|
1 |
|
00:00:21,290 --> 00:00:25,850 |
|
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ูุณุชูู
ู ุงูู
ูุถูุน ุงูุฐู ุจุฏุฃูุงู |
|
|
|
2 |
|
00:00:25,850 --> 00:00:31,590 |
|
ุงูุตุจุญ ููู ู
ูุถูุน ุงู external direct product ุจุนุฏ ู
ุง |
|
|
|
3 |
|
00:00:31,590 --> 00:00:35,770 |
|
ุฃุฎุฐูุง ุฃู
ุซูุฉ ู
ู ุฎูุงููุง ููุนูู ุงู order ูู element |
|
|
|
4 |
|
00:00:35,770 --> 00:00:42,070 |
|
ููุฐูู ุนุฏุฏ ู
ุง ูู ุงู elements ุจ order ู
ุนูู ูุนุฏุฏ ุงู |
|
|
|
5 |
|
00:00:42,070 --> 00:00:46,830 |
|
cyclic groups ุจ order ู
ุนูู ููุชูู ุงูุขู ุฅูู ูุฐู |
|
|
|
6 |
|
00:00:46,830 --> 00:00:51,500 |
|
ุงููุธุฑูุฉ ุงููุธุฑูุฉ ุชููู ููุชุฑุถ ุฃู ุฌู ู ุงุชุด ูู
ุง finite |
|
|
|
7 |
|
00:00:51,500 --> 00:00:55,140 |
|
cyclic groups ูุจูู ูู ูุงุญุฏุฉ ูููุง ุนุฏุฏ ู
ุญุฏูุฏ ู
ู |
|
|
|
8 |
|
00:00:55,140 --> 00:01:00,060 |
|
ุงูุนูุงุตุฑ ูุงูุงุซูุชุงู are cyclic groups ูููู ูู ูุฐู |
|
|
|
9 |
|
00:01:00,060 --> 00:01:05,080 |
|
ุงูุญูููู ุฃู ุงู ุฌู external product ู
ุน ุงุชุด is cyclic |
|
|
|
10 |
|
00:01:05,080 --> 00:01:08,760 |
|
in fact ุชููู ุฅุฐุง ุงู order ุฌู ู ุงู order ุงุชุด are |
|
|
|
11 |
|
00:01:08,760 --> 00:01:13,240 |
|
relatively prime ูุจูู ู
ู ุงูุขู ูุตุงุนุฏูุง ูู ุงู two |
|
|
|
12 |
|
00:01:13,240 --> 00:01:17,080 |
|
groups ุฌู ู ุงุชุด ุงูุงุซูุชุงู ุงู order ุงูุฐู ูู
ุง are |
|
|
|
13 |
|
00:01:17,080 --> 00:01:19,840 |
|
relatively prime ุงูุฐู ูุจูู ุงู external product |
|
|
|
14 |
|
00:01:19,840 --> 00:01:25,960 |
|
ู
ุนูุงู is a cyclic group ู
ุจุงุดุฑุฉ ูุงูุนูุณ ูู ูุงูุช |
|
|
|
15 |
|
00:01:25,960 --> 00:01:28,860 |
|
cyclic groups ูุจูู ุงู two orders are relatively |
|
|
|
16 |
|
00:01:28,860 --> 00:01:35,620 |
|
prime ูุฐุง ู
ุง ูุฑูุฏ ุฃู ูุซุจุชู ุงูุขู ูุจูู ูุฐูู ูุซุจุชู |
|
|
|
17 |
|
00:01:35,620 --> 00:01:41,040 |
|
ุงูุชุฑุถ ุฃู ุงู H ููุง order ู
ุนูู ู ุงู G ูุฐูู ููุง order |
|
|
|
18 |
|
00:01:41,040 --> 00:01:47,800 |
|
ู
ุนูู ููุดูู ููู ุจุฏูุง ูุนู
ูู ูุจูู let ุงู order ูู G |
|
|
|
19 |
|
00:01:47,800 --> 00:01:55,680 |
|
ููุณุงูู ุงู M ู ุงู order ูู H ููุณุงูู ุงู N |
|
|
|
20 |
|
00:01:55,680 --> 00:02:00,200 |
|
then |
|
|
|
21 |
|
00:02:00,200 --> 00:02:11,180 |
|
ูู ุฃุฑุฏูุง ุฃู ูุฌูุจ ุงู order ูู G with H ูุจูู then ุงูุฃุฑุฏุฑ |
|
|
|
22 |
|
00:02:11,180 --> 00:02:16,380 |
|
ููู G External Direct Product ู
ุน H ููุฐุง ููุณุงูู |
|
|
|
23 |
|
00:02:16,380 --> 00:02:20,040 |
|
ูุฐุง ูุง ุดุจุงุจ ู
ูุชูุจ ู
ุนูู
ู
ู ุงูู
ุฑุฉ ุงูุชู ูุงุชุช ุงูุฃุฑุฏุฑ |
|
|
|
24 |
|
00:02:20,040 --> 00:02:26,400 |
|
ููุฃููู ูู ุงูุฃุฑุฏุฑ ููุซุงููุฉ ูุจูู ูุฐุง ุงูููุงู
ููุณุงูู ุงู M |
|
|
|
25 |
|
00:02:26,400 --> 00:02:33,020 |
|
ูู N ูุฐู ุงูู
ุนููู
ุฉ ูุถุนุชูุง ูุจู ุงูุจุฏุก ูุงูุขู ุฃุฑูุฏ ุฃู ุฃุจุฏุฃ |
|
|
|
26 |
|
00:02:33,020 --> 00:02:38,360 |
|
ูู
ุงุฐุง ูุถุนุชูุงุ ูุฃู ูู ุนู
ู ุจุงูุญุจ ูู ุฒู
ุงูู ุงูุขู ูุฑูุฏ |
|
|
|
27 |
|
00:02:38,360 --> 00:02:48,400 |
|
ุฃู ูููู Assume that ุงููG external product ู
ุน ุงููH is |
|
|
|
28 |
|
00:02:48,400 --> 00:02:54,540 |
|
cyclic ู
ุงุฐุง ุฃุฑูุฏ ุฃู ุฃุซุจุชุ ุฃู ุงู order ุงูุชู ุฌู ู ุงู |
|
|
|
29 |
|
00:02:54,540 --> 00:02:58,560 |
|
order ุงูุชู ุงุชุด ุงุซูุงู are relatively prime ูุนูู |
|
|
|
30 |
|
00:02:58,560 --> 00:03:01,520 |
|
ุฃุฑูุฏ ุฃู ุฃุซุจุช ุฃู ุงู Euclidean common divisor ู
ุง ุจูู |
|
|
|
31 |
|
00:03:01,520 --> 00:03:05,920 |
|
ุงูุงุซููู ุณูููู ูู
ุ ุณูููู ูุงุญุฏุ ุตุญูุญุ ุทูุจ ุงูุชุฑุถูุง ูุฐู |
|
|
|
32 |
|
00:03:05,920 --> 00:03:10,040 |
|
Cyclic ู
ุฏุงู
ุงูู Cyclic ูุจูู ููุง generator ุตุญ ููุง |
|
|
|
33 |
|
00:03:10,040 --> 00:03:14,600 |
|
ูุงุ ูุจูู Cyclic assume |
|
|
|
34 |
|
00:03:15,770 --> 00:03:25,370 |
|
ุงูุชุฑุถ ูุฐูู ุฃู ุงูู G ูุงูู H is a generator is a |
|
|
|
35 |
|
00:03:25,370 --> 00:03:33,870 |
|
generator for ู
ุง ูู external product ููู H ู
ุน G |
|
|
|
36 |
|
00:03:34,700 --> 00:03:38,460 |
|
ู
ุง ุฏุงู
ูุฐุง generator ูุจูู ุงู order ุงูุฐู ููุณุงูู |
|
|
|
37 |
|
00:03:38,460 --> 00:03:43,860 |
|
ู
ู ุฃูู ุงู order ูู G modulo ูู G external direct |
|
|
|
38 |
|
00:03:43,860 --> 00:03:50,920 |
|
product ู
ุน H ูุฐุง ู
ุนูุงู ุฃู ุงู order ูู G ูุงู H ููุณุงูู |
|
|
|
39 |
|
00:03:50,920 --> 00:03:56,600 |
|
ููุณุงูู ุงู order ูู G external direct product ู
ุน ู
ูุ |
|
|
|
40 |
|
00:03:56,600 --> 00:04:05,990 |
|
ู
ุน ุงู H ูุฐุง ููุณุงูู ุทูุจ ุงู order ูู G ูุงูู H ุฃุฑูุฏ |
|
|
|
41 |
|
00:04:05,990 --> 00:04:11,410 |
|
ุฃู ููุณุงูู ุงู least common multiple ูู order ุชุจุน ุงู G |
|
|
|
42 |
|
00:04:11,410 --> 00:04:18,870 |
|
ูุงู order ุชุจุน ุงู H ูุจูู |
|
|
|
43 |
|
00:04:18,870 --> 00:04:23,050 |
|
ุงู order ูู G ู ุงู order ุชุจุน ุงู H ุจุงูุดูู ุงูุฐู ุนูุฏูุง |
|
|
|
44 |
|
00:04:23,050 --> 00:04:28,730 |
|
ูุฐุง ุงูุฐู ูู ุฃุฑูุฏ ุฃู ููุณุงูู ุงู order ููุฐู ูู
ุงููู ู
ูู |
|
|
|
45 |
|
00:04:28,730 --> 00:04:34,700 |
|
ูู ูุจูู ุฃูุง ุฃููู ุงู order ูู element ูุฐุง ููุณุงูู ุงู |
|
|
|
46 |
|
00:04:34,700 --> 00:04:38,300 |
|
order ูู element ูุฐู ูุจูู ุจูุงุก ุนููู ุงู order ูู |
|
|
|
47 |
|
00:04:38,300 --> 00:04:42,520 |
|
element g ู h ููุณุงูู ุงู least common multiple ู
ุง |
|
|
|
48 |
|
00:04:42,520 --> 00:04:46,360 |
|
