abdullah's picture
Add files using upload-large-folder tool
89c8873 verified
raw
history blame
58.5 kB
1
00:00:00,660 --> 00:00:03,000
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ุงู„ูŠูˆู… ุฅู† ุดุงุก ุงู„ู„ู‡ ู†ูƒู…ู„ ููŠ
2
00:00:03,000 --> 00:00:07,700
chapter 7 Transcendental Functions section 7-7 ุฑุงุญ
3
00:00:07,700 --> 00:00:12,060
ู†ุงุฎุฏ ุฌุฒุก ู…ู† ู‡ุฐุง ุงู„ู€ section ุงู„ู„ูŠ ู‡ูˆ ุจูŠุญูƒูŠ ุนู† ุงู„ู€
4
00:00:12,060 --> 00:00:16,420
hyperbolic functions hyperbolic functions ู„ุฃู† ููŠ
5
00:00:16,420 --> 00:00:20,140
ุนู†ุฏู†ุง ุฃู†ูˆุงุน ู…ู† ุงู„ู€ hyperbolic functions ุงู„ู„ูŠ ู‡ู… ุณุชุฉ
6
00:00:20,140 --> 00:00:23,700
ู…ู† ุงู„ู€ hyperbolic functions hyperbolic sine
7
00:00:23,700 --> 00:00:28,180
ูˆhyperbolic cosine ุฃูˆู„ ุงุซู†ุชูŠู† ุชุนุฑูŠู ุงู„ู€ hyperbolic
8
00:00:28,180 --> 00:00:32,040
sine ูˆhyperbolic cosine ุงุณู… hyperbolic sine ูˆุชูƒุชุจ
9
00:00:32,040 --> 00:00:39,000
ุจู‡ุฐุง ุงู„ุฑู…ุฒ Sin and then H ูˆ ุจู†ู†ูุฐู‡ุง sinh sinh x
10
00:00:39,000 --> 00:00:44,500
sinh x ูˆ cosine hyperbolic cosine ูˆ hyperbolic
11
00:00:44,500 --> 00:00:50,680
ุจู†ู†ูุฐู‡ุง cosh cosh x ุฅุฐุงู‹ ูู‡ูŠ sinh x ูˆ cosh x ุฅูŠุด
12
00:00:50,680 --> 00:00:54,560
ุงู„ู„ูŠ ู‡ูˆ ุชุนุฑูŠู ุงู„ู€ sinh ุฅูŠุด ู‡ูŠ ุงู„ู€ functions ุงู„ู„ูŠ ู‡ูŠ
13
00:00:54,560 --> 00:01:00,720
sin hyperbolic x ุงู„ู„ูŠ ู‡ูˆ sinh x ู‡ูŠ ุญุงุตู„ ุทุฑุญ e<sup>x</sup>
14
00:01:00,720 --> 00:01:06,020
ู†ุงู‚ุต e<sup>-x</sup> ุนู„ู‰ 2 ูŠุนู†ูŠ e<sup>x</sup> ู†ุตู‡ุง ุจุขุฎุฐู‡ุง ูˆ
15
00:01:06,020 --> 00:01:10,460
ุจุฃุทุฑุญู‡ุง ู…ู† e<sup>-x</sup> ุจุฑุถู‡ e<sup>-x</sup> ู†ุตู‡ุง ู„ูƒู† ุงู„ู€
16
00:01:10,460 --> 00:01:14,840
cosine hyperbolic X ุฃูˆ ุงู„ู„ูŠ ู‡ูŠ cosh X ู‡ูŠ ุนุจุงุฑุฉ ุนู†
17
00:01:14,840 --> 00:01:18,340
e<sup>x</sup> ุฒุงุฆุฏ e<sup>-x</sup> ุนู„ู‰ 2 ูŠุนู†ูŠ ู…ุฌู…ูˆุน ุงู„ู€
18
00:01:18,340 --> 00:01:21,840
two exponential functions ู‡ุฐูˆู„ ุงู„ุขู† ู„ูˆ ุฃุฌูŠ ู†ุดูˆู
19
00:01:21,840 --> 00:01:25,620
ุงู„ู„ูŠ ู‡ูˆ ุงู„ุฑุณูˆู…ุงุชู‡ู… ูˆ ูƒูŠู ุฃุฌูˆุง ู‡ุฐูˆู„ ุงู„ู€ sine
20
00:01:25,620 --> 00:01:29,510
hyperbolic ูˆ ุงู„ cosine hyperbolic ุงู„ุขู† ู‚ู„ู†ุง ุงู„ู€
21
00:01:29,510 --> 00:01:34,530
sinh x ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุญุงุตู„ ุทุฑุญ ุงู„ู€ e<sup>x</sup> ู‡ูŠ ุงู„ู€ e<sup> </sup>
22
00:01:34,530 --> 00:01:38,510
X ุจู†ุนุฑู ุฑุณู…ุชู‡ุง ุจู‡ุฐุง ุงู„ุดูƒู„ ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุฎุท ุงู„ู†ู‚ุท e<sup>x</sup>
23
00:01:38,510 --> 00:01:44,010
e<sup>-x</sup> ุนู„ู‰ 2 ุฑุงุญ ูŠูƒูˆู† ู‡ู†ุง ุทุจุนุงู‹ e<sup>-x</sup> ุฅูŠุด
24
00:01:44,010 --> 00:01:47,360
ู‡ูŠ ุงู„ู€ e<sup>-x</sup> ุŸ e<sup>-x</sup> ู‡ุฐู‡ ุงู„ู€ function
25
00:01:47,360 --> 00:01:51,120
ูŠุนู†ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† 1 ุนู„ู‰ e<sup>x</sup> ูˆุงุญุฏ ุนู„ู‰ e
26
00:01:51,120 --> 00:01:55,740
ู‚ูŠู…ุชู‡ุง ุฃู‚ู„ ู…ู† ูˆุงุญุฏ ูŠุนู†ูŠ ุฒูŠ a<sup>x</sup> ุฅุฐุง ูƒุงู†ุช ุงู„ู€ a
27
00:01:55,740 --> 00:02:00,980
ุฃู‚ู„ ู…ู† ูˆุงุญุฏ ูุจุชูƒูˆู† ุฑุณู…ุชู‡ุง ุจ .. ุจู‡ุฐุง ุงู„ุดูƒู„ ุจุชูŠุฌูŠ
28
00:02:00,980 --> 00:02:05,760
ู‡ูŠูƒ decreasing function ูˆ e<sup>-x</sup> ู„ุญุงู„ู‡ุง ุจุชู…ุฑ
29
00:02:05,760 --> 00:02:09,070
ูˆ e<sup>x</sup> ุจุชู…ู‘ุฑ ุจุงู„ู†ู‚ุทุฉ ูˆุงุญุฏ ู„ูƒู† ู„ู…ุง ู†ู‚ุณู… ุนู„ู‰ 2
30
00:02:09,070 --> 00:02:12,330
ุจูŠุตูŠุฑูˆุง ูŠู…ุฑู‘ูˆุง ุจุงู„ู†ู‚ุทุฉ ู†ุตู ูู‡ู†ุง ุฅูŠุด ุจูŠู‚ุทุนูˆุง ูŠุนู†ูŠ
31
00:02:12,330 --> 00:02:16,410
ุชู‚ุงุทุนู‡ุง ู…ุน ุงู„ู€ y-axis ุงู„ู„ูŠ ู‡ูˆ ู†ุตู ุงู„ุงุซู†ุชูŠู† ุงู„ู€ e<sup> </sup>
32
00:02:16,410 --> 00:02:20,490
ู†ุงู‚ุต X ู‚ู„ู†ุง ุจู‡ุฐุง ุงู„ุดูƒู„ ุจุชูŠุฌูŠ ู‡ู†ุง ูˆ ุงู„ู€ e<sup>x</sup> ุงู„ู„ูŠ
33
00:02:20,490 --> 00:02:24,350
ู‡ูŠ ู…ุฑุณูˆู…ุฉ ุจู‡ุฐุง ุงู„ุดูƒู„ ุงู„ุขู† ุจุฏู†ุง ู†ุญูˆู„ู‡ุง ุฅุญู†ุง ู„ุฌู…ูŠุน
34
00:02:24,350 --> 00:02:27,970
ูŠุนู†ูŠ e<sup>x</sup> ุนู„ู‰ 2 ูˆ ุจุฏู†ุง ู†ุทุฑุญ ู…ู†ู‡ุง e<sup>-x</sup> ุนู„ู‰
35
00:02:27,970 --> 00:02:32,430
2 ุงู„ุขู† ู‡ูŠ ุฑุณู…ุฉ ุฅูŠุด ุงู„ู€ e<sup>-x</sup> ุงู„ู„ูŠ ู‡ูŠ e<sup> </sup>
36
00:02:32,430 --> 00:02:36,600
ุงู„ู€ e<sup>-x</sup> ุนู„ู‰ 2 ู‡ูŠ ู‡ูŠูƒ ุงู„ุขู† ุจุฏูŠ ุฃุถุฑุจู‡ุง ููŠ
37
00:02:36,600 --> 00:02:39,420
ู†ุงู‚ุต ูŠุนู†ูŠ ุจุฏูŠ ุฃุนู…ู„ู‡ุง reflection ุญูˆุงู„ูŠู† ุงู„ู€ X-axis
38
00:02:39,420 --> 00:02:43,320
ูุฑุญ ุชูŠุฌูŠ ุฅูŠุด ุจู‡ุฐุง ุงู„ุดูƒู„ ุงู„ู†ู‚ุทุฉ ุงู„ู„ูŠ ู‡ูŠ ู†ุตู ุจุฏู‡ุง
39
00:02:43,320 --> 00:02:47,000
ุชุตูŠุฑ ู‡ู†ุง ุงู„ู†ู‚ุทุฉ ู†ุงู‚ุต ู†ุตู ูˆุจุฏู‡ุง ุชุชุนูƒุณ ุนู„ู‰ ุงู„ู€ X-axis
40
00:02:47,000 --> 00:02:49,820
ุจู‡ุฐุง ุงู„ุดูƒู„ ุงู„ุขู† ุงู„ู„ูŠ ุจุฏู†ุง ู†ุนู…ู„ู‡ ุฅุญู†ุง ุนุดุงู† ู†ุฑุณู… ุงู„ู€
41
00:02:49,820 --> 00:02:52,900
sinh ุจุฏู†ุง ู†ุฌู…ุน ู‡ุฐู‡ ุงู„ู€ function ูˆ ุงู„ู€ function ู‡ุฐู‡
42
00:02:52,900 --> 00:02:55,940
ุจุฏู†ุง ู†ุฌู…ุน ุงู„ู€ two functions ู‡ุฐูˆู„ ุงู„ุขู† ู…ุซู„ุงู‹ ุจุฏู†ุง
43
00:02:55,940 --> 00:02:59,020
ู†ุฌู…ุน ุงู„ู€ two functions ู…ุซู„ุงู‹ ู„ูˆ ุจุฏู†ุง ู…ู† ุนู†ุฏ ุฎู„ูŠู†ุง
44
00:02:59,020 --> 00:03:01,760
ู†ู‚ูˆู„ ู…ุงู„ุง ู†ู‡ุงูŠุฉ ุงู„ุขู† ู‡ุฐู‡ ููŠ ู…ุงู„ุง ู†ู‡ุงูŠุฉ ุชุณุนู‰
45
00:03:01,760 --> 00:03:04,360
ูˆู‡ุฐู‡ ู…ุงู„ุง ู†ู‡ุงูŠุฉ ูŠุจู‚ู‰ ุจูŠุทู„ุน ุฅูŠุด ู…ุฌู…ูˆุนู‡ู… ู…ุงู„ุง ู†ู‡ุงูŠุฉ
46
00:03:04,560 --> 00:03:10,980
ูŠูƒูˆู† ุงู„ุฎุท ู‚ุฑูŠุจ ู…ู† e<sup>x</sup> ุจุนุฏ ุฃูŠ ู†ู‚ุทุฉ ุซุงู†ูŠุฉ
47
00:03:10,980 --> 00:03:17,240
ู†ุฌู…ุนู‡ุง ู‡ู†ุง ุจุงู„ุณุงู„ุจ ูˆู‡ุฐู‡ ุจุงู„ู…ูˆุฌุจ ุงู„ู…ูˆุฌุจ ุฒุงุฆุฏ ุฌุฒุก
48
00:03:17,240 --> 00:03:21,840
ู‡ู†ุง ุจุงู„ุณุงู„ุจ ูุจูŠุทู„ุน ู†ู‚ุทุฉ ุฃู‚ู„ ู…ู†ู‡ ูุจูŠุฌูŠ ุฎุท ุชุญุช ุงู„ุฎุท
49
00:03:24,390 --> 00:03:29,590
ูˆู‡ูƒุฐุง ู„ุฃู† ู…ุซู„ุงู‹ ู‡ุฐุง ุงู„ุฌุฒุก ู‡ุฐุง ู‚ูŠู…ุฉ e<sup>x</sup> ุนู„ู‰ 2 ู‡ุฐุง
50
00:03:29,590 --> 00:03:32,930
ูˆุจุนุฏูŠู† ุจุฏูŠ ุฃุฌู…ุน ู„ู‡ ู‡ุฐุง ุงู„ุฌุฒุก ุจุงู„ุณุงู„ุจ ูุฑุญ ูŠู‚ู„
51
00:03:32,930 --> 00:03:37,140
ู‚ูŠู…ุชู‡ ุฑุญ ูŠุทู„ุน ุฅูŠุด ุฃู‚ู„ ู…ู† ุงู„ู…ู†ุญู†ู‰ ุงู„ู…ู†ู‚ุท ู‡ุฐุง ู…ุซู„ุงู‹
52
00:03:37,140 --> 00:03:41,820
ู†ู‚ุงุท ุงู„ุตูุฑ ุจุฏูŠ ุฃุฌู…ุน ู‡ุฐู‡ ุงู„ู†ุต ุนู†ุฏ ุงู„ุตูุฑ ู‡ุฐู‡ ู‚ูŠู…ุชู‡ุง
53
00:03:41,820 --> 00:03:46,160
ู†ุตู ูˆู‡ุฐู‡ ู‚ูŠู…ุชู‡ุง ู†ุงู‚ุต ู†ุตู ู†ุตู ูˆู†ุงู‚ุต ู†ุตู ุจูŠุทู„ุน ุตูุฑ
54
00:03:46,160 --> 00:03:51,060
ูŠุจู‚ู‰ ู‡ุฐู‡ ู‡ู†ุง ุจุชู…ุฑ ุจู†ู‚ุทุฉ ุงู„ุฃุตู„ ูˆู‡ูƒุฐุง ู‡ู†ุง ุจุฑุถู‡ ู„ุณู‡
55
00:03:51,060 --> 00:03:54,720
e<sup>x</sup> ูƒู„ู‡ุง ุจุงู„ู…ูˆุฌุจ ูˆุงู„ุซุงู†ูŠุฉ ุจุงู„ุณุงู„ุจ ุงู„ุขู† ู‡ุฐู‡ ู‡ู†ุง
56
00:03:54,720 --> 00:03:58,880
ุจุงู„ู…ูˆุฌุจ ูˆู‡ุฐู‡ ุจุงู„ุณุงู„ุจ ู„ูƒู† ู‚ูŠู…ุฉ ุงู„ุณุงู„ุจ ู‡ุฐุง ุฃูƒุซุฑ ู…ู†
57
00:03:58,880 --> 00:04:03,540
ุงู„ู…ูˆุฌุจ ูŠุนู†ูŠ ู‡ุฐุง ู‚ูŠู…ุชู‡ ุฃู‚ู„ ู…ู† ู†ุตู ู‡ุฐุง ู‚ูŠู…ุชู‡ ุฃูƒุซุฑ ู…ู†
58
00:04:03,540 --> 00:04:10,480
ุงู„ู†ุตู ุจุงู„ุณุงู„ุจ ุจุงู„ุชุงู„ูŠ ูŠุธู‡ุฑ ู…ุฌู…ูˆุน ุจุงู„ุณุงู„ุจ ูˆู‡ูƒุฐุง
59
00:04:13,630 --> 00:04:17,330
ุณุงู„ุจ ู…ุงู„ุง ู†ู‡ุงูŠุฉ ูุจูŠุฃุชูŠ ุงู„ุฎุท ุงู„ู€ sinh ูŠู‚ุชุฑุจ ู…ู† ุงู„ุฎุท
60
00:04:17,330 --> 00:04:21,250
ู‡ุฐุง ุงู„ู…ู†ู‚ุทุน ูู„ุงุญุธูˆุง ู‡ุฐู‡ ุงู„ู€ sinh ุชุดุจู‡ ุฑุณู…ุฉ ุงู„ู€ X
61
00:04:21,250 --> 00:04:26,850
ุชูƒุนูŠุจ ู‡ุฐู‡ ุฑุณู…ุฉ sinh x ู‡ูŠ ู‡ูŠ ุชุดุจู‡ ุฑุณู…ุฉ ุงู„ู€ X ุชูƒุนูŠุจ
62
00:04:26,850 --> 00:04:32,030
ูŠุนู†ูŠ ุงู„ู€ sinh ู‡ูŠ ุงู„ู€ domain ู„ูˆ ู„ุงุญุธู†ุง ุฌุฆู†ุง ุนู„ู‰ ุงู„ู€
