abdullah's picture
Add files using upload-large-folder tool
02a43a2 verified
raw
history blame
40.1 kB
1
00:00:21,290 --> 00:00:25,850
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ู†ุณุชูƒู…ู„ ุงู„ู…ูˆุถูˆุน ุงู„ุฐูŠ ุจุฏุฃู†ุงู‡
2
00:00:25,850 --> 00:00:31,590
ุงู„ุตุจุญ ูˆู‡ูˆ ู…ูˆุถูˆุน ุงู„ external direct product ุจุนุฏ ู…ุง
3
00:00:31,590 --> 00:00:35,770
ุฃุฎุฐู†ุง ุฃู…ุซู„ุฉ ู…ู† ุฎู„ุงู„ู‡ุง ู†ูุนูŠู† ุงู„ order ู„ู„ element
4
00:00:35,770 --> 00:00:42,070
ูˆูƒุฐู„ูƒ ุนุฏุฏ ู…ุง ู‡ูˆ ุงู„ elements ุจ order ู…ุนูŠู† ูˆุนุฏุฏ ุงู„
5
00:00:42,070 --> 00:00:46,830
cyclic groups ุจ order ู…ุนูŠู† ู†ู†ุชู‚ู„ ุงู„ุขู† ุฅู„ู‰ ู‡ุฐู‡
6
00:00:46,830 --> 00:00:51,500
ุงู„ู†ุธุฑูŠุฉ ุงู„ู†ุธุฑูŠุฉ ุชู‚ูˆู„ ูŠูุชุฑุถ ุฃู† ุฌูŠ ูˆ ุงุชุด ู‡ู…ุง finite
7
00:00:51,500 --> 00:00:55,140
cyclic groups ูŠุจู‚ู‰ ูƒู„ ูˆุงุญุฏุฉ ููŠู‡ุง ุนุฏุฏ ู…ุญุฏูˆุฏ ู…ู†
8
00:00:55,140 --> 00:01:00,060
ุงู„ุนู†ุงุตุฑ ูˆุงู„ุงุซู†ุชุงู† are cyclic groups ูŠู‚ูˆู„ ููŠ ู‡ุฐู‡
9
00:01:00,060 --> 00:01:05,080
ุงู„ุญู„ู‚ูŠู† ุฃู† ุงู„ ุฌูŠ external product ู…ุน ุงุชุด is cyclic
10
00:01:05,080 --> 00:01:08,760
in fact ุชู‚ูˆู„ ุฅุฐุง ุงู„ order ุฌูŠ ูˆ ุงู„ order ุงุชุด are
11
00:01:08,760 --> 00:01:13,240
relatively prime ูŠุจู‚ู‰ ู…ู† ุงู„ุขู† ูุตุงุนุฏู‹ุง ู„ูˆ ุงู„ two
12
00:01:13,240 --> 00:01:17,080
groups ุฌูŠ ูˆ ุงุชุด ุงู„ุงุซู†ุชุงู† ุงู„ order ุงู„ุฐูŠ ู‡ู…ุง are
13
00:01:17,080 --> 00:01:19,840
relatively prime ุงู„ุฐูŠ ูŠุจู‚ู‰ ุงู„ external product
14
00:01:19,840 --> 00:01:25,960
ู…ุนู†ุงู‡ is a cyclic group ู…ุจุงุดุฑุฉ ูˆุงู„ุนูƒุณ ู„ูˆ ูƒุงู†ุช
15
00:01:25,960 --> 00:01:28,860
cyclic groups ูŠุจู‚ู‰ ุงู„ two orders are relatively
16
00:01:28,860 --> 00:01:35,620
prime ู‡ุฐุง ู…ุง ู†ุฑูŠุฏ ุฃู† ู†ุซุจุชู‡ ุงู„ุขู† ูŠุจู‚ู‰ ู„ุฐู„ูƒ ู†ุซุจุชู‡
17
00:01:35,620 --> 00:01:41,040
ุงูุชุฑุถ ุฃู† ุงู„ H ู„ู‡ุง order ู…ุนูŠู† ูˆ ุงู„ G ูƒุฐู„ูƒ ู„ู‡ุง order
18
00:01:41,040 --> 00:01:47,800
ู…ุนูŠู† ูˆู†ุดูˆู ูƒูŠู ุจุฏู†ุง ู†ุนู…ู„ู‡ ูŠุจู‚ู‰ let ุงู„ order ู„ู„ G
19
00:01:47,800 --> 00:01:55,680
ูŠูุณุงูˆูŠ ุงู„ M ูˆ ุงู„ order ู„ู„ H ูŠูุณุงูˆูŠ ุงู„ N
20
00:01:55,680 --> 00:02:00,200
then
21
00:02:00,200 --> 00:02:11,180
ู„ูˆ ุฃุฑุฏู†ุง ุฃู† ู†ุฌูŠุจ ุงู„ order ู„ู„ G with H ูŠุจู‚ู‰ then ุงู„ุฃุฑุฏุฑ
22
00:02:11,180 --> 00:02:16,380
ู„ู„ู€ G External Direct Product ู…ุน H ู‡ูƒุฐุง ูŠูุณุงูˆูŠ
23
00:02:16,380 --> 00:02:20,040
ู‡ุฐุง ูŠุง ุดุจุงุจ ู…ูƒุชูˆุจ ู…ุนูƒู… ู…ู† ุงู„ู…ุฑุฉ ุงู„ุชูŠ ูุงุชุช ุงู„ุฃุฑุฏุฑ
24
00:02:20,040 --> 00:02:26,400
ู„ู„ุฃูˆู„ู‰ ููŠ ุงู„ุฃุฑุฏุฑ ู„ู„ุซุงู†ูŠุฉ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠูุณุงูˆูŠ ุงู„ M
25
00:02:26,400 --> 00:02:33,020
ููŠ N ู‡ุฐู‡ ุงู„ู…ุนู„ูˆู…ุฉ ูˆุถุนุชู‡ุง ู‚ุจู„ ุงู„ุจุฏุก ูˆุงู„ุขู† ุฃุฑูŠุฏ ุฃู† ุฃุจุฏุฃ
26
00:02:33,020 --> 00:02:38,360
ู„ู…ุงุฐุง ูˆุถุนุชู‡ุงุŸ ู„ุฃู† ูƒู„ ุนู…ู„ ุจุงู„ุญุจ ู„ู‡ ุฒู…ุงู†ู‡ ุงู„ุขู† ู†ุฑูŠุฏ
27
00:02:38,360 --> 00:02:48,400
ุฃู† ู†ู‚ูˆู„ Assume that ุงู„ู€G external product ู…ุน ุงู„ู€H is
28
00:02:48,400 --> 00:02:54,540
cyclic ู…ุงุฐุง ุฃุฑูŠุฏ ุฃู† ุฃุซุจุชุŸ ุฃู† ุงู„ order ุงู„ุชูŠ ุฌูŠ ูˆ ุงู„
29
00:02:54,540 --> 00:02:58,560
order ุงู„ุชูŠ ุงุชุด ุงุซู†ุงู† are relatively prime ูŠุนู†ูŠ
30
00:02:58,560 --> 00:03:01,520
ุฃุฑูŠุฏ ุฃู† ุฃุซุจุช ุฃู† ุงู„ Euclidean common divisor ู…ุง ุจูŠู†
31
00:03:01,520 --> 00:03:05,920
ุงู„ุงุซู†ูŠู† ุณูŠูƒูˆู† ูƒู…ุŸ ุณูŠูƒูˆู† ูˆุงุญุฏุŒ ุตุญูŠุญุŸ ุทูŠุจ ุงูุชุฑุถู†ุง ู‡ุฐู‡
32
00:03:05,920 --> 00:03:10,040
Cyclic ู…ุฏุงู… ุงู„ู€ Cyclic ูŠุจู‚ู‰ ู„ู‡ุง generator ุตุญ ูˆู„ุง
33
00:03:10,040 --> 00:03:14,600
ู„ุงุŸ ูŠุจู‚ู‰ Cyclic assume
34
00:03:15,770 --> 00:03:25,370
ุงูุชุฑุถ ูƒุฐู„ูƒ ุฃู† ุงู„ู€ G ูˆุงู„ู€ H is a generator is a
35
00:03:25,370 --> 00:03:33,870
generator for ู…ุง ู‡ูˆ external product ู„ู„ู€ H ู…ุน G
36
00:03:34,700 --> 00:03:38,460
ู…ุง ุฏุงู… ู‡ุฐุง generator ูŠุจู‚ู‰ ุงู„ order ุงู„ุฐูŠ ูŠูุณุงูˆูŠ
37
00:03:38,460 --> 00:03:43,860
ู…ู† ุฃูŠู† ุงู„ order ู„ู„ G modulo ู„ู„ G external direct
38
00:03:43,860 --> 00:03:50,920
product ู…ุน H ู‡ุฐุง ู…ุนู†ุงู‡ ุฃู† ุงู„ order ู„ู„ G ูˆุงู„ H ูŠูุณุงูˆูŠ
39
00:03:50,920 --> 00:03:56,600
ูŠูุณุงูˆูŠ ุงู„ order ู„ู„ G external direct product ู…ุน ู…ู†ุŸ
40
00:03:56,600 --> 00:04:05,990
ู…ุน ุงู„ H ู‡ุฐุง ูŠูุณุงูˆูŠ ุทูŠุจ ุงู„ order ู„ู„ G ูˆุงู„ู€ H ุฃุฑูŠุฏ
41
00:04:05,990 --> 00:04:11,410
ุฃู† ูŠูุณุงูˆูŠ ุงู„ least common multiple ู„ู„ order ุชุจุน ุงู„ G
42
00:04:11,410 --> 00:04:18,870
ูˆุงู„ order ุชุจุน ุงู„ H ูŠุจู‚ู‰
43
00:04:18,870 --> 00:04:23,050
ุงู„ order ู„ู„ G ูˆ ุงู„ order ุชุจุน ุงู„ H ุจุงู„ุดูƒู„ ุงู„ุฐูŠ ุนู†ุฏู†ุง
44
00:04:23,050 --> 00:04:28,730
ู‡ุฐุง ุงู„ุฐูŠ ู‡ูˆ ุฃุฑูŠุฏ ุฃู† ูŠูุณุงูˆูŠ ุงู„ order ู„ู‡ุฐู‡ ูƒู… ุงู„ู„ูŠ ู… ููŠ
45
00:04:28,730 --> 00:04:34,700
ู†ูŠ ูŠุจู‚ู‰ ุฃู†ุง ุฃู‚ูˆู„ ุงู„ order ู„ู„ element ู‡ุฐุง ูŠูุณุงูˆูŠ ุงู„
46
00:04:34,700 --> 00:04:38,300
order ู„ู„ element ู‡ุฐู‡ ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุงู„ order ู„ู„
47
00:04:38,300 --> 00:04:42,520
element g ูˆ h ูŠูุณุงูˆูŠ ุงู„ least common multiple ู…ุง
48
00:04:42,520 --> 00:04:46,360
ุจูŠู† ุงู„ two orders ุทุจู‚ุง ู„ู„ู†ุธุฑูŠุฉ ุงู„ุณุงุจู‚ุฉ ุงู„ุชูŠ
49
00:04:46,360 --> 00:04:51,340
ุจุฑู‡ู†ู†ุงู‡ุง ุทูŠุจ ู‡ุฐุง ุงู„ order ู‡ูˆ ุนุจุงุฑุฉ ุนู† ู…ู†ุŸ ุนู† m ููŠ
50
00:04:51,340 --> 00:04:57,020
n ุฎู„ูŠ ู‡ุฐู‡ ุงู„ู…ุนู„ูˆู…ุฉ ููŠ ุฐู‡ู†ูƒ ูˆุณู†ุนูˆุฏ ุฅู„ูŠู‡ุง ุจุนุฏ ู‚ู„ูŠู„
51
00:04:57,020 --> 00:05:05,640
ุทูŠุจ ุงู„ุขู† ุงู„ order ู„ู„ู€ G ุงู„ order ู„ู„ู€ G ูŠู‚ุณู… ุงู„