ุจูู ุงู two orders ุทุจูุง ูููุธุฑูุฉ ุงูุณุงุจูุฉ ุงูุชู |
|
|
|
49 |
|
00:04:46,360 --> 00:04:51,340 |
|
ุจุฑูููุงูุง ุทูุจ ูุฐุง ุงู order ูู ุนุจุงุฑุฉ ุนู ู
ูุ ุนู m ูู |
|
|
|
50 |
|
00:04:51,340 --> 00:04:57,020 |
|
n ุฎูู ูุฐู ุงูู
ุนููู
ุฉ ูู ุฐููู ูุณูุนูุฏ ุฅูููุง ุจุนุฏ ูููู |
|
|
|
51 |
|
00:04:57,020 --> 00:05:05,640 |
|
ุทูุจ ุงูุขู ุงู order ููู G ุงู order ููู G ููุณู
ุงู |
|
|
|
52 |
|
00:05:05,640 --> 00:05:11,840 |
|
order ููู G ุงููุจูุฑุฉ ุตุญ ููุง ูุง ูุจูู divide ุงู order |
|
|
|
53 |
|
00:05:11,840 --> 00:05:19,250 |
|
ููู G ุงูุฐู ููุณุงูู ูู
M ูุนูู ุงู order ุงูุฐู |
|
|
|
54 |
|
00:05:19,250 --> 00:05:25,670 |
|
ุฌุงุก ููุณุงูู ููุณู
ู
ู ุงู M ููู ููุณ ุงูููุช ุงู order ู ุงู H |
|
|
|
55 |
|
00:05:25,670 --> 00:05:33,390 |
|
ููุณุงูู ููุณู
ุงู order ู ู
ู ู ุงู H ุงูุฐู ูู |
|
|
|
56 |
|
00:05:33,390 --> 00:05:38,870 |
|
ููุณุงูู ุงู N ุฅุฐุง |
|
|
|
57 |
|
00:05:38,870 --> 00:05:44,710 |
|
ู
ุง ูู ุนูุงูุฉ least common multiple ูู two orders ู
ุน |
|
|
|
58 |
|
00:05:44,710 --> 00:05:45,970 |
|
M ู N |
|
|
|
59 |
|
00:05:48,440 --> 00:05:52,340 |
|
ุงู least common multiple ูู order ู
ุน ุงู least common multiple ูู M |
|
|
|
60 |
|
00:05:52,340 --> 00:05:55,360 |
|
ู N ู
ู ูู ุงูุฃุตุบุฑ ูู
ู ูู ุงูุฃูุจุฑุ ูู least common multiple |
|
|
|
61 |
|
00:05:55,360 --> 00:06:01,800 |
|
ูู
ูุ ูู H ู G 100% ุฃุตุบุฑ ู
ู ู
ูุ ู
ู ุงู least |
|
|
|
62 |
|
00:06:01,800 --> 00:06:06,840 |
|
common multiple ูู M ู N ุชู
ุงู
ุ ูุจูู ูุฐุง ูุทูุญ |
|
|
|
63 |
|
00:06:06,840 --> 00:06:12,840 |
|
ููู
ุ ุฃู ุงู least common multiple ูู order ุชุจุน ุงู |
|
|
|
64 |
|
00:06:12,840 --> 00:06:24,040 |
|
G ูุงู order ุชุจุน ุงู H ูุฐุง ููู ู
ุง ูู ุฃูู ู
ู ุฃู ููุณุงูู |
|
|
|
65 |
|
00:06:24,040 --> 00:06:32,930 |
|
ุงู least common multiple ูู M ู N ุชู
ุงู
ุ ุทูุจ ุงู least |
|
|
|
66 |
|
00:06:32,930 --> 00:06:40,450 |
|
common multiple ููุฐุง ุงูุฐู ูู ูู
M ูู N ูุจูู ุจูุงุก |
|
|
|
67 |
|
00:06:40,450 --> 00:06:47,950 |
|
ุนููู So ุงู M ูู N ุฃูู ู
ู ุฃู ููุณุงูู ุงู least common |
|
|
|
68 |
|
00:06:47,950 --> 00:06:56,450 |
|
multiple ูู
ูุ ูู M ู N ุงุนุชุจุฑ ูุฐู ุงูู
ุนุงุฏูุฉ ุฑูู
Star |
|
|
|
69 |
|
00:06:58,800 --> 00:07:06,940 |
|
ุงูุณุคุงู ูู ูุญู ูู
ูุฌูุจ ุงู M ู ุงู N ุฃูู ู
ู ุงู |
|
|
|
70 |
|
00:07:06,940 --> 00:07:12,720 |
|
least common multiple ูู
ูุ ูู M ู N ุทูุจ in general |
|
|
|
71 |
|
00:07:12,720 --> 00:07:24,720 |
|
but ู ููู we know that ุฃู ุงู least common multiple |
|
|
|
72 |
|
00:07:24,720 --> 00:07:26,840 |
|
ูู M ู N |
|
|
|
73 |
|
00:07:30,950 --> 00:07:35,450 |
|
100% ุตุญูุญ ููุง ูุฃุ ุฏุงุฆู
ูุง ูุฃุจุฏูุง ุงู least common .. |
|
|
|
74 |
|
00:07:35,450 --> 00:07:39,430 |
|
ุฃูุตู ุญุงุฌุฉ ุญุตู ุถุฑุจูู
ูุฏุงุฆู
ูุง ูุฃุจุฏูุง ูููู ุฃูู ู
ู |
|
|
|
75 |
|
00:07:39,430 --> 00:07:44,870 |
|
ููุฐุง ูุนูู ุงูู
ุถุงุนู ุงูู
ุดุชุฑู ุฃุญูุงููุง ูููู ูุจูุฑูุง ูู ุฃูู |
|
|
|
76 |
|
00:07:44,870 --> 00:07:51,630 |
|
ู
ุง ูู
ูู ูุจูู ูุฐุง ุฃูู ู
ู ู
ูุ ู
ู M ูู N ููุฐู |
|
|
|
77 |
|
00:07:51,630 --> 00:07:56,550 |
|
ุงูุนูุงูุฉ ุงูุซุงููุฉ ูู ุฑูู
Star ุฅุฐุง ู
ู ุงูุงุซููู ู
ุน ุจุนุถ |
|
|
|
78 |
|
00:07:56,550 --> 00:08:02,130 |
|
ุฃููู ุฅู ุงูุงุซูุงู ูุฐุงู ู
ุง ููู
ุง ุฑููู
ูุจูู ููุง ุณูู ุงู |
|
|
|
79 |
|
00:08:02,130 --> 00:08:09,150 |
|
least common multiple ูู M ู N ููุณุงูู ุงู M ูู N |
|
|
|
80 |
|
00:08:11,690 --> 00:08:17,290 |
|
ุทูุจ ูุฑุฌุน ุจุงูุฐุงูุฑุฉ ุงุตุจุฑ ุนูููุง ูููููุง ูุฑุฌุน ุจุงูุฐุงูุฑุฉ |
|
|
|
81 |
|
00:08:17,290 --> 00:08:22,650 |
|
ููุฎูู ุฅูู ุงู first chapter ุฅุฐุง ุชุฐูุฑุชู
ููุง ูููุง ู |
|
|
|
82 |
|
00:08:22,650 --> 00:08:26,290 |
|
grace is common divisor between ุนุฏุฏูู ูู least |
|
|
|
83 |
|
00:08:26,290 --> 00:08:29,990 |
|
common multiple ุงูุนุฏูู ููุนุทููุง ู
ูุ ููุณ ุงูุนุฏุฏูู |
|
|
|
84 |
|
00:08:29,990 --> 00:08:40,950 |
|
ูุจูู ููุง ุขุชู ุฃููู ูู but ู ููู that ูุง ูุนุฑู ุฃู |
|
|
|
85 |
|
00:08:40,950 --> 00:08:47,530 |
|
ุงู greatest common divisor ูู M ูุงู N ู
ุถุฑูุจ ูู |
|
|
|
86 |
|
00:08:47,530 --> 00:08:55,510 |
|
least common multiple ูู M ู N ููุณุงูู M ูู N ูุฐุง |
|
|
|
87 |
|
00:08:55,510 --> 00:09:01,790 |
|
ููุนุทููุง ุงูุขู ุงู least common multiple ูู M ูู N |
|
|
|
88 |
|
00:09:01,790 --> 00:09:07,570 |
|
ูุจูู ูุฐุง ููุนุทูู ุฃู ุงู greatest common divisor |
|
|
|
89 |
|
00:09:07,570 --> 00:09:13,070 |
|
ูู M ู N ูู ุงู least common multiple ุงูุฐู ูู M ูู |
|
|
|
90 |
|
00:09:13,070 --> 00:09:20,040 |
|
N ููุณุงูู ุงู M ูู N ูุจูู ูุฐุง ููุนุทููุง common divisor |
|
|
|
91 |
|
00:09:20,040 --> 00:09:25,980 |
|
ูู M ู N ูุจูู ูู
ูุฉ ุทูุจ ุงู M ุฃููุณ ูู ุงู order ุชุจุน ุงู G ู |
|
|
|
92 |
|
00:09:25,980 --> 00:09:32,260 |
|
ุงู N ูู ุงู order ุชุจุน ุงู H ูุจูู ูุฐุง ู
ุนูุงู ุฃู ุงู M |
|
|
|
93 |
|
00:09:32,260 --> 00:09:44,640 |
|
ู ุงู N are relatively prime ูุฐุง ููุนุทููุง ูุฐุง ุฃุฑูุฏ |
|
|
|
94 |
|
00:09:44,640 --> 00:09:51,120 |
|
ุฃู ููุนุทููุง ุฃู ุงู order ู capital G ูู group ูููุง ู |
|
|
|
95 |
|
00:09:51,120 --> 00:09:57,700 |
|
ุงู order ู ุงู H are relatively prime |
|
|
|
96 |
|
00:10:03,000 --> 00:10:07,320 |
|
ูุญู ุงูุชูููุง ู
ู ุงูุงุชุฌุงู ุงูุฃูู ูู ุงููุธุฑูุฉุ ููู ุฃูู ูู |
|
|
|
97 |
|