63
00:04:32,030 --> 00:04:34,850
domain ุงู„ู€ domain ุจูŠุฃุฎุฐ ูƒู„ ุงู„ุฃุนุฏุงุฏ ุงู„ุญู‚ูŠู‚ูŠุฉ ูˆุงู„ู€
64
00:04:34,850 --> 00:04:38,870
range ูƒู…ุงู† ูƒู„ ุงู„ุฃุนุฏุงุฏ ุงู„ุญู‚ูŠู‚ูŠุฉ ูŠุจู‚ู‰ ุงู„ู€ domain R ูˆุงู„ู€
65
00:04:38,870 --> 00:04:42,970
range ุจุฑุถู‡ ู‡ูˆ ุนุจุงุฑุฉ ุนู† R ู„ุฃู† ู‡ูˆ ู…ุฌู…ูˆุน e<sup>x</sup>
66
00:04:42,970 --> 00:04:47,870
ุฃูˆ ุทุฑุญ ู†ุงู‚ุต e<sup>-x</sup> ูˆ ุจุขุฎุฐ ู†ุตู‡ู… ุงู„ุขู† ุจุฏุฃุช
67
00:04:47,870 --> 00:04:52,610
ู‡ูŠ e<sup>x</sup> ู‡ูŠ ู…ุนุฑูุฉ ุจุชุฃุฎุฐ ุงู„ู€ X ูƒู„ ุงู„ุฃุนุฏุงุฏ ุงู„ุญู‚ูŠู‚ูŠุฉ
68
00:04:52,610 --> 00:04:57,470
ูˆุงู„ู€ range ุชุจุนู‡ุง ุจูŠุทู„ุน ูƒู„ ุงู„ุฃุนุฏุงุฏ ุงู„ุญู‚ูŠู‚ูŠุฉ ุจู†ู„ุงุญุธ
69
00:04:57,470 --> 00:05:01,650
ุฃู† ุงู„ู€ essential ูŠุนู†ูŠ ู„ูŠุณุช periodic function ุฒูŠ ุงู„ู€
70
00:05:01,650 --> 00:05:06,270
sine ูŠุนู†ูŠ ู‡ูŠ ููŠู‡ุง sign hyperbolic ู„ูƒู† ู…ุง ุฃุฎุฐุชุด ู…ู†
71
00:05:06,270 --> 00:05:10,490
ุงู„ู€ sine ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ periodic ุฅู†ู‘ู‡ุง periodic
72
00:05:10,490 --> 00:05:16,310
function ู„ุฃ ู‡ูŠ ุฑุณู…ุฉ ูˆุงุญุฏุฉ ูู‚ุท ูˆู„ูŠุณ ู…ูƒุฑุฑุฉ ุงู„ุขู† ุงู„ู€
73
00:05:16,310 --> 00:05:20,590
cosine hyperbolic ุงู„ู€ cosh X ู‡ูŠ ุนุจุงุฑุฉ ุนู† e<sup>x</sup>
74
00:05:20,590 --> 00:05:25,170
ุฒุงุฆุฏ e<sup>-x</sup> ุนู„ู‰ 2 ุงู„ุขู† e ุจุฏูŠ ุฃุฌู…ุนู‡ู… ู‡ุฐูˆู„
75
00:05:25,170 --> 00:05:28,830
ูŠุนู†ูŠ ุจุฏูŠ ุฃุฎุฐ ู‡ุฐูˆู„ ุงู„ู…ู†ุญู†ูŠูŠู† ูˆ ุฃุฌู…ุนู‡ู… ูˆ ุฃู‚ุณู…ู‡ู… ุนู„ู‰
76
00:05:28,830 --> 00:05:32,610
2 ุงู„ุขู† ุงู„ู…ู†ุญู†ูŠูŠู† ู‡ุฐูˆู„ ู‡ูŠ ู‡ุฐุง ุงู„ู…ู†ุญู†ู‰ ู‡ูŠ e<sup>x</sup>
77
00:05:32,980 --> 00:05:37,700
ูˆู‡ูŠ ุงู„ู€ e<sup>-x</sup> ุนู„ู‰ 2 ู‡ู… ุจูŠู…ุฑู‘ูˆุง ุจุงู„ู†ู‚ุทุฉ ู†ุตู
78
00:05:37,700 --> 00:05:40,920
ุจูŠู…ุฑู‘ูˆุง ุจุงู„ู†ู‚ุทุฉ ู†ุตู ุงู„ุขู† ุจุฏูŠ ุฃุฎุฐ ู‡ุฐูˆู„ ุงู„ู…ู†ุญู†ูŠูŠู†
79
00:05:40,920 --> 00:05:44,620
ุงู„ู…ู†ู‚ุทูŠู† ู‡ุฐูˆู„ ุฃุฌู…ุนู‡ู… ู…ุซู„ุงู‹ ููŠ ู…ุงู„ุง ู†ู‡ุงูŠุฉ ู‡ุฐุง ุตูุฑ
80
00:05:44,620 --> 00:05:48,060
ูˆู‡ุฐุง ู…ุงู„ุง ู†ู‡ุงูŠุฉ ูุฑุญ ูŠุทู„ุน ุฅูŠุด ู…ุฌู…ูˆุนู‡ู… ู…ุงู„ุง ู†ู‡ุงูŠุฉ ุฑุญ
81
00:05:48,060 --> 00:05:52,740
ูŠุทู„ุน ุฎุท ู‡ุฐุง ุงู„ู€ cosh ุงู„ู„ูŠ ู‡ูˆ ู‚ุฑูŠุจ ู…ู† ุฎุท e<sup>x</sup> ุนู„ู‰ 2
82
00:05:52,740 --> 00:05:57,020
ูˆุจุนุฏูŠู† ุจุฃุฌู…ุน ูŠุนู†ูŠ ุจุฏูŠ ุฃุทู„ุน ู…ุซู„ุงู‹ ู‡ุฐู‡ ุนู†ุฏ ุงู„ูˆุงุญุฏ
83
00:05:57,020 --> 00:06:02,560
ู…ุซู„ุงู‹ ู‡ุฐู‡ ุงู„ู…ุณุงูุฉ ู„ู„ู…ู†ุญู†ู‰ ู‡ุฐุง ู‡ูŠ ุงู„ู…ุณุงูุฉ ู‡ุฐู‡ ุจุฏูŠ
84
00:06:02,560 --> 00:06:07,460
ุฃุฌู…ุน ู‡ุฐู‡ ุงู„ู…ุณุงูุฉ ุฒุงุฆุฏ ู‡ุฐู‡ ูุจูŠุทู„ุน ุงู„ู…ู†ุญู†ู‰ ุฃุนู„ู‰ ู…ู†ู‡
85
00:06:07,460 --> 00:06:11,100
ุจุดูˆูŠุฉ ุฃุนู„ู‰ ู…ู† ู‡ุฐุง ุจุดูˆูŠุฉ ู„ุฃู†ู‡ ุจูŠูƒุจุฑ ูˆู‡ูƒุฐุง ุงู„ุขู† ู‡ุฐู‡
86
00:06:11,100 --> 00:06:14,300
ุจุฏูŠ ุฃุฌู…ุน ู‡ุฐุง ู‚ูŠู…ุชู‡ ู†ุตู ู‡ุฐุง ู‚ูŠู…ุชู‡ ู†ุตู ูˆู‡ุฐุง ุงู„ู…ู†ุญู†ู‰
87
00:06:14,300 --> 00:06:17,880
ู‚ูŠู…ุชู‡ ู†ุตู ู†ุตู ุฒุงุฆุฏ ู†ุตู ุฅูŠุด ุจูŠุทู„ุน ูˆุงุญุฏ ูุชุทู„ุน ุงู„ู†ู‚ุทุฉ
88
00:06:17,880 --> 00:06:21,920
ู…ุฌู…ูˆุนู‡ู… ุนู†ุฏ ุงู„ู†ู‚ุทุฉ ุนู†ุฏ ุงู„ุตูุฑ ู…ุฌู…ูˆุนู‡ู… ูŠุณุงูˆูŠ ูˆุงุญุฏ ูˆ
89
00:06:21,920 --> 00:06:27,210
ู‡ูƒุฐุง ุฑุงุญ ู†ู„ุงู‚ูŠ ู„ุฃู† ุงุซู†ุชูŠู† ู‚ูŠู…ู‡ู… ู…ูˆุฌุจุงุช ูุฑุงุญ ู†ู„ุงู‚ูŠ ุฅู†
90
00:06:27,210 --> 00:06:31,190
ุงู„ู…ุฌู…ูˆุน ุชุจุนู‡ู… ู…ู†ุญู†ู‰ ุจูŠุทู„ุน ุฃูƒุจุฑ ู…ู† ุงู„ู…ู†ุญู†ู‰ ูŠุนู†ูŠ ู‡ู…ุง
91
00:06:31,190 --> 00:06:35,090
ู‡ุฐูˆู„ ุจูŠุทู„ุนูˆุง ุฅูŠุด ููˆู‚ู‡ู… ุทุจุนุงู‹ ู‡ู†ุง ู…ุด ู…ู„ุงุตู‚ ููŠู‡ ูƒุซูŠุฑ ู„ุฃ
92
00:06:35,090 --> 00:06:39,470
ู…ู† ููˆู‚ ู‡ูŠ ูƒุงู†ุช ู‚ุฑูŠุจุฉ ู…ู†ู‡ ููŠ ุงู„ู†ู‡ุงูŠุฉ ูˆู„ูƒู† ุจุนุฏ ู‡ูŠ
93
00:06:39,470 --> 00:06:41,950
ูƒุงู†ุช ุฅูŠุด ุจูŠูƒูˆู† ุจุนูŠุฏุฉ ุนู†ู‡ ูˆู‡ุฐู‡ ุนู†ุฏ ุงู„ูˆุงุญุฏ ูˆุจุนุฏูŠู†
94
00:06:41,950 --> 00:06:46,750
ุฅูŠุด ูŠุนู†ูŠ ู‡ุฐุง ุฅูŠุด ุงู„ู€ cosh ุฑุณู…ุชู‡ ุฒูŠ x ุชุฑุจูŠุน ุฒุงุฆุฏ ูˆุงุญุฏ
95
00:06:46,750 --> 00:06:53,630
ูู‚ุท ู‡ูŠ ุงู„ู…ู†ุญู†ู‰ ูˆุงุญุฏ ูˆู„ูŠุณ ุจุฑุถู‡ ุฒูŠ ุงู„ู€ cosine ู„ูŠุณุช
96
00:06:53,630 --> 00:06:57,910
Periodic Function ุจู†ู„ุงุญุธ ุฅู†ู‡ ุงู„ู€ cosh ุชุจุนุชู†ุง
97
00:06:57,910 --> 00:07:01,690
ุฏุงูŠู…ู‹ุง ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ 1 ูŠุนู†ูŠ ุงู„ู€ Range ุชุจุนู‡ ู…ู† 1
98
00:07:01,690 --> 00:07:04,050
ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ุจูŠู†ู…ุง ุงู„ู€ Domain ุชุจุนู‡ ุจูŠูˆูุฑ ูƒู„
99
00:07:04,050 --> 00:07:07,610
ุงู„ุฃุนุฏุงุฏ ุงู„ุญู‚ูŠู‚ูŠุฉ ูŠุจู‚ู‰ ุงู„ู€ Domain ุงู„ู€ cosh ูƒู„ ุงู„ุฃุนุฏุงุฏ
100
00:07:07,610 --> 00:07:11,710
ุงู„ุญู‚ูŠู‚ูŠุฉ ุจูŠุฃุฎุฐู‡ุง ู‡ู†ุง ูˆู„ูƒู† ุงู„ู€ Range ุชุจุนู‡ ู‚ูŠู… ุงู„ู€ cosh
101
00:07:11,710 --> 00:07:14,810
ุฏุงูŠู…ู‹ุง ู…ูˆุฌุจุฉ ูŠุนู†ูŠ ุงู„ู€ cosh ุฏุงูŠู…ู‹ุง ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ 1
102
00:07:14,810 --> 00:07:18,570
ู…ู† 1 ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ูŠุจู‚ู‰ ุงู„ู€ cosh ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ 1
103
00:07:18,570 --> 00:07:24,800
ูˆู‚ูŠู…ู‡ ูˆ ุงู„ู€ Domain ุชุจุนู‡ ุจูŠูˆูุฑ ูƒู„ R ุทูŠุจ ุงู„ุขู† ู†ุฌูŠ
104
00:07:24,800 --> 00:07:30,560
ู„ู„ุชุงู†ุด tanh tanh hyperbolic X tanh hyperbolic X
105
00:07:30,560 --> 00:07:36,960
ุจู†ูุฑุถู‡ุง tanh X tanh X ุงู„ุขู† tanh X ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุฒูŠ
106
00:07:36,960 --> 00:07:41,380
ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ tan ุนุจุงุฑุฉ ุนู† sin ุนู„ู‰ cosine ุจุฑุถู‡ ุงู„ู€ tanh
107
00:07:41,380 --> 00:07:46,260
ู‡ูŠ ุนุจุงุฑุฉ ุนู† sin ุนู„ู‰ cos sin ุนู„ู‰ cos ูŠุจู‚ู‰ ุงู„ู€ tanh
108
00:07:46,260 --> 00:07:47,280
ุนุจุงุฑุฉ ุนู† sinh ุนู„ู‰
109
00:07:59,320 --> 00:08:05,880
ุงู„ุขู† sinh ุนู„ู‰ cosh ูŠุนู†ูŠ ู„ูˆ ูŠุฌูŠู†ุง ู…ุซู„ุงู‹ ุนู†ุฏ ุงู„ุตูุฑ sinh
110
00:08:05,880 --> 00:08:09,860
ุงู„ุตูุฑ ุตูุฑ ูˆ cosh ุงู„ุตูุฑ ูˆุงุญุฏ ุตูุฑ ุนู„ู‰ ูˆุงุญุฏ ูŠุณุงูˆูŠ ุตูุฑ
111
00:08:09,860 --> 00:08:16,300
ูŠุจู‚ู‰ ุนู†ุฏ ุงู„ุตูุฑ ุงู„ุขู† ููŠ ู…ุงู„ุง ู†ู‡ุงูŠุฉ ู„ูˆ ุฌุฆู†ุง ู‡ู†ุง
112
00:08:16,300 --> 00:08:20,460
ุจุฏู†ุง ู†ูˆุฌุฏ limit ู„ู‡ุฐู‡ ู„ู…ุง X ุชุคูˆู„ ุฅู„ู‰ ู…ุงู„ุง ู†ู‡ุงูŠุฉ ู„ู…ุง
113
00:08:20,460 --> 00:08:23,640
X ุชุคูˆู„ ู„ู…ุงู„ุง ู†ู‡ุงูŠุฉ ุทุจุนุงู‹ ุฃูƒุจุฑ ุฃุณ ููŠ ุงู„ุจุณุท ู‡ูˆ e<sup>x</sup>
114
00:08:23,640 --> 00:08:27,020
ูˆ ุฃูƒุจุฑ ุฃุณ ููŠ ุงู„ู…ู‚ุงู… ู‡ูˆ e<sup>x</sup> ูุงู„ู€ limit ู„ู‡ู… ูŠุณุงูˆูŠ
115
00:08:27,020 --> 00:08:30,660
1 ูŠุจู‚ู‰ ุงู„ู€ limit ู‡ู†ุง ุฅูŠุด ูŠุณุงูˆูŠ ูˆุงุญุฏ ุฃูˆ ุจุชู‚ุณู…ูŠ ุนู„ู‰ e<sup> </sup>
116
00:08:30,660 --> 00:08:34,720
ุฃุณ X ุงู„ุจุณุท ูˆุงู„ู…ู‚ุงู… ุจูŠุทู„ุน ุงู„ู€ limit ูŠุณุงูˆูŠ ูˆุงุญุฏ ูŠุจู‚ู‰
117
00:08:34,720 --> 00:08:37,660
ููŠ ู…ุงู„ุง ู†ู‡ุงูŠุฉ ู‡ูŠ ุงู„ู€ tanh ุดูˆูŠุฉ ุจุชู…ุดูŠ ุฅูŠุด ูˆุจุชู‚ุชุฑุจ ู…ู†
118
00:08:37,660 --> 00:08:39,840
ุงู„ูˆุงุญุฏ ูŠุนู†ูŠ ุงู„ูˆุงุญุฏ ู‡ู†ุง ููŠ ุนู†ุฏู†ุง horizontal
119
00:08:39,840 --> 00:08:43,650
asymptote ุทูŠุจ ููŠ ุงู„ุณุงู„ุจ ู…ุงู„ุง ู†ู‡ุงูŠุฉ ู‡ูŠ ู„ูˆูŠู† ุจุชุฑูˆุญุŸ ุทุจุนุงู‹
120
00:08:43,650 --> 00:08:48,230
ููŠ ุงู„ุณุงู„ุจ ู…ุงู„ุง ู†ู‡ุงูŠุฉ ุงู„ู€ e<sup>-x</sup> ู‡ูŠ ุงู„ุฃูƒุจุฑ ู‡ูŠ ุงู„ู€ e<sup>-x</sup>
121
00:08:48,230 --> 00:08:51,550
ูˆูŠู† ุจุชุฑูˆุญ ููŠ ุงู„ุณุงู„ุจ ู…ุงู„ุง ู…ุงู„ุง ู†ู‡ุงูŠุฉ ุจูŠู†ู…ุง e<sup>-x</sup> ูˆูŠู†
122
00:08:51,550 --> 00:08:58,030