52
00:05:05,640 --> 00:05:11,840
order ู„ู„ู€ G ุงู„ูƒุจูŠุฑุฉ ุตุญ ูˆู„ุง ู„ุง ูŠุจู‚ู‰ divide ุงู„ order
53
00:05:11,840 --> 00:05:19,250
ู„ู„ู€ G ุงู„ุฐูŠ ูŠูุณุงูˆูŠ ูƒู… M ูŠุนู†ูŠ ุงู„ order ุงู„ุฐูŠ
54
00:05:19,250 --> 00:05:25,670
ุฌุงุก ูŠูุณุงูˆูŠ ูŠู‚ุณู… ู…ู† ุงู„ M ูˆููŠ ู†ูุณ ุงู„ูˆู‚ุช ุงู„ order ู„ ุงู„ H
55
00:05:25,670 --> 00:05:33,390
ูŠูุณุงูˆูŠ ูŠู‚ุณู… ุงู„ order ู„ ู…ู† ู„ ุงู„ H ุงู„ุฐูŠ ู‡ูˆ
56
00:05:33,390 --> 00:05:38,870
ูŠูุณุงูˆูŠ ุงู„ N ุฅุฐุง
57
00:05:38,870 --> 00:05:44,710
ู…ุง ู‡ูŠ ุนู„ุงู‚ุฉ least common multiple ู„ู„ two orders ู…ุน
58
00:05:44,710 --> 00:05:45,970
M ูˆ N
59
00:05:48,440 --> 00:05:52,340
ุงู„ least common multiple ู„ู„ order ู…ุน ุงู„ least common multiple ู„ู„ M
60
00:05:52,340 --> 00:05:55,360
ูˆ N ู…ู† ู‡ูˆ ุงู„ุฃุตุบุฑ ูˆู…ู† ู‡ูˆ ุงู„ุฃูƒุจุฑุŸ ู„ู„ least common multiple
61
00:05:55,360 --> 00:06:01,800
ู„ู…ู†ุŸ ู„ู„ H ูˆ G 100% ุฃุตุบุฑ ู…ู† ู…ู†ุŸ ู…ู† ุงู„ least
62
00:06:01,800 --> 00:06:06,840
common multiple ู„ู„ M ูˆ N ุชู…ุงู…ุŸ ูŠุจู‚ู‰ ู‡ุฐุง ูŠุทูŠุญ
63
00:06:06,840 --> 00:06:12,840
ู„ูƒู…ุŸ ุฃู† ุงู„ least common multiple ู„ู„ order ุชุจุน ุงู„
64
00:06:12,840 --> 00:06:24,040
G ูˆุงู„ order ุชุจุน ุงู„ H ู‡ุฐุง ูƒู„ู‡ ู…ุง ู„ู‡ ุฃู‚ู„ ู…ู† ุฃูˆ ูŠูุณุงูˆูŠ
65
00:06:24,040 --> 00:06:32,930
ุงู„ least common multiple ู„ู„ M ูˆ N ุชู…ุงู…ุŸ ุทูŠุจ ุงู„ least
66
00:06:32,930 --> 00:06:40,450
common multiple ู„ู‡ุฐุง ุงู„ุฐูŠ ู‡ูˆ ูƒู… M ููŠ N ูŠุจู‚ู‰ ุจู†ุงุก
67
00:06:40,450 --> 00:06:47,950
ุนู„ูŠู‡ So ุงู„ M ููŠ N ุฃู‚ู„ ู…ู† ุฃูˆ ูŠูุณุงูˆูŠ ุงู„ least common
68
00:06:47,950 --> 00:06:56,450
multiple ู„ู…ู†ุŸ ู„ู„ M ูˆ N ุงุนุชุจุฑ ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ุฑู‚ู… Star
69
00:06:58,800 --> 00:07:06,940
ุงู„ุณุคุงู„ ู‡ูˆ ู†ุญู† ู„ู… ู†ุฌูŠุจ ุงู„ M ูˆ ุงู„ N ุฃู‚ู„ ู…ู† ุงู„
70
00:07:06,940 --> 00:07:12,720
least common multiple ู„ู…ู†ุŸ ู„ู„ M ูˆ N ุทูŠุจ in general
71
00:07:12,720 --> 00:07:24,720
but ูˆ ู„ูƒู† we know that ุฃู† ุงู„ least common multiple
72
00:07:24,720 --> 00:07:26,840
ู„ู„ M ูˆ N
73
00:07:30,950 --> 00:07:35,450
100% ุตุญูŠุญ ูˆู„ุง ู„ุฃุŸ ุฏุงุฆู…ู‹ุง ูˆุฃุจุฏู‹ุง ุงู„ least common ..
74
00:07:35,450 --> 00:07:39,430
ุฃู‚ุตู‰ ุญุงุฌุฉ ุญุตู„ ุถุฑุจู‡ู… ูˆุฏุงุฆู…ู‹ุง ูˆุฃุจุฏู‹ุง ูŠูƒูˆู† ุฃู‚ู„ ู…ู†
75
00:07:39,430 --> 00:07:44,870
ู‡ูƒุฐุง ูŠุนู†ูŠ ุงู„ู…ุถุงุนู ุงู„ู…ุดุชุฑูƒ ุฃุญูŠุงู†ู‹ุง ูŠูƒูˆู† ูƒุจูŠุฑู‹ุง ููŠ ุฃู‚ู„
76
00:07:44,870 --> 00:07:51,630
ู…ุง ูŠู…ูƒู† ูŠุจู‚ู‰ ู‡ุฐุง ุฃู‚ู„ ู…ู† ู…ู†ุŸ ู…ู† M ููŠ N ูˆู‡ุฐู‡
77
00:07:51,630 --> 00:07:56,550
ุงู„ุนู„ุงู‚ุฉ ุงู„ุซุงู†ูŠุฉ ู‡ูŠ ุฑู‚ู… Star ุฅุฐุง ู…ู† ุงู„ุงุซู†ูŠู† ู…ุน ุจุนุถ
78
00:07:56,550 --> 00:08:02,130
ุฃู‚ูˆู„ ุฅู† ุงู„ุงุซู†ุงู† ู‡ุฐุงู† ู…ุง ู„ู‡ู…ุง ุฑูŠูƒู… ูŠุจู‚ู‰ ู‡ู†ุง ุณูˆูŠ ุงู„
79
00:08:02,130 --> 00:08:09,150
least common multiple ู„ู„ M ูˆ N ูŠูุณุงูˆูŠ ุงู„ M ููŠ N
80
00:08:11,690 --> 00:08:17,290
ุทูŠุจ ู†ุฑุฌุน ุจุงู„ุฐุงูƒุฑุฉ ุงุตุจุฑ ุนู„ูŠู†ุง ู‚ู„ูŠู„ู‹ุง ู†ุฑุฌุน ุจุงู„ุฐุงูƒุฑุฉ
81
00:08:17,290 --> 00:08:22,650
ู„ู„ุฎู„ู ุฅู„ู‰ ุงู„ first chapter ุฅุฐุง ุชุฐูƒุฑุชู… ู‡ู†ุง ู‚ู„ู†ุง ู„
82
00:08:22,650 --> 00:08:26,290
grace is common divisor between ุนุฏุฏูŠู† ููŠ least
83
00:08:26,290 --> 00:08:29,990
common multiple ุงู„ุนุฏูŠู† ูŠูุนุทูŠู†ุง ู…ู†ุŸ ู†ูุณ ุงู„ุนุฏุฏูŠู†
84
00:08:29,990 --> 00:08:40,950
ูŠุจู‚ู‰ ู‡ู†ุง ุขุชูŠ ุฃู‚ูˆู„ ู„ู‡ but ูˆ ู„ูƒู† that ู„ุง ู†ุนุฑู ุฃู†
85
00:08:40,950 --> 00:08:47,530
ุงู„ greatest common divisor ู„ู„ M ูˆุงู„ N ู…ุถุฑูˆุจ ููŠ
86
00:08:47,530 --> 00:08:55,510
least common multiple ู„ู„ M ูˆ N ูŠูุณุงูˆูŠ M ููŠ N ู‡ุฐุง
87
00:08:55,510 --> 00:09:01,790
ูŠูุนุทูŠู†ุง ุงู„ุขู† ุงู„ least common multiple ู‡ูˆ M ููŠ N
88
00:09:01,790 --> 00:09:07,570
ูŠุจู‚ู‰ ู‡ุฐุง ูŠูุนุทูŠูƒ ุฃู† ุงู„ greatest common divisor
89
00:09:07,570 --> 00:09:13,070
ู„ู„ M ูˆ N ููŠ ุงู„ least common multiple ุงู„ุฐูŠ ู‡ูˆ M ููŠ
90
00:09:13,070 --> 00:09:20,040
N ูŠูุณุงูˆูŠ ุงู„ M ููŠ N ูŠุจู‚ู‰ ู‡ุฐุง ูŠูุนุทูŠู†ุง common divisor
91
00:09:20,040 --> 00:09:25,980
ู„ู„ M ูˆ N ูŠุจู‚ู‰ ูƒู…ูŠุฉ ุทูŠุจ ุงู„ M ุฃู„ูŠุณ ู‡ูˆ ุงู„ order ุชุจุน ุงู„ G ูˆ
92
00:09:25,980 --> 00:09:32,260
ุงู„ N ู‡ูˆ ุงู„ order ุชุจุน ุงู„ H ูŠุจู‚ู‰ ู‡ุฐุง ู…ุนู†ุงู‡ ุฃู† ุงู„ M
93
00:09:32,260 --> 00:09:44,640
ูˆ ุงู„ N are relatively prime ู‡ุฐุง ูŠูุนุทูŠู†ุง ู‡ุฐุง ุฃุฑูŠุฏ
94
00:09:44,640 --> 00:09:51,120
ุฃู† ูŠูุนุทูŠู†ุง ุฃู† ุงู„ order ู„ capital G ู„ู„ group ูƒู„ู‡ุง ูˆ
95
00:09:51,120 --> 00:09:57,700
ุงู„ order ู„ ุงู„ H are relatively prime
96
00:10:03,000 --> 00:10:07,320
ู†ุญู† ุงู†ุชู‡ูŠู†ุง ู…ู† ุงู„ุงุชุฌุงู‡ ุงู„ุฃูˆู„ ููŠ ุงู„ู†ุธุฑูŠุฉุŒ ูˆู‡ูˆ ุฃู†ู‡ ู„ูˆ
97
00:10:07,320 --> 00:10:14,100
ูƒุงู† ุงู„ู€ G external direct product ู…ุน H is cyclic ูŠุจู‚ู‰
98
00:10:14,100 --> 00:10:17,080
ุงู„ุฃูˆุฑุฏุฑ ู„ู€ G ูˆ ุงู„ุฃูˆุฑุฏุฑ ู„ู€ H are relatively
99
00:10:17,080 --> 00:10:22,010
primeุŒ ู„ุฃู†ู†ุง ุจุฏุฃู†ุง ู†ู…ุดูŠ ุงู„ุนู…ู„ูŠุฉ ุงู„ุนูƒุณูŠุฉ ุฃุซุจุช ูˆุงูุชุฑุถ
100
00:10:22,010 --> 00:10:27,250
ุฃู† ุงู„ุงุซู†ูŠู† ู‡ุฐุงู† are relatively prime ุฐุงุชุณ ูŠุนู†ูŠ ุฅูŠุด
101
00:10:27,250 --> 00:10:32,030
ุฐุงุชุณุŸ ู„ุฌุฑูŠุณ ุงู„ common divisor ู„ู„ M ูˆ N ูŠูุณุงูˆูŠ
102
00:10:32,030 --> 00:10:37,350
ู‡ูƒุฐุง ุฅูŠุดุŸ ูŠูุณุงูˆูŠ ูˆุงุญุฏ ุตุญูŠุญุŸ ุทูŠุจ ููŠ ุญุงุฌุฉ ู…ูˆุฌูˆุฏุฉ ููŠ
103
00:10:37,350 --> 00:10:42,690
ุงู„ู†ุธุฑูŠุฉ ูˆุญุชู‰ ุงู„ุขู† ู„ู… ู†ุณุชุฎุฏู…ู‡ุง ุฅุดูŠู‹ุง .. ุงู„ุชูŠ ูƒู„ ูˆุงุญุฏุฉ
104