00:10:07,320 --> 00:10:14,100 |
|
ูุงู ุงูู G external direct product ู
ุน H is cyclic ูุจูู |
|
|
|
98 |
|
00:10:14,100 --> 00:10:17,080 |
|
ุงูุฃูุฑุฏุฑ ูู G ู ุงูุฃูุฑุฏุฑ ูู H are relatively |
|
|
|
99 |
|
00:10:17,080 --> 00:10:22,010 |
|
primeุ ูุฃููุง ุจุฏุฃูุง ูู
ุดู ุงูุนู
ููุฉ ุงูุนูุณูุฉ ุฃุซุจุช ูุงูุชุฑุถ |
|
|
|
100 |
|
00:10:22,010 --> 00:10:27,250 |
|
ุฃู ุงูุงุซููู ูุฐุงู are relatively prime ุฐุงุชุณ ูุนูู ุฅูุด |
|
|
|
101 |
|
00:10:27,250 --> 00:10:32,030 |
|
ุฐุงุชุณุ ูุฌุฑูุณ ุงู common divisor ูู M ู N ููุณุงูู |
|
|
|
102 |
|
00:10:32,030 --> 00:10:37,350 |
|
ููุฐุง ุฅูุดุ ููุณุงูู ูุงุญุฏ ุตุญูุญุ ุทูุจ ูู ุญุงุฌุฉ ู
ูุฌูุฏุฉ ูู |
|
|
|
103 |
|
00:10:37,350 --> 00:10:42,690 |
|
ุงููุธุฑูุฉ ูุญุชู ุงูุขู ูู
ูุณุชุฎุฏู
ูุง ุฅุดููุง .. ุงูุชู ูู ูุงุญุฏุฉ |
|
|
|
104 |
|
00:10:42,690 --> 00:10:47,350 |
|
ู
ู ุงู two groups ุงูุงุซูุงู ูุฐุงู cyclic ู
ุฏุงู
ูู ูุงุญุฏุฉ |
|
|
|
105 |
|
00:10:47,350 --> 00:10:56,270 |
|
cyclic ุฅุฐุง ูู ูุงุญุฏุฉ ูููุง generator ูุจูู since ุงู g |
|
|
|
106 |
|
00:10:56,270 --> 00:10:59,350 |
|
since |
|
|
|
107 |
|
00:10:59,350 --> 00:11:07,070 |
|
ุงู g is cyclic we have since ุงู .. ุฎูู ุงู g ุจุงุซููู |
|
|
|
108 |
|
00:11:07,070 --> 00:11:15,950 |
|
ู
ุฑุฉ ูุงุญุฏุฉ since ุงู g ู ุงู h ู ุงู h are cyclic |
|
|
|
109 |
|
00:11:15,950 --> 00:11:24,510 |
|
we have ุฃู ุงูู G ูุฐู ูููุง generator ููููู small |
|
|
|
110 |
|
00:11:24,510 --> 00:11:33,050 |
|
g ู ุงู H ูููุง generator ููููู main |
|
|
|
111 |
|
00:11:33,050 --> 00:11:38,110 |
|
ููููู H ุทูุจ |
|
|
|
112 |
|
00:11:38,110 --> 00:11:46,110 |
|
ุฅุฐุง ูู
ุงู order ู G small M ู ุงู order ู H M |
|
|
|
113 |
|
00:11:46,110 --> 00:11:52,630 |
|
ูููู ูุณุงูู ูุจูู ูุฐุง ููุนุทููุง ุฃู ุงู order ููู G ููุณุงูู |
|
|
|
114 |
|
00:11:52,630 --> 00:11:58,430 |
|
ููุณุงูู ุงู M ู ุงู order ู H ููุณุงูู ุงู main ููุณุงูู |
|
|
|
115 |
|
00:11:58,430 --> 00:12:05,390 |
|
ููุณุงูู ุงู N ุทูุจ ูููุณ ูุจูู ุฃูุง ุฃุฑูุฏ ุฃู ุขุชู ุฅูู ุงู order ุชุจุน |
|
|
|
116 |
|
00:12:05,390 --> 00:12:11,630 |
|
ุงู G ู ุงู H ู
ุฑุฉ ูุงุญุฏุฉ ูุจูู ูุฐุง ุงูููุงู
ููุณุงูู |
|
|
|
117 |
|
00:12:11,630 --> 00:12:16,950 |
|
least common multiple ูู order ุชุจุน ุงู G ู ุงู |
|
|
|
118 |
|
00:12:16,950 --> 00:12:23,120 |
|
order ุชุจุน ุงู H ูุจูู ูุฐุง ุงูููุงู
ููุณุงูู ุงู least |
|
|
|
119 |
|
00:12:23,120 --> 00:12:30,180 |
|
common multiple ุงู least common multiple ูู
ูุ ูู |
|
|
|
120 |
|
00:12:30,180 --> 00:12:39,940 |
|
M ู ูู N ุฃูุง ุฃุฏุนู ุฃู M ูู N ุทูุจ ูู
ุงุฐุงุ ูุฃู ุงู common |
|
|
|
121 |
|
00:12:39,940 --> 00:12:47,400 |
|
divisor ููุณุงูู 1 ูุจูู ูุฐุง ูู
ุงุฐุงุ ูุฃู ุฃู ุงู common |
|
|
|
122 |
|
00:12:47,400 --> 00:12:54,480 |
|
divisor ูู M ู ูู N ูุจุฏู ููุณุงูู ูุงุญุฏ ุตุญูุญุ ุทูุจ ูุฐุง |
|
|
|
123 |
|
00:12:54,480 --> 00:13:00,120 |
|
ุงูู M ูู ุงูู N ูู ุนุจุงุฑุฉ ุนู ุงู order ูู
ูุ ุงู order |
|
|
|
124 |
|
00:13:00,120 --> 00:13:03,970 |
|
ูู group ุงูุฐู ูู ูุณู
ูู ูุฐุง ูู ุนุจุงุฑุฉ ุนู ุงู order |
|
|
|
125 |
|
00:13:03,970 --> 00:13:09,850 |
|
ููุฌุฑูุจ ูุจูู ูุฐุง ุงูููุงู
ููุณุงูู ุงู order ููู G |
|
|
|
126 |
|
00:13:09,850 --> 00:13:15,530 |
|
external direct product ูู
ูุ ููู H ูุจูู ุงูู gate |
|
|
|
127 |
|
00:13:15,530 --> 00:13:20,630 |
|
element ู
ูุฌูุฏ ูู ุงูู external direct product ุงูู |
|
|
|
128 |
|
00:13:20,630 --> 00:13:26,150 |
|
order ูู ูุณุงูู ุงูู order ูู
ูุ ููู group ูุจูู ุงูู |
|
|
|
129 |
|
00:13:26,150 --> 00:13:31,250 |
|
group ูุฐุง ู
ุง ูุตูุฑุ Cyclic ููุฐุง generator ูุจูู ููุง |
|
|
|
130 |
|
00:13:31,250 --> 00:13:43,780 |
|
ุณุงุงูู G ูุงูู H is a generator for ุงููู ูู ุงูู G |
|
|
|
131 |
|
00:13:43,780 --> 00:13:50,320 |
|
external direct product ู
ุน ู
ููุ ู
ุน ุงูู H ูุฐุง ุจุฏู ูุนุทููู |
|
|
|
132 |
|
00:13:50,320 --> 00:13:57,620 |
|
ุงูู G external direct product ู
ุน H is cyclic ููู |
|
|
|
133 |
|
00:13:57,620 --> 00:14:05,720 |
|
ุงูู
ุทููุจ ุฅุฐุง ููุช ูู ุฃุซุจุช |
|
|
|
134 |
|
00:14:05,720 --> 00:14:11,100 |
|
ุงููexternal ูุฐุง direct product is cyclic ุชู
ุงู
ุ |
|
|
|
135 |
|
00:14:11,100 --> 00:14:15,520 |
|
ุจุนุฏูู ุจูููู ุฅุฐุง ูุงููู ุงูุชูุชูู ูู ูุงุญุฏุฉ ูููู
cyclic |
|
|
|
136 |
|
00:14:15,520 --> 00:14:18,940 |
|
ูุงูู order ุชุจุน ูู ูุงุญุฏุฉ ูููู
ู
ุน ุงูุซุงูู ุงุซููู |
|
|
|
137 |
|
00:14:18,940 --> 00:14:22,570 |
|
relatively prime or than automatic ุนูู ุทูู ุงูุฎุทุฃ |
|
|
|
138 |
|
00:14:22,570 --> 00:14:27,210 |
|
ูุฐู ุงููุธุฑูุฉ ุงูู external direct product is cyclic |
|
|
|
139 |
|
00:14:27,210 --> 00:14:31,670 |
|
group ูุจูู ุงูุดุฑุท ุงูู external direct product ุฃู |
|
|
|
140 |
|
00:14:31,670 --> 00:14:36,270 |
|
ูููู cyclic group ุฃู
ุฑูู ุงูุฃู
ุฑ ุงูุฃูู ูู ูุงุญุฏุฉ ูููู
|
|
|
|
141 |
|
00:14:36,270 --> 00:14:41,190 |
|
ุชุจูู cyclic ุงูุฃู
ุฑ ุงูุซุงูู ุงูู order ููู group ุงูุฃููู |
|
|
|
142 |
|
00:14:41,190 --> 00:14:43,850 |
|
ูุงูู order ููู group ุงูุซุงููุฉ ูููููุง ุงุซููู ู
ุน ุจุนุถูู
|
|
|
|
143 |
|
00:15:00,200 --> 00:15:05,820 |
|
ุงููุธุฑูุฉ ูุฐู ุฃุซุจุชูุงูุง ูู
ููุ ูู two group ุทุจ ูู ุตุงุฑูุง |
|
|
|
144 |
|
00:15:05,820 --> 00:15:11,810 |
|
ุซูุงุซุฉ ุซูุงุซุฉ groups ูุงููู ุฃุฑุจุนุฉ ูุงููู ุฎู
ุณุฉ ูุงููู in |
|
|
|
145 |