ุจุชุฑูˆุญ ู„ู„ุตูุฑ ูŠุจู‚ู‰ e<sup>-x</sup> ู‡ูŠ ุงู„ุฃูƒุจุฑ ุฃูƒุจุฑ ุฏุฑุฌุฉ ููŠ ุงู„ู…ู‚ุงู…
123
00:08:58,030 --> 00:09:03,270
ุงู„ู„ูŠ ู‡ูŠ e<sup>-x</sup> ูู„ูˆ ู‚ุณู…ู†ุง ุงู„ุจุณุท ูˆุงู„ู…ู‚ุงู… ุนู„ู‰ e<sup>-x</sup> ุจูŠุทู„ุน ุงู„ู€
124
00:09:03,270 --> 00:09:06,290
limit ู‡ูˆ ุนุจุงุฑุฉ ุนู† ู…ุนุงู…ู„ุงุชู‡ู… ูŠุนู†ูŠ ู†ุงู‚ุต ุนู„ู‰ ุฒุงุฆุฏ
125
00:09:06,290 --> 00:09:10,330
ูŠุจู‚ู‰ ู†ุงู‚ุต ูˆุงุญุฏ ูŠุจู‚ู‰ ุงู„ู€ tanh ููŠ ุงู„ุณุงู„ุจ ู…ุงู„ุง ู†ู‡ุงูŠุฉ
126
00:09:10,330 --> 00:09:14,460
ุจูŠู‚ุชุฑุจ ู…ู† ุงู„ุฎุท ุงู„ู„ูŠ ู‡ูˆ Y ูŠุณุงูˆูŠ ุณุงู„ุจ 1 ุณุงู„ุจ ูˆุงุญุฏ ุจูŠูƒูˆู†
127
00:09:14,460 --> 00:09:18,800
ู‡ู†ุง horizontal asymptote ูˆุฏู‡ ุงู„ู‚ูŠู…ุฉ ุจู†ู„ุงุญุธ ุฃู†ู‡
128
00:09:18,800 --> 00:09:24,480
ุงู„ู€ tanh ุงู„ู€ tanh ุจูŠุฃุฎุฐ ูƒู„ ุงู„ุฃุนุฏุงุฏ ุงู„ุญู‚ูŠู‚ูŠุฉ ุงู„ู€ domain
129
00:09:24,480 --> 00:09:28,520
ุชุจุนู‡ ุจูŠู†ู…ุง ุงู„ู€ range ุชุจุนู‡ ู…ู† ู†ุงู‚ุต ูˆุงุญุฏ ุฅู„ู‰ ูˆุงุญุฏ ุงู„ู€
130
00:09:28,520 --> 00:09:31,800
range ุชุจุนู‡ ูู‚ุท ุจูŠุฃุฎุฐ ุงู„ู‚ูŠู… ู…ู† ู†ุงู‚ุต ูˆุงุญุฏ ุฅู„ู‰ ูˆุงุญุฏ
131
00:09:31,800 --> 00:09:37,720
ู…ูุชูˆุญุฉ ูู‡ุฐุง ุฅูŠุด ุจุงู„ู†ุณุจุฉ ู„ู„ู€ tanh ู„ูˆ ุฌุฆู†ุง ู„ู„ู€ cotanh
132
00:09:39,590 --> 00:09:45,030
coth X ูŠุนู†ูŠ coth X ุงู„ู€ coth ู‡ูŠ ุนุจุงุฑุฉ ุนู† ูˆุงุญุฏ
133
00:09:45,030 --> 00:09:48,910
ุนู„ู‰ tanh ูŠุนู†ูŠ cosh ุนู„ู‰ sinh ูŠุนู†ูŠ ุงู„ู€ ุฃูŠ ู‡ุฐุง ุนู„ู‰ ุงู„ู€ ุฃูŠ
134
00:09:48,910 --> 00:09:54,050
ู‡ุฐุง cosh ุนู„ู‰ sinh ุงู„ุขู† ูŠุนู†ูŠ ุงู„ุขู† ุจู†ุฑุณู… ุงู„ู€ coth ู‡ูŠ
135
00:09:54,050 --> 00:09:58,090
ูˆุงุญุฏ ุนู„ู‰ tanh ู‡ูŠ ุงู„ู€ tanh ูˆุจุฏู†ุง ู†ู‚ู„ุจู‡ุง ูˆุงุญุฏ ุนู„ู‰ ูˆุงุญุฏ
136
00:09:58,090 --> 00:10:01,450
ุนู„ู‰ ุทุจุนุงู‹ ู‡ู†ุง ู„ู…ุง ุงู„ู€ tanh ุชู‚ุชุฑุจ ู„ู„ูˆุงุญุฏ ูู…ู‚ู„ุจ ุงู„ูˆุงุญุฏ
137
00:10:01,450 --> 00:10:05,930
ูˆุงุญุฏ ูŠุจู‚ู‰ coth ุชู‚ุชุฑุจ ู…ู† ุงู„ูˆุงุญุฏ ุงู„ุขู† ุงู„ู€ tanh ู‡ู†ุง ุตูุฑ
138
00:10:05,930 --> 00:10:10,890
ู…ู† ู†ุงุญูŠุฉ ุงู„ูŠู…ูŠู† ุจุงู„ู…ูˆุฌุจ ุงู„ู…ูˆุฌุจ ูุนู†ุฏ ุตูุฑ ุงู„ู€ coth
139
00:10:10,890 --> 00:10:14,990
ุฑุงุญ ุชุฑูˆุญ ู„ูˆูŠู† ู„ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ุงู„ุฎุท ู…ุงู„ุนู„ูŠุด ูุงุชุญ ุดูˆูŠุฉ ู‡ูŠ
140
00:10:14,990 --> 00:10:19,950
ุฅูŠู‡ ุงู„ุฌุฒุก ู…ู† ุงู„ู€ coth ู‡ูŠ ู‡ุฐุง ู†ูุณ ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ ู„ุฃู†
141
00:10:19,950 --> 00:10:23,630
ู‡ู†ุง ุณูุฑ ุจุณ ู…ู† ู†ุงุญูŠุฉ ุงู„ูŠุณุงุฑ ุจุงู„ุณุงู„ุฏ ูุฑุญ ูŠุฑูˆุญ ุงู„
142
00:10:23,630 --> 00:10:27,610
cottage ุฑุงุญ ุชุฑูˆุญ ู„ุณุงู„ุฏ ู…ุง ู„ู†ู‡ุงูŠุฉ ูˆู…ู‚ู„ูˆุจ ุงู„ุณุงู„ุฏ ูˆุงุญุฏ
143
00:10:27,610 --> 00:10:32,230
ุณุงู„ุฏ ูˆุงุญุฏ ูุฑุญ ุชู‚ุชุฑุจ ู„ุณุงู„ุฏ ูˆุงุญุฏ ูุฑุญ ูŠูƒูˆู† ู‡ุฐุง ุงู„ุฎุท
144
00:10:32,230 --> 00:10:35,750
ุงู„ุชุงู†ูŠ ู„ู„ cotage ูŠุจู‚ู‰ ู‡ูŠ ู‡ุฐุง ุงู„ุฌุฒุก ูˆู‡ุฐุง ุงู„ุฌุฒุก ุงู„ู„ูŠ
145
00:10:35,750 --> 00:10:42,310
ููˆู‚ ุงู„ู„ูŠ ู‡ูˆ ุงู„ cotage ู‡ุฐู‡ ุฑุณู…ุงุช ุงู„ูƒุชุงู†ุด ุงู„ุขู† ู†ุฌูŠ
146
00:10:42,310 --> 00:10:46,750
ู„ุณูƒุด ุงู„ุณูƒุด ู‡ูŠ ุนุจุงุฑุฉ ุนู† ูˆุงุญุฏ ุนู„ู‰ ูƒุด ุณูƒุด ู‡ูŠ ุนุจุงุฑุฉ ุนู†
147
00:10:46,750 --> 00:10:51,710
ูˆุงุญุฏ ุนู„ู‰ ูƒุด ุงู„ุขู† ุงู„ูƒุด ุชุจุนุชู†ุง ู‡ูŠ ู‡ุฐู‡ ุงู„ูƒุด ุงู„ุขู† ูˆุงุญุฏ
148
00:10:51,710 --> 00:10:54,850
ุนู„ู‰ ูŠุนู†ูŠ ู…ู‚ู„ูˆุจู‡ุง ุงู„ุขู† ู‡ุฐู‡ ุนู†ุฏ ุงู„ุณูุฑ ูˆุงุญุฏ ู…ู‚ู„ูˆุจ
149
00:10:54,850 --> 00:10:58,770
ุงู„ูˆุงุญุฏ ูˆุงุญุฏ ูŠุจู‚ู‰ ุชู…ุฑ ุจู‡ุฐู‡ ุงู„ู†ู‚ุทุฉ ุงู„ุขู† ู‡ุฐู‡ ู…ุงู„ุฉ
150
00:10:58,770 --> 00:11:02,150
ู†ู‡ุงูŠุฉ ุฅูŠุด ู…ู‚ู„ูˆุจ ุงู„ู…ุงู„ุฉ ู†ู‡ุงูŠุฉ ุณูุฑ ูุฑุญุชูŠุฌูŠ ุฅูŠุด ู‡ู†ุง
151
00:11:02,150 --> 00:11:05,170
ูˆุชู‚ุชุฑุจ ู…ู† ุฅูŠุด ุงู„ุณูุฑ ูˆุจุฑุถู‡ ู‡ุฐู‡ ู…ุงู„ุฉ ู†ู‡ุงูŠุฉ ู…ู‚ู„ูˆุจ
152
00:11:05,170 --> 00:11:08,410
ุงู„ู…ุงู„ุฉ ู†ู‡ุงูŠุฉ ูˆุงุญุฏ ุฃู…ุง ู†ู‡ุงูŠุฉ ุณูุฑ ุณุชู‚ุชุฑุจ ู…ู† ุงู„ู€ x
153
00:11:08,410 --> 00:11:10,850
-axis ูˆุณุชุธู‡ุฑ ุงู„ุฑุณู… ุจู‡ุฐุง ุงู„ุดูƒู„
154
00:11:23,150 --> 00:11:27,170
ุงู„ุขู† ุงู„ 6 ุจู†ู„ุงุญุธ ุนู„ูŠู‡ ุฃู†ู‡ ุจูŠุงุฎุฏ ูƒู„ ุงู„ุฃุนุฏุงุฏ ุงู„ุญู‚ูŠู‚ูŠุฉ
155
00:11:27,170 --> 00:11:32,510
ูŠุนู†ูŠ 6 ุฃูŠ ุนุฏุฏ ุญู‚ูŠู‚ูŠ ุจูŠุงุฎุฏู‡ุง ูƒู„ู‡ุง ูˆู„ูƒู† ุงู„ domain
156
00:11:32,510 --> 00:11:36,330
ุชุจุนู‡ ู…ู† 0 ู…ูุชูˆุญุฉ ุฅู„ู‰ 1 ู…ุบู„ู‚ุฉ ุงู„ range ุนููˆุง ุงู„
157
00:11:36,330 --> 00:11:39,670
range ู…ู† 0 ู…ูุชูˆุญุฉ ุฅู„ู‰ 1 ู…ุบู„ู‚ุฉ ุงู„ domain ูƒู„ ุงู„ R
158
00:11:39,670 --> 00:11:45,340
ุจูŠู†ู…ุง ุงู„ range ู…ู† 0 ุฅู„ู‰ 1ุŒ 0 ู…ูุชูˆุญุฉ ูˆ 1 ู…ุบู„ู‚ุฉ ุทุจุนุง
159
00:11:45,340 --> 00:11:48,040
ุจุงู„ุฏู„ุงู„ุฉ ุงู„ E ุงู„ู„ูŠ ู‡ูˆ ู…ู‚ู„ูˆุจ ุงู„ูƒูˆุด ู‡ูŠูˆุง ุจู‡ุฐุง ุงู„ุดูƒู„
160
00:11:48,040 --> 00:11:52,920
ุขุฎุฑ ุฃุดู‡ุฑ ุงู„ู„ูŠ ู‡ูˆ ูƒูˆุณูƒุด ูƒูˆุณูƒุด X ูƒูˆุณูƒุด Hyperbolic X
161
00:11:52,920 --> 00:11:57,240
ู…ู† ุงู„ู…ูุฑูˆุถู‡ุง ูƒูˆุณูƒุด X ูŠุจู‚ู‰ ูˆุงุญุฏ ุนู„ู‰ ุณู†ุด ูˆุงุญุฏ ุนู„ู‰ ุณู†ุด
162
00:11:57,240 --> 00:12:02,040
ูŠุนู†ูŠ ุงุชู†ูŠู† ุนู„ู‰ ุงู„ E ุงู„ุขู† ูˆุงุญุฏ ุนู„ู‰ ุณู†ุด ุงู„ุขู† ู†ุฌูŠ ู†ุฌูŠ
163
00:12:02,040 --> 00:12:03,140
ู†ุฌูŠ ู†ุฌูŠ ู†ุฌูŠ ู†ุฌูŠ ู†ุฌูŠ ู†ุฌูŠ ู†ุฌูŠ ู†ุฌูŠ ู†ุฌูŠ ู†ุฌูŠ ู†ุฌูŠ
164
00:12:03,140 --> 00:12:09,320
ู†ุฌูŠ ู†ุฌูŠ ู†ุฌูŠ ู†ุฌูŠ ู†ุฌูŠ ู†ุฌูŠ ู†ุฌูŠ ู†ุฌูŠ ู†ุฌูŠ ู†ุฌูŠ ู†ุฌูŠ ู†ุฌูŠ
165
00:12:09,320 --> 00:12:12,840
ู†ุฌูŠ ู†ุฌูŠ ู†ุฌูŠ ู†ุฌูŠ ู†ุฌูŠ ู†ุฌูŠ ู†ุฌูŠ ู†ุฌูŠ ู†ุฌูŠ ู†ุฌูŠ ู†ุฌูŠ ู†ุฌูŠ
166
00:12:12,840 --> 00:12:13,560
ู†ุฌูŠ ู†ุฌูŠ ู†ุฌูŠ ู†ุฌูŠ ู†ุฌูŠ ู†ุฌูŠ ู†ุฌูŠ ู†ุฌูŠ ู†ุฌูŠ ู†ุฌูŠ ู†ุฌูŠ ู†ุฌูŠ
167
00:12:13,560 --> 00:12:27,400
ู†ุฌูŠ ู†ุฌูŠ ู†ุฌูŠ ู†ุฌูŠ ู†ุฌูŠ ู†ุฌูŠ ู†ุฌูŠ ู†ุฌูŠ ู†ุฌูŠ
168
00:12:27,400 --> 00:12:33,760
ู†ุจุชุดุจู‡ ุฑุณู…ุฉ ูˆุงุญุฏ ุนู„ู‰ X ูŠุจู‚ู‰ ุงู„ู€ Cos X ุฒูŠ ุฑุณู…ุฉ ูˆุงุญุฏ
169
00:12:33,760 --> 00:12:39,560
ุนู„ู‰ X ุงู„ุขู† ุจู†ู„ุงุญุธ ุนู„ูŠู‡ ุฃู† ูƒู„ ุงู„ functions ุงู„
170
00:12:39,560 --> 00:12:45,400
hyperbolic functions not periodic function ููŠ ุจุนุถ
171
00:12:45,400 --> 00:12:49,400
ุงู„ุฃุดูŠุงุก ู…ุฎุฏุฉ ู…ู† ุงู„ hyperbolic functions ุจุนุถ ุงู„ุตูุงุช
172
00:12:49,400 --> 00:12:53,680
ูˆ ุจุนุถ ุงู„ุตูุงุช ุงู„ุฃุฎุฑู‰ ู…ุด ู…ูˆุฌูˆุฏุฉ ููŠู‡ุง ูˆุจุงู„ุชุงู„ูŠ ุงู„ุขู†
173
00:12:53,680 --> 00:12:56,400
ุจู†ู‚ูˆู„ ู…ุฎุฏุฉ ุจุฑุถู‡ ู…ู† ุตูุงุช ุงู„ hyperbolic ุนูŠุฏู†ุง ุฑุงุญ
174
00:12:56,400 --> 00:13:01,410
ู†ุญูƒูŠู‡ุง ูˆุฅูŠุด ู‡ูŠ ุงู„ hyperbola ุงู„ุขู† ู‡ุฏูˆู„ ุงู„ functions
175
00:13:01,410 --> 00:13:06,650
ู…ูˆุฌูˆุฏูŠู† ุนู„ู‰ ุงู„ู‚ู„ุฉ ุงู„ุญุงุณุจุฉ ุงู„ู„ูŠ ู‡ูŠ sign ุจุชุนู…ู„ูŠ sign
176
00:13:06,650 --> 00:13:11,770
ู…ุน ุงู„ hype h i p hype sign hype ูˆุจุนุฏูŠู† ุจุชุญุท
177
00:13:11,770 --> 00:13:17,130
ุงู„ุฑู‚ุงู… ุณูุฑ ุจุชุญุทูŠู‡ุง ุนู„ู‰ ุงู„ุญุงุณุจุฉ ุชุทู„ุน ุนู„ูŠูƒ ู‚ุฏุงุด ุงู„ู‚ูŠู…
178
00:13:17,130 --> 00:13:19,990
ุทุจุนุง ุงุญู†ุง ููŠ ูƒู„ ู‡ุฏูˆู„ุฉ ุทุจุนุง ุงู„ู‚ูŠู… ุงู„ู„ูŠ ู‡ู†ุง ู…ุงููŠุด
179
00:13:19,990 --> 00:13:22,750
ุนู†ุฏู†ุง ุฒูˆุงูŠุง ูƒู…ุงู† ูŠุนู†ูŠ ู‡ุฐู‡ ุงู„ู„ูŠ ู…ุง ุจุชุงุฎุฏุด ุฒูŠ ุงู„ู„ูŠ
180
00:13:22,750 --> 00:13:25,870
ุจุชุงุฎุฏ ุฃุนุฏุงุฏ ูˆู„ูŠุณุช ุฒูˆุงูŠุง ุจูŠู†ู…ุง ุงู„ sine ูˆ ุงู„ cosine
181
00:13:25,870 --> 00:13:29,550
ูˆ ุงู„ุจุงู‚ูŠู† ูƒู„ู‡ู… ุจูŠุงุฎุฏูˆุง ุฒูˆุงูŠุง ุจูŠู†ู…ุง ู‡ุฏูˆู„ ุจูŠุงุฎุฏูˆุง
182
00:13:29,550 --> 00:13:33,210
ุฃุนุฏุงุฏ ุนุงุฏูŠุฉ ูŠุนู†ูŠ ุงู„ู„ูŠ ุจู†ุนุฑูู‡ ููŠ ุงู„ cinch ูู‚ุท cinch
183