00:10:42,690 --> 00:10:47,350
ู…ู† ุงู„ two groups ุงู„ุงุซู†ุงู† ู‡ุฐุงู† cyclic ู…ุฏุงู… ูƒู„ ูˆุงุญุฏุฉ
105
00:10:47,350 --> 00:10:56,270
cyclic ุฅุฐุง ูƒู„ ูˆุงุญุฏุฉ ููŠู‡ุง generator ูŠุจู‚ู‰ since ุงู„ g
106
00:10:56,270 --> 00:10:59,350
since
107
00:10:59,350 --> 00:11:07,070
ุงู„ g is cyclic we have since ุงู„ .. ุฎู„ูŠ ุงู„ g ุจุงุซู†ูŠู†
108
00:11:07,070 --> 00:11:15,950
ู…ุฑุฉ ูˆุงุญุฏุฉ since ุงู„ g ูˆ ุงู„ h ูˆ ุงู„ h are cyclic
109
00:11:15,950 --> 00:11:24,510
we have ุฃู† ุงู„ู€ G ู‡ุฐู‡ ููŠู‡ุง generator ูˆู„ูŠูƒู† small
110
00:11:24,510 --> 00:11:33,050
g ูˆ ุงู„ H ููŠู‡ุง generator ูˆู„ูŠูƒู† main
111
00:11:33,050 --> 00:11:38,110
ูˆู„ูŠูƒู† H ุทูŠุจ
112
00:11:38,110 --> 00:11:46,110
ุฅุฐุง ูƒู… ุงู„ order ู„ G small M ูˆ ุงู„ order ู„ H M
113
00:11:46,110 --> 00:11:52,630
ูŠูƒูˆู† ูŠุณุงูˆูŠ ูŠุจู‚ู‰ ู‡ุฐุง ูŠูุนุทูŠู†ุง ุฃู† ุงู„ order ู„ู„ู€ G ูŠูุณุงูˆูŠ
114
00:11:52,630 --> 00:11:58,430
ูŠูุณุงูˆูŠ ุงู„ M ูˆ ุงู„ order ู„ H ูŠูุณุงูˆูŠ ุงู„ main ูŠูุณุงูˆูŠ
115
00:11:58,430 --> 00:12:05,390
ูŠูุณุงูˆูŠ ุงู„ N ุทูŠุจ ูƒูˆูŠุณ ูŠุจู‚ู‰ ุฃู†ุง ุฃุฑูŠุฏ ุฃู† ุขุชูŠ ุฅู„ู‰ ุงู„ order ุชุจุน
116
00:12:05,390 --> 00:12:11,630
ุงู„ G ูˆ ุงู„ H ู…ุฑุฉ ูˆุงุญุฏุฉ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠูุณุงูˆูŠ
117
00:12:11,630 --> 00:12:16,950
least common multiple ู„ู„ order ุชุจุน ุงู„ G ูˆ ุงู„
118
00:12:16,950 --> 00:12:23,120
order ุชุจุน ุงู„ H ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠูุณุงูˆูŠ ุงู„ least
119
00:12:23,120 --> 00:12:30,180
common multiple ุงู„ least common multiple ู„ู…ู†ุŸ ู„ู„
120
00:12:30,180 --> 00:12:39,940
M ูˆ ู„ู„ N ุฃู†ุง ุฃุฏุนูŠ ุฃู† M ููŠ N ุทูŠุจ ู„ู…ุงุฐุงุŸ ู„ุฃู† ุงู„ common
121
00:12:39,940 --> 00:12:47,400
divisor ูŠูุณุงูˆูŠ 1 ูŠุจู‚ู‰ ู‡ุฐุง ู„ู…ุงุฐุงุŸ ู„ุฃู† ุฃู† ุงู„ common
122
00:12:47,400 --> 00:12:54,480
divisor ู„ู€ M ูˆ ู„ู€ N ูŠุจุฏูˆ ูŠูุณุงูˆูŠ ูˆุงุญุฏ ุตุญูŠุญุŸ ุทูŠุจ ู‡ุฐุง
123
00:12:54,480 --> 00:13:00,120
ุงู„ู€ M ููŠ ุงู„ู€ N ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุงู„ order ู„ู…ู†ุŸ ุงู„ order
124
00:13:00,120 --> 00:13:03,970
ู„ู„ group ุงู„ุฐูŠ ู‡ูˆ ู†ุณู…ูŠู‡ ู‡ุฐุง ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุงู„ order
125
00:13:03,970 --> 00:13:09,850
ู„ู„ุฌุฑูˆุจ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠูุณุงูˆูŠ ุงู„ order ู„ู„ู€ G
126
00:13:09,850 --> 00:13:15,530
external direct product ู„ู…ู†ุŸ ู„ู„ู€ H ูŠุจู‚ู‰ ุงู„ู€ gate
127
00:13:15,530 --> 00:13:20,630
element ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ external direct product ุงู„ู€
128
00:13:20,630 --> 00:13:26,150
order ู„ู‡ ูŠุณุงูˆูŠ ุงู„ู€ order ู„ู…ู†ุŸ ู„ู„ู€ group ูŠุจู‚ู‰ ุงู„ู€
129
00:13:26,150 --> 00:13:31,250
group ู‡ุฐุง ู…ุง ูŠุตูŠุฑุŸ Cyclic ูˆู‡ุฐุง generator ูŠุจู‚ู‰ ู‡ู†ุง
130
00:13:31,250 --> 00:13:43,780
ุณุงุงู„ู€ G ูˆุงู„ู€ H is a generator for ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ G
131
00:13:43,780 --> 00:13:50,320
external direct product ู…ุน ู…ูŠู†ุŸ ู…ุน ุงู„ู€ H ู‡ุฐุง ุจุฏู‡ ูŠุนุทูŠู„ูƒ
132
00:13:50,320 --> 00:13:57,620
ุงู†ู‡ G external direct product ู…ุน H is cyclic ูˆู‡ูˆ
133
00:13:57,620 --> 00:14:05,720
ุงู„ู…ุทู„ูˆุจ ุฅุฐุง ู‚ู„ุช ู„ูƒ ุฃุซุจุช
134
00:14:05,720 --> 00:14:11,100
ุงู„ู€external ู‡ุฐุง direct product is cyclic ุชู…ุงู…ุŸ
135
00:14:11,100 --> 00:14:15,520
ุจุนุฏูŠู† ุจู‚ูˆู„ู‡ ุฅุฐุง ูˆุงู„ู„ู‡ ุงู„ุชู†ุชูŠู† ูƒู„ ูˆุงุญุฏุฉ ููŠู‡ู… cyclic
136
00:14:15,520 --> 00:14:18,940
ูˆุงู„ู€ order ุชุจุน ูƒู„ ูˆุงุญุฏุฉ ููŠู‡ู… ู…ุน ุงู„ุซุงู†ูŠ ุงุซู†ูŠู†
137
00:14:18,940 --> 00:14:22,570
relatively prime or than automatic ุนู„ู‰ ุทูˆู„ ุงู„ุฎุทุฃ
138
00:14:22,570 --> 00:14:27,210
ู‡ุฐู‡ ุงู„ู†ุธุฑูŠุฉ ุงู„ู€ external direct product is cyclic
139
00:14:27,210 --> 00:14:31,670
group ูŠุจู‚ู‰ ุงู„ุดุฑุท ุงู„ู€ external direct product ุฃู†
140
00:14:31,670 --> 00:14:36,270
ูŠูƒูˆู† cyclic group ุฃู…ุฑูŠู† ุงู„ุฃู…ุฑ ุงู„ุฃูˆู„ ูƒู„ ูˆุงุญุฏุฉ ููŠู‡ู…
141
00:14:36,270 --> 00:14:41,190
ุชุจู‚ู‰ cyclic ุงู„ุฃู…ุฑ ุงู„ุซุงู†ูŠ ุงู„ู€ order ู„ู„ู€ group ุงู„ุฃูˆู„ู‰
142
00:14:41,190 --> 00:14:43,850
ูˆุงู„ู€ order ู„ู„ู€ group ุงู„ุซุงู†ูŠุฉ ูŠูƒูˆู†ูˆุง ุงุซู†ูŠู† ู…ุน ุจุนุถู‡ู…
143
00:15:00,200 --> 00:15:05,820
ุงู„ู†ุธุฑูŠุฉ ู‡ุฐู‡ ุฃุซุจุชู†ุงู‡ุง ู„ู…ูŠู†ุŸ ู„ู€ two group ุทุจ ู„ูˆ ุตุงุฑูˆุง
144
00:15:05,820 --> 00:15:11,810
ุซู„ุงุซุฉ ุซู„ุงุซุฉ groups ูˆุงู„ู„ู‡ ุฃุฑุจุนุฉ ูˆุงู„ู„ู‡ ุฎู…ุณุฉ ูˆุงู„ู„ู‡ in
145
00:15:11,810 --> 00:15:16,550
ู…ู† ุงู„ู€ groups ูุงู„ู†ุธุฑูŠุฉ ุตุญูŠุญุฉ ูˆู‡ุฐุง ุงู„ู…ูˆุถูˆุน ู„
146
00:15:16,550 --> 00:15:27,390
corollary ุฑู‚ู… ูˆุงุญุฏ ูŠุจู‚ู‰ corollary ุฑู‚ู… ูˆุงุญุฏ ุจุชู‚ูˆู„ ุฃู†
147
00:15:27,390 --> 00:15:34,230
external direct product ุฃู† external direct
148
00:15:35,820 --> 00:15:44,680
a product external direct product g one external
149
00:15:44,680 --> 00:15:50,520
direct product ู…ุน g two external direct product ู…ุน
150
00:15:50,520 --> 00:16:03,000
ู…ูŠู†ุŸ ู…ุน g n of a finite of a finite number
151
00:16:04,660 --> 00:16:20,060
finite number of finite cyclic groups is
152
00:16:20,060 --> 00:16:33,660
cyclic if and only if ุงู„ู€ order ู„ู„ู€ G I ูˆ ุงู„ู€
153
00:16:33,660 --> 00:16:46,100
order ู„ู„ู€ G J are relatively prime are
154
00:16:46,100 --> 00:16:54,380
relatively prime when ุงู„ู€ I ู„ุง ุชุณุงูˆูŠ ู…ูŠู†ุŸ ู„ุง
155
00:16:54,380 --> 00:17:02,540
ุชุณุงูˆูŠ ุงู„ู€ G ูƒู…ุงู† corollary ุซุงู†ูŠุฉ ุจุชู‚ูˆู„
156
00:17:02,540 --> 00:17:10,240
let ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ M ุนู…ู„ู†ุงู‡ุง ุชุญู„ูŠู„ ุตุงุฑุช N ูˆุงุญุฏ ููŠ N
157
00:17:10,240 --> 00:17:18,760
ุงุซู†ูŠู† ููŠ N K then ุงู„ู€
158
00:17:18,760 --> 00:17:31,150
ZM ุงู„ู€ ZM isomorphic ู„ู…ู†ุŸ ู„ู€ z n one external product
159
00:17:31,150 --> 00:17:43,350
ู…ุน z n two external product ู…ุน ู…ู†ุŸ ู…ุน z n k if and
160
00:17:43,350 --> 00:17:53,930
only if if and only if ุงู„ู€ n i ูˆ ุงู„ู€ n j are
161
00:17:53,930 --> 00:18:06,240
relatively prime are relatively prime when
162
00:18:06,240 --> 00:18:11,100
I ู„ุง ุชุณุงูˆูŠ ุงู„ู€ J
163
00:18:38,860 --> 00:18:44,120
ุงู„ู€ corollary ุงู„ุฃูˆู„ู‰ ู‡ูŠ ุชุนู…ูŠู… ู„ู„ู†ุธุฑูŠุฉ ุงู„ู€ corollary ุงู„ุซุงู†ูŠุฉ
164
00:18:44,120 --> 00:18:48,760
ูƒุฃู†ู‡ ุชุทุจูŠู‚ ู…ุจุงุดุฑ ุนู„ู‰ ุงู„ู†ุธุฑูŠุฉ ุชุนุงู„ ู†ุดูˆู
165
00:18:48,760 --> 00:18:53,640
ุงู„ุชุนู…ูŠู… ููŠ ุงู„ุฃูˆู„ ูˆู…ู† ุซู… ุจู†ุฑูˆุญ ู„ู„ู€ corollary ุงู„ุซุงู†ูŠุฉ
166
00:18:53,640 --> 00:18:59,380
ุงู„ู„ูŠ ู‡ูŠ ุฑู‚ู… ุงุซู†ูŠู† ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ู€ corollary ุงู„ุฑู‚ู… ุงุซู†ูŠู†
167
00:19:00,650 --> 00:19:03,590
ุชุนุงู„ ุงูƒุฑุฑ ู„ูŠ ุฑู‚ู… ูˆุงุญุฏ ุจูŠู‚ูˆู„ ุฃู† external direct
168
00:19:03,590 --> 00:19:08,770
product ู„ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ู€ group of a finite number
169
00:19:08,770 --> 00:19:13,330
ูŠุจู‚ู‰ ุนุฏุฏ ู…ุญุฏูˆุฏ ู…ู† ุงู„ู€ groups ูˆูƒู„ group has finite
170
00:19:13,330 --> 00:19:18,490
order ูƒู„ ูˆุงุญุฏุฉ ุงู„ู„ูŠ ุนุฏุฏ ุชุจุนู‡ุง ู…ุญุฏูˆุฏ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ู€
171
00:19:18,490 --> 00:19:21,710
external direct product ุจูŠูƒูˆู† cyclic if and only
172
00:19:21,710 --> 00:19:26,230
if ุงู„ู€ order ู„ู€ ุฌูŠ ุงูŠ ูˆ ุงู„ู€ order ู„ู€ ุฌูŠ ุฌูŠ are
173
00:19:26,230 --> 00:19:31,510
relatively prime ูˆ ุฃู† ุงู„ู€ I ู„ุง ุชุณุงูˆูŠ ุงู„ู€ ุฌูŠู‡ ูŠุนู†ูŠ ู…ุง ุจุฏูŠุด
174
00:19:31,510 --> 00:19:36,650
ุฃู‚ูˆู„ ู„ู€ group ู†ูุณู‡ ู‡ูŠ ุงู„ู…ู‚ุตูˆุฏ I ู„ุง ุชุณุงูˆูŠ ุงู„ู€ ุฌูŠู‡ ูŠุนู†ูŠ
175
00:19:36,650 --> 00:19:40,570
ู‡ุงุฏ ุงู„ู€ group ุชุฎุชู„ู ุชู…ุงู…ุง ู…ุน ู…ู†ุŸ ู…ุน ู‡ุงุฏ ุงู„ู€ group ุทุจ ุงุญู†ุง
176
00:19:40,570 --> 00:19:47,290
ุนู†ุฏู†ุง ูƒู… group ุฃูŠ ูˆุงุญุฏุฉ ู…ุน ุงู„ุซุงู†ูŠุฉ ุจูŠูƒูˆู† relatively
177
00:19:47,290 --> 00:19:50,270
prime ูŠุนู†ูŠ ุงู„ุฃูˆู„ู‰ ู…ุน ุงู„ุซุงู†ูŠุฉ ุงู„ุฃูˆู„ู‰ ู…ุน ุงู„ุซุงู„ุซุฉ
178
00:19:50,270 --> 00:19:54,350
ุงู„ุฃูˆู„ู‰ ู…ุน ุงู„ุนุงุดุฑุฉ ุงู„ุซุงู†ูŠุฉ ู…ุน ุงู„ุซุงู„ุซุฉ ุงู„ุซุงู†ูŠุฉ ู…ุน ...
179
00:19:54,350 --> 00:19:58,950
ูƒู„ู‡ are relatively prime ุชู…ุงู… ุงู„ู€ order ุชุจุน ูƒู„
180
00:19:58,950 --> 00:20:01,550
ูˆุงุญุฏุฉ ู…ู†ู‡ู… ู…ุน ุงู„ู€ order ู…ุน ุงู„ุซุงู†ูŠุฉ ุจูŠูƒูˆู† are
181
00:20:01,550 --> 00:20:05,420
relatively prime ูˆู‡ูˆ ุชุนู…ูŠู… ู„ู„ู†ุธุฑูŠุฉ ุงู„ู†ุธุฑูŠุฉ ูƒุงู†ุช
182
00:20:05,420 --> 00:20:08,620
ุนู„ู‰ two groups ุงู„ู„ูŠ ู‡ูŠ G ูˆ H ุนู…ู…ู†ุงู‡ุง
183
00:20:08,620 --> 00:20:11,800
ุฎู„ูŠู†ุงู‡ุง ุซู„ุงุซุฉ ุฎู„ูŠู†ุงู‡ุง ุฃุฑุจุนุฉ ุฎู„ูŠู†ุงู‡ุง ุฎู…ุณุฉ ู…ุด
184
00:20:11,800 --> 00:20:16,900
ู…ุดูƒู„ุฉ ู‚ุฏ ู…ุง ูŠูƒูˆู† ุงู„ุนุฏุฏ ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ู†ุธุฑูŠุฉ ุตุญูŠุญุฉ ุนู„ูŠู‡ู…
185
00:20:16,900 --> 00:20:21,700
ูˆู‡ูŠ ู‡ุฐู‡ ุงู„ู†ุชูŠุฌุฉ ุฑู‚ู… ูˆุงุญุฏ ุฃู…ุง ุงู„ู†ุชูŠุฌุฉ ุฑู‚ู… ุงุซู†ูŠู†
186
00:20:21,700 --> 00:20:27,780
ุจูŠู‚ูˆู„ ู„ูˆ ุนู†ุฏูƒ ุฑู‚ู… M ุญู„ู„ุชู‡ ุฅู„ู‰ ุญุงุตู„ ุถุฑุจ ุฃุนุฏุงุฏ ุฒูŠ
187
00:20:27,780 --> 00:20:33,700
ุฅูŠุด ู…ุซู„ุง ุฒูŠ ุซู„ุงุซูŠู† ุซู„ุงุซูŠู† ุจู‚ุฏุฑ ุฃู‚ูˆู„ ุงุซู†ูŠู† ููŠ ุซู„ุงุซุฉ
188
00:20:33,700 --> 00:20:38,780
ููŠ ุฎู…ุณุฉ ูŠุจู‚ู‰ ู‡ุฐู‡ ุญู„ู„ู†ุงู‡ุง ู„ุญุงุตู„ ุถุฑุจ ุซู„ุงุซุฉ ุฃุนุฏุงุฏ
189
00:20:38,780 --> 00:20:43,480
ูˆุงู„ุซู„ุงุซุฉ ุฃุนุฏุงุฏ ู…ุง ู„ู‡ู…ุŸ Primes ุงุซู†ูŠู† ูˆุงู„ุซู„ุงุซุฉ
190
00:20:43,480 --> 00:20:48,500
ูˆุงู„ุฎู…ุณุฉ are primes ุฅูŠุด ุจู‚ูˆู„ ู‡ู†ุงุŸ ู„ูˆ ุญู„ู„ุช ุงู„ู€ M ู„ุญุงุตู„
191
00:20:48,500 --> 00:20:58,140
ุถุฑุจ ุฃุนุฏุงุฏ ูŠุจู‚ู‰ ZM isomorphic ู„ู€ ZN1, ZN2, ZN3, ZNK,
192
00:20:58,400 --> 00:21:04,080
if and only if ูƒู„ ุนุฏุฏ ู…ู† ู‡ุฐู‡ ุงู„ุฃุนุฏุงุฏ are relatively
193
00:21:04,080 --> 00:21:10,580
prime ู…ุน ุจุนุถู‡ู… ุงู„ุจุนุถ ูŠุนู†ูŠ ู„ูŠุณ ุจุงู„ุถุฑูˆุฑุฉ ุฃู† ูŠูƒูˆู†ูˆุง
194
00:21:10,580 --> 00:21:15,240
primes ูˆุฅู†ู…ุง ูŠูƒูˆู†ูˆุง relatively primes ูŠุนู†ูŠ ู…ู…ูƒู† ุขุฎุฐ
195
00:21:15,240 --> 00:21:21,360
ุงู„ู„ูŠ ู‡ูˆ ุงู„ุนุฏุฏ ุงุซู†ูŠู† ู…ุน ุงู„ุนุฏุฏ ุณุจุนุฉ ู…ู…ูƒู† ุขุฎุฐ ุณุชุฉ ูˆ
196
00:21:21,360 --> 00:21:24,800
ุฎู…ุณุฉ ุณุชุฉ ูˆุฎู…ุณุฉ ุงุซู†ูŠู† relatively primes ุฑุบู… ุฃู†ู‡
197
00:21:24,800 --> 00:21:29,980
ุฎู…ุณุฉ primes ุณุชุฉ ู„ุง ุชู…ุงู… ูŠุจู‚ู‰ ู„ูŠุณ ุจุงู„ุถุฑูˆุฑุฉ ุฃู† ุชูƒูˆู†
198
00:21:29,980 --> 00:21:35,420
ู‡ุฐู‡ ุงู„ุฃุนุฏุงุฏ primes ู…ุซู„ ู…ุง ุญู„ู„ู†ุง ุฅูŠุด ุงู„ุซู„ุงุซูŠู† ูŠุจู‚ู‰
199
00:21:35,420 --> 00:21:40,310
ู…ู…ูƒู† ูŠูƒูˆู† ุฃุฑุจุนุฉ ูˆุนุดุฑูŠู† ุฃุฑุจุนุฉ ูˆุนุดุฑูŠู† ู‡ูˆ ุซู„ุงุซุฉ ููŠ
200
00:21:40,310 --> 00:21:45,110
ุซู…ุงู†ูŠุฉ ูŠุนู†ูŠ ุงุซู†ูŠู† ููŠ ุซู„ุงุซุฉ ููŠ ุฃุฑุจุนุฉ ู…ุธุจูˆุท ูŠุจู‚ู‰ ุงู„ุฃุฑุจุนุฉ
201
00:21:45,110 --> 00:21:47,730
ูˆ ุนุดุฑูŠู† ุงุซู†ูŠู† ููŠ ุซู„ุงุซุฉ ููŠ ุณุชุฉ ููŠ ุฃุฑุจุนุฉ ูˆุฃุฑุจุนุฉ ูˆ
202
00:21:47,730 --> 00:21:53,010
ุนุดุฑูŠู† ุงู„ุขู† ูŠุจู‚ู‰ ู‡ุฐูˆู„ ุงุซู†ูŠู† ููŠ ุซู„ุงุซุฉ ููŠ ุณุชุฉ ุงุซู†ูŠู† ูˆ
203
00:21:53,010 --> 00:21:57,810
ุซู„ุงุซุฉ ู‡ุฐูˆู„ ุงู„ู€ primes ุจุณ ุฅูŠุด ุจูŠุตูŠุฑ ุงุซู†ูŠู† ู…ุน ุงู„ุฃุฑุจุนุฉ
204
00:21:57,810 --> 00:22:01,880