|
00:15:11,810 --> 00:15:16,550 |
|
ู
ู ุงูู groups ูุงููุธุฑูุฉ ุตุญูุญุฉ ููุฐุง ุงูู
ูุถูุน ู |
|
|
|
146 |
|
00:15:16,550 --> 00:15:27,390 |
|
corollary ุฑูู
ูุงุญุฏ ูุจูู corollary ุฑูู
ูุงุญุฏ ุจุชููู ุฃู |
|
|
|
147 |
|
00:15:27,390 --> 00:15:34,230 |
|
external direct product ุฃู external direct |
|
|
|
148 |
|
00:15:35,820 --> 00:15:44,680 |
|
a product external direct product g one external |
|
|
|
149 |
|
00:15:44,680 --> 00:15:50,520 |
|
direct product ู
ุน g two external direct product ู
ุน |
|
|
|
150 |
|
00:15:50,520 --> 00:16:03,000 |
|
ู
ููุ ู
ุน g n of a finite of a finite number |
|
|
|
151 |
|
00:16:04,660 --> 00:16:20,060 |
|
finite number of finite cyclic groups is |
|
|
|
152 |
|
00:16:20,060 --> 00:16:33,660 |
|
cyclic if and only if ุงูู order ููู G I ู ุงูู |
|
|
|
153 |
|
00:16:33,660 --> 00:16:46,100 |
|
order ููู G J are relatively prime are |
|
|
|
154 |
|
00:16:46,100 --> 00:16:54,380 |
|
relatively prime when ุงูู I ูุง ุชุณุงูู ู
ููุ ูุง |
|
|
|
155 |
|
00:16:54,380 --> 00:17:02,540 |
|
ุชุณุงูู ุงูู G ูู
ุงู corollary ุซุงููุฉ ุจุชููู |
|
|
|
156 |
|
00:17:02,540 --> 00:17:10,240 |
|
let ุงููู ูู ุงูู M ุนู
ููุงูุง ุชุญููู ุตุงุฑุช N ูุงุญุฏ ูู N |
|
|
|
157 |
|
00:17:10,240 --> 00:17:18,760 |
|
ุงุซููู ูู N K then ุงูู |
|
|
|
158 |
|
00:17:18,760 --> 00:17:31,150 |
|
ZM ุงูู ZM isomorphic ูู
ูุ ูู z n one external product |
|
|
|
159 |
|
00:17:31,150 --> 00:17:43,350 |
|
ู
ุน z n two external product ู
ุน ู
ูุ ู
ุน z n k if and |
|
|
|
160 |
|
00:17:43,350 --> 00:17:53,930 |
|
only if if and only if ุงูู n i ู ุงูู n j are |
|
|
|
161 |
|
00:17:53,930 --> 00:18:06,240 |
|
relatively prime are relatively prime when |
|
|
|
162 |
|
00:18:06,240 --> 00:18:11,100 |
|
I ูุง ุชุณุงูู ุงูู J |
|
|
|
163 |
|
00:18:38,860 --> 00:18:44,120 |
|
ุงูู corollary ุงูุฃููู ูู ุชุนู
ูู
ูููุธุฑูุฉ ุงูู corollary ุงูุซุงููุฉ |
|
|
|
164 |
|
00:18:44,120 --> 00:18:48,760 |
|
ูุฃูู ุชุทุจูู ู
ุจุงุดุฑ ุนูู ุงููุธุฑูุฉ ุชุนุงู ูุดูู |
|
|
|
165 |
|
00:18:48,760 --> 00:18:53,640 |
|
ุงูุชุนู
ูู
ูู ุงูุฃูู ูู
ู ุซู
ุจูุฑูุญ ููู corollary ุงูุซุงููุฉ |
|
|
|
166 |
|
00:18:53,640 --> 00:18:59,380 |
|
ุงููู ูู ุฑูู
ุงุซููู ูุจูู ูุฐู ุงูู corollary ุงูุฑูู
ุงุซููู |
|
|
|
167 |
|
00:19:00,650 --> 00:19:03,590 |
|
ุชุนุงู ุงูุฑุฑ ูู ุฑูู
ูุงุญุฏ ุจูููู ุฃู external direct |
|
|
|
168 |
|
00:19:03,590 --> 00:19:08,770 |
|
product ูู
ุฌู
ูุนุฉ ู
ู ุงูู group of a finite number |
|
|
|
169 |
|
00:19:08,770 --> 00:19:13,330 |
|
ูุจูู ุนุฏุฏ ู
ุญุฏูุฏ ู
ู ุงูู groups ููู group has finite |
|
|
|
170 |
|
00:19:13,330 --> 00:19:18,490 |
|
order ูู ูุงุญุฏุฉ ุงููู ุนุฏุฏ ุชุจุนูุง ู
ุญุฏูุฏ ูุจูู ูุฐุง ุงูู |
|
|
|
171 |
|
00:19:18,490 --> 00:19:21,710 |
|
external direct product ุจูููู cyclic if and only |
|
|
|
172 |
|
00:19:21,710 --> 00:19:26,230 |
|
if ุงูู order ูู ุฌู ุงู ู ุงูู order ูู ุฌู ุฌู are |
|
|
|
173 |
|
00:19:26,230 --> 00:19:31,510 |
|
relatively prime ู ุฃู ุงูู I ูุง ุชุณุงูู ุงูู ุฌูู ูุนูู ู
ุง ุจุฏูุด |
|
|
|
174 |
|
00:19:31,510 --> 00:19:36,650 |
|
ุฃููู ูู group ููุณู ูู ุงูู
ูุตูุฏ I ูุง ุชุณุงูู ุงูู ุฌูู ูุนูู |
|
|
|
175 |
|
00:19:36,650 --> 00:19:40,570 |
|
ูุงุฏ ุงูู group ุชุฎุชูู ุชู
ุงู
ุง ู
ุน ู
ูุ ู
ุน ูุงุฏ ุงูู group ุทุจ ุงุญูุง |
|
|
|
176 |
|
00:19:40,570 --> 00:19:47,290 |
|
ุนูุฏูุง ูู
group ุฃู ูุงุญุฏุฉ ู
ุน ุงูุซุงููุฉ ุจูููู relatively |
|
|
|
177 |
|
00:19:47,290 --> 00:19:50,270 |
|
prime ูุนูู ุงูุฃููู ู
ุน ุงูุซุงููุฉ ุงูุฃููู ู
ุน ุงูุซุงูุซุฉ |
|
|
|
178 |
|
00:19:50,270 --> 00:19:54,350 |
|
ุงูุฃููู ู
ุน ุงูุนุงุดุฑุฉ ุงูุซุงููุฉ ู
ุน ุงูุซุงูุซุฉ ุงูุซุงููุฉ ู
ุน ... |
|
|
|
179 |
|
00:19:54,350 --> 00:19:58,950 |
|
ููู are relatively prime ุชู
ุงู
ุงูู order ุชุจุน ูู |
|
|
|
180 |
|
00:19:58,950 --> 00:20:01,550 |
|
ูุงุญุฏุฉ ู
ููู
ู
ุน ุงูู order ู
ุน ุงูุซุงููุฉ ุจูููู are |
|
|
|
181 |
|
00:20:01,550 --> 00:20:05,420 |
|
relatively prime ููู ุชุนู
ูู
ูููุธุฑูุฉ ุงููุธุฑูุฉ ูุงูุช |
|
|
|
182 |
|
00:20:05,420 --> 00:20:08,620 |
|
ุนูู two groups ุงููู ูู G ู H ุนู
ู
ูุงูุง |
|
|
|
183 |
|
00:20:08,620 --> 00:20:11,800 |
|
ุฎูููุงูุง ุซูุงุซุฉ ุฎูููุงูุง ุฃุฑุจุนุฉ ุฎูููุงูุง ุฎู
ุณุฉ ู
ุด |
|
|
|
184 |
|
00:20:11,800 --> 00:20:16,900 |
|
ู
ุดููุฉ ูุฏ ู
ุง ูููู ุงูุนุฏุฏ ูุจูู ูุฐู ุงููุธุฑูุฉ ุตุญูุญุฉ ุนูููู
|
|
|
|
185 |
|
00:20:16,900 --> 00:20:21,700 |
|
ููู ูุฐู ุงููุชูุฌุฉ ุฑูู
ูุงุญุฏ ุฃู
ุง ุงููุชูุฌุฉ ุฑูู
ุงุซููู |
|
|
|
186 |
|
00:20:21,700 --> 00:20:27,780 |
|
ุจูููู ูู ุนูุฏู ุฑูู
M ุญููุชู ุฅูู ุญุงุตู ุถุฑุจ ุฃุนุฏุงุฏ ุฒู |
|
|
|
187 |
|
00:20:27,780 --> 00:20:33,700 |
|
ุฅูุด ู
ุซูุง ุฒู ุซูุงุซูู ุซูุงุซูู ุจูุฏุฑ ุฃููู ุงุซููู ูู ุซูุงุซุฉ |
|
|
|
188 |
|
00:20:33,700 --> 00:20:38,780 |
|
ูู ุฎู
ุณุฉ ูุจูู ูุฐู ุญูููุงูุง ูุญุงุตู ุถุฑุจ ุซูุงุซุฉ ุฃุนุฏุงุฏ |
|
|
|
189 |
|
00:20:38,780 --> 00:20:43,480 |
|
ูุงูุซูุงุซุฉ ุฃุนุฏุงุฏ ู
ุง ููู
ุ Primes ุงุซููู ูุงูุซูุงุซุฉ |
|
|
|
190 |
|
00:20:43,480 --> 00:20:48,500 |
|
ูุงูุฎู
ุณุฉ are primes ุฅูุด ุจููู ููุงุ ูู ุญููุช ุงูู M ูุญุงุตู |
|
|
|
191 |
|
00:20:48,500 --> 00:20:58,140 |
|
ุถุฑุจ ุฃุนุฏุงุฏ ูุจูู ZM isomorphic ูู ZN1, ZN2, ZN3, ZNK, |
|
|
|
192 |
|
00:20:58,400 --> 00:21:04,080 |
|
if and only if ูู ุนุฏุฏ ู
