19:37,700
ุงู„ู„ูŠ ู‡ูŠ Sec Tan ุทูŠุจ ุงู„ุขู† ุจุฏู†ุง ู†ุดูˆู ุงู„ุชูƒุงู…ู„ ู„ุฃู†
267
00:19:37,700 --> 00:19:42,600
ุงู„ุชูƒุงู…ู„ ุจุฏู†ุง ู†ุญุท ุจุฏู„ ุงู„ู„ูŠ ู‡ูˆ E ุฃุณ U ูˆู‡ุฐุง ูƒู„ู‡
268
00:19:42,600 --> 00:19:47,120
ุฅูŠุด dU ูุตุงุฑ ุงู„ุชูƒุงู…ู„ ุชุจุนู†ุง E ุฃุณ U dU ุงู„ุขู† ุญุฏูˆุฏ
269
00:19:47,120 --> 00:19:52,180
ุงู„ุชูƒุงู…ู„ ู„ู…ุง ุงู„ X ุชุณุงูˆูŠ ุตูุฑ Sec ุงู„ุตูุฑ ูˆุงุญุฏ ู„ู…ุง ุงู„ X
270
00:19:52,180 --> 00:19:54,620
ุชุณุงูˆูŠ ุจุงูŠ ุนู„ู‰ ุฃุฑุจุนุฉ Sec ุงู„ ุจุงูŠ ุนู„ู‰ ุฃุฑุจุนุฉ ุงู„ู„ูŠ ู‡ูˆ
271
00:19:54,620 --> 00:19:58,360
ุฌุฐุฑ ุงู„ุงุซู†ูŠู† ุฅุฐุง ุจูŠุตูŠุฑ E ุฃุณ U ู…ู† ูˆุงุญุฏ ุฅู„ู‰ ุฌุฐุฑ ุงุซู†ูŠู†
272
00:19:58,360 --> 00:20:02,840
ูˆุจู†ุนูˆุถ ุนู† U ุฌุฐุฑ ุงุซู†ูŠู† ู†ุงู‚ุต ุงู„ุชุนูˆูŠุถ E ุฃุณ ูˆุงุญุฏ ู†ุงู‚ุต
273
00:20:02,840 --> 00:20:09,520
E ุฃุณ ูˆุงุญุฏ ูƒู…ุงู† ุณุคุงู„ ุงู„ evaluate the integral ุชูƒุงู…ู„
274
00:20:09,520 --> 00:20:13,700
ูˆุงุญุฏ ุนู„ู‰ E ุฃุณ ู†ุงู‚ุต X ุฒุงุฆุฏ ุฃุฑุจุนุฉ DX ุทุจุนู‹ุง ุฏู„ูŠู„
275
00:20:13,700 --> 00:20:18,060
ุงู„ุชูƒุงู…ู„ ู‡ุฐุง ูƒูŠู ุจุฏุฃ ุฃูƒุงู…ู„ู‡ุŸ ูŠุนู†ูŠ ุงู„ E ู…ูˆุฌูˆุฏุฉ ููŠ
276
00:20:18,060 --> 00:20:20,960
ุงู„ู…ู‚ุงู… ุงู„ู…ูุฑูˆุถ ุงู„ุชูุงุถู„ ู‡ูŠูƒูˆู† ู…ูˆุฌูˆุฏ ููŠ ุงู„ numerator ู„ูˆ
277
00:20:20,960 --> 00:20:23,680
ุฃู†ุง ุจุฏูŠ ุฃุนุฑู ุฃูƒุงู…ู„ ู„ูƒู† ุงู„ุชูุงุถู„ ู…ุด ู…ูˆุฌูˆุฏ ููŠ ุงู„ numerator
278
00:20:23,680 --> 00:20:27,160
ุฅูŠุด ุจุฏู†ุง ู†ุนู…ู„ ู„ุงุฒู… ู†ูˆุฌุฏ ุฅูŠุด ููŠ ุงู„ numerator ุนุดุงู† ู†ูˆุฌุฏ
279
00:20:27,160 --> 00:20:32,860
ุฅูŠุด ููŠ ุงู„ numerator ูˆู‡ูŠ ุจุฑุถู‡ ูŠุจู‚ู‰ ุงู„ู…ู‚ุงู… ุงู„ numerator ุจูŠุทู„ุน
280
00:20:32,860 --> 00:20:37,520
ุชูุงุถู„ ุงู„ู…ู‚ุงู… ุจุฏู†ุง ู†ุถุฑุจ E ุฃุณ X ุนู„ู‰ E ุฃุณ X ุฅูŠุด ุจูŠุตูŠุฑ
281
00:20:37,520 --> 00:20:43,080
ู‡ู†ุง ุงู„ู€ bus ุจูŠุตูŠุฑ ููŠ E ูˆ X DX ุงู„ู…ู‚ุงู… E ูˆ X ููŠ E
282
00:20:43,080 --> 00:20:47,690
ูˆ ุณุงู„ุจ X ูŠุนู†ูŠ ุชุฌู…ุน ุงู„ุฃุณุณ ู†ุงู‚ุต x ุฒุงุฆุฏ x ุงู„ู„ูŠ ู‡ูŠ ุตูุฑ
283
00:20:47,690 --> 00:20:50,870
ูŠุนู†ูŠ ุฅูŠู‚ูˆุณ ุตูุฑ ุงู„ู„ูŠ ู‡ูŠ ูˆุงุญุฏ ูŠุจู‚ู‰ ู‡ู†ุง ุฅูŠุด ุฃูˆู„ ุดูŠุก
284
00:20:50,870 --> 00:20:55,030
ูˆุงุญุฏ ูˆ ุจุนุฏูŠู† ุฃุฑุจุนุฉ ุถุฑุจ ุฅูŠู‚ูˆุณ ุฅูƒุณ ูŠุจู‚ู‰ ู†ุถุฑุจ ุงู„ู€ ุฅูŠู‚ูˆุณ
285
00:20:55,030 --> 00:21:00,490
ุฅูƒุณ ููŠ ุงู„ู€ termูŠู† ู‡ุฏูˆู„ ูุจุทู„ุน ุฃุฑุจุนุฉ ุฅูŠู‚ูˆุณ ุฅูƒุณ ุทูŠุจ
286
00:21:00,490 --> 00:21:05,510
ุงู„ุขู† ุตุงุฑ ุนู†ุฏูƒ ุฅูŠุด ุงู„ู€ bus ู…ูˆุฌูˆุฏ ุชูุงุถู„ ุงู„ู…ู‚ุงู… ุฅุฐุง ู„ูˆ
287
00:21:05,510 --> 00:21:09,590
ุฃุฎุฏู†ุง ุงู„ู…ู‚ุงู… ูŠุณุงูˆูŠ U U ุชุณุงูˆูŠ ูˆุงุญุฏ ุฒุงุฆุฏ ุฃุฑุจุนุฉ ุฅูŠู‚ูˆุณ
288
00:21:09,590 --> 00:21:14,520
ุฅูƒุณ ุฏูŠ U ุฅูŠุด ุชุณุงูˆูŠุŸ ุจูŠุตูŠุฑ ุทุจุนุง ุชูุงุถู„ ุงู„ู€ 1 ุตูุฑ ุจุนุฏูŠู†
289
00:21:14,520 --> 00:21:19,240
4EOSXDX ุงู„ุขู† ุงู„ุชูƒุงู…ู„ ุจูŠุตูŠุฑ ุงู„ุขู† ุงู„ู„ูŠ ุงุชุณู‡ู„ ุงู„ู…ุตู
290
00:21:19,240 --> 00:21:24,180
ู‡ูˆ ุนุจุงุฑุฉ ุนู† DU ุนู„ู‰ 4 EOSXDX ุงู„ู„ูŠ ู‡ูˆ DU ุนู„ู‰ 4 ุนู„ู‰
291
00:21:24,180 --> 00:21:29,900
ุงู„ู…ู‚ุงู… U ูุจูŠุตูŠุฑ ุงู„ุชูƒุงู…ู„ DU ุนู„ู‰ U ุฅูŠุด ุชูƒุงู…ู„ู‡ุŸ ู„ุฃู† ุงู„ู€
292
00:21:29,900 --> 00:21:33,200
absolute U ุฒุงุฆุฏ C ูˆ ุจู†ุดูŠู„ U ููŠ ุงู„ุขุฎุฑ ูˆ ุจู†ุทุจู‚
293
00:21:33,200 --> 00:21:36,970
ู…ุฏุงู„ู‡ุง 1 ุฒุงุฆุฏ 4 EOSX ุทุจุนุง ู‡ู†ุง ุจุฃู† ุงู„ู…ู‚ุงู… ุงู„ู„ูŠ ..