are not relatively prime ูŠุจู‚ู‰ ุจูŠุตูŠุฑ ูƒู„ ุงุจู† ู‡ุฐุง ุตุญูŠุญ
205
00:22:01,880 --> 00:22:06,600
ูˆู„ุง ู…ุด ุตุญูŠุญุŸ ู…ุด ุตุญูŠุญ ู„ุงุฒู… ุชุฃุฎุฐ ุฃูŠ ุฑู‚ู…ูŠู† ู…ู†ู‡ู…
206
00:22:06,600 --> 00:22:10,640
ูˆูŠูƒูˆู†ูˆุง ู…ุน ุจุนุถ ุงุซู†ูŠู† ู…ุน ุจุนุถู‡ู… relatively primes
207
00:22:10,640 --> 00:22:16,220
ูˆู„ูŠุณ ุจุงู„ุถุฑูˆุฑุฉ ุฃู† ูŠูƒูˆู†ูˆุง primes ูŠุจู‚ู‰ ู…ุฑุฉ ุซุงู†ูŠุฉ
208
00:22:16,220 --> 00:22:22,740
ุจู‚ูˆู„ ุญู„ู„ุช ุงู„ู€ M ุฅู„ู‰ ุญุงุตู„ ุถุฑุจ ุฃุนุฏุงุฏ ู…ุง ุฏุงู… ุญู„ู„ุช ูŠุฌูˆุฒ ุฃู†
209
00:22:22,740 --> 00:22:30,040
ุงู„ุฃุตู„ูŠุฉ isomorphic ู„ู…ูŠู†ุŸ ู„ู„ู€ external direct product
210
00:22:30,040 --> 00:22:35,340
ุงู„ู„ูŠ ู‡ู… ูƒู„ู‡ู… ู‡ุฐูˆู„ if and only if ุฃูŠ ุงุซู†ูŠู† ู…ู†ู‡ู…
211
00:22:35,340 --> 00:22:39,640
ุจุฏู‡ู… ูŠูƒูˆู†ูˆุง relatively prime ู…ุน ุจุนุถู‡ู… ุงู„ุจุนุถ ุงู„ุขู†
212
00:22:39,640 --> 00:22:46,020
ู†ุนุทูŠูƒ ุชู…ุซูŠู„ ุนุฏุฏูŠ ุดุบู„ ุนุฏุฏูŠ ูƒูŠู ู‡ุฐุง ุงู„ูƒู„ุงู… example
213
00:22:53,570 --> 00:22:58,310
ู‡ุฐุง ู‡ูˆ ุงู„ุชูˆุถูŠุญ ุงู„ู„ูŠ ู‚ุงู„ ู„ูˆ ุฌุฆุช ู„ู€ z ุฏูŠ ุงุซู†ูŠู†
214
00:22:58,310 --> 00:23:04,670
external like product ู…ุน z ุฏูŠ ุงุซู†ูŠู† external like
215
00:23:04,670 --> 00:23:11,390
product ู…ุน z ุซู„ุงุซุฉ external like product ู…ุน ู…ูŠู†ุŸ
216
00:23:11,390 --> 00:23:14,590
ู…ุน z ุฎู…ุณุฉ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง
217
00:23:17,820 --> 00:23:21,800
ุจุฏูŠ ุฃูƒูˆู† ู…ู† ู‡ุฐู‡ ู…ุฌู…ูˆุนุฉ milligroups ุจูŠูƒูˆู†ูˆุง
218
00:23:21,800 --> 00:23:27,260
isomorphic ู„ู‡ุง ุจุงุฌูŠ ุจู‚ูˆู„ ูˆุงู„ู„ู‡ ูƒูˆูŠุณ ุดุฑุงูŠูƒ ุงู„ุชู†ุชูŠู†
219
00:23:27,260 --> 00:23:31,200
ู‡ุฐูˆู„ are relatively prime ุงุซู†ูŠู† ูˆุงู„ุซู„ุงุซุฉ ูˆู„ุง ู„ุง
220
00:23:31,200 --> 00:23:38,460
ุฅุฐุง ู‡ุฐู‡ isomorphic ู„ู…ูŠู†ุŸ ุฒุฏ ุณุชุฉ ุฒุฏ ุณุชุฉ ู„ุฃู† ุฃู†ุง ู‚ู„ุช ู„ูƒ
221
00:23:38,460 --> 00:23:44,580
M ูˆู‡ุฐุง M ููŠู†ุŸ ุจุณ ุฃุตุบุฑ ุดูˆูŠุฉ ูˆุงุญุฏุฉ ูˆุงุญุฏุฉ ูŠุจู‚ู‰ ู‡ุฐู‡
222
00:23:44,580 --> 00:23:53,600
isomorphic ู„ู…ูŠู†ุŸ ู„ุฒุฏ ุงุซู†ูŠู† ูƒู…ุง ู‡ูŠ ู„ุฒุฏ ุงุซู†ูŠู†
223
00:23:53,600 --> 00:24:00,340
ุงูƒุณุชูŠุฑู†ุง ุงู„ู€ product ู„ุฒุฏ ุณุชุฉ ุงูƒุณุชูŠุฑู†ุง ุงู„ู€ product
224
00:24:00,340 --> 00:24:11,060
ู„ู…ู†ุŸ ู„ุฒุฏ ุฎู…ุณุฉ ู„ูŠุดุŸ since ุงุซู†ูŠู† and ุซู„ุงุซุฉ are
225
00:24:11,430 --> 00:24:21,670
relatively prime ุทูŠุจ ... ุงู„ุขู† ู‡ุฐู‡ ุจุฏูŠ ุฃุฌูŠุจ ูƒู…ุงู†
226
00:24:21,670 --> 00:24:28,630
group ุฃุฎุฑู‰ isomorphic ู„ู‡ุง ูˆู‡ุฐู‡ ูƒู…ุงู† isomorphic ู„ุฒุฏ
227
00:24:28,630 --> 00:24:32,750
ุงุซู†ูŠู† external by product ู‡ุฐูˆู„ ุงุซู†ูŠู† are
228
00:24:32,750 --> 00:24:39,110
relatively prime ูŠุจู‚ู‰ ุฒุฏ ู…ูŠู†ุŸ ุฒุฏ ุซู„ุงุซูŠู† ุญุงุตู„ุฉ ุถุฑุจ
229
00:24:39,110 --> 00:24:49,230
ูŠุจู‚ู‰ ู‡ุฐู‡ ู„ุฒุฏ ุซู„ุงุซูŠู† ูŠุจู‚ู‰ ู„ูŠุดุŸ since ุงู„ุณุชุฉ and
230
00:24:49,230 --> 00:24:53,650
ุงู„ุฎู…ุณุฉ are relatively
231
00:24:57,660 --> 00:25:04,940
ุงู„ุณุคุงู„ ู‡ูˆ ู‡ู„ ู‡ุฐุง isomorphic ู„ุฒุฏ ุณุชูŠู†ุŸ ู„ุง ู„ูŠุดุŸ ู„ุฃู†
232
00:25:04,940 --> 00:25:12,080
ู‡ุฐุง ู„ูŠุณ ุนุดุงู† isomorphic ู„ุฒุฏ ุณุชูŠู† ูˆุณุชูŠู† ูˆู‡ูŠ ู‡ุฐุง ู„ูŠุณ
233
00:25:12,080 --> 00:25:24,880
ุนุดุงู† isomorphic ู„ุฒุฏ ุณุชูŠู† ู„ุฃู† ุงู„ุณุจุจ ุฃู† ุงู„ุงุซู†ูŠู† and
234
00:25:25,300 --> 00:25:30,240
ุงู„ุซู„ุงุซูŠู† ู„ูŠุณูˆุง
235
00:25:30,240 --> 00:25:41,180
ู…ุฑุชูุนูŠู† ุจุดูƒู„ ุนุงู… ุทูŠุจ
236
00:25:41,180 --> 00:25:47,640
ุฅูŠุด ุฑุฃูŠูƒุŸ ุจุฏูŠ ุฃุฎู„ู‚ ูƒู…ุงู† groups ุฃุฎุฑู‰ isomorphic
237
00:25:47,640 --> 00:25:57,570
ู„ู‡ุฐู‡ ุงู„ู€ group also ู„ูˆ ุฌุฆุช ุฃุฎุฐุช ุงู„ู„ูŠ ู‡ูˆ Z ุงุซู†ูŠู†
238
00:25:57,570 --> 00:26:03,490
external by-product ู„ุฒุฏ ุงุซู†ูŠู† external by-product
239
00:26:03,490 --> 00:26:10,010
ู„ุฒุฏ ุซู„ุงุซุฉ external by-product ู„ุฒุฏ ุฎู…ุณุฉ is
240
00:26:10,010 --> 00:26:15,910
isomorphic ู‚ู„ู†ุง ู‚ุจู„ ู‚ู„ูŠู„ ุฒุฏ ุงุซู†ูŠู† external by
241
00:26:15,910 --> 00:26:21,850
-product is ุณุชุฉ external by-product ู„ู…ู†ุŸ ู„ุฒุฏ ุฎู…ุณุฉ
242
00:26:23,460 --> 00:26:27,620
ู‡ุฐุง ุงู„ู„ูŠ ู‚ู„ู†ุงู‡ุง ู‚ุจู„ ู‚ู„ูŠู„ ู…ู† ู‡ุฐู‡ ุจุฏูŠ ุฃุฎู„ู‚ groups
243
00:26:27,620 --> 00:26:32,320
ุฃุฎุฑู‰ ุชุจู‚ู‰ isomorphic ู„ู†ูุณ ุงู„ู€ group ูƒูŠู ูƒุงู†ุช ุงู„ุชุงู„ูŠุฉ
244
00:26:32,320 --> 00:26:39,840
ุฃุทู„ุน ู„ูŠ ู‡ู†ุง ุจู‚ุฏุฑ ุฃูƒุชุจ ู‡ุฐู‡ Z2 ุฒูŠ ู…ุง ู‡ูŠ ู‡ุฐู‡ Z6 ู†ู‚ูˆู„
245
00:26:39,840 --> 00:26:45,980
Z2 external dichromate ู…ุน Z3 ูˆู„ุง Z3 external ู…ุน Z2
246
00:26:45,980 --> 00:26:50,160
ู†ูุณ ุงู„ุดูŠุก ู„ุฃู†ู‡ ุญุตู„ ุถุฑุจู‡ู… ูŠุณุงูˆูŠ 6 ูˆ 2 are relatively
247
00:26:50,160 --> 00:26:54,690
prime ุจู†ูุณ ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ู‡ูŠ ู‚ุจู„ ู‚ู„ูŠู„ ูŠุจู‚ู‰ ุจู†ุงุกู‹ ุนู„ูŠู‡
248
00:26:54,690 --> 00:27:00,210
ู‡ุฐู‡ ุจู‚ุฏุฑ ุฃู‚ูˆู„ ุจุฏู„ ู…ุง ู‡ูŠ z6 ุจุฏูŠ ุฃู‚ูˆู„ ุนู„ูŠู‡ุง z3
249
00:27:00,210 --> 00:27:05,690
external by-product ู…ุน z2 external by-product ู…ุน
250
00:27:05,690 --> 00:27:16,790
z5 ุทูŠุจ ู‡ุฐู‡ isomorphic ู„ู…ู†ุŸ ุทู„ุน ู„ูŠ ู„ู‡ุฐู‡ relatively
251
00:27:16,790 --> 00:27:24,330
ูŠุจู‚ู‰ ู‡ุฐูˆู„ ุงู„ู€ Z6 External Direct Product ู…ุน
252
00:27:24,330 --> 00:27:30,610
Z2 External Direct Product ู…ุน Z5 ูŠุจู‚ู‰ ู‡ุฐู‡ ุฌุฑูˆุจ
253
00:27:30,610 --> 00:27:37,130
ุฌุฏูŠุฏุฉ ุจุฏูŠ ุฃุทู„ุน ูƒู…ุงู† ุฌุฑูˆุจ ุซุงู†ูŠ ูŠุจู‚ู‰ ู‡ุฐู‡ isomorphic
254
00:27:37,130 --> 00:27:45,770
ูƒู…ุงู† ู„ู…ูŠู†ุŸ ู„ู€ Z6 External Direct Product ู…ุน Z5 ูŠุจู‚ู‰
255
00:27:45,770 --> 00:27:54,900
ู…ุน Z10 ู„ูŠุดุŸ ู„ุฃู†ู‡ ุงู„ุณุชุฉ ูˆุงู„ุฎู…ุณุฉ are... ู„ุฃู†ู‡ ุงู„ุงุชู†ูŠู†