ู ูุฐู ุงูุฃุนุฏุงุฏ are relatively |
|
|
|
193 |
|
00:21:04,080 --> 00:21:10,580 |
|
prime ู
ุน ุจุนุถูู
ุงูุจุนุถ ูุนูู ููุณ ุจุงูุถุฑูุฑุฉ ุฃู ูููููุง |
|
|
|
194 |
|
00:21:10,580 --> 00:21:15,240 |
|
primes ูุฅูู
ุง ูููููุง relatively primes ูุนูู ู
ู
ูู ุขุฎุฐ |
|
|
|
195 |
|
00:21:15,240 --> 00:21:21,360 |
|
ุงููู ูู ุงูุนุฏุฏ ุงุซููู ู
ุน ุงูุนุฏุฏ ุณุจุนุฉ ู
ู
ูู ุขุฎุฐ ุณุชุฉ ู |
|
|
|
196 |
|
00:21:21,360 --> 00:21:24,800 |
|
ุฎู
ุณุฉ ุณุชุฉ ูุฎู
ุณุฉ ุงุซููู relatively primes ุฑุบู
ุฃูู |
|
|
|
197 |
|
00:21:24,800 --> 00:21:29,980 |
|
ุฎู
ุณุฉ primes ุณุชุฉ ูุง ุชู
ุงู
ูุจูู ููุณ ุจุงูุถุฑูุฑุฉ ุฃู ุชููู |
|
|
|
198 |
|
00:21:29,980 --> 00:21:35,420 |
|
ูุฐู ุงูุฃุนุฏุงุฏ primes ู
ุซู ู
ุง ุญูููุง ุฅูุด ุงูุซูุงุซูู ูุจูู |
|
|
|
199 |
|
00:21:35,420 --> 00:21:40,310 |
|
ู
ู
ูู ูููู ุฃุฑุจุนุฉ ูุนุดุฑูู ุฃุฑุจุนุฉ ูุนุดุฑูู ูู ุซูุงุซุฉ ูู |
|
|
|
200 |
|
00:21:40,310 --> 00:21:45,110 |
|
ุซู
ุงููุฉ ูุนูู ุงุซููู ูู ุซูุงุซุฉ ูู ุฃุฑุจุนุฉ ู
ุธุจูุท ูุจูู ุงูุฃุฑุจุนุฉ |
|
|
|
201 |
|
00:21:45,110 --> 00:21:47,730 |
|
ู ุนุดุฑูู ุงุซููู ูู ุซูุงุซุฉ ูู ุณุชุฉ ูู ุฃุฑุจุนุฉ ูุฃุฑุจุนุฉ ู |
|
|
|
202 |
|
00:21:47,730 --> 00:21:53,010 |
|
ุนุดุฑูู ุงูุขู ูุจูู ูุฐูู ุงุซููู ูู ุซูุงุซุฉ ูู ุณุชุฉ ุงุซููู ู |
|
|
|
203 |
|
00:21:53,010 --> 00:21:57,810 |
|
ุซูุงุซุฉ ูุฐูู ุงูู primes ุจุณ ุฅูุด ุจูุตูุฑ ุงุซููู ู
ุน ุงูุฃุฑุจุนุฉ |
|
|
|
204 |
|
00:21:57,810 --> 00:22:01,880 |
|
are not relatively prime ูุจูู ุจูุตูุฑ ูู ุงุจู ูุฐุง ุตุญูุญ |
|
|
|
205 |
|
00:22:01,880 --> 00:22:06,600 |
|
ููุง ู
ุด ุตุญูุญุ ู
ุด ุตุญูุญ ูุงุฒู
ุชุฃุฎุฐ ุฃู ุฑูู
ูู ู
ููู
|
|
|
|
206 |
|
00:22:06,600 --> 00:22:10,640 |
|
ููููููุง ู
ุน ุจุนุถ ุงุซููู ู
ุน ุจุนุถูู
relatively primes |
|
|
|
207 |
|
00:22:10,640 --> 00:22:16,220 |
|
ูููุณ ุจุงูุถุฑูุฑุฉ ุฃู ูููููุง primes ูุจูู ู
ุฑุฉ ุซุงููุฉ |
|
|
|
208 |
|
00:22:16,220 --> 00:22:22,740 |
|
ุจููู ุญููุช ุงูู M ุฅูู ุญุงุตู ุถุฑุจ ุฃุนุฏุงุฏ ู
ุง ุฏุงู
ุญููุช ูุฌูุฒ ุฃู |
|
|
|
209 |
|
00:22:22,740 --> 00:22:30,040 |
|
ุงูุฃุตููุฉ isomorphic ูู
ููุ ููู external direct product |
|
|
|
210 |
|
00:22:30,040 --> 00:22:35,340 |
|
ุงููู ูู
ูููู
ูุฐูู if and only if ุฃู ุงุซููู ู
ููู
|
|
|
|
211 |
|
00:22:35,340 --> 00:22:39,640 |
|
ุจุฏูู
ูููููุง relatively prime ู
ุน ุจุนุถูู
ุงูุจุนุถ ุงูุขู |
|
|
|
212 |
|
00:22:39,640 --> 00:22:46,020 |
|
ูุนุทูู ุชู
ุซูู ุนุฏุฏู ุดุบู ุนุฏุฏู ููู ูุฐุง ุงูููุงู
example |
|
|
|
213 |
|
00:22:53,570 --> 00:22:58,310 |
|
ูุฐุง ูู ุงูุชูุถูุญ ุงููู ูุงู ูู ุฌุฆุช ูู z ุฏู ุงุซููู |
|
|
|
214 |
|
00:22:58,310 --> 00:23:04,670 |
|
external like product ู
ุน z ุฏู ุงุซููู external like |
|
|
|
215 |
|
00:23:04,670 --> 00:23:11,390 |
|
product ู
ุน z ุซูุงุซุฉ external like product ู
ุน ู
ููุ |
|
|
|
216 |
|
00:23:11,390 --> 00:23:14,590 |
|
ู
ุน z ุฎู
ุณุฉ ุจุงูุดูู ุงููู ุนูุฏูุง |
|
|
|
217 |
|
00:23:17,820 --> 00:23:21,800 |
|
ุจุฏู ุฃููู ู
ู ูุฐู ู
ุฌู
ูุนุฉ milligroups ุจูููููุง |
|
|
|
218 |
|
00:23:21,800 --> 00:23:27,260 |
|
isomorphic ููุง ุจุงุฌู ุจููู ูุงููู ูููุณ ุดุฑุงูู ุงูุชูุชูู |
|
|
|
219 |
|
00:23:27,260 --> 00:23:31,200 |
|
ูุฐูู are relatively prime ุงุซููู ูุงูุซูุงุซุฉ ููุง ูุง |
|
|
|
220 |
|
00:23:31,200 --> 00:23:38,460 |
|
ุฅุฐุง ูุฐู isomorphic ูู
ููุ ุฒุฏ ุณุชุฉ ุฒุฏ ุณุชุฉ ูุฃู ุฃูุง ููุช ูู |
|
|
|
221 |
|
00:23:38,460 --> 00:23:44,580 |
|
M ููุฐุง M ูููุ ุจุณ ุฃุตุบุฑ ุดููุฉ ูุงุญุฏุฉ ูุงุญุฏุฉ ูุจูู ูุฐู |
|
|
|
222 |
|
00:23:44,580 --> 00:23:53,600 |
|
isomorphic ูู
ููุ ูุฒุฏ ุงุซููู ูู
ุง ูู ูุฒุฏ ุงุซููู |
|
|
|
223 |
|
00:23:53,600 --> 00:24:00,340 |
|
ุงูุณุชูุฑูุง ุงูู product ูุฒุฏ ุณุชุฉ ุงูุณุชูุฑูุง ุงูู product |
|
|
|
224 |
|
00:24:00,340 --> 00:24:11,060 |
|
ูู
ูุ ูุฒุฏ ุฎู
ุณุฉ ููุดุ since ุงุซููู and ุซูุงุซุฉ are |
|
|
|
225 |
|
00:24:11,430 --> 00:24:21,670 |
|
relatively prime ุทูุจ ... ุงูุขู ูุฐู ุจุฏู ุฃุฌูุจ ูู
ุงู |
|
|
|
226 |
|
00:24:21,670 --> 00:24:28,630 |
|
group ุฃุฎุฑู isomorphic ููุง ููุฐู ูู
ุงู isomorphic ูุฒุฏ |
|
|
|
227 |
|
00:24:28,630 --> 00:24:32,750 |
|
ุงุซููู external by product ูุฐูู ุงุซููู are |
|
|
|
228 |
|
00:24:32,750 --> 00:24:39,110 |
|
relatively prime ูุจูู ุฒุฏ ู
ููุ ุฒุฏ ุซูุงุซูู ุญุงุตูุฉ ุถุฑุจ |
|
|
|
229 |
|
00:24:39,110 --> 00:24:49,230 |
|
ูุจูู ูุฐู ูุฒุฏ ุซูุงุซูู ูุจูู ููุดุ since ุงูุณุชุฉ and |
|
|
|
230 |
|
00:24:49,230 --> 00:24:53,650 |
|
ุงูุฎู
ุณุฉ are relatively |
|
|
|
231 |
|
00:24:57,660 --> 00:25:04,940 |
|
ุงูุณุคุงู ูู ูู ูุฐุง isomorphic ูุฒุฏ ุณุชููุ ูุง ููุดุ ูุฃู |
|
|
|
232 |
|
00:25:04,940 --> 00:25:12,080 |
|
ูุฐุง ููุณ ุนุดุงู isomorphic ูุฒุฏ ุณุชูู ูุณุชูู ููู ูุฐุง ููุณ |
|
|
|
233 |
|
00:25:12,080 --> 00:25:24,880 |
|
ุนุดุงู isomorphic ูุฒุฏ ุณุชูู ูุฃู ุงูุณุจุจ ุฃู ุงูุงุซููู and |
|
|
|
234 |
|
00:25:25,300 --> 00:25:30,240 |
|
ุงูุซูุงุซูู ููุณูุง |
|
|
|
235 |
|
00:25:30,240 --> 00:25:41,180 |
|
ู
ุฑุชูุนูู ุจุดูู ุนุงู
ุทูุจ |
|
|
|
236 |
|
00:25:41,180 --> 00:25:47,640 |
|
ุฅูุด ุฑุฃููุ ุจุฏู ุฃุฎูู ูู
ุงู groups ุฃุฎุฑู isomorphic |
|
|
|
237 |
|
00:25:47,640 --> 00:25:57,570 |
|
ููุฐู ุงูู group also ูู ุฌุฆุช ุฃุฎุฐุช ุงููู ูู Z ุงุซููู |
|
|
|
238 |
|
00:25:57,570 --> 00:26:03,490 |
|
external by-product ูุฒุฏ ุงุซููู external by-product |