294
00:21:36,970 --> 00:21:40,790
ุงู„ู…ู‚ุฏุงุฑ ู‡ุฐุง ุงู„ู„ูŠ ุฌูˆุง ู…ูˆุฌุจ ูู…ู…ูƒู† ู…ุง ุฃุญุทุด absolute
295
00:21:40,790 --> 00:21:46,570
value ุฃูˆ ุฃุฎู„ูŠ ุงู„ู€ absolute value ุนุงุฏูŠู‹ุง ุทูŠุจ ุฃู†ุง ุชูˆู‘
296
00:21:46,570 --> 00:21:49,630
ุงุณุชุฎุฏู…ุช ู‚ุงู†ูˆู† ููŠ ุงู„ู€ exponential ูˆ ู‚ุจู„ ู…ุง ุงุญู†ุง
297
00:21:49,630 --> 00:21:53,170
ู†ู‚ูˆู„ู‡ ู„ูƒู† ู‡ู†ุง ุจุฏู†ุง ู†ู‚ูˆู„ู‡ ุงู„ุขู† ุฅูŠุด ู‚ูˆุงู†ูŠู† ุงู„ู€
298
00:21:53,170 --> 00:22:00,990
exponential function For all numbers x ูˆ x ูˆ x1 ูˆ x2,
299
00:22:01,110 --> 00:22:04,390
the natural exponential eร—x obeys the following
300
00:22:04,390 --> 00:22:09,430
laws. ู‡ูŠ ุงู„ู‚ูˆุงู†ูŠู† ุชุจุนุช ุงู„ู€ exponential. eร—x1 ุถุฑุจ
301
00:22:09,430 --> 00:22:13,690
eร—x2 ููŠ ุงู„ุถุฑุจ ู†ู†ู‚ู„ ุชุฌู…ุน ุงู„ุฃุณุณ. ู‚ุงุนุฏุฉ ุญูุธูŠู†ู‡ุง ู…ู†
302
00:22:13,690 --> 00:22:19,090
ุฒู…ุงู† ู…ู† ุงู„ู…ุฏุฑุณุฉ ุฃู† eร—x1 ุถุฑุจ eร—x2 ู…ุถุฑูˆุจูŠู† ุถุฑุจ
303
00:22:19,090 --> 00:22:24,020
ุฅุฐุง ุงู„ุฃุณุณ ุฅูŠุด ู†ุฌู…ุนู‡. eร—x1 ุฒุงุฆุฏ x2 E ุฃุณ ุณุงู„ุจ X ู‡ูŠ
304
00:22:24,020 --> 00:22:27,520
ุนุจุงุฑุฉ ุนู† ูˆุงุญุฏ ุนู„ู‰ E ุฃุณ X ูุฏูŠ ู‚ูˆู„ู†ุงู‡ุง ู‚ุจู„ ุดูˆูŠุฉ ู„ุฃู†
305
00:22:27,520 --> 00:22:30,960
ููŠ ุงู„ู‚ุณู…ุฉ ุชุชุฑุญู‰ ุงู„ุฃุณุณ ูƒู…ุงู† ู‡ุฐู‡ ู‚ุงุนุฏุฉ ุงุญู†ุง ุนุงุฑููŠู†ู‡ุง
306
00:22:30,960 --> 00:22:34,460
E ุฃุณ X ูˆุงุญุฏ ุนู„ู‰ E ุฃุณ X ุงุชู†ูŠู† ูŠุณุงูˆูŠ E ุฃุณ X ูˆุงุญุฏ
307
00:22:34,460 --> 00:22:38,800
ู†ุงู‚ุต X ุงุชู†ูŠู† ูŠุจู‚ู‰ ููŠ ุงู„ุทุฑุญ ููŠ ุงู„ู‚ุณู…ุฉ ุชุชุฑุญู‰ ุงู„ุฃุณุณ
308
00:22:38,800 --> 00:22:42,440
ู„ุฃู† ููŠ ุงู„ุถุฑุจ ู‡ู†ุง ุถุฑุจ ู†ุถุฑุจ ุงู„ุฃุณุณ ุจุฑุถู‡ ุทุจุนุง E ุฃุณ X
309
00:22:42,440 --> 00:22:46,620
ูˆุงุญุฏ ููŠ R E ุฃุณ R ููŠ X ูˆุงุญุฏ ูˆ X is a rational
310
00:22:46,620 --> 00:22:53,190
function rational constant ุทูŠุจ ู†ุดูˆู ุนู„ู‰ ุงู„ู€
311
00:22:53,190 --> 00:22:58,050
properties Simplify the expression E ุฃูุณ 2 ู„ู† ุงู„ู€
312
00:22:58,050 --> 00:23:02,830
X ู†ุงู‚ุต ู„ู† ุงู„ู€ T ุงู„ุขู† ุจุฏู†ุง ู†ุจุณุท ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ู„ุฃู† ู‡ุฐู‡
313
00:23:02,830 --> 00:23:09,150
E ู†ุงู‚ุต E ุฃูุณ ู…ุซู„ู‹ุง X1 ู†ุงู‚ุต X2 ุฒูŠ ู‡ูŠูƒ ูŠุจู‚ู‰ ู‡ู†ุง ู…ู…ูƒู†
314
00:23:09,150 --> 00:23:13,070
ุฃู†ุง ุฃูˆุฒุนู‡ู… ุจุงู„ุดูƒู„ ู‡ุฐุง ุฃูˆ ุฃุนู…ู„ู‡ู… ู‚ุณู…ุฉ ุงู„ุทุฑุญ ุจุชุญูˆู„
315
00:23:13,070 --> 00:23:17,920
ุฅู„ู‰ ู‚ุณู…ุฉ ุงู„ุฌู…ุน ุจุชุญูˆู„ ุฅู„ู‰ ุถุฑุจ ูˆู…ู…ูƒู† ุฃุญูˆู„ู‡ุง ู„ุถุฑุจ
316
00:23:17,920 --> 00:23:22,700
ูˆุงุฎุชูŠุงุฑ ุงู„ุฅุดุงุฑุฉ ุงู„ุณุงู„ุจ ูŠุนู†ูŠ ุงุนุชุจุฑ 2 ู„ู† ุงู„ู€ X ุฒุงุฆุฏ
317
00:23:22,700 --> 00:23:27,420
ู†ุงู‚ุต ู„ู† ุงู„ู€ X ุฃูˆ ุงุฎุชูŠุงุฑู‡ุง ููŠ ุงู„ู…ู‚ุงู… ูˆุงุฎุชูŠุงุฑู‡ุง ู‚ุณู…ู‡ุง
318
00:23:27,420 --> 00:23:32,140
ุงุญู†ุง ู†ุญูˆู„ู‡ุง ู„ุถุฑุจ ุจู‡ุฐุง ุงู„ุดูƒู„ E ุฃูุณ 2 ู„ู† X ุถุฑุจ E ุฃูุณ
319
00:23:32,140 --> 00:23:37,000
ู†ุงู‚ุต ู„ู† T ุงู„ุขู†ู‡ุง E ุฃูุณ ู„ู† X ุชุฑุจูŠุน ุทุจุนุง ุงู„ุงุชู†ูŠู† ู‡ู†ุง
320
00:23:37,000 --> 00:23:41,540
ุชูŠุฌูŠ ุนู„ู‰ X ูุจุชุตูŠุฑ E ุฃูุณ ู„ู† X ุชุฑุจูŠุน ูˆู‡ุฐุง ุงู„ู†ุงู‚ุต
321
00:23:41,540 --> 00:23:46,500