256
00:27:54,900 --> 00:28:00,140
ูˆุงู„ุฎู…ุณุฉ are relatively prime ูŠุจู‚ู‰ ู‡ุฐุง sense ุงุชู†ูŠู†
257
00:28:00,140 --> 00:28:10,160
and ุฎู…ุณุฉ are relatively prime ูˆุงู„ุฎุทูˆุฉ ุงู„ุฃูˆู„ู‰ ุงู„ู„ูŠ
258
00:28:10,160 --> 00:28:13,380
ุนู†ุฏู†ุง ุฒุฏ ุณุชุฉ ู„ุฅู†ู‡ ุงุชู†ูŠู† ูˆ ุชู„ุงุชุฉ relatively prime
259
00:28:13,380 --> 00:28:20,600
ู‡ุฐุง ูƒุชุจู†ุงู‡ ู‚ุจู„ ู‚ู„ูŠู„ ุทุจ ุงู„ุณุคุงู„ ู‡ูˆ ู‡ู„ ู‡ุฐู‡ isomorphic
260
00:28:20,600 --> 00:28:28,340
ู„ุฒุฏ ุณุชูŠู† ู…ุง ููŠู‡ุง ุณุชูŠู† ุนู†ุตุฑ ุทุจุนุง ู„ุฃ ุงู„ุณุจุจ because
261
00:28:29,790 --> 00:28:40,350
ุฅู† ุงู„ุณุชุฉ ูˆ ุงู„ุนุดุฑุฉ ู„ูŠุณูˆุง ู…ุฑุชุจุทูŠู† ุจุดูƒู„
262
00:28:40,350 --> 00:28:40,370
ุนุงู…
263
00:28:47,410 --> 00:28:53,090
ุจู‚ูˆู„ isomorphic ูˆูŠู† ู‡ูŠุŸ ู„ุฃ ู„ุฃ ูƒู„ู‡ isomorphic ูŠุง
264
00:28:53,090 --> 00:28:57,310
ุดุจุงุจ ู…ุง ุนู†ุฏูŠุด ู…ุง ู‚ู„ุช ูŠุณุงูˆูŠ ูŠุจู‚ู‰ ู„ูˆ ู‚ู„ุช ูŠุณุงูˆูŠ ู…ุนู†ุงุชู‡
265
00:28:57,310 --> 00:29:03,170
ูƒู„ ุนู†ุตุฑ ูŠุณุงูˆูŠ ู†ุธูŠุฑู‡ ู„ูƒู† ู‡ุฐู‡ group ุชุฎุชู„ู ุนู† ู‡ุฐู‡
266
00:29:03,170 --> 00:29:08,050
ูŠุนู†ูŠ ู…ุซู„ุง ุนู†ุตุฑ ุงู„ู„ูŠ ู‡ู†ุง ู„ูˆ ุจุฏู‡ ูŠุงุฎุฏ ุงู„ูˆุงุญุฏ ูˆ ู…ู† ู‡ู†ุง
267
00:29:08,050 --> 00:29:12,010
ุจุฏู‡ ูŠุงุฎุฏ ุงุชู†ูŠู† ูˆ ู…ู† ู‡ู†ุง ุจุฏู‡ ูŠุงุฎุฏ ุงู„ zero ูˆ ู…ู† ู‡ู†ุง
268
00:29:12,010 --> 00:29:16,350
ุจุฏู‡ ูŠุงุฎุฏ ุงู„ุฃุฑุจุนุฉ ู…ุซู„ุง ุจูŠุฎุชู„ู ุนู† ู‡ุฐุง ุงู„ู„ูŠ ู‡ู†ุง ูˆู‡ูƒุฐุง
269
00:29:16,350 --> 00:29:20,810
ุฅุฐุง ุฃูŠ ุฒู…ุงุฑ ููŠูƒ ูŠุนู†ูŠ ู„ุฌุฑูˆุจ ุงู„ุฃูˆู„ู‰ ูˆ ู„ุฌุฑูˆุจ ุงู„ุซุงู†ูŠุฉ
270
00:29:20,810 --> 00:29:27,730
ู„ู‡ุง ู†ูุณ ุงู„ุฎูˆุงุต ุงู„ุฑูŠุงุถูŠุฉ ูŠุจู‚ู‰ ู‡ุงูŠ ูƒู„ ุงู„ู„ูŠ ุจู†ู‚ูˆู„ู‡
271
00:29:27,730 --> 00:29:33,530
ุจู†ุงุณุจุฉ ูŠุนู†ูŠ ู‡ุฐุง ู…ุซุงู„ ุนู…ู„ูŠ ุนู„ู‰ ุงู„ุดุบู„ุงู†ุฉ ุทูŠุจ ู†ู†ุชู‚ู„
272
00:29:33,530 --> 00:29:39,110
ุงู„ุขู† ู„ู†ู‚ุทุฉ ุจุฑุถู‡ ู„ู‡ุง ุนู„ุงู‚ุฉ ุจู‡ุฐุง ุงู„ู…ูˆุถูˆุน
273
00:29:58,550 --> 00:30:02,970
ููŠ ู‡ู†ุง ุชุนุฑูŠู ุฃุฎุฐู†ุงู‡ ุณุงุจู‚ุง ููŠ chapter of subgroup
274
00:30:02,970 --> 00:30:11,090
ู†ุฐูƒุฑู‡ ู„ุฃู†ู‡ ุจุฏู†ุง ู†ุจู†ูŠ ุงู„ุดุบู„ ุนู„ูŠู‡ definition ุชุนุฑูŠู
275
00:30:11,090 --> 00:30:17,810
ูŠู‚ูˆู„ if ุงู„ K is a divisor of N if ุงู„ K is a
276
00:30:17,810 --> 00:30:30,020
divisor of N ู„ูˆ ูƒุงู† ุงู„ K ู‚ุงุณู… ู„ู„ N ูˆ define ุจุฏู†ุง
277
00:30:30,020 --> 00:30:40,800
ู†ุฑูˆุญ ู†ุนุฑู ุงู„ U K of N ู‡ูˆ ูƒู„ ุงู„ุนู†ุงุตุฑ X ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ
278
00:30:40,800 --> 00:30:48,740
ููŠ U M X ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ U N such that X modulo K
279
00:30:48,740 --> 00:30:57,410
ุจุฏู‡ ูŠุณุงูˆูŠ ู…ูŠู† ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ูˆุงุญุฏ ูˆู‡ุฐุง ุดุจุงุจ sub group ู…ู†
280
00:30:57,410 --> 00:30:58,850
ุงู„ UN
281
00:31:20,410 --> 00:31:23,750
ุทู„ุน ู„ูŠ ููŠ ุงู„ูƒู„ุงู… ุงู„ู„ูŠ ุงุญู†ุง ูƒุชุจูŠู†ู‡ ู…ู† ุฃูˆู„ ูˆ ุฌุฏูŠุฏ
282
00:31:23,750 --> 00:31:29,610
ุจุฏู†ุง ู†ุนุทูŠ ุชุนุฑูŠู ูˆ ู‡ุฐุง ุงู„ุชุนุฑูŠู ู…ุฑ ุนู„ูŠู†ุง ู‚ุจู„ ู‡ูŠูƒ
283
00:31:29,610 --> 00:31:35,150
ูŠุจู‚ู‰ ุงุญู†ุง ุจุณ ุจู†ุฐูƒุฑ ุจุงู„ุฐูƒุฑ ุจู‚ูˆู„ ู„ูˆ ูƒุงู† ุนู†ุฏูŠ K ู‡ูˆ
284
00:31:35,150 --> 00:31:40,010
divisor ู„ู„ N ูŠุจู‚ู‰ ุงู„ุดุฑุท ุฃุณุงุณูŠ ุงู† ุงู„ K ู„ุงุฒู… ูŠู‚ุณู… ุงู„ N
285
00:31:42,860 --> 00:31:49,420
ุจู†ุนุฑู ุณุชุฉ ุฌุฏูŠุฏุฉ ุณู…ูŠุชู‡ุง U K of N U N ู†ุนุฑูู‡ุง ูƒู„
286
00:31:49,420 --> 00:31:53,220
ุงู„ุฃุนุฏุงุฏ ุงู„ู„ูŠ ู‡ูŠ relatively prime ู…ุน M ุจุณ U K ุฏุฎู„ุช
287
00:31:53,220 --> 00:31:59,960
ุนู„ู‰ ุงู„ุฎุท ุจูŠู‚ูˆู„ ู„ู…ูŠู† ูƒู„ ุงู„ X's ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ UN ูŠุจู‚ู‰
288
00:31:59,960 --> 00:32:04,720
ุนู†ุงุตุฑ ู…ู† UN ุจุญูŠุซ ุงู„ X modulo K ุจูŠุณุงูˆูŠ ุฌุฏุงุด ูˆุงุญุฏ
289
00:32:04,720 --> 00:32:09,800
ูŠุนู†ูŠ ูƒู„ ุงู„ุฃุนุฏุงุฏ ุงู„ู„ูŠ ุงู„ูุฑู‚ ุจูŠู†ู‡ุง ูˆุจูŠู† ุงู„ูˆุงุญุฏ ูŠุณุงูˆูŠ
290
00:32:09,800 --> 00:32:15,880
ู…ุถุงุนูุงุช ุงู„ K ูƒู„ ุงู„ุฃุนุฏุงุฏ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ UN ุงู„ู„ูŠ
291
00:32:15,880 --> 00:32:19,740
ุงู„ูุฑู‚ ุจูŠู†ู‡ุง ูˆุจูŠู† ุงู„ูˆุงุญุฏ ู‡ูŠ ู…ุถุงุนูุงุช ุงู„ K ูŠุนู†ูŠ Zero
292
00:32:20,270 --> 00:32:26,410
ุทุจุนุง ูŠุนู†ูŠ ู„ูˆ ุทุฑุญุช ู‡ุฐุง ุงู„ุนุฏุฏ ู…ู† ุงู„ูˆุงุญุฏ ุจุฏูŠ ูŠุทู„ุน ู„ูŠ
293
00:32:26,410 --> 00:32:32,030
ู…ุถุงุนูุงุช ุงู„ K ูŠุทู„ุน ู„ูŠ K ูŠุทู„ุน ู„ูŠ 2K ู…ุถุงุนูุงุช ูŠุนู†ูŠ ูƒุฃู†ู‡
294
00:32:32,030 --> 00:32:35,130
ุงู„ู…ุถุงุนูุงุช ุงู„ K ุฒุงุฆุฏ ูˆุงุญุฏ ุตุญูŠุญ ูŠุจู‚ู‰ ุงู„ูุฑู‚ ุจูŠู†ู‡ู…
295
00:32:35,130 --> 00:32:43,210
ุจูŠุณุงูˆูŠ Zero ู†ุนุทูŠ ู…ุซุงู„ let ุงู„
296
00:32:43,210 --> 00:32:50,020
G ุจุฏู‡ุง ุชุณุงูˆูŠ U ุฃุฑุจุนูŠู† U ุฃุฑุจุนูŠู† ู…ูŠู† ุนู†ุงุตุฑู‡ุง ุดุจุงุจ ุทูŠุจ
297
00:32:50,020 --> 00:32:57,220
find ุจุฏู†ุง ุชู…ุงู†ูŠุฉ ุจุฏู†ุง ุนุฏุฏ ูŠู‚ุณู… ุงู„ุฃุฑุจุนูŠู† ูˆู„ูŠูƒู†
298
00:32:57,220 --> 00:33:05,100
ุซู…ุงู†ูŠุฉ ู…ุซู„ุง find U ุซู…ุงู†ูŠุฉ of ุฃุฑุจุนูŠู† ู‡ูŠ ุงู„ู„ูŠ ุจุฏู†ุง
299
00:33:05,100 --> 00:33:06,440
solution
300
00:33:12,160 --> 00:33:16,040
ุงู„ุฃูˆู„ ุงู„ู„ูŠ ุจุฏู†ุง ู†ุนุฑูู‡ ู‡ูˆ ุนู†ุงุตุฑ ุงู„ู€U40 ูˆู…ู†ู‡ู… ุจุฏู†ุง
301
00:33:16,040 --> 00:33:22,480
ู†ุจุฏุฃ ู†ุฌู‘ู‡ ูŠุจู‚ู‰ ุจุฏุงุฌุฉ ุฃู‚ูˆู„ ู„ู‡ ุงู„ู€U40 ุนู†ุงุตุฑู‡ุง ุงู„ู„ูŠ
302
00:33:22,480 --> 00:33:31,680
ู‡ูŠ ูˆุงุญุฏ ุงุชู†ูŠู† ุชู„ุงุชุฉ ุฃุฑุจุนุฉ ุฎู…ุณุฉ ุณุชุฉ ุณุจุนุฉ ุซู…ุงู†ูŠุฉ
303
00:33:31,680 --> 00:33:44,690
ุชุณุนุฉ 11 .. 13 .. 14 .. 15 .. 16 .. 17 .. 19 .. 21
304
00:33:44,690 --> 00:33:47,710
..