|
|
|
239 |
|
00:26:03,490 --> 00:26:10,010 |
|
ูุฒุฏ ุซูุงุซุฉ external by-product ูุฒุฏ ุฎู
ุณุฉ is |
|
|
|
240 |
|
00:26:10,010 --> 00:26:15,910 |
|
isomorphic ูููุง ูุจู ูููู ุฒุฏ ุงุซููู external by |
|
|
|
241 |
|
00:26:15,910 --> 00:26:21,850 |
|
-product is ุณุชุฉ external by-product ูู
ูุ ูุฒุฏ ุฎู
ุณุฉ |
|
|
|
242 |
|
00:26:23,460 --> 00:26:27,620 |
|
ูุฐุง ุงููู ูููุงูุง ูุจู ูููู ู
ู ูุฐู ุจุฏู ุฃุฎูู groups |
|
|
|
243 |
|
00:26:27,620 --> 00:26:32,320 |
|
ุฃุฎุฑู ุชุจูู isomorphic ูููุณ ุงูู group ููู ูุงูุช ุงูุชุงููุฉ |
|
|
|
244 |
|
00:26:32,320 --> 00:26:39,840 |
|
ุฃุทูุน ูู ููุง ุจูุฏุฑ ุฃูุชุจ ูุฐู Z2 ุฒู ู
ุง ูู ูุฐู Z6 ูููู |
|
|
|
245 |
|
00:26:39,840 --> 00:26:45,980 |
|
Z2 external dichromate ู
ุน Z3 ููุง Z3 external ู
ุน Z2 |
|
|
|
246 |
|
00:26:45,980 --> 00:26:50,160 |
|
ููุณ ุงูุดูุก ูุฃูู ุญุตู ุถุฑุจูู
ูุณุงูู 6 ู 2 are relatively |
|
|
|
247 |
|
00:26:50,160 --> 00:26:54,690 |
|
prime ุจููุณ ุงููุธุฑูุฉ ุงููู ูู ูุจู ูููู ูุจูู ุจูุงุกู ุนููู |
|
|
|
248 |
|
00:26:54,690 --> 00:27:00,210 |
|
ูุฐู ุจูุฏุฑ ุฃููู ุจุฏู ู
ุง ูู z6 ุจุฏู ุฃููู ุนูููุง z3 |
|
|
|
249 |
|
00:27:00,210 --> 00:27:05,690 |
|
external by-product ู
ุน z2 external by-product ู
ุน |
|
|
|
250 |
|
00:27:05,690 --> 00:27:16,790 |
|
z5 ุทูุจ ูุฐู isomorphic ูู
ูุ ุทูุน ูู ููุฐู relatively |
|
|
|
251 |
|
00:27:16,790 --> 00:27:24,330 |
|
ูุจูู ูุฐูู ุงูู Z6 External Direct Product ู
ุน |
|
|
|
252 |
|
00:27:24,330 --> 00:27:30,610 |
|
Z2 External Direct Product ู
ุน Z5 ูุจูู ูุฐู ุฌุฑูุจ |
|
|
|
253 |
|
00:27:30,610 --> 00:27:37,130 |
|
ุฌุฏูุฏุฉ ุจุฏู ุฃุทูุน ูู
ุงู ุฌุฑูุจ ุซุงูู ูุจูู ูุฐู isomorphic |
|
|
|
254 |
|
00:27:37,130 --> 00:27:45,770 |
|
ูู
ุงู ูู
ููุ ูู Z6 External Direct Product ู
ุน Z5 ูุจูู |
|
|
|
255 |
|
00:27:45,770 --> 00:27:54,900 |
|
ู
ุน Z10 ููุดุ ูุฃูู ุงูุณุชุฉ ูุงูุฎู
ุณุฉ are... ูุฃูู ุงูุงุชููู |
|
|
|
256 |
|
00:27:54,900 --> 00:28:00,140 |
|
ูุงูุฎู
ุณุฉ are relatively prime ูุจูู ูุฐุง sense ุงุชููู |
|
|
|
257 |
|
00:28:00,140 --> 00:28:10,160 |
|
and ุฎู
ุณุฉ are relatively prime ูุงูุฎุทูุฉ ุงูุฃููู ุงููู |
|
|
|
258 |
|
00:28:10,160 --> 00:28:13,380 |
|
ุนูุฏูุง ุฒุฏ ุณุชุฉ ูุฅูู ุงุชููู ู ุชูุงุชุฉ relatively prime |
|
|
|
259 |
|
00:28:13,380 --> 00:28:20,600 |
|
ูุฐุง ูุชุจูุงู ูุจู ูููู ุทุจ ุงูุณุคุงู ูู ูู ูุฐู isomorphic |
|
|
|
260 |
|
00:28:20,600 --> 00:28:28,340 |
|
ูุฒุฏ ุณุชูู ู
ุง ูููุง ุณุชูู ุนูุตุฑ ุทุจุนุง ูุฃ ุงูุณุจุจ because |
|
|
|
261 |
|
00:28:29,790 --> 00:28:40,350 |
|
ุฅู ุงูุณุชุฉ ู ุงูุนุดุฑุฉ ููุณูุง ู
ุฑุชุจุทูู ุจุดูู |
|
|
|
262 |
|
00:28:40,350 --> 00:28:40,370 |
|
ุนุงู
|
|
|
|
263 |
|
00:28:47,410 --> 00:28:53,090 |
|
ุจููู isomorphic ููู ููุ ูุฃ ูุฃ ููู isomorphic ูุง |
|
|
|
264 |
|
00:28:53,090 --> 00:28:57,310 |
|
ุดุจุงุจ ู
ุง ุนูุฏูุด ู
ุง ููุช ูุณุงูู ูุจูู ูู ููุช ูุณุงูู ู
ุนูุงุชู |
|
|
|
265 |
|
00:28:57,310 --> 00:29:03,170 |
|
ูู ุนูุตุฑ ูุณุงูู ูุธูุฑู ููู ูุฐู group ุชุฎุชูู ุนู ูุฐู |
|
|
|
266 |
|
00:29:03,170 --> 00:29:08,050 |
|
ูุนูู ู
ุซูุง ุนูุตุฑ ุงููู ููุง ูู ุจุฏู ูุงุฎุฏ ุงููุงุญุฏ ู ู
ู ููุง |
|
|
|
267 |
|
00:29:08,050 --> 00:29:12,010 |
|
ุจุฏู ูุงุฎุฏ ุงุชููู ู ู
ู ููุง ุจุฏู ูุงุฎุฏ ุงู zero ู ู
ู ููุง |
|
|
|
268 |
|
00:29:12,010 --> 00:29:16,350 |
|
ุจุฏู ูุงุฎุฏ ุงูุฃุฑุจุนุฉ ู
ุซูุง ุจูุฎุชูู ุนู ูุฐุง ุงููู ููุง ูููุฐุง |
|
|
|
269 |
|
00:29:16,350 --> 00:29:20,810 |
|
ุฅุฐุง ุฃู ุฒู
ุงุฑ ููู ูุนูู ูุฌุฑูุจ ุงูุฃููู ู ูุฌุฑูุจ ุงูุซุงููุฉ |
|
|
|
270 |
|
00:29:20,810 --> 00:29:27,730 |
|
ููุง ููุณ ุงูุฎูุงุต ุงูุฑูุงุถูุฉ ูุจูู ูุงู ูู ุงููู ุจููููู |
|
|
|
271 |
|
00:29:27,730 --> 00:29:33,530 |
|
ุจูุงุณุจุฉ ูุนูู ูุฐุง ู
ุซุงู ุนู
ูู ุนูู ุงูุดุบูุงูุฉ ุทูุจ ููุชูู |
|
|
|
272 |
|
00:29:33,530 --> 00:29:39,110 |
|
ุงูุขู ูููุทุฉ ุจุฑุถู ููุง ุนูุงูุฉ ุจูุฐุง ุงูู
ูุถูุน |
|
|
|
273 |
|
00:29:58,550 --> 00:30:02,970 |
|
ูู ููุง ุชุนุฑูู ุฃุฎุฐูุงู ุณุงุจูุง ูู chapter of subgroup |
|
|
|
274 |
|
00:30:02,970 --> 00:30:11,090 |
|
ูุฐูุฑู ูุฃูู ุจุฏูุง ูุจูู ุงูุดุบู ุนููู definition ุชุนุฑูู |
|
|
|
275 |
|
00:30:11,090 --> 00:30:17,810 |
|
ูููู if ุงู K is a divisor of N if ุงู K is a |
|
|
|
276 |
|
00:30:17,810 --> 00:30:30,020 |
|
divisor of N ูู ูุงู ุงู K ูุงุณู
ูู N ู define ุจุฏูุง |
|
|
|
277 |
|
00:30:30,020 --> 00:30:40,800 |
|
ูุฑูุญ ูุนุฑู ุงู U K of N ูู ูู ุงูุนูุงุตุฑ X ุงููู ู
ูุฌูุฏุฉ |
|
|
|
278 |
|
00:30:40,800 --> 00:30:48,740 |
|
ูู U M X ุงููู ู
ูุฌูุฏุฉ ูู U N such that X modulo K |
|
|
|
279 |
|
00:30:48,740 --> 00:30:57,410 |
|
ุจุฏู ูุณุงูู ู
ูู ุจุฏู ูุณุงูู ุงููุงุญุฏ ููุฐุง ุดุจุงุจ sub group ู
ู |
|
|
|
280 |
|
00:30:57,410 --> 00:30:58,850 |
|
ุงู UN |
|
|
|
281 |
|
00:31:20,410 --> 00:31:23,750 |
|
ุทูุน ูู ูู ุงูููุงู
ุงููู ุงุญูุง ูุชุจููู ู
ู ุฃูู ู ุฌุฏูุฏ |
|
|
|
282 |
|
00:31:23,750 --> 00:31:29,610 |
|
ุจุฏูุง ูุนุทู ุชุนุฑูู ู ูุฐุง ุงูุชุนุฑูู ู
ุฑ ุนูููุง ูุจู ููู |
|
|
|
283 |
|
00:31:29,610 --> 00:31:35,150 |
|
ูุจูู ุงุญูุง ุจุณ ุจูุฐูุฑ ุจุงูุฐูุฑ ุจููู ูู ูุงู ุนูุฏู K ูู |
|
|
|
284 |
|
00:31:35,150 --> 00:31:40,010 |
|
divisor ูู N ูุจูู ุงูุดุฑุท ุฃุณุงุณู ุงู ุงู K ูุงุฒู
ููุณู
ุงู N |
|
|
|
285 |
|
00:31:42,860 --> 00:31:49,420 |
|
ุจูุนุฑู ุณุชุฉ ุฌุฏูุฏุฉ ุณู
ูุชูุง U K of N U N ูุนุฑููุง ูู |