ุจุชุตูŠุฑ T ุฃูุณ ุณุงู„ุจ ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูŠ 1 ุนู„ู‰ T ู„ูŠู‡ ุดูู†ุง ุนู…ู„ู†ุง
322
00:23:46,500 --> 00:23:49,960
ุงู„ูƒู„ุงู…ุŸ ุนุดุงู† ุงู„ู€ E ูˆ ุงู„ู€ Lin ูŠูƒูˆู†ูˆุง inverse ู„ุจุนุถุŒ
323
00:23:49,960 --> 00:23:53,640
ูŠุถูŠุนูˆุง ุจุนุถุŒ ูŠุทู„ุน X ุชุฑุจูŠุน E ู…ุน ู„ู† ุจุฑูˆุญ ู…ุน ุจุนุถุŒ ุจุธู„ู‘
324
00:23:53,640 --> 00:23:57,360
1 ุนู„ู‰ TุŒ ูŠุจู‚ู‰ ุงู„ุฌูˆุงุจ ุชุจุนูŠ X ุชุฑุจูŠุน ุนู„ู‰ T
325
00:24:00,980 --> 00:24:04,140
ุงู„ุขู† ู‡ู†ุง ูƒู…ุงู† ู‡ูŠู†ุง ุจุฏู†ุง ู†ุฌูŠุจ ุฅูŠุด ุฅูŠุด ู‡ูŠ ุงู„ู€ F
326
00:24:04,140 --> 00:24:08,100
inverse ุตูŠุบุฉ ุงู„ู€ F inverse ูˆ ุงู„ู€ F of X ุนู†ุฏู†ุง ู…ุด ุจุณ
327
00:24:08,100 --> 00:24:10,800
ุงู„ุญุงุฌุงุช ุงู„ุฌุจุฑูŠุฉ ู„ุฃ ุตุงุฑ ููŠ Transiental function
328
00:24:10,800 --> 00:24:14,880
ููŠู‡ุง E ุฃุณ 3X ุฒุงุฆุฏ 2 ูˆ ุจุนุฏูŠู† ุฒุงุฆุฏ 1 ูŠุจู‚ู‰ ุณุงูŠู†
329
00:24:14,880 --> 00:24:18,520
ุงุณุชุฎุฏู…ู†ุง ุงู„ู€ Transiental function ู‡ุฐู‡ ุนู„ุดุงู† ุฃูˆุฌุฏ ุงู„ู€
330
00:24:18,520 --> 00:24:23,060
F inverse ุทุจุนุง ุฃูˆู„ ุฎุทูˆุฉ ุฎุทูˆุฉ ุจุญุท Y ุชุณุงูˆูŠ ู‡ุฐุง
331
00:24:23,060 --> 00:24:26,860
ุงู„ู…ู‚ุฏุงุฑ ูŠู„ูŠ F of X ุจุนุฏูŠู† ุฅูŠุด ุจู†ุนู…ู„ุŸ ุจู†ุญู„ ุงู„ู…ุนุงุฏู„ุฉ
332
00:24:26,860 --> 00:24:30,620
ุจุงู„ู†ุณุจุฉ ู„ู€ X ูŠุนู†ูŠ ุจุฏูŠ ุฃูˆุฌุฏ X ููŠ ุทุฑู ูˆ ุงู„ุจุงู‚ูŠ ููŠ
333
00:24:30,620 --> 00:24:33,340
ุงู„ุทุฑู ุงู„ุขุฎุฑ ุงู„ุขู† ู†ุฌูŠุจ ุงู„ูˆุงุญุฏ ุนู„ู‰ ุงู„ุฌุงู†ุจ ุงู„ุซุงู†ูŠ
334
00:24:33,340 --> 00:24:37,520
ุจุนุฏูŠู† ุจุฏูŠ ุฃู†ุง ุงู„ู€ X ูƒูŠู ุฃุฌูŠุจ ุงู„ู€ XุŸ ู„ุงุฒู… ุฃุชุฎู„ุต ู…ู† ุงู„ู€
335
00:24:37,520 --> 00:24:41,460
E ู„ู…ุง ู„ุงุฒู… ุฃุงุฎุฏ ุงู„ู€ Lin ู„ู„ุทุฑููŠู† ูุจู†ู‚ูˆู„ Lin ุงู„ู€ E ู‚ุณ
336
00:24:41,460 --> 00:24:45,500
3X ุฒุงุฆุฏ ุงุซู†ูŠู† ูŠุณุงูˆูŠ Lin ูƒู„ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุฎู„ูˆุง ุจุงู„ูƒู… ู…ุด
337
00:24:45,500 --> 00:24:48,980
ูŠู‚ูˆู„ูˆุง Lin ุงู„ู€ Y ู„ุญุงู„ู‡ุŒ Lin ุงู„ู€ ูˆุงุญุฏ ู„ุญุงู„ู‡ุŒ ู„ุฃ ูƒู„ู‡
338
00:24:48,980 --> 00:24:53,110
ู„ุงุฒู… ุฃุงุฎุฏ ุงู„ู€ Lin ู„ูƒู„ ุงู„ู…ู‚ุฏุงุฑ ุงู„ุขู† ุงู„ู€ Lin ูˆ ุงู„ู€ E
339
00:24:53,110 --> 00:24:57,670
ุจุถูŠุนูˆุง ู‡ุฏูˆู„ ุจุนุถ ุจุธู„ู‘ ุงู„ุฃุณ ู‡ู†ุง 3x ุฒุงุฆุฏ 2 ูŠุณุงูˆูŠ Lin Y
340
00:24:57,670 --> 00:25:01,490
ู†ุงู‚ุต 1 ุฅุฐุง ู…ู† ู‡ู†ุง ุจู†ูˆุฏู‘ูŠ ุงู„ุงุชู†ูŠู† ุนู„ู‰ ุงู„ุฌุงู†ุจ ุงู„ุซุงู†ูŠ
341
00:25:01,490 --> 00:25:06,130
ูˆ ุจู†ู‚ุณู… ุนู„ู‰ ุชู„ุงุชุฉ ูุจุทู„ุน ุนู†ุฏู†ุง ุงู„ู€ X ุขุฎุฑ ุฎุทูˆุฉ ู‡ูŠุฎู„ุต
342
00:25:06,130 --> 00:25:10,210
ู…ู† ุญู„ ุงู„ุฎุทูˆุฉ ุงู„ุซุงู†ูŠุฉ ุฃู†ูŠ ุจุฏูŠ ุฃุดูŠู„ X ูˆ ุฃุญุท ุจุฏุงู„ู‡ุง Y
343
00:25:10,210 --> 00:25:14,190
ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† F inverse of X ูŠุณุงูˆูŠ ุจุดูŠู„ ู…ู† ู‡ู†ุง
344
00:25:14,190 --> 00:25:18,990
Y ูˆ ุฃุญุท ุจุฏุงู„ู‡ุง X ูˆุจุงู„ุชุงู„ูŠ ุจุญุชู„ ุนู„ู‰ F inverse of X
345
00:25:18,990 --> 00:25:28,260
ุณุคุงู„ ุชู„ุงุชุฉ Sol4t ู„ุฃู† ุฃู†ุง ุจุฏูŠ ุฃูˆุฌุฏ ู‡ูŠูƒ ููŠ ุทุฑู ูˆ ูƒู„ู‡
346
00:25:28,260 --> 00:25:36,060
ููŠ ุงู„ุทุฑู ุงู„ุขุฎุฑ ุงู„ุขู† E-XยณE2X ุฒุงุฆุฏ
347
00:25:36,060 --> 00:25:39,460