00:13:33,210 --> 00:13:36,990
ุงู„ุณูุฑ ุณูุฑ ุงู„ู„ูŠ ุจู†ุนุฑูู‡ ููŠ ุงู„ูƒูˆุด ูƒูˆุด ุงู„ุณูุฑ ูˆุงุญุฏ ูู‚ุท
184
00:13:36,990 --> 00:13:41,810
ู„ุบูŠุฑ ู„ุบูŠุฑ ุงู„ู„ูŠ ู…ุง ู†ุนุฑูุด ู‚ูŠู…ู‡ู… ุงู„ุชุงู†ูŠุฉ ุฃู‚ูˆู„ ุฅู†ู†ุง ู†ุนุฑู
185
00:13:41,810 --> 00:13:47,750
ู‚ูŠู…ู‡ุง ุจูŠูƒูˆู† ุนู† ุทุฑูŠู‚ ุงู„ุญุงุณุจุฉ ุชุงู†ุด 00 ูˆููŠ ุงู„ู…ุงู„
186
00:13:47,750 --> 00:13:50,270
ุงู„ู†ู‡ุงุฆูŠ ูŠู‚ุชุฑุจ ู…ู† ุงู„ูˆุงุญุฏ ูˆููŠ ุงู„ุณุงู„ุจ ู…ุงู„ ู†ู‡ุงุฆูŠ ูŠู‚ุชุฑุจ
187
00:13:50,270 --> 00:13:55,030
ู…ู† ุงู„ู†ุงู‚ุต ูˆุงุญุฏ ุงู„ุณูƒุด
188
00:13:55,030 --> 00:13:58,130
ุงู„ุณูุฑ ุจุฑุถู‡ ูˆุงุญุฏ ูˆููŠ ุงู„ู…ุงู„ ุงู„ู†ู‡ุงุฆูŠ ูˆููŠ ุงู„ุณุงู„ุจ ู…ุงู„
189
00:13:58,130 --> 00:14:02,950
ู†ู‡ุงุฆูŠ ูŠู‚ุชุฑุจ ู…ู† ุงู„ุณูุฑ ูˆู‡ู†ุง ู‡ุฐุง ุฒูŠ ุจุณู…ุฉ 1 ุนู„ู‰ X
190
00:14:02,950 --> 00:14:07,350
ุงู„ูƒุณูƒุด ุงู„ุณูุฑ ูŠุงู…ุงู„ ู†ู‡ุงุฆูŠ ุณุงู„ุจ ู…ุงู„ ู†ู‡ุงุฆูŠ ูˆููŠ ุงู„ู…ุงู„
191
00:14:07,350 --> 00:14:10,740
ุงู„ู†ู‡ุงุฆูŠ ูˆุณุงู„ุจ ู…ุงู„ ู†ู‡ุงุฆูŠ ูŠู‚ุชุฑุจ ู…ู† ุงู„ุณูุฑูŠุจู‚ู‰ ู‡ุฐู‡ ูู‚ุท
192
00:14:10,740 --> 00:14:13,680
ุงู„ู‚ูŠู… ุงู„ู„ูŠ ุงุญู†ุง ุจู†ุนุฑูู‡ุง ู„ูƒู„ ุงู„ hyperbolic
193
00:14:13,680 --> 00:14:16,420
functions ุบูŠุฑ ู‡ูŠูƒ ู…ุง ุจู†ู‚ุฏุฑุด ู†ุนุฑู ุงู„ู„ูŠ ู‡ู… ุฃูŠ ู‚ูŠู…ุฉ
194
00:14:16,420 --> 00:14:21,020
ุฅู„ุง ุนู„ู‰ ุทุฑูŠู‚ ุงู„ู‚ุงู„ุฉ ุงู„ุญุงุณุจุฉ ูˆู‚ูˆู„ู†ุง ุจู†ุณุชุฎุฏู… ุงู„ู‚ุงู„ุฉ
195
00:14:21,020 --> 00:14:25,600
ุงู„ุญุงุณุจุฉ ุงู„ู„ูŠ ู‡ูˆ ุงู„ sign ุฃูˆ ุงู„ cosine ุฃูˆ ุงู„ tan ูˆ
196
00:14:25,600 --> 00:14:30,020
ุจู†ุถุบุท ุฒุฑูŠู† sign ูˆุจุนุฏูŠู† height ูˆุจุนุฏูŠู† ุจู†ูุชู‚ุด
197
00:14:30,020 --> 00:14:30,540
ุงู„ุฑู‚ุงู…
198
00:14:34,160 --> 00:14:38,100
ุจู†ุดูˆู ุงู„ู€ Identities ุงู„ู…ุชุนู„ู‚ุฉ ุจุงู„ู€ Hyperbolic
199
00:14:38,100 --> 00:14:42,060
Functions ู„ุงุญุธูˆุง ุงู„ู€ Identities ู‡ุฐู‡ ุฒูŠ .. ุจุชุดุจู‡
200
00:14:42,060 --> 00:14:44,500
ุงู„ู€ Identities ุชุจุน ุงู„ู€ Cosine ูˆ ุงู„ู€ Sine ูˆ ุงู„ู€ Tam
201
00:14:44,500 --> 00:14:48,280
ูˆ ุงู„ู€ ุฃุฎุฑู‰ ูˆู„ูƒู† ู…ุฑุงุช ุจุชุฎุชู„ู ูู‚ุท ููŠ ุงู„ุฅุดุงุฑุฉ ูู‡ุฐู‡
202
00:14:48,280 --> 00:14:52,460
ุดุบู„ุงุช ูƒุชูŠุฑ ุฒูŠู‡ุง ุจุงู„ุธุจุท ุฒูŠ ุงู„ู€ Sine ูˆ ุงู„ู€ Cosine
203
00:14:52,460 --> 00:14:56,620
ูู‚ุท ููŠ ุจุนุถู‡ู… ูŠุฎุชู„ููˆุง ุจุงู„ุฅุดุงุฑุฉ ูŠุนู†ูŠ Cosh ุชุฑุจูŠุน ู†ุงู‚ุต
204
00:14:56,620 --> 00:15:00,860
ุชุฑุจูŠุน ูŠุณุงูˆูŠ ูˆุงุญุฏ ู‡ู†ุงูƒ ูƒุงู†ุช Cosine ุชุฑุจูŠุน ุฒุงุฆุฏ Sine
205
00:15:00,860 --> 00:15:04,010
ุชุฑุจูŠุน ูŠุณุงูˆูŠ ูˆุงุญุฏ ูŠุจู‚ู‰ ุงุฎุชู„ููˆุง ุจุงู„ุฅุดุงุฑุฉ ูƒูˆุด ุชุฑุจูŠุน
206
00:15:04,010 --> 00:15:09,250
ู†ุงู‚ุต ุณู†ุด ุชุฑุจูŠุน ูŠุณุงูˆูŠ 1 ุณู†ุด 2x ูŠุณุงูˆูŠ 2 ุณู†ุด ูƒูˆุด ู†ูุณ
207
00:15:09,250 --> 00:15:14,570
ุงู„ู‚ุงู†ูˆู† ูƒูˆุด 2x ูŠุณุงูˆูŠ ูƒูˆุด ุชุฑุจูŠุน ุฒุงุฆุฏ ุณู†ุด ุชุฑุจูŠุน ุจุฑุถู‡
208
00:15:14,570 --> 00:15:19,450
ู‡ู†ุง ู…ุฎุชู„ูุฉ ุงู„ุฅุดุงุฑุฉ ูƒูˆุด ุชุฑุจูŠุน ูŠุณุงูˆูŠ ูƒูˆุด 2x ุฒุงุฆุฏ 1
209
00:15:19,450 --> 00:15:24,410
ุนู„ู‰ 2 ู†ูุณู‡ุง ุณู†ุด ุชุฑุจูŠุน ูŠุณุงูˆูŠ ูƒูˆุด 2x ู†ุงู‚ุต 1 ุนู„ู‰ 2
210
00:15:24,410 --> 00:15:28,510
ู‡ุฐู‡ ูƒุงู†ุช ูˆุงุญุฏ ู†ุงู‚ุต ุจุฑุถู‡ ู…ุฎุชู„ููŠู† ุจุงู„ุฅุดุงุฑุฉ ูˆุงุญุฏ ู†ุงู‚ุต
211
00:15:28,510 --> 00:15:33,090
ูƒูˆุด ุชุงู†ุด ุชุฑุจูŠุน ูŠุณุงูˆูŠ ูˆุงุญุฏ ู†ุงู‚ุต ุณู†ุด ุชุฑุจูŠุน ูˆู‡ู†ุงูƒ ุจุฑุถู‡
212
00:15:33,090 --> 00:15:36,210
ูƒู†ุง ู†ูุณ ูƒ ุชุฑุจูŠุน ู†ุงู‚ุต ูˆุงุญุฏ ุจุฑุถู‡ ูŠุฎุชู„ููˆุง ุจุงู„ุฅุดุงุฑุฉ
213
00:15:36,210 --> 00:15:40,430
ูˆูƒูˆุชู†ุด ุชุฑุจูŠุน ูŠุณุงูˆุง ูˆุงุญุฏ ุฒุงุฆุฏ ูƒุณูƒุด ุชุฑุจูŠุน ุจุฑุถู‡
214
00:15:40,430 --> 00:15:47,890
ูŠุฎุชู„ููˆุง ุจุงู„ุฅุดุงุฑุฉ ุงู„ุขู† ู‡ุฐู‡ ุงู„ู‚ูˆุงู†ูŠู† ูƒู„ู‡ุง ุฃูŠ ู‚ุงู†ูˆู†
215
00:15:47,890 --> 00:15:51,210
ุงุญู†ุง ุจุฏู†ุง ุฅูŠุงู‡ ู…ู…ูƒู† ุนู„ู‰ ุทุฑูŠู‚ ุงู„ู„ูŠ ู†ุญูˆู„ ู„ู„ E ูˆู†ุดูˆู
216
00:15:51,210 --> 00:15:54,490
ุฅู†ู‡ ุงู„ู‚ุงู†ูˆู† ุตุญ ูˆู„ุง ุบู„ุท ูŠุนู†ูŠ ู…ุซู„ุง ูƒูˆุด ุชุฑุจูŠุน ู†ุงู‚ุต
217
00:15:54,490 --> 00:15:57,670
ุชู†ุด ุชุฑุจูŠุน ุฅูŠุด ุจู†ุนู…ู„ ููŠู‡ ูƒูˆุด ุชุฑุจูŠุน ู†ุงู‚ุต ุชู†ุด ุชุฑุจูŠุน
218
00:15:57,670 --> 00:16:01,170
ุจู†ุนูˆุฏ ุจุฏู„ ุงู„ูƒูˆุด E ุฃุณ X ุฒุงุฆุฏ E ุฃุณ ู†ุงู‚ุต X ุนู„ู‰ 2
219
00:16:01,170 --> 00:16:02,110
ูˆุจุนุฏูŠู† ุชุฑุจูŠุน
220
00:16:07,540 --> 00:16:11,480
ุจู†ูุชูƒ ุงู„ุชุฑุจูŠุน ู‡ุฐุง ุทุจุนุง ุงู„ุชุฑุจูŠุน ุงู„ู€ 2 ุฑุจุน ู‡ูŠ ุจุฑุฉ ูˆ
221
00:16:11,480 --> 00:16:17,040
ุจุนุฏูŠู† E ุฃุณ X ุชุฑุจูŠู‡ุง E ุฃุณ 2 X ุฒุงุฆุฏ 2 ุงู„ุฃูˆู„ ู‡ุฏู ู‡ุฐุง
222
00:16:17,040 --> 00:16:20,940
ู‡ุฏู ู‡ุฐุง ูˆุงุญุฏ E ุฃุณ 0 ูŠุตุจุญ ูˆุงุญุฏ ูŠุนู†ูŠ ุงุชู†ูŠู† ูˆุจุนุฏูŠู†
223
00:16:20,940 --> 00:16:25,500
ุชุฑุจูŠุน ู‡ุฐุง E ุฃุณ ู†ุงู‚ุต 2 X ู‡ูŠ ุชุฑุจูŠุน ูˆุจุนุฏูŠู† ู†ุงู‚ุต ูˆ
224
00:16:25,500 --> 00:16:29,500
ุงู„ุงุชู†ูŠู† ู‡ูŠ ุชุฑุจูŠู‡ุง ุฑุจุน ูˆุจุนุฏูŠู† ุฅูŠุด ุจู†ุฑุจุน ุงู„ู„ูŠ ู‡ูˆ
225
00:16:29,500 --> 00:16:32,100
ุงู„ู„ูŠ ููŠ ุงู„ bus ุทูŠุจ ุจู†ุฑุจุน ุงู„ู„ูŠ ููŠ ุงู„ bus ูˆุจู†ุฎุชุตุฑ
226
00:16:32,230 --> 00:16:35,330
ุงู„ุขู† ู‡ุฐุง ุจุงู„ุณุงู„ุจ ูˆู‡ุฐุง ุจุงู„ู…ูˆุฌุจ ุจูŠุฑูˆุญ ู…ุน ุจุนุถ ูˆู‡ุฐุง
227
00:16:35,330 --> 00:16:39,650
ุจุงู„ู…ูˆุฌุจ ูˆู‡ู†ุง ุณุงู„ุจ ู…ูˆุฌุจ ูŠุนู†ูŠ ุจูŠุฑูˆุญ ู…ุน ุจุนุถ ูˆู‡ุฐู‡ ู†ุงู‚ุต
228
00:16:39,650 --> 00:16:43,570
ุงุชู†ูŠู† ุจูŠุตูŠุฑ ุฒุงุฆุฏ ุงุชู†ูŠู† ููŠ ุฑุจุน ูˆู‡ุฐู‡ ุฒุงุฆุฏ ุงุชู†ูŠู† ููŠ
229
00:16:43,570 --> 00:16:48,030
ุฑุจุน ุจู†ุฌู…ุน ู…ุน ุจุนุถ ูุจุทู„ุน ุงู„ู…ุฌู…ูˆุน ูŠุณุงูˆูŠ ูˆุงุญุฏ ู†ูุณ
230
00:16:48,030 --> 00:16:54,710
ุงู„ุดูŠุก ู…ู…ูƒู† ุฃู† ู†ุจุฑู‡ู† ุจุงู‚ูŠ ุงู„ identities ุงู„ุขู† ุฅูŠู‡ ู…ู†
231
00:16:54,710 --> 00:16:58,850
ูˆูŠู† ุฌุจู†ุง ู„ูŠุด hyperbolic ูŠุนู†ูŠ ู‡ูŠ ุงู„ู„ูŠ ู…ุงุฎุฏุฉ ุงู„
232
00:16:58,850 --> 00:17:03,160
hyperbolic functions ู…ุงุฎุฏุฉ ู…ู† ุงู„ู€ trigonometric
233
00:17:03,160 --> 00:17:07,040
functions ุจุนุถ ุงู„ุตูุงุช ูˆู…ุงุฎุฏุฉ ู…ู† ุงู„ู€ hyperbola ุทุจ
234
00:17:07,040 --> 00:17:10,460
ุฅูŠุด ุงู„ hyperbolaุŸ ุงู„ hyperbola ู‡ูˆ ุงู„ู‚ุทุน ุงู„ุฐุงุฆุจ
235
00:17:10,460 --> 00:17:13,680
ุงู„ู‚ุทุน ุงู„ุฐุงุฆุจ ุงู„ู„ูŠ ู‡ูˆ ุฒูŠ ู‡ุฐุง ุงู„ู‚ุทุน ุฅูŠุด ุงู„ุฐุงุฆุจุŸ ุฒูŠ
236
00:17:13,680 --> 00:17:17,380
ู‡ุฐุง ุงู„ู‚ุทุน ุงู„ุฐุงุฆุจ ุงู„ู„ูŠ ู‡ูŠ ู…ุนุฏู„ุชู‡ X ุชุฑุจูŠุน ู†ุงู‚ุต Y
237
00:17:17,380 --> 00:17:20,700
ุชุฑุจูŠุน ูŠุณุงูˆูŠ ูˆุงุญุฏ ุฃูˆ ู…ู…ูƒู† X ุชุฑุจูŠุน ุนู„ู‰ ุนุฏุฏ X ุชุฑุจูŠุน
238
00:17:20,700 --> 00:17:23,900
ุนู„ู‰ A ุชุฑุจูŠุน ู†ุงู‚ุต Y ุชุฑุจูŠุน ุนู„ู‰ B ุชุฑุจูŠุน ูŠุณุงูˆูŠ ูˆุงุญุฏ
239
00:17:23,900 --> 00:17:29,980
ุงู„ุขู† ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ู…ุนุงุฏู„ุฉ hyperbola ุงู„ู„ูŠ ู‡ูˆ ุจู‡ุฐุง
240
00:17:29,980 --> 00:17:32,620
ุงู„ุดูƒู„ ู‚ุทุน ุฒุงุฆุฏ ูŠุนู†ูŠ ุงุชู†ูŠู† parabola ู‡ุฐุง parabola
241
00:17:32,620 --> 00:17:36,820
ูŠุนู†ูŠ ุงุชู†ูŠู† ู‚ุทุน ู…ูƒุงูุฆ ู‡ุฐุง ู‚ุทุน ู…ูƒุงูุฆ ูˆู‡ุฐุง ู‚ุทุน ู…ูƒุงูุฆ
242
00:17:36,820 --> 00:17:41,320
ุงู„ุขู† ุจุงู„ู„ุงุญุธุฉ ู„ุฃู†ู‡ ู„ูˆ ุฅูŠุฌูŠู†ุง ุญุทูŠู†ุง ุจุฏุงู„ ุงู„ X ุญุทูŠู†ุง
243
00:17:41,320 --> 00:17:45,180
ูƒูˆุงุด ูˆุจุฏุงู„ ุงู„ Y ุญุทูŠู†ุง ุณู†ุด ุจูŠุทู„ุน ู„ู†ุง ู‡ุฐู‡ ุงู„ู…ู‚ุงุฏู„ุฉ
244
00:17:45,180 --> 00:17:48,580
ูŠุนู†ูŠ ู„ูˆ ุญุทูŠู†ุง ูƒูˆุงุด ุจุฏุงู„ ุงู„ X ุจุชุตูŠุฑ ู‡ุฐู‡ ูƒูˆุงุด ุชุฑุจูŠุน
245
00:17:48,580 --> 00:17:52,060
ุจุฏุงู„ ุงู„ Y ุญุทูŠู†ุง ุณู†ุด ุจุชุตูŠุฑ ุณู†ุด ุชุฑุจูŠุน ูƒูˆุงุด ุชุฑุจูŠุน