|
|
|
286 |
|
00:31:49,420 --> 00:31:53,220 |
|
ุงูุฃุนุฏุงุฏ ุงููู ูู relatively prime ู
ุน M ุจุณ U K ุฏุฎูุช |
|
|
|
287 |
|
00:31:53,220 --> 00:31:59,960 |
|
ุนูู ุงูุฎุท ุจูููู ูู
ูู ูู ุงู X's ุงููู ู
ูุฌูุฏุฉ ูู UN ูุจูู |
|
|
|
288 |
|
00:31:59,960 --> 00:32:04,720 |
|
ุนูุงุตุฑ ู
ู UN ุจุญูุซ ุงู X modulo K ุจูุณุงูู ุฌุฏุงุด ูุงุญุฏ |
|
|
|
289 |
|
00:32:04,720 --> 00:32:09,800 |
|
ูุนูู ูู ุงูุฃุนุฏุงุฏ ุงููู ุงููุฑู ุจูููุง ูุจูู ุงููุงุญุฏ ูุณุงูู |
|
|
|
290 |
|
00:32:09,800 --> 00:32:15,880 |
|
ู
ุถุงุนูุงุช ุงู K ูู ุงูุฃุนุฏุงุฏ ุงููู ู
ูุฌูุฏุฉ ูู UN ุงููู |
|
|
|
291 |
|
00:32:15,880 --> 00:32:19,740 |
|
ุงููุฑู ุจูููุง ูุจูู ุงููุงุญุฏ ูู ู
ุถุงุนูุงุช ุงู K ูุนูู Zero |
|
|
|
292 |
|
00:32:20,270 --> 00:32:26,410 |
|
ุทุจุนุง ูุนูู ูู ุทุฑุญุช ูุฐุง ุงูุนุฏุฏ ู
ู ุงููุงุญุฏ ุจุฏู ูุทูุน ูู |
|
|
|
293 |
|
00:32:26,410 --> 00:32:32,030 |
|
ู
ุถุงุนูุงุช ุงู K ูุทูุน ูู K ูุทูุน ูู 2K ู
ุถุงุนูุงุช ูุนูู ูุฃูู |
|
|
|
294 |
|
00:32:32,030 --> 00:32:35,130 |
|
ุงูู
ุถุงุนูุงุช ุงู K ุฒุงุฆุฏ ูุงุญุฏ ุตุญูุญ ูุจูู ุงููุฑู ุจูููู
|
|
|
|
295 |
|
00:32:35,130 --> 00:32:43,210 |
|
ุจูุณุงูู Zero ูุนุทู ู
ุซุงู let ุงู |
|
|
|
296 |
|
00:32:43,210 --> 00:32:50,020 |
|
G ุจุฏูุง ุชุณุงูู U ุฃุฑุจุนูู U ุฃุฑุจุนูู ู
ูู ุนูุงุตุฑูุง ุดุจุงุจ ุทูุจ |
|
|
|
297 |
|
00:32:50,020 --> 00:32:57,220 |
|
find ุจุฏูุง ุชู
ุงููุฉ ุจุฏูุง ุนุฏุฏ ููุณู
ุงูุฃุฑุจุนูู ููููู |
|
|
|
298 |
|
00:32:57,220 --> 00:33:05,100 |
|
ุซู
ุงููุฉ ู
ุซูุง find U ุซู
ุงููุฉ of ุฃุฑุจุนูู ูู ุงููู ุจุฏูุง |
|
|
|
299 |
|
00:33:05,100 --> 00:33:06,440 |
|
solution |
|
|
|
300 |
|
00:33:12,160 --> 00:33:16,040 |
|
ุงูุฃูู ุงููู ุจุฏูุง ูุนุฑูู ูู ุนูุงุตุฑ ุงููU40 ูู
ููู
ุจุฏูุง |
|
|
|
301 |
|
00:33:16,040 --> 00:33:22,480 |
|
ูุจุฏุฃ ูุฌูู ูุจูู ุจุฏุงุฌุฉ ุฃููู ูู ุงููU40 ุนูุงุตุฑูุง ุงููู |
|
|
|
302 |
|
00:33:22,480 --> 00:33:31,680 |
|
ูู ูุงุญุฏ ุงุชููู ุชูุงุชุฉ ุฃุฑุจุนุฉ ุฎู
ุณุฉ ุณุชุฉ ุณุจุนุฉ ุซู
ุงููุฉ |
|
|
|
303 |
|
00:33:31,680 --> 00:33:44,690 |
|
ุชุณุนุฉ 11 .. 13 .. 14 .. 15 .. 16 .. 17 .. 19 .. 21 |
|
|
|
304 |
|
00:33:44,690 --> 00:33:47,710 |
|
.. |
|
|
|
305 |
|
00:33:47,710 --> 00:33:59,490 |
|
23 .. 24 .. 25 .. 26 .. 27 ..ููู
ุงู ุชุณุนุฉ ู ุนุดุฑูู |
|
|
|
306 |
|
00:33:59,490 --> 00:34:07,490 |
|
ุซูุงุซูู ูุงุญุฏ ู ุซูุงุซูู ุงุซููู ู ุซูุงุซูู ุชูุงุชุฉ ู |
|
|
|
307 |
|
00:34:07,490 --> 00:34:12,670 |
|
ุซูุงุซูู ุฃุฑุจุนุฉ ู ุซูุงุซูู ุฎู
ุณุฉ ู ุซูุงุซูู ุณุชุฉ ู ุซูุงุซูู |
|
|
|
308 |
|
00:34:12,670 --> 00:34:18,910 |
|
ุณุจุนุฉ ู ุซูุงุซูู ุชุณุนุฉ ู ุซูุงุซูู ูุจูู ูุฐู ุนูุงุตุฑ ู
ู |
|
|
|
309 |
|
00:34:18,910 --> 00:34:21,050 |
|
ุนูุงุตุฑ ุงู U ุฃุฑุจุนูู |
|
|
|
310 |
|
00:34:27,390 --> 00:34:33,650 |
|
ุงุญูุง ุจูุดุฑุญ ูููู ู
ุด ููุญุฏุ ููุง ุจูุดุฑุญ ููููุ ุงูุถุนูู |
|
|
|
311 |
|
00:34:33,650 --> 00:34:37,190 |
|
ูุงููุณุท ูุงูููู ููู ู
ูุฌูุฏุ ุจุฏู ุชุญูู ููุงู
ูุชูุงุณุจ ู
ุน |
|
|
|
312 |
|
00:34:37,190 --> 00:34:41,010 |
|
ุงูุฌู
ูุน ู
ุงุดู ูุนูู ุฃูุง ูุงู ุจูุจูู ู
ูุงู ูููู ูู ุฏู ูู |
|
|
|
313 |
|
00:34:41,010 --> 00:34:44,270 |
|
ุฏุบุฑู ุฎุฏ ุงููู ูู ุงูุฑูู
ูู ุชูุงุชุฉ ู ุฃููู ูู ุฏู ูู
ููููุง |
|
|
|
314 |
|
00:34:44,270 --> 00:34:49,790 |
|
ุจูุดุฑุญ ุจูููู
ูู ุฎุทูุฉ ุจูุนู
ููุง ููู ุฌุช ูู ุทูุจ ูุงู ูู |
|
|
|
315 |
|
00:34:49,790 --> 00:34:54,410 |
|
ุงุญุณุจ ูู ูุฏุงุด ุงู U ุซู
ุงููุฉ ู ุฃุฑุจุนูู ูุจุงุฌู ุจูููู U |
|
|
|
316 |
|
00:34:54,410 --> 00:35:05,110 |
|
ุซู
ุงููุฉ ู ุฃุฑุจุนูู ุจุฏู ูุณุงูู U ูุณุงูู ูู ุงููุงุญุฏ ู
ููู
ูู |
|
|
|
317 |
|
00:35:05,110 --> 00:35:11,130 |
|
ููุช ูู ูุฃ ูููููุง ุบูุท ูุฃู ูุจู ูููู ุฌุงูู ูุฐู ุงู |
|
|
|
318 |
|
00:35:11,130 --> 00:35:16,510 |
|
group ุชุญุชูู ุนูู ุงู identity ุงุซููู ูุงุญุฏ ูุงูุต ูุงุญุฏ |
|
|
|
319 |
|
00:35:16,510 --> 00:35:22,090 |
|
ูุณุงูู ุฌุฏุงุด ุงู zero ูู ู
ุถุงุนูุงุช ุงูุฃุฑุจุนูู ุฃู ู
ุถุงุนูุงุช |
|
|
|
320 |
|
00:35:22,090 --> 00:35:26,310 |
|
ุงู K ู
ุถุงุนูุงุช ุงูุซู
ุงููุฉ ุงููู ุนูุฏูุง ูุจูู ุงููุงุญุฏ ู
ููู
|
|
|
|
321 |
|
00:35:27,330 --> 00:35:33,470 |
|
ููุง ุชุณุนุฉ ูู ุดููุช ู
ู ุฃูุงูุง ุจูุตูุฑ ุซู
ุงููุฉ ุชู
ุงู
ูุจูู |
|
|
|
322 |
|
00:35:33,470 --> 00:35:39,190 |
|
ูุฐู ุงูุชุณุนุฉ ุฃุญุฏ ุนุดุฑ ุซูุงุซ ุนุดุฑ ุณุจุนุฉ ุนุดุฑ ุดููุช ู
ู ุฃูุงูุง ุจูุถู |
|
|
|
323 |
|
00:35:39,190 --> 00:35:44,600 |
|
ูุฐุง ุณุชุฉ ุนุดุฑ ูู ู
ุถุงุนูุงุช ุงูุซู
ุงููุฉ ูุจูู ุงูู ุณุจุนุฉ ุนุดุฑ |
|
|
|
324 |
|
00:35:44,600 --> 00:35:52,080 |
|
ุชุณุนุฉ ุนุดุฑ ูุฃ ูุงุญุฏ ู ุนุดุฑูู ุชูุงุชุฉ ู ุนุดุฑูู ุณุจุนุฉ ู ุนุดุฑูู |
|
|
|
325 |
|
00:35:52,080 --> 00:36:00,260 |
|
ุชุณุนุฉ ู ุนุดุฑูู ูุงุญุฏ ู ุซูุงุซูู ุชูุงุชุฉ ู ุซูุงุซูู ุงู ุชูุงุชุฉ |
|
|
|
326 |
|
00:36:00,260 --> 00:36:06,160 |
|
ู ุซูุงุซูู ู
ููุง ุชูุงุชุฉ ู ุซูุงุซูู ูุฃู ูู ุฃูู ู
ููุง ูุงุญุฏ |
|
|
|
327 |
|
00:36:06,160 --> 00:36:10,780 |
|
ูุชุจูู ุงุซููู ู ุซูุงุซูู ุชุณู
ุน ุซู
ุงููุฉ ุณุชุฉ ู ุซูุงุซูู ูุฃ |
|
|
|
328 |
|
00:36:10,780 --> 00:36:16,160 |
|
ุซู
ุงููุฉ ู ุซูุงุซูู ูุฃ ูุจูู ู
ุง ุนูุฏูุด ุฅูุง ุงูุฃุฑุจุนุฉ ุนูุงุตุฑ |
|
|
|
329 |
|
00:36:16,160 --> 00:36:19,820 |
|
ุงููู ูุฏุงู
ู ูุนูู ูุจูู ุฅุฐู ุงู U ุซู
ุงููุฉ ู ุฃุฑุจุนูู ูู |
|
|
|
330 |
|
00:36:19,820 --> 00:36:23,860 |
|