ูˆุงุญุฏ ูŠุณุงูˆูŠ E ุฃูุณ T ุทุจุนุง ู…ู† ุงู„ู‚ูˆุงู†ูŠู† ุชุจุนุช ุงู„ู€
348
00:25:39,460 --> 00:25:43,280
exponential ุฃู† ุงู„ุฃุณุณ ุชุฌู…ุน ูุจู†ุฑูˆุญ ุฅูŠุด ุฌู…ุนูŠู† ุงู„ุฃุณุณ
349
00:25:43,280 --> 00:25:47,710
ุงู„ู„ูŠ ู‡ู†ุง E ุฃูุณ X ุชุฑุจูŠุน ุฒุงุฆุฏ ูˆุงุญุฏ ูŠุณุงูˆูŠ E ุฃูุณ T ุงู„ุขู†
350
00:25:47,710 --> 00:25:51,370
ุฃู†ุง ุจุฏูŠ T ูุจุงู„ุชุงู„ูŠ ุจุฏูŠ ุขุฎุฐ ุงู„ู€ Lin ู„ู„ุทุฑููŠู† ุงู„ุขู†
351
00:25:51,370 --> 00:25:56,190
Lin ู…ุน ุงู„ู€ E ู‡ู†ุง ุงุฎุชุตุฑู†ุง ุงู„ู‚ุทุฉ Lin ู„ู„ุทุฑููŠู† Lin E
352
00:25:56,190 --> 00:25:59,530
ุฃูุณ ู‡ุฐู‡ ุจูŠุทู„ุน ุงู„ุฃูุณ ุงู„ู„ูŠ ููˆู‚ ูŠุณุงูˆูŠ Lin E ุฃูุณ T
353
00:25:59,530 --> 00:26:03,790
ุงู„ู„ูŠ ู‡ูˆ ุจูŠุทู„ุน ูŠุณุงูˆูŠ T ูˆุจุงู„ุชุงู„ูŠ ูˆุฌุฏู†ุง T ุจุฏู„ุงู„ุฉ ุงู„ู€ X
354
00:26:09,150 --> 00:26:12,530
ุทูŠุจุŒ ุงู„ุขู† ุงุญู†ุง ู‡ุฐูŠูƒ ุณู…ูŠู†ุงู‡ุง ุฅูŠุด ุงู„ู€ Exponential
355
00:26:12,530 --> 00:26:15,750
Function ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ Natural Exponential Function
356
00:26:15,750 --> 00:26:18,610
ููŠ ุนู†ุฏู†ุง Function ุซุงู†ูŠุฉ ุงุณู…ู‡ุง ุงู„ู€ General
357
00:26:18,610 --> 00:26:22,770
Exponential Function ุทุจุนุง ู‡ูŠ ุฒูŠ ุงู„ู€ E ุจุณ ุงู„ู€ E ู…ู‚ุฏุงุฑ
358
00:26:22,770 --> 00:26:27,250
ูˆุงุญุฏ ู…ุนุฑูˆู ุงู„ู„ูŠ ู‡ูˆ 2 ูˆ 7 ู…ู† 10 ูˆู„ูƒู† ุงุญู†ุง ุจุฏู†ุง ู†ุนู…ู… ุงู„ู€
359
00:26:27,250 --> 00:26:30,150
Exponential Function ู‡ุฐู‡ ู†ุนู…ู„ู‡ุง ุชุนู…ูŠู… ู†ุนู…ู„ู‡ุง
360
00:26:30,150 --> 00:26:33,910
General Exponential Function ู†ุญุท ุจุฏู„ ุงู„ู€ E ุฃูŠ ุนุฏุฏ
361
00:26:33,910 --> 00:26:40,280
ู…ูˆุฌุจ ุจุฏู„ ุงู„ู€ E ุฃูŠ ุนุฏุฏ ู…ูˆุฌุจ ูŠูƒูˆู† ู…ุซู„ู‹ุง A ุฃูุณ X ุฅุฐุง
362
00:26:40,280 --> 00:26:43,820
ุจุฏู„ ุงู„ู€ E ุฃูุณ X ุฃูŠ ู…ุนุฑูˆูุฉ ุงู„ุนุฏุฏ ุชุจุนู‡ุง 2 ุณุจุนุฉ ู…ู†
363
00:26:43,820 --> 00:26:48,280
ุนุดุฑุฉ ุจุฏู†ุง ู†ุณุชุฎุฏู… ู„ุฃูŠ ุนุฏุฏ ู…ูˆุฌุจ ุงู„ู„ูŠ ู‡ูˆ A ูุจู†ุตูŠุฑ A
364
00:26:48,280 --> 00:26:53,760
ุฃูุณ X ู„ุฃูŠ A ู…ูˆุฌุจุฉ ุงู„ุขู† ุงู„ู€ A ู‡ูŠ ุฃุตู„ู‹ุง ุชุณุงูˆูŠ E ู„ู† ุงู„ู€
365
00:26:53,760 --> 00:26:58,220
A ู‡ูŠ ุนุจุงุฑุฉ ุนู† E ู„ู† A ุงู„ู€ E ู…ุน ุงู„ู€ E ุจุถูŠูˆููˆุง ุนู„ู‰
366
00:26:58,220 --> 00:27:01,560
ุจุนุถ ุจุฑุฌุนุด ุงู„ู€ A ู…ุนุฑูˆู ููŠ ู‡ุฐุง ุงู„ูƒู„ุงู… for any
367
00:27:01,560 --> 00:27:07,490
positive number A ุงู„ุขู† ู„ูˆ ุฑูุนู†ุงู‡ุง A ุฃูุณ X ู‡ูŠ ุนุจุงุฑุฉ
368
00:27:07,490 --> 00:27:11,310
ุนู† .. ูŠุนู†ูŠ ุจุฏู†ุง ู†ุญุทู‡ุง A ุฃูุณ X ุฅุฐุง ู„ู† ุงู„ู€ A ุจุฏู†ุง
369
00:27:11,310 --> 00:27:15,590
ู†ุถุฑุจู‡ุง ุฅูŠุด ููŠ X ูุจุชุตูŠุฑ E ุฃูุณ ู„ู† ุงู„ู€ A ู†ุถุฑุจู‡ุง ุฅูŠุด
370
00:27:15,590 --> 00:27:20,290
ููŠ X ูŠุนู†ูŠ ู†ูƒุชุจู‡ุง ุจุดูƒู„ ุขุฎุฑ E ุฃูุณ X ู„ู† ุงู„ู€ A ูŠุจู‚ู‰ ุงู„ู€
371
00:27:20,290 --> 00:27:25,590
A ุฃูุณ X ู‡ูŠ ุนุจุงุฑุฉ ุนู† E ุฃูุณ X ู„ู† ุงู„ู€ A ูˆู‡ูŠ ู…ูˆุฌูˆุฏุฉ ู‡ุฐุง
372
00:27:25,590 --> 00:27:29,890
ุงู„ูƒู„ุงู… ููŠ ุงู„ู€ definition we therefore use the
373
00:27:29,890 --> 00:27:31,890
function E equals X to define the other
374
00:27:31,890 --> 00:27:35,270
exponential functions which allow us to raise any
375
00:27:35,270 --> 00:27:39,730
positive number to an irrational exponent ุฅุฐู† ู…ุนู†ู‰