246
00:17:52,060 --> 00:17:55,420
ู†ุงู‚ุต ุงู„ุณู†ุด ุชุฑุจูŠุน ูŠุณุงูˆูŠ ูˆุงุญุฏ ู…ุนู†ู‰ ุฐู„ูƒ ู„ุฃู† ุงู„ X ูˆ ุงู„
247
00:17:55,420 --> 00:18:00,350
Y ู‡ูˆ ุฃูŠ ู†ู‚ุทุฉ ุชู‚ุน ุนู„ู‰ ุงู„ู„ูŠ ู‡ูˆ ุงู„ hyperbola ุงู„ู†ู‚ุทุฉ
248
00:18:00,350 --> 00:18:04,950
ูƒูˆุด X ูˆุณู…ุด X ู‡ูŠ ู†ู‚ุทุฉ ุชู‚ุน ุนู„ู‰ ุงู„ู€ hyperbola ูู‡ุฐู‡
249
00:18:04,950 --> 00:18:10,530
ุนู„ุดุงู† ู‡ูŠ ู‚ุงู„ู†ุง ุฅู†ู‡ ู…ุงุฎุฏุฉ ู…ู† ุงู„ู€ hyperbola ูˆุณู…ู‘ุงู‡ุง
250
00:18:10,530 --> 00:18:13,710
ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ hyperbolic function this why the
251
00:18:13,710 --> 00:18:16,490
hyperbolic function take this name ุนู„ุดุงู† ู‡ูŠ ูƒุงู†ุช
252
00:18:16,490 --> 00:18:20,770
ุฃุฎุฏุช ุงู„ุฅุณู… ู…ู† ู‡ุฐู‡ ุงู„ุฎุงุตูŠุฉ ุฅู† ุงู„ูƒูˆุด ูˆุงู„ุณู…ุด ู‡ูˆ ู†ู‚ุทุฉ
253
00:18:20,770 --> 00:18:26,090
ุชู‚ุน ุนู„ู‰ ุงู„ู€ hyperbola ุทุจุนุง ู‡ุฏูˆู„ ุงู„ู‚ูˆุงู†ูŠู† ุจุฏู‡ู… ุฅูŠู‡
254
00:18:26,090 --> 00:18:32,220
ุฃุดู‡ุฏุŸ example simplify ูƒูˆุด ุงุชู†ูŠู† ุงูƒุณ ุฒุงุฆุฏ ุณู…ุด ุงุชู†ูŠู†
255
00:18:32,220 --> 00:18:39,740
ุงูƒุณ ู„ุฃู† ุนุดุงู† ู†ุชุจุณุท ูƒูˆุด ุงุชู†ูŠู† ุงูƒุณ ุจู†ุฑูˆุญ ู†ุณุชุฎุฏู… ุงูƒุณ
256
00:18:39,740 --> 00:18:43,480
ุงุชู†ูŠู† ุงูƒุณ ุฒุงุฆุฏ ุงูƒุณ ู†ุงู‚ุต ุงุชู†ูŠู† ุงูƒุณ ุนู„ู‰ ุงุชู†ูŠู† ุฒุงุฆุฏ
257
00:18:43,480 --> 00:18:47,420
ุงู„ุณู…ุด ุฒูŠู‡ุง ุจุณ ุจุงู„ุณุงู„ุจ ู„ุฃู† ู‡ุฐู‡ ุจุงู„ู…ูˆุฌุจ ูˆู‡ุฐู‡ ุจุงู„ุณุงู„ุจ
258
00:18:47,420 --> 00:18:52,380
ูŠุฎุชุตุฑูˆุง ู…ุน ุจุนุถ ุชุธู‡ุฑ ู†ุต ุงูŠ ุฒุงุฆุฏ ู†ุต ุงูŠ ุชุธู‡ุฑ ุงูƒุณ
259
00:18:52,380 --> 00:18:53,480
ุงุชู†ูŠู† ุงูƒุณ
260
00:19:01,200 --> 00:19:05,300
ู†ูุณ ุงู„ุดูŠุก ุจู†ุฐู‡ุจ ู†ุญูˆู„ ุงู„ุชุงู†ุด ู„ู„ู€ E ุงู„ุชุงู†ุด ู‡ูŠ
261
00:19:05,300 --> 00:19:10,160
ุฅุจุนุงุฏู‡ุง ุนู† E ุฃุณ 2 ู„ู† X ู†ุงู‚ุต E ุฃุณ ู†ุงู‚ุต 2 ู„ู† X ุงู„ู„ูŠ
262
00:19:10,160 --> 00:19:16,980
ู‡ูˆ ุณู†ุด ุนู„ู‰ ูƒูู ูˆุงู„ุชุงู†ูŠุฉ ุฒูŠู‡ุง ุจุณ ุจุงู„ู…ูˆุฌุฉ ุงู„ุขู† ุจู…ุง
263
00:19:16,980 --> 00:19:21,580
ุฃู†ู‡ ููŠ E ูˆ ู„ู† ูู…ู…ูƒู† ุฃู†ุง ุจุฑุถู‡ ุฃุฎุชุตุฑ ู‡ุฐู‡ ุจุชุตูŠุฑ ู„ู† X
264
00:19:21,580 --> 00:19:28,100
ุชุฑุจูŠุน ูˆู‡ู†ุง ู„ู† X ุฃุณ 2 ู„ู† X ุฃุณ 2 ุงู„ู…ู‚ุงู… E ุฃุณ ู„ู† X
265
00:19:28,100 --> 00:19:31,620
ุชุฑุจูŠุน ูŠุจู‚ู‰ X ุชุฑุจูŠุน ูˆู‡ุฐุง ูŠุจู‚ู‰ X ุฃุณุงู„ุจ ุงุซู†ูŠู†
266
00:19:43,710 --> 00:19:48,810
ุฅุฐุง ูƒุงู† ุจู‚ูˆู„ูŠ if sinh x ูŠุณุงูˆูŠ 4 ุนู„ู‰ 3 then find the
267
00:19:48,810 --> 00:19:51,990
value of the other five hyperbolic functions ุงู„ุขู†
268
00:19:51,990 --> 00:19:55,890
ู…ุง ุจุฏูŠู†ูŠ ูˆุงุญุฏุฉ ู…ู†ู‡ู… ุงู„ู„ูŠ ู‡ูˆ sinh ูˆุจุฏูŠ ุฃูˆุฌุฏ ุงู„ุฎู…ุณุฉ
269
00:19:55,890 --> 00:19:59,810
ุงู„ุจุงู‚ูŠุฉ ุทุจุนุง ู‡ู†ุง ู…ุงููŠุด ุฒูŠ ุงู„ sign ุฃุฑูˆุญ ุฃุนู…ู„ ู…ุซู„ุซ ูˆ
270
00:19:59,810 --> 00:20:03,350
ุงู„ู…ู‚ุงุจู„ ูˆ ุงู„ูˆุชุฑ ูˆุฃู‚ู„ุน ุงู„ุฏู„ุน ุงู„ุชุงู„ุช ูˆุฃุฌูŠุจ ุงู„ุจุงู‚ูŠ
271
00:20:03,350 --> 00:20:08,150
ู„ุฃ ุทุจุนุง ู‡ุฐู‡ ู„ูŠุณุช ุฒุงูˆูŠุฉ ูˆุฅู†ู…ุง ู‡ูŠ ุนุฏุฏ ุฑู‚ู… ูู…ุง ููŠุด
272
00:20:08,150 --> 00:20:11,950
ู†ุณุชุฎุฏู… ู…ุซู„ุซุงุช ู„ูƒู† ุจุฏู†ุง ู†ุณุชุฎุฏู… ุงู„ identities ุงู„ู„ูŠ
273
00:20:11,950 --> 00:20:15,880
ููŠ ุงู„ู…ุฑุจุน ุงู„ุณุงุฏุณ ู…ุนุฑูˆู ุฃู†ู‡ ุฅุฐุง ุจุฏู‰ ุฃุทู„ุน ุงู„ุณู†ุด ุจุฏู‰
274
00:20:15,880 --> 00:20:19,260
ุฃุทู„ุน ุงู„ูƒูˆุด ูˆุงู„ุจุงู‚ูŠ ุฎู„ุงุต ุฃุตู„ุง ู…ู† ุงู„ุชู†ุชูŠู† ู‡ุฏูˆู„ุฉ ุจูŠุฌูŠ
275
00:20:19,260 --> 00:20:22,020
ูƒู„ ุงู„ุฃุฑุจุน ุงู„ุจุงู‚ูŠู† ูŠุจู‚ู‰ ูŠูƒููŠ ุฃู†ูŠ ุฃุนุฑู ุฃู†ุง ุงู„ุณู†ุด ูˆ
276
00:20:22,020 --> 00:20:25,900
ุฃุนุฑู ุงู„ูƒูˆุด ูˆุจุนุฏูŠู† ุงู„ุจุงู‚ูŠู† ุจูŠุฌูˆุง ู…ู† ู‡ูˆู† ุงู„ุขู† ุจุฏูŠ
277
00:20:25,900 --> 00:20:28,620
ุนู„ุงู‚ุฉ ุจูŠู† ุงู„ุณู†ุด ูˆ ุงู„ูƒูˆุด ููŠ ุนู†ุฏู†ุง ุงู„ุนู„ุงู‚ุฉ ุงู„ุฃูˆู„ู‰
278
00:20:28,620 --> 00:20:32,960
ุงู„ู„ูŠ ู‡ูŠ ูƒูˆุด ุชุฑุจูŠุน ูŠุณุงูˆูŠ 1 ุฒุงุฆุฏ ุณู†ุด ุชุฑุจูŠุน ุจุตูŠุฑ ุงู„ุณู†ุด
279
00:20:32,960 --> 00:20:36,440
ุชุฑุจูŠุน ุงู„ู„ูŠ ู‡ูŠ ูŠุนู†ูŠ 16 ุนู„ู‰ 9 ูˆู…ู† ุฌู…ุนู‡ู… ุงู„ูˆุงุญุฏ ุจุชุทู„ุน
280
00:20:36,440 --> 00:20:40,320
25 ุนู„ู‰ 9 ุงู„ุขู† ูƒูˆุด ุชุฑุจูŠุน ูŠุณุงูˆูŠ 25 ุนู„ู‰ 9 ูŠุนู†ูŠ ุงู„ูƒูˆุด
281
00:20:40,320 --> 00:20:44,660
ุชุณุงูˆูŠ 5 ุนู„ู‰ 3 ุทุจุนุง ุจุงู„ู…ูˆุฌุจ ู†ุฃุฎุฐ ู…ูˆุฌุจ ุฃูˆ ุณุงู„ุจ ู„ุฃู†
282
00:20:44,660 --> 00:20:49,400
ุงู„ู€ ูƒูˆุด ุฏุงุฆู…ุง ู…ูˆุฌุจุฉ ุงู„ูƒูˆุด ุฏุงุฆู…ุง ู…ูˆุฌุจุฉ ูˆุฒูŠ ู…ุง ู…ู‚ู„ูˆุจ
283
00:20:49,400 --> 00:20:53,540
ู‡ุงู„ู€ ุณู†ุด ุงู„ุขู† ุจุฏู†ุง ุงู„ู€ ุชุงู†ุด ุงู„ุชุงู†ุด ูŠุจู‚ู‰ ุณู†ุด ุนู„ู‰ ูƒูˆุด
284
00:20:53,540 --> 00:20:57,940
ูŠุจู‚ู‰ 4 ุนู„ู‰ 3 ุนู„ู‰ 5 ุนู„ู‰ 3 ูŠุนู†ูŠ 4 ุนู„ู‰ 5 ุงู„ู€ ูƒูˆ ุชุงู†ุด ู‡ูŠ
285
00:20:57,940 --> 00:21:01,440
ู…ู‚ู„ูˆุจ ุงู„ุชุงู†ุด ุฎู…ุณุฉ ุนู„ู‰ ุฃุฑุจุนุฉ ุงู„ู€ ุณูƒุด ู‡ูŠ ู…ู‚ู„ูˆุจ ุงู„ูƒูˆุด
286
00:21:01,440 --> 00:21:05,980
ุซู„ุงุซุฉ ุนู„ู‰ ุฎู…ุณุฉ ุงู„ู€ ูƒูˆ ุณูƒุด ู‡ูŠ ู…ู‚ู„ูˆุจ ุงู„ุณู†ุด ุซู„ุงุซุฉ ุนู„ู‰
287
00:21:05,980 --> 00:21:12,840
ุฃุฑุจุนุฉ ูˆุจู‡ุฐู‡ ูˆุฌุฏู†ุง ุจุงู‚ูŠ ุงู„ู€ hyperbolic functions ุทูŠุจ
288
00:21:12,840 --> 00:21:17,460
ู†ุฃุชูŠ ู†ุดูˆู ุงู„ู€ derivative ูˆุงู„ู€ integrals ู„ู„ู€
289
00:21:17,460 --> 00:21:20,930
hyperbolic functions ุทุจุนุง ุงู„ู€ hyperbolic functions
290
00:21:20,930 --> 00:21:25,870
ู‡ูˆ ุจู…ุง ุฃู†ู‡ุง ู‡ูŠ ุนุจุงุฑุฉ ุนู† combination ุจูŠู† E ุฃูุณ X ูˆ
291
00:21:25,870 --> 00:21:29,610
E ุฃูุณ ู†ุงู‚ุต X ูˆ E ุฃูุณ X ูˆ E ุฃูุณ ู†ุงู‚ุต X ุจูŠู†
292
00:21:29,610 --> 00:21:32,350
differentiable functions ูˆุจุงู„ุชุงู„ูŠ ุงู„ู€ hyperbolic
293
00:21:32,350 --> 00:21:36,450
functions ุจุฑุถู‡ ุจูƒูˆู†ูˆุง differentiable ูŠุนู†ูŠ ู‚ุงุจู„ูŠู†
294
00:21:36,450 --> 00:21:44,550
ู„ู„ุฅุดุชู‚ุงู‚ ุนู†ุฏ ุฃูŠ ู†ู‚ุทุฉ ู…ู† ุงู„ู†ู‚ุงุท ุงู„ุขู† ุทุจุนุง ูƒู…ุงู† ู…ุฑุฉ
295
00:21:44,550 --> 00:21:50,400
ู‡ู†ุง ู‡ู†ุง ูƒู…ุงู† ููŠ ุชุดุงุจู‡ ุจูŠู† ุงู„ู…ุดุชู‚ุงุช ุจุชุงุนุฉ ุงู„ู€
296
00:21:50,400 --> 00:21:53,040
trigonometric functions ูˆุจูŠู† ุงู„ู€ hyperbolic
297
00:21:53,040 --> 00:21:55,500
functions ูŠุจู‚ู‰ ููŠ ุงู„ู€ identities ู‡ูŠ ููŠ ุงู„ู€
298
00:21:55,500 --> 00:21:58,360
identities ุงู„ู„ูŠ ุตุงุฑูˆุง ุฒูŠ ุจุนุถ ูˆููŠ ุงู„ู…ุดุชู‚ุงุช ุฒูŠ ุจุนุถ
299
00:21:58,360 --> 00:22:03,500
ูŠูุฑู‚ูˆุง ุนู† ุจุนุถ ูู‚ุท ุจุงู„ุฅุดุงุฑุงุช ู„ูƒู† ู…ุฎุชู„ููŠู† ุนู† ุจุนุถ ููŠ
300
00:22:03,500 --> 00:22:08,620
ุฃุดูŠุงุก ุฃุฎุฑู‰ ุฃู† ุงู„ู€ trigonometric ุจุชุฃุฎุฐ ุฒูˆุงูŠุง ุงู„ู€
301
00:22:08,620 --> 00:22:13,240
trigonometric ููŠ periodic functions ูˆู„ูƒู† ุงู„ู€
302
00:22:13,240 --> 00:22:17,340
hyperbola ู„ุฃ ู…ุด periodic functions ุชุฎุชู„ู ููŠ ุจุนุถ
303
00:22:17,340 --> 00:22:23,340
ุงู„ุฃุดูŠุงุก ุฏู„ูˆู‚ุช ู†ุดูˆู ุงู„ู€ derivative ู„ู„ู€ ุณู†ุด U ุณู†ุด U
304
00:22:23,340 --> 00:22:25,920
ุงู„ู„ูŠ ู‡ูŠ ุจุฏุงูŠุฉ ุชูุงุถู„ ุงู„ู€ E ุฃูุณ U ู†ุงู‚ุต E ุฃูุณ ู†ุงู‚ุต U
305
00:22:25,920 --> 00:22:29,280
ุนู„ู‰ 2 ุชูุงุถู„ ุงู„ู€ E ุฃูุณ U ูˆ E ุฃูุณ U ู†ูุณู‡ุง ููŠ ุชูุงุถู„
306
00:22:29,280 --> 00:22:34,410
ู„ู„ู€ U ุฒุงุฆุฏ ู†ุงู‚ุต ุชูุงุถู„ E ุฃูุณ ู†ุงู‚ุต U E ุฃูุณ ู†ุงู‚ุต U ููŠ
307
00:22:34,410 --> 00:22:38,570
ุชูุงุถู„ ุงู„ุฃูุณ ุงู„ู„ูŠ ู‡ูˆ ุณุงู„ุจ ุจูŠุตูŠุฑ ู…ูˆุฌุจ ุนู„ู‰ ุงุซู†ูŠู† ุฅูŠุด
308
00:22:38,570 --> 00:22:42,850
ุทู„ุน E ุฃูุณ U ุฒุงุฆุฏ E ุฃูุณ ู†ุงู‚ุต U ุนู„ู‰ ุงุซู†ูŠู† ู‡ูŠ ุจุฑุถู‡
309
00:22:42,850 --> 00:22:48,050