305
00:33:47,710 --> 00:33:59,490
23 .. 24 .. 25 .. 26 .. 27 ..ูˆูƒู…ุงู† ุชุณุนุฉ ูˆ ุนุดุฑูŠู†
306
00:33:59,490 --> 00:34:07,490
ุซู„ุงุซูŠู† ูˆุงุญุฏ ูˆ ุซู„ุงุซูŠู† ุงุซู†ูŠู† ูˆ ุซู„ุงุซูŠู† ุชู„ุงุชุฉ ูˆ
307
00:34:07,490 --> 00:34:12,670
ุซู„ุงุซูŠู† ุฃุฑุจุนุฉ ูˆ ุซู„ุงุซูŠู† ุฎู…ุณุฉ ูˆ ุซู„ุงุซูŠู† ุณุชุฉ ูˆ ุซู„ุงุซูŠู†
308
00:34:12,670 --> 00:34:18,910
ุณุจุนุฉ ูˆ ุซู„ุงุซูŠู† ุชุณุนุฉ ูˆ ุซู„ุงุซูŠู† ูŠุจู‚ู‰ ู‡ุฐู‡ ุนู†ุงุตุฑ ู…ู†
309
00:34:18,910 --> 00:34:21,050
ุนู†ุงุตุฑ ุงู„ U ุฃุฑุจุนูŠู†
310
00:34:27,390 --> 00:34:33,650
ุงุญู†ุง ุจู†ุดุฑุญ ู„ู„ูƒู„ ู…ุด ู„ูˆุญุฏุŒ ูƒู†ุง ุจู†ุดุฑุญ ู„ู„ูƒู„ุŒ ุงู„ุถุนูŠู
311
00:34:33,650 --> 00:34:37,190
ูˆุงู„ูˆุณุท ูˆุงู„ู‚ูˆูŠ ูƒู„ู‡ ู…ูˆุฌูˆุฏุŒ ุจุฏูƒ ุชุญูƒูŠ ูƒู„ุงู… ูŠุชู†ุงุณุจ ู…ุน
312
00:34:37,190 --> 00:34:41,010
ุงู„ุฌู…ูŠุน ู…ุงุดูŠ ูŠุนู†ูŠ ุฃู†ุง ูƒุงู† ุจูŠุจู‚ู‰ ู…ูƒุงู† ูŠู‚ูˆู„ ู„ูƒ ุฏู‡ ู‡ูŠ
313
00:34:41,010 --> 00:34:44,270
ุฏุบุฑูŠ ุฎุฏ ุงู„ู„ูŠ ู‡ูŠ ุงู„ุฑู‚ู…ูŠู† ุชู„ุงุชุฉ ูˆ ุฃู‚ูˆู„ ู„ูƒ ุฏู‡ ู‡ู… ู„ูƒู†ู‡ุง
314
00:34:44,270 --> 00:34:49,790
ุจู†ุดุฑุญ ุจู†ูู‡ู… ูƒู„ ุฎุทูˆุฉ ุจู†ุนู…ู„ู‡ุง ูƒูŠู ุฌุช ู‡ูŠ ุทูŠุจ ู‚ุงู„ ู„ูŠ
315
00:34:49,790 --> 00:34:54,410
ุงุญุณุจ ู„ูŠ ู‚ุฏุงุด ุงู„ U ุซู…ุงู†ูŠุฉ ูˆ ุฃุฑุจุนูŠู† ูุจุงุฌูŠ ุจู‚ูˆู„ู‡ U
316
00:34:54,410 --> 00:35:05,110
ุซู…ุงู†ูŠุฉ ูˆ ุฃุฑุจุนูŠู† ุจุฏู‡ ูŠุณุงูˆูŠ U ูŠุณุงูˆูŠ ู‡ู„ ุงู„ูˆุงุญุฏ ู…ู†ู‡ู… ู„ูˆ
317
00:35:05,110 --> 00:35:11,130
ู‚ู„ุช ู„ูŠ ู„ุฃ ู‡ู‚ูˆู„ู‡ุง ุบู„ุท ู„ุฃู† ู‚ุจู„ ู‚ู„ูŠู„ ุฌุงู„ูƒ ู‡ุฐู‡ ุงู„
318
00:35:11,130 --> 00:35:16,510
group ุชุญุชูˆูŠ ุนู„ู‰ ุงู„ identity ุงุซู†ูŠู† ูˆุงุญุฏ ู†ุงู‚ุต ูˆุงุญุฏ
319
00:35:16,510 --> 00:35:22,090
ูŠุณุงูˆูŠ ุฌุฏุงุด ุงู„ zero ู„ู‡ ู…ุถุงุนูุงุช ุงู„ุฃุฑุจุนูŠู† ุฃูˆ ู…ุถุงุนูุงุช
320
00:35:22,090 --> 00:35:26,310
ุงู„ K ู…ุถุงุนูุงุช ุงู„ุซู…ุงู†ูŠุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ูŠุจู‚ู‰ ุงู„ูˆุงุญุฏ ู…ู†ู‡ู…
321
00:35:27,330 --> 00:35:33,470
ูŠู„ุง ุชุณุนุฉ ู„ูˆ ุดูŠู„ุช ู…ู† ุฃูˆุงู‡ุง ุจูŠุตูŠุฑ ุซู…ุงู†ูŠุฉ ุชู…ุงู… ูŠุจู‚ู‰
322
00:35:33,470 --> 00:35:39,190
ู‡ุฐู‡ ุงู„ุชุณุนุฉ ุฃุญุฏ ุนุดุฑ ุซู„ุงุซ ุนุดุฑ ุณุจุนุฉ ุนุดุฑ ุดูŠู„ุช ู…ู† ุฃูˆุงู‡ุง ุจูŠุถู„
323
00:35:39,190 --> 00:35:44,600
ูƒุฐุง ุณุชุฉ ุนุดุฑ ู‡ูŠ ู…ุถุงุนูุงุช ุงู„ุซู…ุงู†ูŠุฉ ูŠุจู‚ู‰ ุงูŠู‡ ุณุจุนุฉ ุนุดุฑ
324
00:35:44,600 --> 00:35:52,080
ุชุณุนุฉ ุนุดุฑ ู„ุฃ ูˆุงุญุฏ ูˆ ุนุดุฑูŠู† ุชู„ุงุชุฉ ูˆ ุนุดุฑูŠู† ุณุจุนุฉ ูˆ ุนุดุฑูŠู†
325
00:35:52,080 --> 00:36:00,260
ุชุณุนุฉ ูˆ ุนุดุฑูŠู† ูˆุงุญุฏ ูˆ ุซู„ุงุซูŠู† ุชู„ุงุชุฉ ูˆ ุซู„ุงุซูŠู† ุงู‡ ุชู„ุงุชุฉ
326
00:36:00,260 --> 00:36:06,160
ูˆ ุซู„ุงุซูŠู† ู…ู†ู‡ุง ุชู„ุงุชุฉ ูˆ ุซู„ุงุซูŠู† ู„ุฃู† ู„ูˆ ุฃู‚ู„ ู…ู†ู‡ุง ูˆุงุญุฏ
327
00:36:06,160 --> 00:36:10,780
ูุชุจู‚ู‰ ุงุซู†ูŠู† ูˆ ุซู„ุงุซูŠู† ุชุณู…ุน ุซู…ุงู†ูŠุฉ ุณุชุฉ ูˆ ุซู„ุงุซูŠู† ู„ุฃ
328
00:36:10,780 --> 00:36:16,160
ุซู…ุงู†ูŠุฉ ูˆ ุซู„ุงุซูŠู† ู„ุฃ ูŠุจู‚ู‰ ู…ุง ุนู†ุฏูŠุด ุฅู„ุง ุงู„ุฃุฑุจุนุฉ ุนู†ุงุตุฑ
329
00:36:16,160 --> 00:36:19,820
ุงู„ู„ูŠ ู‚ุฏุงู…ูŠ ูŠุนู†ูŠ ูŠุจู‚ู‰ ุฅุฐู† ุงู„ U ุซู…ุงู†ูŠุฉ ูˆ ุฃุฑุจุนูŠู† ู‡ูŠ
330
00:36:19,820 --> 00:36:23,860
ูˆุงุญุฏ ูˆ ุชุณุนุฉ ูˆ ุณุจุนุฉ ุนุดุฑ ูˆ ุชู„ุงุชุฉ ูˆ ุซู„ุงุซูŠู† ูˆ ูƒู„ ู…ู†ู‡ุง
331
00:36:23,860 --> 00:36:29,490
ูŠุญู‚ู‚ ู…ู† ุงู„ู…ุนุงุฏู„ุฉ ุฃูˆ ุญุณุจู†ุงู‡ู… ุจู†ุงุก ุนู„ู‰ ุงู„ุชุนุฑูŠู ุงู„ู„ูŠ
332
00:36:29,490 --> 00:36:37,550
ุงุนุทูŠู†ุงู‡ ู„ UKM ู‡ุฐุง ูƒู„ุงู… ู…ู‡ู… ู„ุฃู† ุจุฏู†ุง ู†ุจู†ูŠ ุนู„ูŠู‡ ุดุบู„
333
00:36:37,550 --> 00:36:42,230
ุซุงู†ูŠ ุจุนุฏ ู‚ู„ูŠู„ ุงู„ุขู† ุจุฏู†ุง ู†ูŠุฌูŠ ู„ู†ุธุฑูŠุฉ ุฃุฎุฑู‰ ููŠ ู‡ุฐุง
334
00:36:42,230 --> 00:36:47,350
ุงู„ุดุงุจุชุฑ ุงู„ู†ุธุฑูŠุฉ ุจุชู‚ูˆู„ ู…ุง ูŠุฃุชูŠ IRM
335
00:36:52,330 --> 00:37:06,230
theorem suppose that suppose that ุฃู† ุงู„ S and T ุงู„
336
00:37:06,230 --> 00:37:18,490
S and T are relatively prime are relatively prime
337
00:37:20,290 --> 00:37:31,510
are relatively prime then then
338
00:37:31,510 --> 00:37:40,830
ุงู„ U S T ุงู„ U S T isomorphic
339
00:37:40,830 --> 00:37:50,770
ู„ู„ U S external product ู…ุน ู…ูŠู† ู…ุน U T moreover
340
00:37:50,770 --> 00:37:54,230
ูˆุฃูƒุซุฑ
341