376
00:27:39,730 --> 00:27:45,750
ู‡ุฐุง ุงู„ูƒู„ุงู… ุฃู†ู‡ ู„ุฃูŠ ุนุฏุฏ A ุฃูƒุจุฑ ู…ู† ุงู„ุตูุฑ ูˆ X ูˆ X
377
00:27:45,750 --> 00:27:49,870
ุฃูŠ ุนุฏุฏ ุทุจุนุง ุฃูŠ ู…ุชุบูŠุฑ the exponential function
378
00:27:49,870 --> 00:27:53,150
with base A ุฃูˆ ุจู†ุณู…ูŠู‡ general exponential function
379
00:27:53,390 --> 00:27:57,630
ุงู„ู„ูŠ ุจุงู„ู‚ุงุนุฏุฉ ุชุจุนุชู‡ A A ุฃูุณ X ุชุนุฑูŠูู‡ุง ุจุฏู„ุงู„ุฉ ุงู„ู€ E
380
00:27:57,630 --> 00:28:02,090
ู‡ูŠ E ุฃูุณ X ู„ู† ุงู„ู€ A E ุฃูุณ ุงู„ุฃูุณ ู…ู† ุงู„ุฃุณุงุณ E ุฃูุณ
381
00:28:02,090 --> 00:28:07,390
ุงู„ุฃูุณ ู…ู† ุงู„ุฃุณุงุณ ุงุญูุธ ุจุบุงูŠุฉ A ุฃูุณ X ุชุณุงูˆูŠ ุฃูŠ ุดูŠุก
382
00:28:07,390 --> 00:28:10,830
ู‡ูŠูƒ ุงู„ู€ exponential ู‡ูŠ ุนุจุงุฑุฉ ุนู† E ุฃูุณ ุงู„ุฃูุณ ู…ู†
383
00:28:10,830 --> 00:28:16,690
ุงู„ุฃุณุงุณ ุทุจุนู‹ุง ู‡ู†ุง ู„ูˆ ุญุทูŠู†ุง ุจุฏู„ ุงู„ู€ A ุญุทูŠู†ุง ุจุฏู„ู‡ุง E
384
00:28:16,690 --> 00:28:21,410
ูุจุชุตูŠุฑ ู‡ู†ุง ู„ู† ุงู„ู€ E ูˆุงุญุฏ ูุจุชุตูŠุฑ E ุฃูุณ X ูˆู‡ุฐุง E ุฃูุณ
385
00:28:21,410 --> 00:28:22,310
X ู…ุชุณุงูˆูŠุฉ
386
00:28:25,710 --> 00:28:32,750
ุทูŠุจ ู„ูˆ ุฃุฌูŠู†ุง ู†ุณุชุฎุฏู… ู‡ุฐู‡ ุงู„ู‚ุงุนุฏุฉ ุงู„ู„ูŠ ุญูƒูŠู†ุงู‡ุงู„ู€ X
387
00:28:32,750 --> 00:28:38,150
ุฃูุณ N X ู…ุชุบูŠุฑ ูˆ ุงู„ู€ N ุงู„ู„ูŠ ู‡ูŠ ุงู„ุซุงุจุช X ุฃูุณ N ุฅูŠุด
388
00:28:38,150 --> 00:28:43,230
ุชุณุงูˆูŠ E ุฃูุณ ุงู„ุฃูุณ ู…ู† ุงู„ุฃุณุงุณ E ุฃูุณ N ู„ู† ุงู„ู€ X E ุฃูุณ
389
00:28:43,230 --> 00:28:49,190
N ู„ู† ุงู„ู€ X ูˆุจุงู„ุชุงู„ูŠ I ู…ู…ูƒู† ู†ุณุชุฎุฏู…ู‡ุง ููŠ ุชูุงุถู„ X ุฃูุณ
390
00:28:49,190 --> 00:28:54,710
N ู„ุฃูŠ ุนุฏุฏ ุญู‚ูŠู‚ูŠ N ูุชูุงุถู„ X ุฃูุณ N ู„ุฃูŠ ุนุฏุฏ ุญู‚ูŠู‚ูŠ N
391
00:28:54,710 --> 00:29:01,990
ูŠุณุงูˆูŠ N X ุฃูุณ N ู†ุงู‚ุต 1 ู„ุฃูŠ ุนุฏุฏ X ุฃูƒุจุฑ ู…ู† ุงู„ุตูุฑ ูˆุฅุฐุง
392
00:29:01,990 --> 00:29:07,830
ูƒุงู†ุช X ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ุตูุฑ ู†ุณุชุฎุฏู… ู‚ุงุนุฏุฉ ุงู„ุชูุงุถู„ ู‡ุฐู‡
393
00:29:07,830 --> 00:29:13,870
ู„ุฃู† X ุฃูุณ N ูˆ X ุฃูุณ N ู†ุงู‚ุต ูˆุงุญุฏ ูŠูƒูˆู†ูˆุง ู…ูˆุฌูˆุฏูŠู† ุฅุฐุง
394
00:29:13,870 --> 00:29:21,170
ู…ู…ูƒู† ุชุญูˆูŠู„ X ุฃูุณ N ุฅู„ู‰ ุงู„ู€ Exponential ูƒู…ุงู† ุบูŠุฑ A ุฃูุณ
395
00:29:21,170 --> 00:29:28,430
X ู…ู…ูƒู† ุฃู‚ูˆู„ X ุฃูุณ function of X ูƒู…ุงู† X ุฃูุณ F of X ุจุณ
396
00:29:28,430 --> 00:29:31,550
ุงู„ู€ X ู‡ุฐู‡ ุจุฑุถู‡ ุงู„ู„ูŠ ููŠ ุงู„ู‚ุงุนุฏุฉ ุฏุงูŠู…ุฉ ููŠ ุงู„ุจูŠุงุฒ
397
00:29:31,550 --> 00:29:35,590
ู„ุงุฒู… ุชูƒูˆู† ู…ูˆุฌุจุฉ ู‡ุฐู‡ ู…ุนุฑูุฉ ุจุณ ุจุดุฑุท ุฃู† ุงู„ู€ X ุงู„ู„ูŠ ู‡ู†ุง
398
00:29:35,590 --> 00:29:39,990
ุชูƒูˆู† ุฅูŠุด ู…ูˆุฌุจุฉ ุงู„ุขู† ุจุฏูŠ ุฃู†ุง ุฃูุงุถู„ ู…ุซู„ู‹ุง X ุฃูุณ F
399
00:29:39,990 --> 00:29:43,750
of X ูƒูŠู ุจุฏูŠ ุฃูุงุถู„ู‡ุงุŸ ุจู†ุญูˆู„ู‡ุง ุฅูŠุด ู„ู„ู€ E ูุจู†ู‚ูˆู„
400
00:29:43,750 --> 00:29:49,090
ู‡ุฐู‡ ุนุจุงุฑุฉ ุนู† E ุฃูุณ ุงู„ุฃูุณ ู„ู† ุงู„ุฃุณุงุณ E ุฃูุณ F of X ู„ู†
401
00:29:49,090 --> 00:29:52,960
ุงู„ู€ X for any function f of x ู„ูƒู† ุงู„ู€ x ู„ุงุฒู… ุชูƒูˆู†
402
00:29:52,960 --> 00:29:56,020
ุงู„ู€ x ุงู„ู„ูŠ ู‡ู†ุง ู„ุงุฒู… ุชูƒูˆู† ุฅูŠุด ู…ูˆุฌุจุฉ ุจู„ูƒู† ุงู„ู€ f of x
403
00:29:56,020 --> 00:29:59,800