ูƒูˆุด U ูŠุจู‚ู‰ ุชูุงุถู„ ุงู„ุณู†ุด ูŠุณุงูˆูŠ ูƒูˆุด ุชูุงุถู„ ุงู„ุณู†ุด ูƒูˆุด
310
00:22:48,050 --> 00:22:51,890
ุทุจุนุง ุฒูŠ ุจุงู„ุถุจุท ุฒูŠ ุชูุงุถู„ ุงู„ู€ ุณุงูŠู† ูŠุณุงูˆูŠ ูƒูˆุณุงูŠู† ุชูุงุถู„
311
00:22:51,890 --> 00:22:57,740
ุงู„ู€ ุณุงูŠู† ูƒูˆุณุงูŠู† ุงู„ุขู† ุทุจุนุง ุฒูŠ ู…ุง ุงุดุชู‚ูŠู†ุง ู‡ู†ุงูƒ ุฏู‡ ุจู†ุดุชู‚
312
00:22:57,740 --> 00:23:00,920
ุงู„ุจุงู‚ูŠู† ุจุฑุถู‡ ุงู„ูƒูˆุด ู„ู…ุง ู†ูŠุฌูŠ ู†ุดุชู‚ ุงู„ูƒูˆุด ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€
313
00:23:00,920 --> 00:23:05,940
E ู„ู…ุง ุจุฏูŠ ุงุดุชู‚ E ุฃูุณ X ุชูุงุถู„ู‡ุง E ุฃูุณ X ุฒุงุฆุฏ E ุฃูุณ
314
00:23:05,940 --> 00:23:09,340
ู†ุงู‚ุต X ุฅูŠุด ุชูุงุถู„ู‡ุง ุจุชุตูŠุฑ E ุฃูุณ ู†ุงู‚ุต X ููŠ ุณุงู„ุจ ูŠุจู‚ู‰
315
00:23:09,340 --> 00:23:13,460
ุฃุฌุช ุงู„ุณุงู„ุจ ูŠุจู‚ู‰ ุชูุงุถู„ ุชูุงุถู„ู‡ุง ุฅูŠุด ุงู„ูƒูˆุด ุจุชุทู„ุน ุณู†ุด
316
00:23:13,460 --> 00:23:17,840
ุจุงู„ุถุจุท ูŠุจู‚ู‰ ุชูุงุถู„ ุงู„ูƒูˆุด ุณู†ุด ูˆู‡ุฐู‡ ุฅูŠุด ุชุฎุชู„ู ุนู† ุงู„ู€
317
00:23:17,840 --> 00:23:22,600
cosine ุจุงู„ุฅุดุงุฑุฉ ุงู„ุขู† ุงู„ู€ cosine ุจุงู„ุณุงู„ุจ ู‡ุฐู‡ ุจุงู„ู…ูˆุฌุจ
318
00:23:22,920 --> 00:23:26,540
ู‡ุฐู‡ ุจุงู„ู…ูˆุฌุจ ุจูŠุจู‚ู‰ ู‡ุฐุง ุฒูŠ ุจุนุถ ูˆู‡ุฐู‡ ุจูŠุฎุชู„ู ุจุงู„ุฅุดุงุฑุฉ
319
00:23:26,540 --> 00:23:31,080
ุชูุงุถู„ ุงู„ุชุงู†ุด ุณูƒุด ุชุฑุจูŠุน ุฒูŠ ุจุนุถ ุชูุงุถู„ ุงู„ูƒูˆุชุงู†ุด ู†ุงู‚ุต
320
00:23:31,080 --> 00:23:35,380
ูƒูˆุณูƒุด ุชุฑุจูŠุน ุชูุงุถู„ ุงู„ู€ ุณูƒุด ู†ุงู‚ุต ุณูƒุด ุชุงู†ุด ุฅู† ู‡ุฐู‡ ูŠุฎุชู„ู
321
00:23:35,380 --> 00:23:39,020
ุจุงู„ุฅุดุงุฑุฉ ู‡ุฐู‡ ุงู„ุฅุดุงุฑุฉ ุณุงู„ุจุฉ ู‡ู†ุง ูƒุงู†ุช ุจุงู„ู€ ุณูƒุด ู…ูˆุฌุจุฉ
322
00:23:39,020 --> 00:23:42,860
ูˆู„ูƒู† ุจุงู„ู€ ุณูƒุด ู‡ู†ุง ุฅูŠุด ุตุงุฑ ููŠู†ุง ุณุงู„ุจ ุฃูŠ ุจุงู„ู…ุฑุจุนูŠู†
323
00:23:42,860 --> 00:23:47,680
ุงู„ู€ ุญู…ุฑุง ู‡ุฏูˆู„ ู‡ู… ุงู„ู…ุฎุชู„ููŠู† ุจุงู„ุฅุดุงุฑุฉ ุงู„ู€ ูƒูˆุณูƒุด ู†ุงู‚ุต
324
00:23:47,680 --> 00:23:53,920
ูƒูˆุณูƒุด ูƒูˆุชุงู†ุด ู†ูุณ ุงู„ุดูŠุก ุจุฑุถู‡ ุฒูŠ ุงู„ู€ ูƒูˆุณูƒุด ูŠุจู‚ู‰ ุฅูŠู‡
325
00:23:53,920 --> 00:24:00,760
ุงู„ุชูุงุถู„ุงุช ู†ุฌูŠ ู†ุดูˆู ุฃู…ุซู„ุฉ ุนู„ู‰ ุงู„ู…ุดุชู‚ุงุช find y
326
00:24:00,760 --> 00:24:05,060
prime if y ุชุณุงูˆูŠ X ุฃูุณ X ุฒุงุฆุฏ ูƒูˆุชุงุด X ุทุจุนุง ู‡ู†ุง
327
00:24:05,060 --> 00:24:09,640
ุฌู…ุนู†ุง ุจูŠู† functions X ุฃูุณ ู…ุชุบูŠุฑ ุฃูุณ ู…ุชุบูŠุฑ ู„ุฃู†
328
00:24:09,640 --> 00:24:13,230
ุนุดุงู† ุฃูุงุถู„ ู‡ุฐู‡ ู„ุงุฒู… ุฃุญูˆู„ู‡ุง ุจุงู„ุฃูˆู„ ู„ู„ู€ E ูุชุตูŠุฑ E ุฃูุณ
329
00:24:13,230 --> 00:24:16,930
X ู„ู† X ุฒุงุฆุฏ ุงู„ู€ ูƒูˆุชุงู†ุด ุงู„ุขู† ุจู†ู‚ุฏุฑ ู†ูุงุถู„ ุงู„ู€ E ุฅูŠุด
330
00:24:16,930 --> 00:24:20,390
ุชูุงุถู„ู‡ุง ู‡ูŠ ู†ูุณู‡ุง ููŠ ุชูุงุถู„ ุงู„ุฃุณ ุงู„ุฃูˆู„ู‰ ููŠ ุชูุงุถู„
331
00:24:20,390 --> 00:24:24,170
ุงู„ุซุงู†ูŠุฉ ุชูุงุถู„ ู„ู† ูˆุงุญุฏุฉ ู„ู€ X ุฒุงุฆุฏ ู„ู† X ููŠ ุชูุงุถู„ X
332
00:24:24,170 --> 00:24:29,010
ุงู„ู„ูŠ ู‡ูŠ ูˆุงุญุฏุฉ ู„ุฃู† ุงู„ู€ ูƒูˆุชุงู†ุด ุชูุงุถู„ู‡ุง ู†ุงู‚ุต ูƒุณูƒุด ุชุฑุจูŠุน
333
00:24:29,010 --> 00:24:33,470
ู†ุงู‚ุต ูƒุณูƒุด ุชุฑุจูŠุน X ูˆ ุจู†ุฑุฌุน ุงู„ู€ E ู„ุฃุตู„ู‡ุง X ุฃูุณ X ูˆ
334
00:24:33,470 --> 00:24:40,330
ุจู†ูƒู…ู„ ุงู„ุจู‚ูŠุฉ example 2 find Y' if Y ุชุณุงูˆูŠ ู„ู† ูƒูˆุด X
335
00:24:40,330 --> 00:24:43,960
ุชุฑุจูŠุน ุงู„ุขู† ุจู†ูุงุถู„ ู‡ุฐู‡ ุซู„ุงุซุฉ composite function ู…ุน
336
00:24:43,960 --> 00:24:47,760
ุจุนุถ ุจู†ูุงุถู„ ุงู„ู€ ู„ูŠู† ุจุงู„ุฃูˆู„ ุชูุงุถู„ ุงู„ู€ ู„ูŠู† ูˆุงุญุฏ ุนู„ู‰ ูƒูˆุด X
337
00:24:47,760 --> 00:24:53,200
ุชุฑุจูŠุน ููŠ ุชูุงุถู„ ุงู„ูƒูˆุด ุงู„ู„ูŠ ู‡ูŠ ุณู†ุด X ุชุฑุจูŠุน ููŠ ุชูุงุถู„
338
00:24:53,200 --> 00:24:57,060
ุงู„ู€ X ุชุฑุจูŠุน ุงู„ู„ูŠ ู‡ูˆ 2X ุงู„ุขู† ู…ู…ูƒู† ุงุญู†ุง ู†ุฌู…ุนู‡ุง ู‡ุฐู‡
339
00:24:57,060 --> 00:25:03,180
ู†ูุถู„ุช 2X ูˆ ุณู†ุด ุนู„ู‰ ูƒูˆุด ู†ุญุท ุจุฏู„ู‡ุง ุชุงู†ุด example ุซู„ุงุซุฉ
340
00:25:03,180 --> 00:25:08,080
find Y prime if Y ุชุณุงูˆูŠ X ุชุฑุจูŠุน ุชุงู†ุด ูˆุงุญุฏ ุนู„ู‰ X
341
00:25:08,560 --> 00:25:12,300
ุงู„ุขู† Y' ูŠุณุงูˆูŠ ุงู„ุฃูˆู„ู‰ X ุชุฑุจูŠุน ููŠ ุชูุงุถู„ ุงู„ุชุงู†ุด ุงู„ู„ูŠ
342
00:25:12,300 --> 00:25:17,240
ู‡ูˆ ุณูƒุด ุชุฑุจูŠุน ูˆุงุญุฏ ุนู„ู‰ X ููŠ ุชูุงุถู„ ุงู„ูˆุงุญุฏ ุนู„ู‰ X ุงู„ู„ูŠ
343
00:25:17,240 --> 00:25:21,660
ู‡ูˆ ู†ุงู‚ุต ูˆุงุญุฏ ุนู„ู‰ X ุชุฑุจูŠุน ุฒุงุฆุฏ ุงู„ุชุงู†ุด ุชุงู†ุด ูˆุงุญุฏ ุนู„ู‰
344
00:25:21,660 --> 00:25:25,460
X ููŠ ุงุซู†ูŠู† ููŠ ุงุซู†ูŠู† X ููŠ ุชูุงุถู„ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ X ุชุฑุจูŠุน
345
00:25:25,460 --> 00:25:29,780
ุทุจุนุง ู‡ู†ุง ู…ู…ูƒู† ู†ุฎุชุตุฑ ู‡ุฐู‡ ู…ุน ู‡ุฐู‡ ุจูŠุจู‚ู‰ ู†ุงู‚ุต ุณูƒุด
346
00:25:29,780 --> 00:25:33,320
ุชุฑุจูŠุน ูˆุจุนุฏูŠู† ุฒุงุฆุฏ 2X ุชุงู†ุด
347
00:25:35,880 --> 00:25:39,600
ู…ุซู„ู‡ุง ุงู„ุฑุงุจุนุฉ fy ุจุฑุงูŠู… fy ุชุณุงูˆูŠ 4X ุชุจู‚ู‰ ู†ุงู‚ุต
348
00:25:39,600 --> 00:25:44,000
ูˆุงุญุฏ ููŠ ูƒุณูƒุด ูƒุณูƒุด ู„ูŠู‡ ู„ู† 2X ุงู„ุขู† ุจุฑุถู‡ ุจุฏู†ุง
349
00:25:44,000 --> 00:25:48,000
ู†ูุถู„ ุงู„ุฃูˆู„ู‰ ููŠ ุชูุงุถู„ ุงู„ุซุงู†ูŠุฉ ุชูุงุถู„ ุงู„ู€ ูƒุณูƒุด ุงู„ู„ูŠ ู‡ูˆ
350
00:25:48,000 --> 00:25:51,620
ู†ุงู‚ุต ูƒุณูƒุด ูƒูˆุชุงู†ุด ุทุจุนุง ุจุชุญุท ุงู„ู„ูŠ ุฌูˆุง ุฒูŠ ู…ุง ู‡ูˆ ู„ู†
351
00:25:51,620 --> 00:25:56,020
2X ู„ู† 2X ุฒุงุฆุฏ ุงู„ุซุงู†ูŠุฉ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ ูƒุณูƒุด
352
00:25:56,020 --> 00:25:59,920
ููŠ ุชูุงุถู„ ุงู„ุฃูˆู„ู‰ ุงู„ู„ูŠ ู‡ูˆ ุซู…ุงู†ูŠุฉ 8X ู‡ุฐุง
353
00:25:59,920 --> 00:26:03,560
ุจุงู„ู†ุณุจุฉ ู„ู„ู…ุดุชู‚ุงุช ุทุจุนุง ุงู„ุนู…ู„ูŠุฉ ุงู„ุนูƒุณูŠุฉ ู„ู€ ุงู„ู„ูŠ ู‡ูˆ
354
00:26:03,560 --> 00:26:07,950
ุงู„ุชูƒุงู…ู„ ุจู†ู‚ูˆู„ ุงู„ู„ูŠ ู‡ูˆ ุชูƒุงู…ู„ ุงู„ู€ sinh ูƒูˆุด ูˆุชูƒุงู…ู„
355
00:26:07,950 --> 00:26:12,270
ุงู„ู€ ูƒูˆุด sinh ู„ุฃู† ูƒู„ ุงู„ุฅุดุงุฑุงุช ู…ูˆุฌุจุฉ ุชูƒุงู…ู„ ุงู„ู€ ุณูƒุด
356
00:26:12,270 --> 00:26:17,310
ุชุฑุจูŠุน ุชุงู†ุด ุชูƒุงู…ู„ ุงู„ู€ ูƒุณูƒุด ุชุฑุจูŠุน ู†ุงู‚ุต ูƒูˆุชุงู†ุด ุชูƒุงู…ู„ ุณูƒุด
357
00:26:17,310 --> 00:26:21,810
ุชุงู†ุด ู†ุงู‚ุต ุณูƒุด ุดูˆู ู‡ู†ุง ููŠู‡ ุงู„ุฅุดุงุฑุฉ ุชูƒุงู…ู„ ุงู„ู€ ูƒุณูƒุด
358
00:26:21,810 --> 00:26:27,550
ูƒูˆุชุงู†ุด ุงู„ู„ูŠ ู‡ูˆ ู†ุงู‚ุต ูƒุณูƒุด ุงู„ุนู…ู„ูŠุฉ ุงู„ุนูƒุณูŠุฉ ุนุงุฏูŠ ู„ูˆ
359
00:26:27,550 --> 00:26:31,760
ุชูุงุถู„ุช ุชูุงุถู„ ูˆุงู„ุชูƒุงู…ู„ ู‡ูŠ ุนูƒุณูŠุฉ ุงู„ุขู† ุงู„ุฃู…ุซู„ุฉ find
360
00:26:31,760 --> 00:26:35,080
ุงู„ุชูƒุงู…ู„ ู…ู† 4 ุฅู„ู‰ 9 ุณู…ุด ุฌุฐุฑ ุงู„ู€ X ุนู„ู‰ ุฌุฐุฑ ุงู„ู€ X DX
361
00:26:35,080 --> 00:26:39,660
ุงู„ุขู† ู„ูˆ ูุฑุถู†ุง ุฌุฐุฑ ุงู„ู€ X ุชุณุงูˆูŠ U ูู€ DU ู‡ุชุณุงูˆูŠ 1 ุนู„ู‰ 2
362
00:26:39,660 --> 00:26:44,100
ุฌุฐุฑ ุงู„ู€ X DX ุงู„ุขู† ู†ูŠุฌูŠ ู†ุนูˆุฏ ุจูŠุตูŠุฑ ุชูƒุงู…ู„ ุณู…ุด ุงู„ู€ U ูˆ
363
00:26:44,100 --> 00:26:47,900
ุจุนุฏูŠู† ู†ุถุน ู‡ู†ุง DX ุนู„ู‰ ุฌุฐุฑ ุงู„ู€ X DX ุนู„ู‰ ุฌุฐุฑ ุงู„ู€ X ุงู„ู„ูŠ
364
00:26:47,900 --> 00:26:53,330
ู‡ูˆ 2 DU ูŠุจู‚ู‰ ู…ุนูˆุถ ุจุฏู„ 2 DU ูˆุจุนุฏูŠู† ุจู†ุบูŠุฑ ุญุฏูˆุฏ
365
00:26:53,330 --> 00:26:57,490
ุงู„ุชูƒุงู…ู„ ู„ู…ุง ุงู„ู€ X ุชุณุงูˆูŠ 4 ุฌุฐุฑ ุงู„ู€ 4 ุงุซู†ูŠู† ู„ู…ุง ุงู„ู€ X
366
00:26:57,490 --> 00:27:00,190
ุชุณุงูˆูŠ 9 ุฌุฐุฑ ุงู„ุชุณุนุฉ ุงู„ู„ูŠ ู‡ูˆ ุซู„ุงุซุฉ ู‡ูŠุจู‚ู‰ ุงู„ุชูƒุงู…ู„ ู…ู†
367
00:27:00,190 --> 00:27:05,030
2 ุฅู„ู‰ 3 ุงู„ุขู† ุจู†ูƒุงู…ู„ ุงู„ุงุซู†ูŠู† ุจุชุทู„ุน ุจุฑุง ูˆุจู†ู‚ูˆู„ ุชูƒุงู…ู„
368
00:27:05,030 --> 00:27:08,830
ุงู„ู€ sinh ุงู„ู„ูŠ ู‡ูˆ ูƒูˆุด ูƒูˆุด U ู…ู† 2 ุฅู„ู‰ 3 ูŠุนู†ูŠ ูƒูˆุด
369
00:27:08,830 --> 00:27:13,950
ุงู„ุซู„ุงุซุฉ ู†ุงู‚ุต ูƒูˆุด ุงู„ุงุซู†ูŠู† ุทุจุนุง ุจูŠุถู„ูˆุง ู‡ุฐูˆู„ ุฒูŠ ู…ุง
370
00:27:13,950 --> 00:27:17,050
ู‡ูˆ ู„ุฃู†ู‡ู… ู…ุง ูŠุนุฑูุด ุงู„ู…ู‚ุงุฏูŠุฑ ู‡ุฐู‡ ูˆู…ุง ููŠุด ุฏุงุนูŠ ู„ุงุณุชุฎุฏุงู…
371
00:27:17,050 --> 00:27:24,130
ุงู„ุขู„ุฉ ุงู„ุญุงุณุจุฉ ููŠ ู…ุนุฑูุฉ ู‚ูŠู…ู‡ู… ูŠูƒููŠ ุฃู†ู‡ ูŠุจู‚ู‰ ุฒูŠ ุฐู„ูƒ
372
00:27:24,130 --> 00:27:29,230
ูƒูˆุด ุชุฑุจูŠุน ุชูƒุงู…ู„ ูƒูˆุด ุชุฑุจูŠุน ุทุจุนุง ูƒูˆุด ุชุฑุจูŠุน ู…ุง ู†ู‚ุฏุฑุด
373
00:27:29,230 --> 00:27:33,390
ู†ูƒู…ู„ู‡ุง ู…ุง ููŠุด ุดูŠุก ุชูุงุถู„ ูƒูˆุด ุชุฑุจูŠุน ูˆุจุงู„ุชุงู„ูŠ ุฒูŠ ุงู„ู€
374
00:27:33,390 --> 00:27:37,070
cosine ุชุฑุจูŠุน ูˆ ุงู„ู€ sine ุชุฑุจูŠุน ุจู†ุฑูˆุญ ุจู†ุญูˆู„ู‡ู… ู„ู‚ุงู†ูˆู†
375
00:27:37,070 --> 00:27:41,730
ุถุนู ุงู„ุฒุงูˆูŠุฉ ุถุนู ุงู„ุนุฏุฏ ู‡ู†ุง ุทุจุนุง ู…ุด ุฒุงูˆูŠุฉ ู„ุฃู† ูƒูˆุด
376
00:27:41,730 --> 00:27:44,490
ุชุฑุจูŠุน ุชุณุงูˆูŠ ูƒูˆุด 2X ุฒุงุฆุฏ 1 ุนู„ู‰ 2
377
00:27:44,490 --> 00:27:48,670
ูˆุงู„ุขู† ุจู†ู‚ุฏุฑ ู†ูƒุงู…ู„ ุงู„ูƒูˆุด 2X ุชูƒุงู…ู„ู‡ุง ุณู…ุด
378
00:27:48,670 --> 00:27:51,890
2X ูˆ ุจู†ู‚ุณู… ุนู„ู‰ ุชูุงุถู„ ุงู„ุฒุงูˆูŠุฉ ูŠุนู†ูŠ ุนู„ู‰ ุงุซู†ูŠู†
379
00:27:51,890 --> 00:27:56,030
ูˆ ุงู„ูˆุงุญุฏ ุชูƒุงู…ู„ู‡ุง X ูˆู‡ูŠ ุงู„ู†ุตู ู‡ุฐู‡ ุงู„ู„ูŠ ุจุฑุง ุฒุงุฆุฏ C
380
00:27:59,420 --> 00:28:04,360
ุจุชูƒุงู…ู„ ู…ู† 0 ุฅู„ู‰ ู„ู† 2 ุฃุฑุจุนุฉ E ุฃูุณ ู†ุงู‚ุต X ุณู…ุด X DX
381
00:28:04,360 --> 00:28:08,600
ุทุจุนุง ู‡ู†ุง ุณู…ุด ูˆ E ู…ุง ู†ู‚ุฏุฑุด ู†ูƒุงู…ู„ ู‡ู…ุง ุงู„ู„ูŠ ู‡ู… ู…ุด ุนู„ุงู‚ุฉ
382
00:28:08,600 --> 00:28:12,120
ุจุนู… ูŠุนู†ูŠ ู…ุง ููŠุด ูˆุงุญุฏุฉ ุชูุงุถู„ ุงู„ุซุงู†ูŠุฉ ูŠุจู‚ู‰ ู„ุงุฒู… ุงู„ุณู…ุด
383
00:28:12,120 --> 00:28:15,580
ุจุฑุถู‡ ู†ุญูˆู„ู‡ุง ู„ู„ู€ E ุนุดุงู† ู†ู‚ุฏุฑ ู†ูƒุงู…ู„ ูุจู‚ูˆู„ู‡ุง ุงู„ุณู…ุด
384
00:28:15,580 --> 00:28:20,660
ุจู†ุญูˆู„ู‡ุง ุฅู„ู‰ E ุฃูุณ X ู†ุงู‚ุต E ุฃูุณ ู†ุงู‚ุต X ุนู„ู‰ 2 ุจูŠุตูŠุฑ
385
00:28:20,660 --> 00:28:24,400
ุฅูŠุด ุงู„ุชูƒุงู…ู„ ูˆ ุจู†ุถุฑุจ ุจู†ุฏุฎู„ E ุฃูุณ ู†ุงู‚ุต X ุจู†ุฏุฎู„ู‡ุง ุนู„ู‰
386
00:28:24,400 --> 00:28:28,450
ุงู„ุฃูุณ ูˆ 2 ุจุชุฑูˆุญ ู…ุน ุงู„ุฃุฑุจุนุฉ ุจูŠุถู„ 2 ู‡ูŠู‡ุง ุจุฑุง E ุฃูุณ ู†ุงู‚ุต
387
00:28:28,450 --> 00:28:32,390
X ููŠ E ุฃูุณ X ู‡ูˆ 1 ู†ุงู‚ุต E ุฃูุณ ู†ุงู‚ุต X ููŠ E ุฃูุณ ู†ุงู‚ุต X
388
00:28:32,390 --> 00:28:36,270
ุจู†ุฌู…ุน ุงู„ุฃุณุงุณ ูˆุจุงู„ูƒุงู…ู„ ุงู„ุขู† ุตุงุฑุช ุฅูŠุด ู‚ุงุจู„ุฉ ู„ู„ุชูƒุงู…ู„
389
00:28:36,270 --> 00:28:40,970
ุชูƒุงู…ู„ ุงู„ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูˆ X ูˆุชูƒุงู…ู„ E ุฃูุณ ู†ุงู‚ุต 2X E ุฃูุณ
390
00:28:40,970 --> 00:28:45,530
ู†ุงู‚ุต X ุนู„ู‰ ู†ุงู‚ุต 2 ุนู„ู‰ ุชูุงุถู„ ุงู„ุฃุณุงุณ ู…ู† 0 ุฅู„ู‰ ู„ู†
391
00:28:45,530 --> 00:28:49,090
2 ูˆุจู†ุนูˆุฏ ุจุฏู„ ุงู„ู€ X ู…ู† ุนูˆุถ ู„ู† 2 ูˆู‡ู†ุง ุจู†ุนูˆุฏ ุจุฏู„ ุงู„ู€ X
392
00:28:49,090 --> 00:28:53,100
ู‡ุฐู‡ ู„ู† 2 ุจูŠุตูŠุฑ ู‡ุฐู‡ ู†ุงู‚ุต 2 ู„ู† 2 ูˆุจุนุฏูŠู† ุจู†ุนูˆุฏ
393
00:28:53,100 --> 00:28:58,040
ุจุงู„ุตูุฑ ู‡ู†ุง ุตูุฑ ูˆ E ุฃูุณ ุตูุฑ 1 ูุจุชุถู„ E ุฃูุณ ู†ุตู ุณุงุฏุฉ
394
00:28:58,040 --> 00:29:03,460
ู†ุตู ุงู„ุขู† ู‡ุฐู‡ ุจุฏู†ุง ู†ุธุจุทู‡ุง ุงู„ู„ูŠ ู‡ูˆ ู†ุงู‚ุต 2 ุจุชูŠุฌูŠ
395
00:29:03,460 --> 00:29:07,540
ููˆู‚ ุงู„ุงุซู†ูŠู† ุจุชุตูŠุฑ ู‡ู†ุง ู„ู† ุงู„ุฑุจุน E ุฃูุณ ู„ู† ุงู„ุฑุจุน ูŠุนู†ูŠ
396
00:29:07,540 --> 00:29:11,960
ุจุชุทู„ุน ุฌูˆุง ุจุฑุจุน ู‡ูŠ ุฑุจุน ูˆุจุนุฏูŠู† ู†ุงู‚ุต ู†ุตู ู„ู† 2 ูˆ
397
00:29:11,960 --> 00:29:17,510
ุจุชุฌู…ุนู‡ู… ุจุชุทู„ุน ุจู‡ุฐุง ุงู„ุดูƒู„ ุงู„ุขู† ุงู„ู€ hyperbolic
398
00:29:17,510 --> 00:29:21,950
functions ู‡ุฐูˆู„ ุงู„ู„ูŠ ููŠู‡ู… inverse ู‡ู„ ุงู„ูƒู„ ู„ู‡
399
00:29:21,950 --> 00:29:25,050
inverse ูˆู„ุง ูƒุฏู‡ ุนู„ู‰ ุญุณุจ ุงู„ู€ function ู‡ู„ ู‡ูŠ one to
400
00:29:25,050 --> 00:29:30,830
one ุฃูˆ ู„ุง ุงู„ุขู† ููŠ ุงู„ู€ cinch ุงู„ู€ cinch ู†ูŠุฌูŠ ู†ุฑุฌุน
401
00:29:30,830 --> 00:29:36,810
ู„ู„ุฑุณูˆู…ุฉ ููŠ ุฃูˆู„ ุตูุญุฉ ู„ู„ุฑุณู… ู„ูˆ ู„ุงุญุธู†ุง ุงู„ู€ cinch ุงู„ู„ูŠ
402
00:29:36,810 --> 00:29:39,810
ุฑุณู…ุชู‡ุง ุฒูŠ ุงู„ู€ ุงูƒุณุชุฑ ูƒูŠุจ ู‡ุฐู‡ is one to one ูู…ูˆุฌูˆุฏุฉ ุงู„ู€
403
00:29:39,810 --> 00:29:42,590
inverse ุนู„ู‰ ูƒู„ ุงู„ู€ domain ูŠุนู†ูŠ ุงู„ู€ cinch inverse
404
00:29:42,590 --> 00:29:45,610
ู…ูˆุฌูˆุฏุฉ ูˆุจุงู„ุชุงู„ูŠ ุงู„ู€ cinch inverse ุงู„ุณูŠู†ุด ุงู†ูุฑุณุช
405
00:29:45,610 --> 00:29:50,130
ุชุจุนุชู†ุง ุงู„ู€ domain ุชุจุนุชู‡ุง ุงู„ู€ R ูˆ ุงู„ู€ range ุงู„ู€ R ู„ุฃู†ู‡
406
00:29:50,130 --> 00:29:54,130
ุจู†ุจุฏู„ู‡ู… ุจุนุถ ูˆ ุจู†ุทู„ุน R ูˆ R ู„ุฃู† ุงู„ู€ ูƒูˆุด ุงู„ูƒูˆุด ุฒูŠ ุฑุณู…ุฉ
407
00:29:54,130 --> 00:29:58,210
X ุชุฑุจูŠุน ุฒุงุฆุฏ 1 not one to one ูˆุจุงู„ุชุงู„ูŠ ู…ุง ููŠุด
408
00:29:58,210 --> 00:30:01,170
ู„ู‡ุง inverse ุฅู„ุง ุฅุฐุง ูƒุงู† ุฃุฎุฐ domain ู…ุนูŠู† ุงู„ุขู† ุงู„ู€
409
00:30:01,170 --> 00:30:03,230
domain ุงู„ู„ูŠ ุฑุงุญ ู†ุฃุฎุฐ ููŠู‡ ุงู„ู€ inverse ู„ู„ูƒูˆุด ุงู„ู„ูŠ ู‡ูˆ
410
00:30:03,230 --> 00:30:06,770
ู…ู† 0 ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ุจุนุฏ ุงู„ุตูุฑ X ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ุตูุฑ
411
00:30:06,770 --> 00:30:10,270
ุฑุงุญ ู†ุฃุฎุฐ ูู‚ุท ุฌุฒุก ู‡ุฐุง ู…ู† ุงู„ูƒูˆุด ูŠุจู‚ู‰ ููŠู‡ ุงู„ูˆู‚ุน ุงู†ุด
412
00:30:10,270 --> 00:30:13,650
inverse ุทุจุนุง ู„ู†ุง ู†ุตุทู„ุญ ุฃู†ู‡ ุงุญู†ุง ูƒูˆุด inverse ูƒูˆุด
413
00:30:13,650 --> 00:30:17,680
inverse ุฑุงุญ ู†ุฃุฎุฐ ุงู„ู„ูŠ ู‡ูˆ ู…ู† 0 ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ุงู„ุขู†
414
00:30:17,680 --> 00:30:21,060
ู‡ุฐุง ูŠุนู†ูŠ ูƒูˆุด inverse ุชุจุนุชู†ุง ุงู„ู€ domain ุชุจุนู‡ ู‡ูˆ ุงู„ู€
415
00:30:21,060 --> 00:30:23,560
range ุชุจุน ุงู„ูƒูˆุด ุงู„ู„ูŠ ู‡ูˆ ู…ู† 1 ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ
416
00:30:23,560 --> 00:30:27,160
ุจูŠู†ู…ุง ุงู„ู€ range ุชุจุนู‡ ู…ู† ุตูุฑ ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ุงู„ู€ range
417
00:30:27,160 --> 00:30:30,260
ุชุจุนู‡ ู…ู† ุตูุฑ ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ู…ุด ุฑุงุญ ู†ุฃุฎุฐ ุงู„ุฌุฒุก ู‡ุฐุง
418
00:30:30,260 --> 00:30:34,660
ุจุฏู†ุง ู†ุฃุฎุฐ ู‡ุฐุง ุงู„ุฌุฒุก ุงู„ุขู† ุงู„ู€ 12 ู…ุด ุนู†ุฏู†ุง ู…ุดูƒู„ุฉ one
419
00:30:34,660 --> 00:30:37,740
to one ูˆุจุงู„ุชุงู„ูŠ ุงู„ู€ inverse ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ everywhere
420
00:30:37,740 --> 00:30:43,000
ุทุจุนุง ุงู„ู€ ุณูƒุด ู„ุงุญุธูˆุง ุงู„ูƒูˆุด ูˆุงู„ู€ ุณูุด ุงู„ุงุซู†ูŠู† ู‡ุฐูˆู„ ู‡ู…
421
00:30:43,000 --> 00:30:46,220
ุงู„ู„ูŠ ุฃู†ุง ุจุฏูŠ ุขุฎุฐ ุงู„ู€ domain ุงู„ู„ูŠ ู‡ูˆ ุฃูƒุจุฑ ู…ู† ุตูุฑ
422
00:30:46,220 --> 00:30:49,890
ู…ู† ุตูุฑ ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉุŒ ู†ุฃุฎุฐ ุงู„ู€ domain ู…ู† ุตูุฑ ุฅู„ู‰ ู…ุง ู„ุง
423
00:30:49,890 --> 00:30:53,230
ู†ู‡ุงูŠุฉุŒ ูŠุนู†ูŠ ู‡ุฐุง ุงู„ุฌุฒุก ูŠูƒูˆู† one to one ูˆุจุงู„ุชุงู„ูŠ ููŠู‡
424
00:30:53,230 --> 00:30:57,630
ู„ู‡ inverse ูŠุนู†ูŠ ุงู„ู€ domainุŒ ุงู„ู€ domain ู„ู„ู€ six
425
00:30:57,630 --> 00:31:03,150
inverse ุฑุงุญ ูŠูƒูˆู† ู…ู† ุตูุฑ ุฅู„ู‰ ูˆุงุญุฏุŒ ู…ู† ุตูุฑ ู…ูุชูˆุญ ุฅู„ู‰
426
00:31:03,150 --> 00:31:07,910
ูˆุงุญุฏ ู…ุบู„ู‚ุฉุŒ ูˆ ุงู„ู€ range ุงู„ู„ูŠ ู‡ูˆ ู…ู† ุตูุฑ ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ
427
00:31:07,910 --> 00:31:11,950
ุทุจุนู‹ุง ุงู„ู€ cosec ุฒูŠ ุฑุณู…ุฉ ุงู„ูˆุงุญุฏ ุนู„ู‰ X ูุจุงู„ุชุงู„ูŠ ู‡ูŠ
428
00:31:11,950 --> 00:31:17,130
one to one ูˆ ุงู„ู€ inverse ู„ู‡ุง ู…ูˆุฌูˆุฏุฉุŒ ูˆู†ูุณ ุงู„ุดูŠุก...
429
00:31:17,130 --> 00:31:20,010
ุทุจุนู‹ุง ุงู„ู€ domain ูˆ ุงู„ู€ range ูŠู…ู„ุฃ ูƒู„ ุงู„ุฃุฑู‚ุงู… ุนู„ู‰ ุงู„ุตูุฑ
430
00:31:20,010 --> 00:31:23,630
ูˆู†ูุณ ุงู„ุดูŠุก ุงู„ู€ inverse ุทุจุนู‹ุง ู‡ู†ุง ู†ุณูŠุช ุฃู† ุฃู‚ูˆู„
431
00:31:23,630 --> 00:31:27,590
ุงู„ุชุงู†ุด... ุงู„ู€ tanh inverse ุงู„ู€ domain ูŠู…ู„ุฃ ู…ู† ุณุงู„ุจ
432
00:31:27,590 --> 00:31:31,530
ูˆุงุญุฏ ุฅู„ู‰ ูˆุงุญุฏ ู…ูุชูˆุญุฉุŒ ูˆ ุงู„ู€ range ูŠู…ู„ุฃ ูƒู„ ุงู„ุฃุนุฏุงุฏ
433
00:31:31,530 --> 00:31:36,090
ุงู„ุญู‚ูŠู‚ูŠุฉุŒ ู‡ุฐู‡ ุฅูŠุด ุงู„ู€ inverses ุงู„ู…ูˆุฌูˆุฏุฉุŸ ูŠุจู‚ู‰ ูƒู„ู‘ู‡ ุนู„ู‰
434
00:31:36,090 --> 00:31:39,890
ู†ูุณ ุงู„ู€ domain ูู‚ุท ุงู„ู„ูŠ ุจุฏู†ุง ู†ุฃุฎุฐ ุฌุฒุก ู…ู† ุงู„ู€ domain
435
00:31:39,890 --> 00:31:43,830
ุชุจุนู‡ ู‡ูˆ ุงู„ู€ ... ุงู„ู€ cosh ูˆ ุงู„ู€ sech
436
00:31:49,530 --> 00:31:54,230
ุจู†ุฑู…ุฒ ู„ู‡ู… ุจุงู„ุฑู…ุฒ sinh inverse x
437
00:32:00,970 --> 00:32:04,410
ูˆุจู†ุนูƒุณ ุงู„ู€ domain ูˆ ุงู„ู€ range ุทุจุนู‹ุง ุงู„ู€ sinh inverse ูˆ
438
00:32:04,410 --> 00:32:06,850
ุงู„ู€ cosh inverseุŒ ูˆูƒู„ ู…ุง ุฏูˆู„ุฉ ู…ูˆุฌูˆุฏูŠู† ุนู„ู‰ ุงู„ู‚ู„ูŠู„
439
00:32:06,850 --> 00:32:10,210
ุงู„ุญุงุณุจุฉ ูˆู„ูƒู† ุจุงุณุชุฎุฏุงู… ุซู„ุงุซ ุฒุฑุงุฑุŒ ูŠุนู†ูŠ ุชุจู‚ู‰ sign
440
00:32:10,210 --> 00:32:13,690
hyperbolic inverse signุŒ ูˆุจุนุฏูŠู† hypุŒ ูˆุจุนุฏูŠู† inv
441
00:32:13,690 --> 00:32:18,890
inverseุŒ ูŠุนู†ูŠ ูุจุชุนู…ู„ ุซู„ุงุซ ุฅูŠุดุŸ ุซู„ุงุซ ุฃุฒุฑุงุฑุŒ ูˆููŠ ุจุนุถ
442
00:32:18,890 --> 00:32:26,830
ุงู„ุญุงุณุจุงุช ุจุฏู‡ุง shiftุŒ ูŠุนู†ูŠ ุงู„ุขู† ู†ุดูˆู ุงู„ุฑุณูˆู…ุงุช ุงู„ู„ูŠ ู‡ูˆ
443
00:32:26,830 --> 00:32:28,670
ุงู„ู€ sinh ุชุจุนุชู†ุง
444
00:32:42,340 --> 00:32:51,830
ุงู„ุขู† ุฑุณู…ุฉ ุงู„ู€ tanh ู‡ุฐู‡ ุฑุณู…ุฉ ุงู„ู€ tanh ุจูŠู† ุงู„ู€ -1 ูˆ ุงู„ู€ 1
445
00:32:51,830 --> 00:32:56,270
ุงู„ู€ tanh inverse ุฑุงุญ ุชูƒูˆู† ุงู„ุฑุณู…ุฉ ุจู‡ุฐุง ุงู„ุดูƒู„ุŒ ู‡ูŠ ุงู„ู€ -1 ูˆ
446
00:32:56,270 --> 00:33:02,270
ุงู„ู€ 1 ุฑุงุญ ูŠุตูŠุฑูˆุง vertical asymptoteุŒ ุงู„ุขู† ุฑุงุญ ู†ุนูƒุณู‡ุง
447
00:33:02,270 --> 00:33:05,510
ุญูˆู„ ุงู„ุฎุท Y ุชุณุงูˆูŠ XุŒ ูุงู„ุชุงู†ุด ุจู‡ุฐุง ุงู„ุดูƒู„ ุจุชูƒูˆู†
448
00:33:05,510 --> 00:33:08,510
ุงู„ุชุงู†ุด inverse ุจู‡ุฐุง ุงู„ุดูƒู„ุŒ ูˆุชู‚ุชุฑุจ ู…ู† ุงู„ู€ asymptote
449
00:33:08,510 --> 00:33:12,190
1ุŒ ูˆุจุฑุถู‡ ู†ูุณ ุงู„ุดูŠุกุŒ ู‡ูŠ ุงู„ุชุงู†ุด inverse ุฑุงุญ ูŠูƒูˆู†
450
00:33:12,190 --> 00:33:15,190
ุงู„ุชุงู†ุด ู‡ุงู„ูŠ ุงู„ู„ูŠ ุจุงู„ุฎุท ุงู„ุฃุญู…ุฑุŒ ุงู„ู€ tanh inverse ุงู„ู„ูŠ
451
00:33:15,190 --> 00:33:18,490
ู‡ูˆ ุจุงู„ุฎุท ู‡ุฐุงุŒ ุฑุงุญ ูŠูƒูˆู† ูŠุนู†ูŠ ุฃูƒุณ ุฑุงุญ ูŠู…ุดูŠ ู…ุน ุงู„ู€
452
00:33:18,490 --> 00:33:23,430
asymptote ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุณุงู„ุจ ูˆุงุญุฏุŒ ุงู„ุขู† ุงู„ู€
453
00:33:23,430 --> 00:33:27,450
coth inverseุŒ ุงู„ู€ coth inverse ุทุจุนู‹ุง ุงู„ู„ูŠ ููŠ
454
00:33:27,450 --> 00:33:30,410
ุงู„ุฎุท ุงู„ุฃุญู…ุฑ ู‡ูŠ ุงู„ู€ cothุŒ ุงู„ู€ coth inverse ุฑุงุญ
455
00:33:30,410 --> 00:33:33,990
ุชูƒูˆู† ุจู‡ุฐุง ุงู„ุดูƒู„ุŒ ู‡ูŠ ู‡ู†ุง ูˆู‡ู†ุงุŒ ุทุจุนู‹ุง ุจุฑุถู‡ ู†ูุณ ุงู„ุดูŠุก
456
00:33:33,990 --> 00:33:40,530
ุจุฏู†ุง ู†ุนูƒุณู‡ุง ูŠุนู†ูŠ ู‡ุฐุง ู‡ุฐุง ุงู„ุฎุท ุงู„ู„ูŠ ู‡ู†ุง ุงู„ู„ูŠ ู‡ูˆ ู…ุง
457
00:33:40,530 --> 00:33:45,930
ู„ุง ู†ู‡ุงูŠุฉ ูˆุตูุฑ ุฑุงุญ ูŠุตูŠุฑ ุฑุงุญ ูŠุตูŠุฑ ุฅูŠุดุŸ ุตูุฑ ูˆุตูุฑ ูˆู…ุง
458
00:33:45,930 --> 00:33:46,430
ู„ุง ู†ู‡ุงูŠุฉ
459
00:33:50,870 --> 00:33:54,430
ุงู„ุขู† ู‚ู„ู†ุง ู„ู…ุง ุงู„ู€ X ุชู‚ูˆู„ ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉุŒ ู‡ุฏูŠ ู…ุง ู„ุง
460
00:33:54,430 --> 00:33:57,450
ู†ู‡ุงูŠุฉุŒ ูˆุตูุฑ ุจุฏู‡ุง ุชุตูŠุฑ ุตูุฑ ูˆู…ุง ู„ุง ู†ู‡ุงูŠุฉุŒ ูŠุนู†ูŠ ู‡ูŠ ุตูุฑ
461
00:33:57,450 --> 00:34:01,090
ูˆู…ุง ู„ุง ู†ู‡ุงูŠุฉุŒ ุตูุฑ ูˆู…ุง ู„ุง ู†ู‡ุงูŠุฉุŒ ุงู„ุขู† ู‡ุฏูŠ ู„ู…ุง ุชู‚ุชุฑุจ
462
00:34:01,090 --> 00:34:04,810
ู„ู„ูˆุงุญุฏ ู…ู† ุฌู‡ุฉ ุงู„ูŠู…ูŠู† ุจุชุฑูˆุญ ู„ู…ุง ู„ุง ู†ู‡ุงูŠุฉุŒ ูŠุนู†ูŠ ูˆุงุญุฏ
463
00:34:04,810 --> 00:34:07,790
ูˆู…ุง ู„ุง ู†ู‡ุงูŠุฉ ุจุฏู‡ุง ุชุตูŠุฑ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ูˆูˆุงุญุฏุŒ ูŠุจู‚ู‰ ู…ุง ู„ุง
464
00:34:07,790 --> 00:34:11,630
ู†ู‡ุงูŠุฉ ูˆูˆุงุญุฏุŒ ุชู‚ุชุฑุจ ู…ู† ุงู„ุฎุท ู‡ู†ุง ูˆุงุญุฏ ู…ู† ุงู„ูˆุงุญุฏ ูˆ
465
00:34:11,630 --> 00:34:17,070
ู†ูุณ ุงู„ุดูŠุก ุจุงู„ู†ุณุจุฉ ู„ู‡ุงุŒ ุฏู‡ ุงู„ุฎุท ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ู‡ูˆ
466
00:34:17,070 --> 00:34:20,220
ุจุงู„ุฃุญู…ุฑ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุฎุท coth ูˆุงู„ุชุงู†ูŠ ุงู„ู„ูŠ
467
00:34:20,220 --> 00:34:23,940
ุจุงู„ุฃุณูˆุฏ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ coth inverseุŒ ุงู„ุขู† ุงู„ู€
468
00:34:23,940 --> 00:34:26,900
coth ูˆ coth inverse ู‡ุฏูˆู„ ุงุซู†ูŠู† ุฑุงุญ ูŠุฌูˆุง ุนู„ู‰
469
00:34:26,900 --> 00:34:30,200
ุจุนุถ ู„ุฃู† ู‡ุฐุง ุงู„ุฌุฒุก ุจูŠู†ุนูƒุณ ู‡ู†ุงุŒ ูˆู‡ุฐุง ุงู„ุฌุฒุก ุจูŠู†ุนูƒุณ
470
00:34:30,200 --> 00:34:35,260
ู‡ู†ุงุŒ ูˆู†ูุณ ุงู„ุดูŠุก ุจุงู„ู†ุณุจุฉ ู„ู‡ุฐุง ุงู„ุฌุฒุกุŒ ุจุงู‚ูŠ ุงู„ู„ูŠ ู‡ูˆ
471
00:34:35,260 --> 00:34:40,960
ุงู„ุฑุณูˆู…ุงุชุŒ ุงู„ุฑุณูˆู…ุงุช ุงู„ุจุงู‚ูŠุฉ ุงู„ู„ูŠ ู‡ูˆ coth inverse ูˆ
472
00:34:40,960 --> 00:34:44,990
coth inverseุŒ ู‡ูŠ ุชุนุฑูŠูุงุชู‡ู… ุฒูŠ ู…ุง ุญูƒูŠู†ุง ุทูˆูŠู„ู‹ุง ุนู„ู‰
473
00:34:44,990 --> 00:34:48,950
ุงู„ุฑุณู…ุฉ ุงู„ู„ูŠ ููˆู‚ุŒ ุงู„ุขู† ุฑุณู…ุชู‡ู… ุฑุงุญ ูŠูƒูˆู† ู…ุซู„ู‹ุง ุงู„ู€ sinh
474
00:34:48,950 --> 00:34:54,090
inverseุŒ ุงู„ู€ sinh ุงู„ู„ูŠ ู‡ูŠ ู‡ูŠูƒ ุฒูŠ ุฑุณู…ุฉ ุงู„ู€ X ุชูƒุนูŠูŠุจ
475
00:34:54,090 --> 00:34:58,070
ูู‡ุฐู‡ ุฑุงุญ ุชู†ุนูƒุณ ุญูˆู„ ุงู„ุฎุท Y ุชุณุงูˆูŠ X ุจู‡ุฐุง ุงู„ุดูƒู„ ู‡ู†ุง
476
00:34:58,070 --> 00:35:01,070
ูˆุงู„ุฌุฒุก ุงู„ุฃุญู…ุฑ ุงู„ู„ูŠ ู‡ู†ุง ุฑุงุญ ูŠู†ุนูƒุณ ุนู„ู‰ ุงู„ุฌุฒุก ู‡ุฐุง
477
00:35:01,070 --> 00:35:05,390
ูŠุจู‚ู‰ ู‡ุฐู‡ ุฑุณู…ุฉ sinh inverseุŒ ุฃูŠ ุฑุณู…ุฉ sinh inverse
478
00:35:05,390 --> 00:35:09,670
ูƒู…ุงู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ coshุŒ ุงู„ู€ cosh ุชุจุนุชู†ุง ู‚ู„ู†ุง ุฑุงุญ ู†ุฃุฎุฐ ู‡ุฐุง
479
00:35:09,670 --> 00:35:13,290
ุงู„ุฌุฒุก ูู‚ุทุŒ ุงู„ุฌุฒุก ุงู„ู…ูˆุฌุจุŒ ู„ู…ุง ู†ุนูƒุณ ุญูˆู„ ุงู„ุฎุท Y
480
00:35:13,290 --> 00:35:17,150
ุชุณุงูˆูŠ XุŒ ุงู„ูˆุงุญุฏ ุตูุฑ ูˆุงุญุฏ ุฏู‡ ุชุตูŠุฑ ูˆุงุญุฏ ุตูุฑุŒ ูˆุจุชู†ุนูƒุณ
481
00:35:17,150 --> 00:35:22,970
ุจู‡ุฐุง ุงู„ุดูƒู„ุŒ ู‡ุงูŠ ุงู„ู€ cosh inverseุŒ ุงู„ุขู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ sech
482
00:35:22,970 --> 00:35:26,130
ุงู„ู€ sech ุงู„ู„ูŠ ู‡ูˆ ุงู„ุฎุท ุงู„ุฃุญู…ุฑ ู‡ุฐุง ู‡ูˆ ุงู„ู€ sechุŒ ุงู„ู€ sech
483
00:35:26,130 --> 00:35:30,290
ู‡ุฐุง ุจู†ุนูƒุณ ุญูˆู„ ุงู„ุฎุท Y ุชุณุงูˆูŠ XุŒ ู‡ุงูŠ ู‡ุฐุง ุงู„ุฌุฒุก ู…ู†
484
00:35:30,290 --> 00:35:34,070
ู‡ู†ุง ุจู†ุนูƒุณ ู‡ู†ุงุŒ ูˆุงู„ุฌุฒุก ู‡ุฐุง ู‡ุฐุง ุงู„ู„ูŠ ู‡ู†ุง ุจุงู„ุฃุญู…ุฑ
485
00:35:34,070 --> 00:35:38,670
ุจู†ุนูƒุณ ู„ุนุดุงู† ููˆู‚ุŒ ู‡ุฐุง ุจุงู„ู†ุณุจุฉ ู„ุซู„ุงุซ ุฑุณูˆู…ุงุช ุงู„ุชุงู†ูŠู†
486
00:35:41,030 --> 00:35:47,250
ู‡ุฐู‡ ู‡ูŠุŒ ุนุดุงู† ุงู„ู€ hyperbolic functions ููŠ
487
00:35:47,250 --> 00:35:52,330
ุนู†ุฏู†ุง ุจุนุถ ุงู„ู€ identities ุงู„ู…ุชุนู„ู‚ุฉ ุจุงู„ู€ inverses ุจุจุนุถ
488
00:35:52,330 --> 00:35:56,010
ู…ุง ููŠุด ุนู†ุฏู†ุง ุบูŠุฑ ู‡ุฏูˆู„ุŒ ุทุจุนู‹ุง ู…ุง ููŠุด ุฃูŠ ุนู„ุงู‚ุงุช ุซุงู†ูŠุฉ ุฒูŠ
489
00:35:56,010 --> 00:36:01,050
ุงู„ู€ sin ูˆ ุงู„ู€ ูƒุฏู‡ ู„ุฃู† ู‡ุฏูˆู„ ููŠู‡ู… ุนู„ุงู‚ุงุช ุจุงู„ู…ุซู„ุซุŒ ู„ูƒู†
490
00:36:01,050 --> 00:36:05,560
ู‡ู†ุง ู…ุง ููŠุด ู…ุซู„ุซุงุชุŒ ุจุณ ุงู„ู€ cosh inverse 1 ุนู„ู‰ X ู‡ูŠ sech
491
00:36:05,560 --> 00:36:09,840
inverse XุŒ ู„ุฃู†ู‡ุง ูˆุงุญุฏุฉ ู„ุฃู† sech ุชุณุงูˆูŠ 1 ุนู„ู‰ cosh
492
00:36:09,840 --> 00:36:14,120
ูˆุจุงู„ุชุงู„ูŠ ุงู„ู€ cosh inverse ูˆุงุญุฏุฉ ุนู†ุฏู…ุง ู†ู‚ู„ุจ ุงู„ุนุฏุฏ ู‡ู†ุง
493
00:36:14,120 --> 00:36:17,140
ู‡ุฐุง ุจูŠุฌูŠ ุฅูŠู‡ุŸ ุนุดุงู† ู…ู‚ู„ูˆุจู‡ ูŠุนู†ูŠ ู‡ุฏูˆู„ ุงู„ุนุฏุฏูŠู† ู…ู‚ู„ูˆุจูŠู†
494
00:36:17,140 --> 00:36:21,200
ุจุนุถุŒ ู†ูุณ ุงู„ุดูŠุก ุงู„ู€ csch inverse X ู‡ูŠ sinh inverse 1
495
00:36:21,200 --> 00:36:25,320
ุนู„ู‰ XุŒ ูˆุงู„ู€ coth inverse X ู‡ูŠ tanh inverse 1 ุนู„ู‰ X
496
00:36:25,320 --> 00:36:30,020
ูู‡ุฐู‡ ุงู„ุนู„ุงู‚ุงุช ูู‚ุท ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุจูŠู†ู‡ู…ุŒ ุงู„ุขู† ู…ุซู„ู‹ุง ุจุฏู†ุง
497
00:36:30,020 --> 00:36:34,300
ู†ูˆุฌุฏ sech cosh inverse 1 ุนู„ู‰ xุŒ ุทุจุนู‹ุง ุงู„ู€ domain
498
00:36:34,300 --> 00:36:38,100
ุชุจุนู†ุง x ู…ู† 0 ู„ู€ 1ุŒ cosh inverse 1 ุนู„ู‰ x ู‡ูŠ ุนุจุงุฑุฉ ุนู† sech
499
00:36:38,100 --> 00:36:43,280
inverse xุŒ ุตุงุฑุช sech sech inverse x ุชุณุงูˆูŠ xุŒ ุทุจุนู‹ุง
500
00:36:43,280 --> 00:36:46,580
ู…ุง ุฌุจู†ุงุด ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ composite ุจูŠู† ูƒู„ ูˆุงุญุฏุฉ ูˆ ุงู„ู€
501
00:36:46,580 --> 00:36:49,420
inverse ุชุจุนุชู‡ุง ู„ุฃู†ู‡ ุฎู„ุงุต ู…ุนุฑูˆู ููŠ ู‡ุฐุง ุงู„ูƒู„ุงู… ุฅู†ู‡
502
00:36:49,420 --> 00:36:52,940
ุฃูŠ ูˆุงุญุฏุฉ ู…ุน composite ู…ุน ุงู„ู€ inverse ุชุจุนุชู‡ุง of x
503
00:36:52,940 --> 00:36:56,880
ุจูŠุทู„ุน ู„ู†ุง ุงู„ุฌูˆุงุจ ู†ูุณ xุŒ ุงู„ุนุฏุฏ ู†ูุณ ุงู„ุนุฏุฏ ู‡ู†ุง ุจูŠุทู„ุน
504
00:36:56,880 --> 00:36:57,560
ู†ูุณ ุงู„ุนุฏุฏ
505
00:37:00,510 --> 00:37:05,050
ู‡ูƒุฐุง ุฎู„ู‘ุตู†ุง ุฌุฒุก ู…ู† ุงู„ู€ functionุŒ ุงู„ู…ุฑุฉ ุงู„ู‚ุงุฏู…ุฉ ู†ุนูˆุฏ
506
00:37:05,050 --> 00:37:08,990
ู„ู„ู€ inverses ูˆู†ุดูˆู ุชูุงุถู„ุงุชู‡ู… ูˆุชูƒุงู…ู„ุงุชู‡ู