ูุงุญุฏ ู ุชุณุนุฉ ู ุณุจุนุฉ ุนุดุฑ ู ุชูุงุชุฉ ู ุซูุงุซูู ู ูู ู
ููุง |
|
|
|
331 |
|
00:36:23,860 --> 00:36:29,490 |
|
ูุญูู ู
ู ุงูู
ุนุงุฏูุฉ ุฃู ุญุณุจูุงูู
ุจูุงุก ุนูู ุงูุชุนุฑูู ุงููู |
|
|
|
332 |
|
00:36:29,490 --> 00:36:37,550 |
|
ุงุนุทููุงู ู UKM ูุฐุง ููุงู
ู
ูู
ูุฃู ุจุฏูุง ูุจูู ุนููู ุดุบู |
|
|
|
333 |
|
00:36:37,550 --> 00:36:42,230 |
|
ุซุงูู ุจุนุฏ ูููู ุงูุขู ุจุฏูุง ููุฌู ููุธุฑูุฉ ุฃุฎุฑู ูู ูุฐุง |
|
|
|
334 |
|
00:36:42,230 --> 00:36:47,350 |
|
ุงูุดุงุจุชุฑ ุงููุธุฑูุฉ ุจุชููู ู
ุง ูุฃุชู IRM |
|
|
|
335 |
|
00:36:52,330 --> 00:37:06,230 |
|
theorem suppose that suppose that ุฃู ุงู S and T ุงู |
|
|
|
336 |
|
00:37:06,230 --> 00:37:18,490 |
|
S and T are relatively prime are relatively prime |
|
|
|
337 |
|
00:37:20,290 --> 00:37:31,510 |
|
are relatively prime then then |
|
|
|
338 |
|
00:37:31,510 --> 00:37:40,830 |
|
ุงู U S T ุงู U S T isomorphic |
|
|
|
339 |
|
00:37:40,830 --> 00:37:50,770 |
|
ูู U S external product ู
ุน ู
ูู ู
ุน U T moreover |
|
|
|
340 |
|
00:37:50,770 --> 00:37:54,230 |
|
ูุฃูุซุฑ |
|
|
|
341 |
|
00:37:54,230 --> 00:37:59,050 |
|
ู
ู ุฐูู ุงู |
|
|
|
342 |
|
00:37:59,050 --> 00:38:12,930 |
|
subgroup U S of ST isomorphic ู U T and ุงู U T ูู
ู |
|
|
|
343 |
|
00:38:12,930 --> 00:38:22,170 |
|
ูู ST isomorphic ูู
ู ู US ุงูุดูู ุงููู ุนูุฏูุง ุฃูุง |
|
|
|
344 |
|
00:38:22,170 --> 00:38:32,050 |
|
isomorphic ู US ููู ูุชูุฌุฉ ุนูููุง ู ุฑููุฑู ุจุชููู |
|
|
|
345 |
|
00:38:32,050 --> 00:38:44,170 |
|
ู
ุง ูุฃุชู let ุงู M ุจุฏูุง ุชุณุงูู N ูุงุญุฏ N ุงุซููู ููุบุงูุฉ NK |
|
|
|
346 |
|
00:38:44,170 --> 00:38:55,190 |
|
ุฃู ูุงุญุฏ ุฃู ุงุซููู ูุบุงูุฉ NK where ุญูุซ ูุฌูุณ ุงู common |
|
|
|
347 |
|
00:38:55,190 --> 00:39:08,010 |
|
divisor ูู N I ู N J ุจุฏูุง ุชุณุงูู ูุงุญุฏ for I ูุง ุชุณุงูู |
|
|
|
348 |
|
00:39:08,010 --> 00:39:09,810 |
|
J then |
|
|
|
349 |
|
00:39:11,580 --> 00:39:19,920 |
|
ุงูู UM ุงูุฒู ู
ูุฑูู ูู
ูุ ูู U N 1 ุงูุณุชุงูุงุถุงูู ุจุฑูุฏู |
|
|
|
350 |
|
00:39:19,920 --> 00:39:28,200 |
|
ู
ุน U N 2 ุงูุณุชุงูุงุถุงูู ุจุฑูุฏู ู
ุน ู
ููุ ู
ุน U N K ุจุงูุดูู |
|
|
|
351 |
|
00:39:28,200 --> 00:39:28,860 |
|
ุงููู ุนูุฏูุง ููุง |
|
|
|
352 |
|
00:39:42,060 --> 00:39:48,760 |
|
ู
ุฑุฉ ุซุงููุฉ ุจููู ุจููู ูู ุนูุฏู ุฑูู
ูู S ูT are |
|
|
|
353 |
|
00:39:48,760 --> 00:39:57,880 |
|
relatively prime then ุงู U S T ูุจูู ุงู group ุงููู |
|
|
|
354 |
|
00:39:57,880 --> 00:40:03,080 |
|
ุนูุฏูุง ุงู U S T isomorphic ูู externa ุชุงูุฑูุฏู ุชุจูู |
|
|
|
355 |
|
00:40:03,080 --> 00:40:09,120 |
|
ุญุงุตู ุงูุถุฑุจ ุฒู ุงูุด ู
ุซูุง ูู ููุช ูู U ุฎู
ุณุฉ ุนุดุฑ ุจูุฏุฑ |
|
|
|
356 |
|
00:40:09,120 --> 00:40:15,260 |
|
ุฃูุชุจูุง U ุชูุงุชุฉ ูู ุฎู
ุณุฉ ู
ุธุจูุท ุฅุฐุง ูุฐู ุงู U ุฎู
ุณุฉ ุนุดุฑ |
|
|
|
357 |
|
00:40:15,260 --> 00:40:19,820 |
|
ุงูุฒู ู
ูุฑูู ู U ุชูุงุชุฉ ุงูุณุชุฑูู ุถุงููุฉ ุถุนูู ู
ุน ู
ูู ู
ุน |
|
|
|
358 |
|
00:40:19,820 --> 00:40:24,740 |
|
U ุฎู
ุณุฉ ูุชููู ูู ุชูุงุชุฉ ู ุฎู
ุณุฉ relatively prime ุจููู ูู |
|
|
|
359 |
|
00:40:24,740 --> 00:40:33,900 |
|
ู
ุงุดู ุงูุด ุฑุฃูู U ุซูุงุซูู ุชุณุงูู U ุฎู
ุณุฉ ูู ุณุชุฉ ุตุญ ุฎู
ุณุฉ |
|
|
|
360 |
|
00:40:33,900 --> 00:40:39,070 |
|
ูู ุณุชุฉ ุฃู ุนุดุฑุฉ ูู ุชูุงุชุฉ ูุฐู ููุฐู ุฃู ุงุซููู ูู |
|
|
|
361 |
|
00:40:39,070 --> 00:40:43,410 |
|
ุฎู
ุณุฉ ุนุดุฑ ูููุง ุฃุฑูุงู
are relatively prime ุฅุฐุง ุงู U |
|
|
|
362 |
|
00:40:43,410 --> 00:40:47,930 |
|
ุซูุงุซูู isomorphic ุงูู U ุนุดุฑุฉ ูู ุชูุงุชุฉ ุฃู |
|
|
|
363 |
|
00:40:47,930 --> 00:40:53,830 |
|
isomorphic ู U ุฎู
ุณุฉ ูู ุณุชุฉ ุฃู isomorphic ููุงุชููู |
|
|
|
364 |
|
00:40:53,830 --> 00:40:58,390 |
|
ูู U ุงุซููู external like product ู
ุน U ุฎู
ุณุฉ ุนุดุฑ ู |
|
|
|
365 |
|
00:40:58,390 --> 00:41:03,670 |
|
ููุฐุง ู
ุง ุฏุงู
ุงูุฑูู
ูู ุฃู ุงูุชูุงุชุฉ ุงููู ุนูุฏู ุชูุงุชุฉ ู
ู |
|
|
|
366 |
|
00:41:03,670 --> 00:41:08,790 |
|
ุฃูู ุฌุจุชูุง ุฏูุ ุฌุจุชูุง ู
ู ุงููุฑููุฑู ุงููุฑููุฑู ุจุชููู ุฅุฐุง |
|
|
|
367 |
|
00:41:08,790 --> 00:41:11,490 |
|
ู
ุง ุนูุฏู ููุณ ุจุถุฑุฑ ุฑูู
ูู ู
ู
ูู ุงูุฃุฑูุงู
ุงููู ุนูุฏู |
|
|
|
368 |
|
00:41:11,490 --> 00:41:16,090 |
|
ุชุญูููุง ุฅูู ุญุงุตู ุถุฑุจ ุชูุงุชุฉ ุฃุฑูุงู
ุฃู ุฃุฑุจุนุฉ ุฃุฑูุงู
ุฃู |
|
|
|
369 |
|
00:41:16,090 --> 00:41:21,690 |
|
ุฎู
ุณุฉ ุฃู ุนุดุฑุฉ ุฃู ูู
ู
ู ุงูุฃุฑูุงู
ุญูู ูุฏ ู
ุง ุจุฏู ูุจูู ูู |
|
|
|
370 |
|
00:41:21,690 --> 00:41:27,990 |
|
ุนูุฏู ุงูู M ูุฐุง ุญูููุงู ุฅูู ุญุงุตู ุถุฑุจ N ู
ู ุงูุฃุฑูุงู
N1 |
|
|
|
371 |
|
00:41:27,990 --> 00:41:32,450 |
|
N2 ูุบุงูุฉ NK ุจุญูุซ ุงูู greatest common divisor ุจูู |
|
|
|
372 |
|
00:41:32,450 --> 00:41:37,250 |
|
ุฃู ุงุซููู ุจุฏู ูููู relatively prime ุจุฏู ูููู ูุงุญุฏ |
|
|
|
373 |
|
00:41:37,250 --> 00:41:41,690 |
|
ุตุญูุญ ูุนูู ุงูุงุซููู ูุฐูู are relatively prime ูุจูู |
|
|
|
374 |
|
00:41:41,690 --> 00:41:46,830 |
|
ุงู U M isomorphic ู U of ุงูุฑูู
ุงูุฃูู ูุณุชุงูุงุฏุงููู |
|
|
|
375 |
|
00:41:46,830 --> 00:41:51,030 |
|
ุจุฑูุฏู U ู
ุน ุงูุฑูู
ุงูุซุงูู ูุณุชุงูุงุฏุงููู ุจุฑูุฏู ู
ุน ุงูุฑูู
|
|
|
|
376 |
|
00:41:51,030 --> 00:41:55,250 |
|
ูู ูููุฐุง ุงูู
ุฑุฉ ุงููุงุฏู
ุฉ ุฅู ุดุงุก ุงููู ุจูุงุฎุฏ ุฃู
ุซูุฉ |
|
|
|
377 |
|
00:41:55,250 --> 00:41:59,890 |
|
ุชูุถุญูุฉ ุนูู ููููุฉ ุงุณุชุฎุฏุงู
ุงูููุงู
ุงููู ุนูุฏูุง ูุฐุง |
|
|