ู…ุด ู…ุดูƒู„ุฉ ุฅูŠุด ู…ุง ุชูƒูˆู† ุทูŠุจ ู…ุนู†ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ู„ู…ุง ุฃู†ุง
404
00:29:59,800 --> 00:30:03,220
ุฃุจุฏุฃ ุฃูุงุถู„ ุงู„ู€ x ุฃูุณ f of x ุจู‚ุฏุฑุด ุฃูุงุถู„ู‡ุง ุจุงู„ุดูƒู„ ู‡ุฐุง
405
00:30:03,220 --> 00:30:07,260
ูŠุนู†ูŠ ู…ุง ุฃู‚ูˆู„ุด ู‡ุฐู‡ f of x x ุฃูุณ f of x ู†ุงู‚ุต ูˆุงุญุฏ ู„ุฃ
406
00:30:07,260 --> 00:30:11,700
ู‡ุฐุง ุงู„ูƒู„ุงู… ุฎุงุทุฆ ุฌุฏุง ูƒูŠู ุฃุจุฏุฃ ุฃูุงุถู„ ู‡ุฐู‡ ุจุฑูˆุญ ุจุญูˆู„ู‡ุง
407
00:30:11,700 --> 00:30:16,240
ู„ู„ู€ E ุจู‚ูˆู„ E ุฃูุณ ุงู„ุฃูุณ ู„ู† ุงู„ุฃุณุงุณ E ุฃูุณ f of x ู„ู† ุงู„ู€
408
00:30:16,240 --> 00:30:21,880
X ูˆ ุจู†ูุงุถู„ ู‡ุฐู‡ ุฒูŠ ุงู„ุฃู…ุซู„ุฉ ุงู„ู„ูŠ ุฃุฎุฐู†ุงู‡ุง ู‚ุจู„ ู‡ูŠูƒ ุทูŠุจ
409
00:30:21,880 --> 00:30:25,020
ุงู„ุขู† ู‚ูˆุงู†ูŠู† ุงู„ู€ exponential ุงู„ู€ A ุฃูุณ X ุงู„ู„ูŠ ู‡ูŠ
410
00:30:25,020 --> 00:30:27,200
ุงู„ู€ General Exponential Function ู‡ูŠ ู†ูุณ ู‚ูˆุงู†ูŠู† ุงู„ู€
411
00:30:27,200 --> 00:30:31,580
E ููŠ ุงู„ุถุฑุจ ุชุฌู…ุน ุงู„ุฃุณูˆุณ ููŠ ุงู„ู‚ุณู…ุฉ ููŠ ุทุฑุญ ุงู„ุฃุณูˆุณ
412
00:30:31,580 --> 00:30:35,860
ูˆุงุญุฏ ุนู„ู‰ ู‡ูŠ ุนุจุงุฑุฉ ุนู† E ุฃูุณ ู†ุงู‚ุต X ูˆุงุญุฏ ููŠ ุงู„ุถุฑุจ
413
00:30:35,860 --> 00:30:39,460
ู‡ู†ุง ุฏู‚ูŠู‚ุด ู…ุถุฑุจ ุงู„ุฃุณูˆุณ ุชุชุจุนู‡ุง E ุฃูุณ X ูˆุงุญุฏ ูƒู„ู‡ุง
414
00:30:39,460 --> 00:30:44,060
ู…ุถุฑุจ X ุงุชู†ูŠู† ูŠุนุจุฑ ุนู† A ุฃูุณ X ูˆุงุญุฏ ููŠ X ุงุชู†ูŠู† ุฏุนูŠู†ุง
415
00:30:44,060 --> 00:30:50,000
ู†ุดูˆู ุงู„ุฃู…ุซู„ุฉ Find dy by dx if Y ุชุณุงูˆูŠ X ุฃูุณ X
416
00:30:50,000 --> 00:30:56,390
ุชุฑุจูŠุน ุงู„ุขู† ู…ุชุบูŠุฑ ุฃูุณ ู…ุชุบูŠุฑ ู‡ุฐูŠ ุตุงุฑุช ู…ุชุบูŠุฑ ุฃูุณ ู…ุชุบูŠุฑ
417
00:30:56,390 --> 00:30:59,470
ุนุดุงู† ุฃู†ุง ุฃูุงุถู„ ู…ุชุบูŠุฑ ุฃูุณ ู…ุชุบูŠุฑ ุจู‚ุฏุฑุด ุฃู†ุง ุฃูุงุถู„ู‡
418
00:30:59,470 --> 00:31:02,870
ุจุฃูŠ ุทุฑูŠู‚ุฉ ุฅู„ุง ุฅู†ูŠ ุฃุญุงูˆู„ ู„ู‡ ุฅูŠู‡ุŸ ุฏู‡ ุงู„ู€ E ูุจู†ุญุงูˆู„ู‡
419
00:31:02,870 --> 00:31:07,110
ู„ู„ู€ E ุจุฅู†ู‡ E ุฃูุณ ุงู„ุฃูุณ ู„ู† ุงู„ุฃุณุงุณ E ุฃูุณ X ุชุฑุจูŠุน ู„ู†
420
00:31:07,110 --> 00:31:11,110
ุงู„ู€ X ุฅุฐู† Y' ุชุณุงูˆูŠ ุฅูŠู‡ุŸ E ุฃูุณ ุงู„ุฃูุณ ู„ู† ุงู„ุฃุณุงุณ ุงู„ู€ E
421
00:31:11,110 --> 00:31:15,630
ู‡ูŠ ู†ูุณู‡ุง ููŠ ุชูุงุถู„ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุฃุณ ุงู„ุฃูˆู„ู‰ ููŠ ุชูุงุถู„
422
00:31:15,630 --> 00:31:19,000
ุงู„ุชุงู†ูŠุฉ ร— ุชูุงุถู„ ู„ู† ุงู„ู€ E ูˆุงุญุฏ ุนู„ู‰ X ุฒุงุฆุฏ
423
00:31:19,000 --> 00:31:23,740
ุงู„ุชุงู†ูŠุฉ ู„ูŠู† ุงู„ู€ X ููŠ ุชูุงุถู„ ุงู„ุฃูˆู„ู‰ 2X ุทุจุนุง ู…ู…ูƒู†
424
00:31:23,740 --> 00:31:27,540
ู†ุจุณุทู‡ุง ุฃูˆ ูƒู…ุงู† ุฎุทูˆุฉ ู„ุงุฒู… ู‡ุฐู‡ ู†ุนู…ู„ู‡ุง ุงู„ู€ E ู‡ุฐู‡ ุงู„ู„ูŠ
425
00:31:27,540 --> 00:31:31,620
ุญุทู…ู‡ุง ู„ุงุฒู… ู†ุฑุฌุนู‡ุง ู„ุฃุตู„ู‡ุง ุงู„ู„ูŠ ู‡ูŠ X ุฃุณ X ุชุฑุจูŠุน
426
00:31:31,620 --> 00:31:36,540
ูุจุชุตูŠุฑ ู‡ุฐู‡ X ุฃุณ X ุชุฑุจูŠุน ููŠ X ุฒุงุฆุฏ 2X ู„ูŠู† ุงู„ู€ X
427
00:31:40,730 --> 00:31:46,550
Find dy by dx if y ุชุณุงูˆูŠ ู„ุฅู† x ุฃุณ e ุฃุณ x ุงู„ุขู†
428
00:31:46,550 --> 00:31:51,510
ุจุฑุถู‡ ู…ุชุบูŠุฑ ุฃุณ ู…ุชุบูŠุฑ ุงู„ุงุชู†ูŠู† ู…ุชุบูŠุฑูŠู† ู„ูƒู† ู„ูˆ ู…ุชุบูŠุฑ
429
00:31:51,510 --> 00:31:56,090
ุฃุณ ุซุงุจุช x ุฃุณ n ู‡ุฐู‡ ุชูุงุถู„ู‡ุง ุฒูŠ ุงู„ูƒู„ูƒู„ุณ a n x ุฃุณ
430
00:31:56,090 --> 00:32:01,910
n ู†ุงู‚ุต ูˆุงุญุฏ ูˆู„ูƒู† ุฅุฐุง ูƒุงู† ุงู„ู…ุชุบูŠุฑ ุชุจุนูŠ ู„ุฅู† ู…ุชุบูŠุฑ
431
00:32:01,910 --> 00:32:05,550
ุฃุณ ู…ุชุบูŠุฑ ู„ุฃ ู„ุงุฒู… ู†ุญูˆู„ู‡ุง ู„ู€ e ุจุงู„ุฃูˆู„ ูˆุจุนุฏูŠู† ู†ูุงุถู„
432
00:32:05,550 --> 00:32:10,020
ูƒูŠู ู†ุญูˆู„ ู„ู€ e E ุฃุณ ุงู„ุฃุณ ุงู„ุฃุณ ุชุจุน e ุฃุณ x ู„ู†
433
00:32:10,020 --> 00:32:14,000
ุงู„ุฃุณุงุณ ู„ู† ุงู„ุฃุณุงุณ ุงู„ุฃุณุงุณ ุชุจุนูŠ ู„ู† ุงู„ู€ X ูˆู‡ูŠ ู„ู† ูˆูƒู…ุงู†
434
00:32:14,000 --> 00:32:17,340
ู„ู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ุฃุณุงุณ ุชุจุนูŠ ู„ู† ุงู„ู€ X ูˆุจุชูุงุถู„ ู‡ุฐู‡
435
00:32:17,340 --> 00:32:21,700
ุงู„ุฃู†ูˆุงุน y ุจุฑุงูŠู… ุชุณุงูˆูŠ ุงู„ู€ E ู†ูุณู‡ุง ููŠ ุชูุงุถู„ ุงู„ุฃุณ ุงูŠุด
436
00:32:21,700 --> 00:32:26,780
ุชูุงุถู„ ุงู„ุฃุณ ุจุชุงุนู†ุง ุงู„ู„ูŠ ู‡ูŠ E ุฃุณ X ุงู„ุฃูˆู„ู‰ ุงู„ุฃูˆู„ู‰ ููŠ
437
00:32:26,780 --> 00:32:30,060
ุชูุงุถู„ ู‡ุฐู‡ ุงูŠุด ุชูุงุถู„ ู‡ุฐู‡ ุจูุงุถู„ ู„ู† ุงู„ุฃูˆู„ู‰ ุจุนุฏูŠู†
438
00:32:30,060 --> 00:32:33,900
ุชูุงุถู„ ู„ู† ุงู„ุชุงู†ูŠุฉ ุชูุงุถู„ ู„ู† ุงู„ุฃูˆู„ู‰ ูˆุงุญุฏ ุนู„ู‰ ู‡ุฐุง ูˆุงุญุฏ
439
00:32:33,900 --> 00:32:38,880
ุนู„ู‰ ู„ู† ุงู„ู€ X ููŠ ุชูุงุถู„ ู„ู† ุงู„ุชุงู†ูŠุฉ 1 ุนู„ู‰ X ูŠุจู‚ู‰ E OSX 1
440
00:32:38,880 --> 00:32:44,160
ุนู„ู‰ ู„ู† ุงู„ู€ X ููŠ 1 ุนู„ู‰ X ุฒุงุฆุฏ ุงู„ุชุงู†ูŠุฉ ููŠ ุชูุงุถู„
441
00:32:44,160 --> 00:32:47,800
ุงู„ุฃูˆู„ู‰ ุฒุงุฆุฏ ู„ู† ู„ู† ุงู„ู€ X ููŠ ุชูุงุถู„ ุงู„ู€ E ุงู„ุชูŠ ู‡ูŠ E
442
00:32:47,800 --> 00:32:52,440
ู†ูุณู‡ุง ูˆุงู„ุฎุทูˆุฉ ุงู„ุฃุฎูŠุฑุฉ ุงู„ู„ูŠ ู„ุงุฒู… ู†ุนู…ู„ู‡ุง ู†ุฑุฌุน ุงู„ู€ E
443
00:32:52,440 --> 00:32:59,200
ู„ู„ function ู†ูุณู‡ุง ูˆู†ุถุน ู‡ุฐุง ุงู„ู€ E OS ุฒูŠ ู…ุง ู‡ูˆ ูƒู…ุงู†
444
00:32:59,200 --> 00:33:04,220
ุณุคุงู„ ุฃูˆ ุฌุฏูŠุฏ ุจุฑุถู‡ y prime ุจุฑุถู‡ ู†ูุณ ุงู„ุดูŠุก cosine x
445
00:33:04,220 --> 00:33:08,220
ุฃุณ ู„ุฅู† ุงู„ู€ x ุฒุงุฆุฏ e ุฃุณ x function ุฃุณ function
446
00:33:08,220 --> 00:33:12,020
ู…ุชุบูŠุฑ ุฃุณ ู…ุชุบูŠุฑ ุนุดุงู† ุงู„ูุนุถ ุงู„ู‡ุงุฏูŠ ู„ุงุฒู… ู†ุญูˆู„ู‡ุง ู„ู„ู€
447
00:33:12,020 --> 00:33:17,840
E E ุฃุณ ุงู„ ุฃุณ ู„ุฅู† ุงู„ุฃุณุงุณ ู„ุฅู† ุงู„ู€ cosine ู„ุฃู† ุนุดุงู†
448
00:33:17,840 --> 00:33:25,280
ุงู„ูุนุถ ุงู„ู‡ุงุฏูŠ ุงู„ู€ E ู†ู‚ู„ E ุชูุงุถู„ู‡ุง ุจู€ E ููŠ R ููŠ .. ุงู„ู„ูŠ
449
00:33:25,280 --> 00:33:28,780
ู‡ูŠ ุงู„ู€ E .. ุงู„ู€ E .. ุงู„ู€ E ุชูุงุถู„ .. ุงู„ู€ E ุฃุณ ู‡ุฐุง ูƒู„ู‡
450
00:33:51,560 --> 00:33:55,500
ุทุจุนุง ู‡ุฐุง ูŠุนู†ูŠ ู…ู…ูƒู† ุชุจุณุทูŠ ุฃูˆ ุชุฎู„ูŠ ุฒูŠ ู…ุง ู‡ูˆ ู…ุซู„ุง sin
451
00:33:55,500 --> 00:34:00,610
ุนู„ู‰ cosine ู…ุซู„ุง ู…ุซู„ุชุงู† ูˆุงู„ุจุงู‚ูŠ ุฒูŠ ู…ุง ู‡ูˆ ูˆุงู„ู€ E ู‡ุฐูŠ
452
00:34:00,610 --> 00:34:07,310
ุจู†ุฑุฌุนู‡ุง ู„ู†ูุณ ุงู„ู€ function ุงู„ุณุงุจู‚ุฉ ุจุฑุถู‡
453
00:34:07,310 --> 00:34:12,730
ุฃูˆุฌุฏ dy by dx if y ุชุณุงูˆูŠ 1 ุนู„ู‰ x ุฃุณ x ุฒุงุฆุฏ ู„ู† ุณูƒ
454
00:34:12,730 --> 00:34:17,070
E ุฃุณ 3x ู„ุฃู† 1 ุนู„ู‰ x ุฃุณ x ุจุฑุถู‡ ู…ุชุบูŠุฑ ุฃุณ ู…ุชุบูŠุฑ
455
00:34:17,070 --> 00:34:20,990
ู‚ุจู„ ู…ุง ู†ูุงุถู„ ุงู„ู„ูŠ ู„ุงุฒู… ู†ุญูˆู„ ู‡ุฐู‡ ู„ู„ู€ E ูุจุตูŠุฑ E ุฃุณ
456
00:34:20,990 --> 00:34:26,030
ุงู„ุฃุณ ู„ู† ุงู„ุฃุณุงุณ ุฒุงุฆุฏ ุงู„ุซุงู†ูŠ ุญูŠุซ ุงู„ุขู† ุจู†ูุงุถู„ ุงู„ู€ Y
457
00:34:26,030 --> 00:34:30,650
ุจุฑุงูŠู… ุชุณุงูˆูŠ ุงู„ู€ E ุจุฑุถู‡ ู†ูุณู‡ุง ุชูุงุถู„ู‡ุง E ุฃู†ุง ุนุดุงู† ุนู…ู„ุช
458
00:34:30,650 --> 00:34:33,770
ุจุณ ู‡ู†ุง ุจุฏู„ู‡ุง ุฏูŠ ู…ุง ู†ุฎู„ูŠู‡ุง ูˆุงุญุฏ ุนู„ู‰ X ูˆ ู†ู‚ุนุฏ ู†ูุงุถู„
459
00:34:33,770 --> 00:34:37,530
ููŠ ูˆุงุญุฏ ุนู„ู‰ X ู„ู† ุงู„ูˆุงุญุฏ ุนู„ู‰ X ู‡ูŠ ู†ุงู‚ุต ู„ู† ุงู„ู€ X ูŠุจู‚ู‰
460
00:34:37,530 --> 00:34:40,930
ู‡ูŠ ู†ุงู‚ุต ูˆู‡ุฐู‡ ู„ู† ุงูŠุด ุงู„ู€ X ู‡ูŠ ู†ุธุจุทู‡ุง ู‡ู†ุง ู„ู† ุงูŠุด ุงู„ู€
461
00:34:40,930 --> 00:34:46,710
X ูŠุจู‚ู‰ ู‡ุฐู‡ ู†ุงู‚ุต X ู„ู† ุงู„ู€ X ู„ู† ุงู„ู€ ูˆุงุญุฏ ุนู„ู‰ X ุญุงุทู†ุงู‡ุง
462
00:34:46,710 --> 00:34:51,030
ู†ุงู‚ุต ู„ู† ุงู„ู€ X ููŠ ุชูุงุถู„ ุงู„ุฃุณูู„ ุงู„ุฃูˆู„ู‰ ู†ุงู‚ุต X ููŠ
463
00:34:51,030 --> 00:34:55,510
ุชูุงุถู„ ู„ู† ุงู„ู€ X ุงู„ู„ูŠ ู‡ูŠ ูˆุงุญุฏ ุนู„ู‰ X ู†ุงู‚ุต ู†ุงู‚ุต ุงู„ู„ูŠ ู‡ูŠ
464
00:34:55,510 --> 00:35:00,390
ู†ุงู‚ุต ู‡ุฐู‡ ู„ู† ุงู„ู€ X ููŠ ุชูุงุถู„ ุงู„ู€ X ุงู„ู„ูŠ ู‡ูŠ ูˆุงุญุฏ ุฒุงุฆุฏ
465
00:35:00,390 --> 00:35:04,770
ู„ู† ุณูƒ ุชู„ุงุชุฉ ุฃุณ X ููŠ ุฃู†ู‡ุง ุชู„ุงุชุฉ composite ู…ุน ุจุนุถ ุฃูˆ
466
00:35:04,770 --> 00:35:09,570
ุฃูŠ ุดูŠุก ู†ูุงุถู„ ู„ู† ูˆุงุญุฏ ุนู„ู‰ ู‡ุฐุง ูƒู„ู‡ ููŠ ุชูุงุถู„ ุงู„ุณูƒ ุณูƒ
467
00:35:09,570 --> 00:35:14,210
ุชุงู† ูŠุจู‚ู‰ ุฃุซุงุฑุฉ ู‡ู†ุง ุงูŠุด ุณูƒ ุชุงู† ุณูƒ ุงู„ู€ E ุชุงู† ุงู„ู€ E
468
00:35:14,210 --> 00:35:18,230
ููŠ ุชูุงุถู„ ุงู„ู€ E ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ E ู†ูุณู‡ุง ู…ุถุฑูˆุจุฉ ููŠ ุชู„ุงุชุฉ
469
00:35:18,230 --> 00:35:22,760
ูˆุงุฎุฑ ูุทูˆุฉ ุจู†ุนู…ู„ู‡ุง ุฃู†ู‡ ุงู„ู€ E ุจู†ุฑุฌุนู‡ุง ู„ู„ู€ function
470
00:35:22,760 --> 00:35:26,400
ู†ูุณู‡ุง 1 ุนู„ู‰ X ุฃุณ X ููŠู‡ ู…ู…ูƒู† ู‡ู†ุง ู„ู‚ูŠู†ุง ุดุฌุฑุฉ
471
00:35:26,400 --> 00:35:30,320
ุจู†ุจุณุทู‡ุง ุจู†ุฎุชุตุฑ ุงู„ู€ X ู…ู† ู‡ู†ุง ู‡ุฐู‡ ุงู„ุณูƒุช ุจุชุฎุชุตุฑ ู…ุน
472
00:35:30,320 --> 00:35:34,280
ุงู„ุณูƒุช ุงู„ู„ูŠ ู‡ู†ุง ุจู†ุธู„ ู‡ูƒุฐุง ูˆู‡ุฐู‡ ู…ุดุชูˆุจุฉ ู‡ู†ุง ููŠ E ุฃุณ
473
00:35:34,280 --> 00:35:42,590
3X ูˆู‡ูŠ ุงู„ุชู„ุงุชุฉ ูุงู„ุขุฎุฑ ู…ุซุงู„ Y ุจูŠุณุงูˆูŠ X ุฃุณ ูˆุงุญุฏ ู†ุงู‚ุต
474
00:35:42,590 --> 00:35:46,450
E ุทุจุนุง ู‡ู†ุง ุงูŠุด ุจู†ู„ุงุญุธ ุนู„ูŠู‡ุง ุฏู‡ X ูˆุงุญุฏ ู†ุงู‚ุต E ุงู„ู€ E
475
00:35:46,450 --> 00:35:51,130
ู‡ุฐูŠ ุนุฏุฏ 2 ูˆ7 ู…ู† 10 ูŠุนู†ูŠ X ุฃุณ N ู‡ุฐูŠ X ุฃุณ ุนุฏุฏ ุฒูŠ X
476
00:35:51,130 --> 00:35:56,050
ุชุฑุจูŠุน X ุชูƒูŠู‘ู† ุงูŠุด ูƒุชุจ ู†ูุงุถู„ู‡ุง ุงู„ู„ูŠ ู‡ูŠ ูˆุงุญุฏ ู†ุงู‚ุต E
477
00:35:56,050 --> 00:36:00,950
ู„ุงูŠู‡ ุงู„ู€ N X ุฃุณ N ู†ุงู‚ุต ูˆุงุญุฏ ูุจุชุตูŠุฑ ูˆุงุญุฏ ู†ุงู‚ุต E X ุฃุณ
478
00:36:00,950 --> 00:36:04,910
ูˆุงุญุฏ ู†ุงู‚ุต E ู†ุงู‚ุต ูˆุงุญุฏ ุจูŠุถู„ ุงูŠุด ู†ุงู‚ุต E ูุจู†ู„ุงุญุธ
479
00:36:04,910 --> 00:36:10,020
ู†ุชู„ุฎุจุท ููŠ ู…ุซู„ ู‡ุฐุง ุงู„ุณุคุงู„ ู‡ุฐุง X ุฃุณ N ูˆู„ูŠุณ X ุฃุณ
480
00:36:10,020 --> 00:36:15,240
ู…ุชุบูŠุฑ X ุฃุณ ุซุงุจุช ูุจุชูุงุถู„ ุจู‡ุฐุง ุงู„ุดูƒู„ ูˆุจู‡ูŠูƒ ู†ู‡ุงุฑ
481
00:36:15,240 --> 00:36:18,100
ุฎู„ุตู†ุง ูู‚ุท ู†ุต ุงู„ู€ section ุจูŠุจู‚ู‰ ู„ู†ุง ู†ุต ุงู„ุชุงู†ูŠ ู„ู„ู…ุฑุฉ
482
00:36:18,100 --> 00:36:18,820
ุงู„ุฌุงูŠ ุฅู† ุดุงุก ุงู„ู„ู‡