00:37:54,230 --> 00:37:59,050
ู…ู† ุฐู„ูƒ ุงู„
342
00:37:59,050 --> 00:38:12,930
subgroup U S of ST isomorphic ู„ U T and ุงู„ U T ู„ู…ู†
343
00:38:12,930 --> 00:38:22,170
ู„ู„ ST isomorphic ู„ู…ู† ู„ US ุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ุฃู†ุง
344
00:38:22,170 --> 00:38:32,050
isomorphic ู„ US ูˆููŠ ู†ุชูŠุฌุฉ ุนู„ูŠู‡ุง ูƒ ุฑูˆู„ุฑูŠ ุจุชู‚ูˆู„
345
00:38:32,050 --> 00:38:44,170
ู…ุง ูŠุฃุชูŠ let ุงู„ M ุจุฏู‡ุง ุชุณุงูˆูŠ N ูˆุงุญุฏ N ุงุซู†ูŠู† ูˆู„ุบุงูŠุฉ NK
346
00:38:44,170 --> 00:38:55,190
ุฃู† ูˆุงุญุฏ ุฃู† ุงุซู†ูŠู† ู„ุบุงูŠุฉ NK where ุญูŠุซ ู„ุฌู„ุณ ุงู„ common
347
00:38:55,190 --> 00:39:08,010
divisor ู„ู„ N I ูˆ N J ุจุฏู‡ุง ุชุณุงูˆูŠ ูˆุงุญุฏ for I ู„ุง ุชุณุงูˆูŠ
348
00:39:08,010 --> 00:39:09,810
J then
349
00:39:11,580 --> 00:39:19,920
ุงู„ู€ UM ุงูŠุฒูˆ ู…ูˆุฑููƒ ู„ู…ู†ุŸ ู„ู„ U N 1 ุงูƒุณุชุงู†ุงุถุงูŠูƒ ุจุฑูˆุฏูƒ
350
00:39:19,920 --> 00:39:28,200
ู…ุน U N 2 ุงูƒุณุชุงู†ุงุถุงูŠูƒ ุจุฑูˆุฏูƒ ู…ุน ู…ูŠู†ุŸ ู…ุน U N K ุจุงู„ุดูƒู„
351
00:39:28,200 --> 00:39:28,860
ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุง
352
00:39:42,060 --> 00:39:48,760
ู…ุฑุฉ ุซุงู†ูŠุฉ ุจู‚ูˆู„ ุจู‚ูˆู„ ู„ูˆ ุนู†ุฏูƒ ุฑู‚ู…ูŠู† S ูˆT are
353
00:39:48,760 --> 00:39:57,880
relatively prime then ุงู„ U S T ูŠุจู‚ู‰ ุงู„ group ุงู„ู„ูŠ
354
00:39:57,880 --> 00:40:03,080
ุนู†ุฏู†ุง ุงู„ U S T isomorphic ู„ู„ externa ุชุงูƒุฑูˆุฏูƒ ุชุจู‚ู‰
355
00:40:03,080 --> 00:40:09,120
ุญุงุตู„ ุงู„ุถุฑุจ ุฒูŠ ุงูŠุด ู…ุซู„ุง ู„ูˆ ู‚ู„ุช ู„ูƒ U ุฎู…ุณุฉ ุนุดุฑ ุจู‚ุฏุฑ
356
00:40:09,120 --> 00:40:15,260
ุฃูƒุชุจู‡ุง U ุชู„ุงุชุฉ ููŠ ุฎู…ุณุฉ ู…ุธุจูˆุท ุฅุฐุง ู‡ุฐู‡ ุงู„ U ุฎู…ุณุฉ ุนุดุฑ
357
00:40:15,260 --> 00:40:19,820
ุงูŠุฒูˆ ู…ูˆุฑููƒ ู„ U ุชู„ุงุชุฉ ุงูƒุณุชุฑู†ู‡ ุถุงูŠู‚ุฉ ุถุนููƒ ู…ุน ู…ูŠู† ู…ุน
358
00:40:19,820 --> 00:40:24,740
U ุฎู…ุณุฉ ู‡ุชู‚ูˆู„ ู„ูŠ ุชู„ุงุชุฉ ูˆ ุฎู…ุณุฉ relatively prime ุจู‚ูˆู„ ู„ูƒ
359
00:40:24,740 --> 00:40:33,900
ู…ุงุดูŠ ุงูŠุด ุฑุฃูŠูƒ U ุซู„ุงุซูŠู† ุชุณุงูˆูŠ U ุฎู…ุณุฉ ููŠ ุณุชุฉ ุตุญ ุฎู…ุณุฉ
360
00:40:33,900 --> 00:40:39,070
ููŠ ุณุชุฉ ุฃูˆ ุนุดุฑุฉ ููŠ ุชู„ุงุชุฉ ู‡ุฐู‡ ูˆู‡ุฐู‡ ุฃูˆ ุงุซู†ูŠู† ููŠ
361
00:40:39,070 --> 00:40:43,410
ุฎู…ุณุฉ ุนุดุฑ ูƒู„ู‡ุง ุฃุฑู‚ุงู… are relatively prime ุฅุฐุง ุงู„ U
362
00:40:43,410 --> 00:40:47,930
ุซู„ุงุซูŠู† isomorphic ุงู„ู‰ U ุนุดุฑุฉ ููŠ ุชู„ุงุชุฉ ุฃูˆ
363
00:40:47,930 --> 00:40:53,830
isomorphic ู„ U ุฎู…ุณุฉ ููŠ ุณุชุฉ ุฃูˆ isomorphic ู„ู„ุงุชู†ูŠู†
364
00:40:53,830 --> 00:40:58,390
ููŠ U ุงุซู†ูŠู† external like product ู…ุน U ุฎู…ุณุฉ ุนุดุฑ ูˆ
365
00:40:58,390 --> 00:41:03,670
ู‡ูƒุฐุง ู…ุง ุฏุงู… ุงู„ุฑู‚ู…ูŠู† ุฃูˆ ุงู„ุชู„ุงุชุฉ ุงู„ู„ูŠ ุนู†ุฏูƒ ุชู„ุงุชุฉ ู…ู†
366
00:41:03,670 --> 00:41:08,790
ุฃูŠู† ุฌุจุชู‡ุง ุฏูŠุŸ ุฌุจุชู‡ุง ู…ู† ุงู„ูƒุฑูˆู„ุฑูŠ ุงู„ูƒุฑูˆู„ุฑูŠ ุจุชู‚ูˆู„ ุฅุฐุง
367
00:41:08,790 --> 00:41:11,490
ู…ุง ุนู†ุฏูƒ ู„ูŠุณ ุจุถุฑุฑ ุฑู‚ู…ูŠู† ู…ู…ูƒู† ุงู„ุฃุฑู‚ุงู… ุงู„ู„ูŠ ุนู†ุฏูƒ
368
00:41:11,490 --> 00:41:16,090
ุชุญู„ู„ู‡ุง ุฅู„ู‰ ุญุงุตู„ ุถุฑุจ ุชู„ุงุชุฉ ุฃุฑู‚ุงู… ุฃูˆ ุฃุฑุจุนุฉ ุฃุฑู‚ุงู… ุฃูˆ
369
00:41:16,090 --> 00:41:21,690
ุฎู…ุณุฉ ุฃูˆ ุนุดุฑุฉ ุฃูˆ ูƒู… ู…ู† ุงู„ุฃุฑู‚ุงู… ุญู„ู„ ู‚ุฏ ู…ุง ุจุฏูƒ ูŠุจู‚ู‰ ู„ูˆ
370
00:41:21,690 --> 00:41:27,990
ุนู†ุฏูŠ ุงู„ู€ M ู‡ุฐุง ุญู„ู„ู†ุงู‡ ุฅู„ู‰ ุญุงุตู„ ุถุฑุจ N ู…ู† ุงู„ุฃุฑู‚ุงู… N1
371
00:41:27,990 --> 00:41:32,450
N2 ู„ุบุงูŠุฉ NK ุจุญูŠุซ ุงู„ู€ greatest common divisor ุจูŠู†
372
00:41:32,450 --> 00:41:37,250
ุฃูŠ ุงุซู†ูŠู† ุจุฏูŠ ูŠูƒูˆู† relatively prime ุจุฏูŠ ูŠูƒูˆู† ูˆุงุญุฏ
373
00:41:37,250 --> 00:41:41,690
ุตุญูŠุญ ูŠุนู†ูŠ ุงู„ุงุซู†ูŠู† ู‡ุฐูˆู„ are relatively prime ูŠุจู‚ู‰
374
00:41:41,690 --> 00:41:46,830
ุงู„ U M isomorphic ู„ U of ุงู„ุฑู‚ู… ุงู„ุฃูˆู„ ูƒุณุชุงู†ุงุฏุงูŠูƒูˆ
375
00:41:46,830 --> 00:41:51,030
ุจุฑูˆุฏูƒ U ู…ุน ุงู„ุฑู‚ู… ุงู„ุซุงู†ูŠ ูƒุณุชุงู†ุงุฏุงูŠูƒูˆ ุจุฑูˆุฏูƒ ู…ุน ุงู„ุฑู‚ู…
376
00:41:51,030 --> 00:41:55,250
ูƒูŠ ูˆู‡ูƒุฐุง ุงู„ู…ุฑุฉ ุงู„ู‚ุงุฏู…ุฉ ุฅู† ุดุงุก ุงู„ู„ู‡ ุจู†ุงุฎุฏ ุฃู…ุซู„ุฉ
377
00:41:55,250 --> 00:41:59,890
ุชูˆุถุญูŠุฉ ุนู„ู‰ ูƒูŠููŠุฉ ุงุณุชุฎุฏุงู… ุงู„ูƒู„ุงู… ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง