prompt
stringlengths
70
19.8k
completion
stringlengths
8
303
api
stringlengths
23
93
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import camelot from llama_index.core import VectorStoreIndex from llama_index.core.query_engine import PandasQueryEngine from llama_index.core.schema import IndexNode from llama_index.llms.openai import OpenAI from llama_index.readers.file import PyMuPDFReader from typing import List import os os.environ["OPENAI_API_KEY"] = "YOUR_API_KEY" from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.llms.openai import OpenAI from llama_index.core import Settings Settings.llm = OpenAI(model="gpt-3.5-turbo") Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small") file_path = "billionaires_page.pdf" reader = PyMuPDFReader() docs = reader.load(file_path) def get_tables(path: str, pages: List[int]): table_dfs = [] for page in pages: table_list = camelot.read_pdf(path, pages=str(page)) table_df = table_list[0].df table_df = ( table_df.rename(columns=table_df.iloc[0]) .drop(table_df.index[0]) .reset_index(drop=True) ) table_dfs.append(table_df) return table_dfs table_dfs = get_tables(file_path, pages=[3, 25]) table_dfs[0] table_dfs[1] llm = OpenAI(model="gpt-4") df_query_engines = [ PandasQueryEngine(table_df, llm=llm) for table_df in table_dfs ] response = df_query_engines[0].query( "What's the net worth of the second richest billionaire in 2023?" ) print(str(response)) response = df_query_engines[1].query( "How many billionaires were there in 2009?" ) print(str(response)) from llama_index.core import Settings doc_nodes = Settings.node_parser.get_nodes_from_documents(docs) summaries = [ ( "This node provides information about the world's richest billionaires" " in 2023" ), ( "This node provides information on the number of billionaires and" " their combined net worth from 2000 to 2023." ), ] df_nodes = [ IndexNode(text=summary, index_id=f"pandas{idx}") for idx, summary in enumerate(summaries) ] df_id_query_engine_mapping = { f"pandas{idx}": df_query_engine for idx, df_query_engine in enumerate(df_query_engines) } vector_index = VectorStoreIndex(doc_nodes + df_nodes) vector_retriever = vector_index.as_retriever(similarity_top_k=1) vector_index0 =
VectorStoreIndex(doc_nodes)
llama_index.core.VectorStoreIndex
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() get_ipython().system("wget 'https://raw.githubusercontent.com/jerryjliu/llama_index/main/examples/gatsby/gatsby_full.txt' -O 'gatsby_full.txt'") from llama_index.core import SimpleDirectoryReader documents = SimpleDirectoryReader( input_files=["./gatsby_full.txt"] ).load_data() from llama_index.llms.openai import OpenAI from llama_index.core import Settings Settings.llm = OpenAI(model="gpt-3.5-turbo") Settings.chunk_size = 1024 nodes = Settings.node_parser.get_nodes_from_documents(documents) from llama_index.core import StorageContext storage_context = StorageContext.from_defaults() storage_context.docstore.add_documents(nodes) from llama_index.core import SimpleKeywordTableIndex, VectorStoreIndex keyword_index = SimpleKeywordTableIndex( nodes, storage_context=storage_context, show_progress=True, ) vector_index = VectorStoreIndex( nodes, storage_context=storage_context, show_progress=True, ) from llama_index.core import PromptTemplate QA_PROMPT_TMPL = ( "Context information is below.\n" "---------------------\n" "{context_str}\n" "---------------------\n" "Given the context information and not prior knowledge, " "answer the question. If the answer is not in the context, inform " "the user that you can't answer the question - DO NOT MAKE UP AN ANSWER.\n" "In addition to returning the answer, also return a relevance score as to " "how relevant the answer is to the question. " "Question: {query_str}\n" "Answer (including relevance score): " ) QA_PROMPT = PromptTemplate(QA_PROMPT_TMPL) keyword_query_engine = keyword_index.as_query_engine( text_qa_template=QA_PROMPT ) vector_query_engine = vector_index.as_query_engine(text_qa_template=QA_PROMPT) response = vector_query_engine.query( "Describe and summarize the interactions between Gatsby and Daisy" ) print(response) response = keyword_query_engine.query( "Describe and summarize the interactions between Gatsby and Daisy" ) print(response) from llama_index.core.tools import QueryEngineTool keyword_tool = QueryEngineTool.from_defaults( query_engine=keyword_query_engine, description="Useful for answering questions about this essay", ) vector_tool = QueryEngineTool.from_defaults( query_engine=vector_query_engine, description="Useful for answering questions about this essay", ) from llama_index.core.query_engine import RouterQueryEngine from llama_index.core.selectors import LLMSingleSelector, LLMMultiSelector from llama_index.core.selectors import ( PydanticMultiSelector, PydanticSingleSelector, ) from llama_index.core.response_synthesizers import TreeSummarize TREE_SUMMARIZE_PROMPT_TMPL = ( "Context information from multiple sources is below. Each source may or" " may not have \na relevance score attached to" " it.\n---------------------\n{context_str}\n---------------------\nGiven" " the information from multiple sources and their associated relevance" " scores (if provided) and not prior knowledge, answer the question. If" " the answer is not in the context, inform the user that you can't answer" " the question.\nQuestion: {query_str}\nAnswer: " ) tree_summarize = TreeSummarize( summary_template=PromptTemplate(TREE_SUMMARIZE_PROMPT_TMPL) ) query_engine = RouterQueryEngine( selector=
LLMMultiSelector.from_defaults()
llama_index.core.selectors.LLMMultiSelector.from_defaults
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-pinecone') get_ipython().system('pip install llama-index>=0.9.31 pinecone-client>=3.0.0') import logging import sys import os logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from pinecone import Pinecone, ServerlessSpec os.environ[ "PINECONE_API_KEY" ] = "<Your Pinecone API key, from app.pinecone.io>" os.environ["OPENAI_API_KEY"] = "sk-..." api_key = os.environ["PINECONE_API_KEY"] pc = Pinecone(api_key=api_key) pc.create_index( name="quickstart", dimension=1536, metric="euclidean", spec=ServerlessSpec(cloud="aws", region="us-west-2"), ) pinecone_index = pc.Index("quickstart") from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.vector_stores.pinecone import PineconeVectorStore from IPython.display import Markdown, display get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents =
SimpleDirectoryReader("./data/paul_graham")
llama_index.core.SimpleDirectoryReader
get_ipython().run_line_magic('pip', 'install llama-index-llms-bedrock') get_ipython().system('pip install llama-index') from llama_index.llms.bedrock import Bedrock profile_name = "Your aws profile name" resp = Bedrock( model="amazon.titan-text-express-v1", profile_name=profile_name ).complete("Paul Graham is ") print(resp) from llama_index.core.llms import ChatMessage from llama_index.llms.bedrock import Bedrock messages = [ ChatMessage( role="system", content="You are a pirate with a colorful personality" ), ChatMessage(role="user", content="Tell me a story"), ] resp = Bedrock( model="amazon.titan-text-express-v1", profile_name=profile_name ).chat(messages) print(resp) from llama_index.llms.bedrock import Bedrock llm =
Bedrock(model="amazon.titan-text-express-v1", profile_name=profile_name)
llama_index.llms.bedrock.Bedrock
get_ipython().system('pip install llama-index') import os os.environ["OPENAI_API_KEY"] = "sk-..." get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") from llama_index.core import SimpleDirectoryReader documents = SimpleDirectoryReader("./data/paul_graham").load_data() from llama_index.core import Settings nodes = Settings.get_nodes_from_documents(documents) from llama_index.core import StorageContext storage_context = StorageContext.from_defaults() storage_context.docstore.add_documents(nodes) from llama_index.core import SimpleKeywordTableIndex, VectorStoreIndex vector_index = VectorStoreIndex(nodes, storage_context=storage_context) keyword_index = SimpleKeywordTableIndex(nodes, storage_context=storage_context) from llama_index.core import QueryBundle from llama_index.core.schema import NodeWithScore from llama_index.core.retrievers import ( BaseRetriever, VectorIndexRetriever, KeywordTableSimpleRetriever, ) from typing import List class CustomRetriever(BaseRetriever): """Custom retriever that performs both semantic search and hybrid search.""" def __init__( self, vector_retriever: VectorIndexRetriever, keyword_retriever: KeywordTableSimpleRetriever, mode: str = "AND", ) -> None: """Init params.""" self._vector_retriever = vector_retriever self._keyword_retriever = keyword_retriever if mode not in ("AND", "OR"): raise ValueError("Invalid mode.") self._mode = mode super().__init__() def _retrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]: """Retrieve nodes given query.""" vector_nodes = self._vector_retriever.retrieve(query_bundle) keyword_nodes = self._keyword_retriever.retrieve(query_bundle) vector_ids = {n.node.node_id for n in vector_nodes} keyword_ids = {n.node.node_id for n in keyword_nodes} combined_dict = {n.node.node_id: n for n in vector_nodes} combined_dict.update({n.node.node_id: n for n in keyword_nodes}) if self._mode == "AND": retrieve_ids = vector_ids.intersection(keyword_ids) else: retrieve_ids = vector_ids.union(keyword_ids) retrieve_nodes = [combined_dict[rid] for rid in retrieve_ids] return retrieve_nodes from llama_index.core import get_response_synthesizer from llama_index.core.query_engine import RetrieverQueryEngine vector_retriever = VectorIndexRetriever(index=vector_index, similarity_top_k=2) keyword_retriever = KeywordTableSimpleRetriever(index=keyword_index) custom_retriever = CustomRetriever(vector_retriever, keyword_retriever) response_synthesizer =
get_response_synthesizer()
llama_index.core.get_response_synthesizer
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-chroma') get_ipython().system('pip install llama-index') import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) import os import getpass import openai openai.api_key = "sk-" import chromadb chroma_client = chromadb.EphemeralClient() chroma_collection = chroma_client.create_collection("quickstart") from llama_index.core import VectorStoreIndex from llama_index.vector_stores.chroma import ChromaVectorStore from IPython.display import Markdown, display from llama_index.core.schema import TextNode nodes = [ TextNode( text="The Shawshank Redemption", metadata={ "author": "Stephen King", "theme": "Friendship", "year": 1994, }, ), TextNode( text="The Godfather", metadata={ "director": "Francis Ford Coppola", "theme": "Mafia", "year": 1972, }, ), TextNode( text="Inception", metadata={ "director": "Christopher Nolan", "theme": "Fiction", "year": 2010, }, ), TextNode( text="To Kill a Mockingbird", metadata={ "author": "Harper Lee", "theme": "Mafia", "year": 1960, }, ), TextNode( text="1984", metadata={ "author": "George Orwell", "theme": "Totalitarianism", "year": 1949, }, ), TextNode( text="The Great Gatsby", metadata={ "author": "F. Scott Fitzgerald", "theme": "The American Dream", "year": 1925, }, ), TextNode( text="Harry Potter and the Sorcerer's Stone", metadata={ "author": "J.K. Rowling", "theme": "Fiction", "year": 1997, }, ), ] from llama_index.core import StorageContext vector_store = ChromaVectorStore(chroma_collection=chroma_collection) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex(nodes, storage_context=storage_context) from llama_index.core.vector_stores import ( MetadataFilter, MetadataFilters, FilterOperator, ) filters = MetadataFilters( filters=[ MetadataFilter(key="theme", operator=FilterOperator.EQ, value="Mafia"), ] ) retriever = index.as_retriever(filters=filters) retriever.retrieve("What is inception about?") from llama_index.core.vector_stores import ExactMatchFilter, MetadataFilters filters = MetadataFilters( filters=[ MetadataFilter(key="theme", value="Mafia"), MetadataFilter(key="year", value=1972), ] ) retriever = index.as_retriever(filters=filters) retriever.retrieve("What is inception about?") from llama_index.core.vector_stores import FilterOperator, FilterCondition filters = MetadataFilters( filters=[
MetadataFilter(key="theme", value="Fiction")
llama_index.core.vector_stores.MetadataFilter
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import camelot from llama_index.core import VectorStoreIndex from llama_index.core.query_engine import PandasQueryEngine from llama_index.core.schema import IndexNode from llama_index.llms.openai import OpenAI from llama_index.readers.file import PyMuPDFReader from typing import List import os os.environ["OPENAI_API_KEY"] = "YOUR_API_KEY" from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.llms.openai import OpenAI from llama_index.core import Settings Settings.llm =
OpenAI(model="gpt-3.5-turbo")
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-mongodb') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-qdrant') get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-firestore') get_ipython().run_line_magic('pip', 'install llama-index-retrievers-bm25') get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-redis') get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-dynamodb') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "./llama2.pdf"') get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/1706.03762.pdf" -O "./attention.pdf"') from llama_index.core import download_loader from llama_index.readers.file import PyMuPDFReader llama2_docs = PyMuPDFReader().load_data( file_path="./llama2.pdf", metadata=True ) attention_docs = PyMuPDFReader().load_data( file_path="./attention.pdf", metadata=True ) import os os.environ["OPENAI_API_KEY"] = "sk-..." from llama_index.core.node_parser import TokenTextSplitter nodes = TokenTextSplitter( chunk_size=1024, chunk_overlap=128 ).get_nodes_from_documents(llama2_docs + attention_docs) from llama_index.core.storage.docstore import SimpleDocumentStore from llama_index.storage.docstore.redis import RedisDocumentStore from llama_index.storage.docstore.mongodb import MongoDocumentStore from llama_index.storage.docstore.firestore import FirestoreDocumentStore from llama_index.storage.docstore.dynamodb import DynamoDBDocumentStore docstore = SimpleDocumentStore() docstore.add_documents(nodes) from llama_index.core import VectorStoreIndex, StorageContext from llama_index.retrievers.bm25 import BM25Retriever from llama_index.vector_stores.qdrant import QdrantVectorStore from qdrant_client import QdrantClient client = QdrantClient(path="./qdrant_data") vector_store = QdrantVectorStore("composable", client=client) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex(nodes=nodes) vector_retriever = index.as_retriever(similarity_top_k=2) bm25_retriever = BM25Retriever.from_defaults( docstore=docstore, similarity_top_k=2 ) from llama_index.core.schema import IndexNode vector_obj = IndexNode( index_id="vector", obj=vector_retriever, text="Vector Retriever" ) bm25_obj = IndexNode( index_id="bm25", obj=bm25_retriever, text="BM25 Retriever" ) from llama_index.core import SummaryIndex summary_index = SummaryIndex(objects=[vector_obj, bm25_obj]) query_engine = summary_index.as_query_engine( response_mode="tree_summarize", verbose=True ) response = await query_engine.aquery( "How does attention work in transformers?" ) print(str(response)) response = await query_engine.aquery( "What is the architecture of Llama2 based on?" ) print(str(response)) response = await query_engine.aquery( "What was used before attention in transformers?" ) print(str(response)) docstore.persist("./docstore.json") from llama_index.core.storage.docstore import SimpleDocumentStore from llama_index.vector_stores.qdrant import QdrantVectorStore from qdrant_client import QdrantClient docstore =
SimpleDocumentStore.from_persist_path("./docstore.json")
llama_index.core.storage.docstore.SimpleDocumentStore.from_persist_path
from llama_index.agent import OpenAIAgent import openai openai.api_key = "sk-api-key" from llama_index.tools.gmail.base import GmailToolSpec from llama_index.tools.google_calendar.base import GoogleCalendarToolSpec from llama_index.tools.google_search.base import GoogleSearchToolSpec gmail_tools = GmailToolSpec().to_tool_list() gcal_tools = GoogleCalendarToolSpec().to_tool_list() gsearch_tools = GoogleSearchToolSpec(key="api-key", engine="engine").to_tool_list() for tool in [*gmail_tools, *gcal_tools, *gsearch_tools]: print(tool.metadata.name) print(tool.metadata.description) from llama_index.tools.tool_spec.load_and_search.base import LoadAndSearchToolSpec print("Wrapping " + gsearch_tools[0].metadata.name) gsearch_load_and_search_tools = LoadAndSearchToolSpec.from_defaults( gsearch_tools[0], ).to_tool_list() print("Wrapping gmail " + gmail_tools[0].metadata.name) gmail_load_and_search_tools = LoadAndSearchToolSpec.from_defaults( gmail_tools[0], ).to_tool_list() print("Wrapping google calendar " + gcal_tools[0].metadata.name) gcal_load_and_search_tools = LoadAndSearchToolSpec.from_defaults( gcal_tools[0], ).to_tool_list() all_tools = [ *gsearch_load_and_search_tools, *gmail_load_and_search_tools, *gcal_load_and_search_tools, *gcal_tools[1::], *gmail_tools[1::], *gsearch_tools[1::], ] agent =
OpenAIAgent.from_tools(all_tools, verbose=True)
llama_index.agent.OpenAIAgent.from_tools
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import json from typing import Sequence, List from llama_index.llms.openai import OpenAI from llama_index.core.llms import ChatMessage from llama_index.core.tools import BaseTool, FunctionTool from llama_index.agent.openai import OpenAIAgent def add(a: int, b: int) -> int: """Add two integers and returns the result integer""" return a + b add_tool =
FunctionTool.from_defaults(fn=add)
llama_index.core.tools.FunctionTool.from_defaults
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') from llama_index.agent.openai import OpenAIAgent from llama_index.llms.openai import OpenAI from llama_index.core.tools import BaseTool, FunctionTool def multiply(a: int, b: int) -> int: """Multiple two integers and returns the result integer""" return a * b multiply_tool = FunctionTool.from_defaults(fn=multiply) def add(a: int, b: int) -> int: """Add two integers and returns the result integer""" return a + b add_tool = FunctionTool.from_defaults(fn=add) llm =
OpenAI(model="gpt-3.5-turbo-1106")
llama_index.llms.openai.OpenAI
get_ipython().run_line_magic('pip', 'install llama-hub-llama-packs-agents-llm-compiler-step') get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import phoenix as px px.launch_app() import llama_index.core llama_index.core.set_global_handler("arize_phoenix") import nest_asyncio nest_asyncio.apply() from llama_index.packs.agents.llm_compiler.step import LLMCompilerAgentWorker from llama_index.core.llama_pack import download_llama_pack download_llama_pack( "LLMCompilerAgentPack", "./agent_pack", skip_load=True, ) from agent_pack.step import LLMCompilerAgentWorker import json from typing import Sequence, List from llama_index.llms.openai import OpenAI from llama_index.core.llms import ChatMessage from llama_index.core.tools import BaseTool, FunctionTool import nest_asyncio nest_asyncio.apply() def multiply(a: int, b: int) -> int: """Multiple two integers and returns the result integer""" return a * b multiply_tool = FunctionTool.from_defaults(fn=multiply) def add(a: int, b: int) -> int: """Add two integers and returns the result integer""" return a + b add_tool = FunctionTool.from_defaults(fn=add) tools = [multiply_tool, add_tool] multiply_tool.metadata.fn_schema_str from llama_index.core.agent import AgentRunner llm = OpenAI(model="gpt-4") callback_manager = llm.callback_manager agent_worker = LLMCompilerAgentWorker.from_tools( tools, llm=llm, verbose=True, callback_manager=callback_manager ) agent = AgentRunner(agent_worker, callback_manager=callback_manager) response = agent.chat("What is (121 * 3) + 42?") response agent.memory.get_all() get_ipython().system('pip install llama-index-readers-wikipedia') from llama_index.readers.wikipedia import WikipediaReader wiki_titles = ["Toronto", "Seattle", "Chicago", "Boston", "Miami"] city_docs = {} reader =
WikipediaReader()
llama_index.readers.wikipedia.WikipediaReader
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-huggingface') get_ipython().system('pip install llama-index') import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core.postprocessor import ( PIINodePostprocessor, NERPIINodePostprocessor, ) from llama_index.llms.huggingface import HuggingFaceLLM from llama_index.core import Document, VectorStoreIndex from llama_index.core.schema import TextNode text = """ Hello Paulo Santos. The latest statement for your credit card account \ 1111-0000-1111-0000 was mailed to 123 Any Street, Seattle, WA 98109. """ node = TextNode(text=text) processor = NERPIINodePostprocessor() from llama_index.core.schema import NodeWithScore new_nodes = processor.postprocess_nodes([NodeWithScore(node=node)]) new_nodes[0].node.get_text() new_nodes[0].node.metadata["__pii_node_info__"] from llama_index.llms.openai import OpenAI processor = PIINodePostprocessor(llm=OpenAI()) from llama_index.core.schema import NodeWithScore new_nodes = processor.postprocess_nodes([
NodeWithScore(node=node)
llama_index.core.schema.NodeWithScore
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-program-openai') get_ipython().system('pip install llama-index') get_ipython().system('pip install "unstructured[msg]"') import logging import sys, json logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) import os import openai openai.api_key = os.environ["OPENAI_API_KEY"] from pydantic import BaseModel, Field from typing import List class Instrument(BaseModel): """Datamodel for ticker trading details.""" direction: str = Field(description="ticker trading - Buy, Sell, Hold etc") ticker: str = Field( description="Stock Ticker. 1-4 character code. Example: AAPL, TSLS, MSFT, VZ" ) company_name: str = Field( description="Company name corresponding to ticker" ) shares_traded: float = Field(description="Number of shares traded") percent_of_etf: float = Field(description="Percentage of ETF") class Etf(BaseModel): """ETF trading data model""" etf_ticker: str = Field( description="ETF Ticker code. Example: ARKK, FSPTX" ) trade_date: str = Field(description="Date of trading") stocks: List[Instrument] = Field( description="List of instruments or shares traded under this etf" ) class EmailData(BaseModel): """Data model for email extracted information.""" etfs: List[Etf] = Field( description="List of ETFs described in email having list of shares traded under it" ) trade_notification_date: str = Field( description="Date of trade notification" ) sender_email_id: str = Field(description="Email Id of the email sender.") email_date_time: str = Field(description="Date and time of email") from llama_index.core import download_loader from llama_index.readers.file import UnstructuredReader loader =
UnstructuredReader()
llama_index.readers.file.UnstructuredReader
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") import openai import os os.environ["OPENAI_API_KEY"] = "sk-..." openai.api_key = os.environ["OPENAI_API_KEY"] from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.llms.openai import OpenAI llm = OpenAI(model="gpt-3.5-turbo") data = SimpleDirectoryReader(input_dir="./data/paul_graham/").load_data() index = VectorStoreIndex.from_documents(data) from llama_index.core.memory import ChatMemoryBuffer memory =
ChatMemoryBuffer.from_defaults(token_limit=3900)
llama_index.core.memory.ChatMemoryBuffer.from_defaults
from llama_index.core import SQLDatabase from sqlalchemy import ( create_engine, MetaData, Table, Column, String, Integer, select, column, ) engine = create_engine("sqlite:///chinook.db") sql_database = SQLDatabase(engine) from llama_index.core.query_pipeline import QueryPipeline get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('curl "https://www.sqlitetutorial.net/wp-content/uploads/2018/03/chinook.zip" -O ./chinook.zip') get_ipython().system('unzip ./chinook.zip') from llama_index.core.settings import Settings from llama_index.core.callbacks import CallbackManager callback_manager = CallbackManager() Settings.callback_manager = callback_manager import phoenix as px import llama_index.core px.launch_app() llama_index.core.set_global_handler("arize_phoenix") from llama_index.core.query_engine import NLSQLTableQueryEngine from llama_index.core.tools import QueryEngineTool sql_query_engine = NLSQLTableQueryEngine( sql_database=sql_database, tables=["albums", "tracks", "artists"], verbose=True, ) sql_tool = QueryEngineTool.from_defaults( query_engine=sql_query_engine, name="sql_tool", description=( "Useful for translating a natural language query into a SQL query" ), ) from llama_index.core.query_pipeline import QueryPipeline as QP qp = QP(verbose=True) from llama_index.core.agent.react.types import ( ActionReasoningStep, ObservationReasoningStep, ResponseReasoningStep, ) from llama_index.core.agent import Task, AgentChatResponse from llama_index.core.query_pipeline import ( AgentInputComponent, AgentFnComponent, CustomAgentComponent, QueryComponent, ToolRunnerComponent, ) from llama_index.core.llms import MessageRole from typing import Dict, Any, Optional, Tuple, List, cast def agent_input_fn(task: Task, state: Dict[str, Any]) -> Dict[str, Any]: """Agent input function. Returns: A Dictionary of output keys and values. If you are specifying src_key when defining links between this component and other components, make sure the src_key matches the specified output_key. """ if "current_reasoning" not in state: state["current_reasoning"] = [] reasoning_step = ObservationReasoningStep(observation=task.input) state["current_reasoning"].append(reasoning_step) return {"input": task.input} agent_input_component = AgentInputComponent(fn=agent_input_fn) from llama_index.core.agent import ReActChatFormatter from llama_index.core.query_pipeline import InputComponent, Link from llama_index.core.llms import ChatMessage from llama_index.core.tools import BaseTool def react_prompt_fn( task: Task, state: Dict[str, Any], input: str, tools: List[BaseTool] ) -> List[ChatMessage]: chat_formatter = ReActChatFormatter() return chat_formatter.format( tools, chat_history=task.memory.get() + state["memory"].get_all(), current_reasoning=state["current_reasoning"], ) react_prompt_component = AgentFnComponent( fn=react_prompt_fn, partial_dict={"tools": [sql_tool]} ) from typing import Set, Optional from llama_index.core.agent.react.output_parser import ReActOutputParser from llama_index.core.llms import ChatResponse from llama_index.core.agent.types import Task def parse_react_output_fn( task: Task, state: Dict[str, Any], chat_response: ChatResponse ): """Parse ReAct output into a reasoning step.""" output_parser = ReActOutputParser() reasoning_step = output_parser.parse(chat_response.message.content) return {"done": reasoning_step.is_done, "reasoning_step": reasoning_step} parse_react_output = AgentFnComponent(fn=parse_react_output_fn) def run_tool_fn( task: Task, state: Dict[str, Any], reasoning_step: ActionReasoningStep ): """Run tool and process tool output.""" tool_runner_component = ToolRunnerComponent( [sql_tool], callback_manager=task.callback_manager ) tool_output = tool_runner_component.run_component( tool_name=reasoning_step.action, tool_input=reasoning_step.action_input, ) observation_step = ObservationReasoningStep(observation=str(tool_output)) state["current_reasoning"].append(observation_step) return {"response_str": observation_step.get_content(), "is_done": False} run_tool = AgentFnComponent(fn=run_tool_fn) def process_response_fn( task: Task, state: Dict[str, Any], response_step: ResponseReasoningStep ): """Process response.""" state["current_reasoning"].append(response_step) response_str = response_step.response state["memory"].put(ChatMessage(content=task.input, role=MessageRole.USER)) state["memory"].put( ChatMessage(content=response_str, role=MessageRole.ASSISTANT) ) return {"response_str": response_str, "is_done": True} process_response = AgentFnComponent(fn=process_response_fn) def process_agent_response_fn( task: Task, state: Dict[str, Any], response_dict: dict ): """Process agent response.""" return ( AgentChatResponse(response_dict["response_str"]), response_dict["is_done"], ) process_agent_response = AgentFnComponent(fn=process_agent_response_fn) from llama_index.core.query_pipeline import QueryPipeline as QP from llama_index.llms.openai import OpenAI qp.add_modules( { "agent_input": agent_input_component, "react_prompt": react_prompt_component, "llm": OpenAI(model="gpt-4-1106-preview"), "react_output_parser": parse_react_output, "run_tool": run_tool, "process_response": process_response, "process_agent_response": process_agent_response, } ) qp.add_chain(["agent_input", "react_prompt", "llm", "react_output_parser"]) qp.add_link( "react_output_parser", "run_tool", condition_fn=lambda x: not x["done"], input_fn=lambda x: x["reasoning_step"], ) qp.add_link( "react_output_parser", "process_response", condition_fn=lambda x: x["done"], input_fn=lambda x: x["reasoning_step"], ) qp.add_link("process_response", "process_agent_response") qp.add_link("run_tool", "process_agent_response") from pyvis.network import Network net = Network(notebook=True, cdn_resources="in_line", directed=True) net.from_nx(qp.clean_dag) net.show("agent_dag.html") from llama_index.core.agent import QueryPipelineAgentWorker, AgentRunner from llama_index.core.callbacks import CallbackManager agent_worker =
QueryPipelineAgentWorker(qp)
llama_index.core.agent.QueryPipelineAgentWorker
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-supabase') get_ipython().system('pip install llama-index') import logging import sys from llama_index.core import SimpleDirectoryReader, Document, StorageContext from llama_index.core import VectorStoreIndex from llama_index.vector_stores.supabase import SupabaseVectorStore import textwrap import os os.environ["OPENAI_API_KEY"] = "[your_openai_api_key]" get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() print( "Document ID:", documents[0].doc_id, "Document Hash:", documents[0].doc_hash, ) vector_store = SupabaseVectorStore( postgres_connection_string=( "postgresql://<user>:<password>@<host>:<port>/<db_name>" ), collection_name="base_demo", ) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex.from_documents( documents, storage_context=storage_context ) query_engine = index.as_query_engine() response = query_engine.query("Who is the author?") print(textwrap.fill(str(response), 100)) response = query_engine.query("What did the author do growing up?") print(textwrap.fill(str(response), 100)) from llama_index.core.schema import TextNode nodes = [ TextNode( **{ "text": "The Shawshank Redemption", "metadata": { "author": "Stephen King", "theme": "Friendship", }, } ), TextNode( **{ "text": "The Godfather", "metadata": { "director": "Francis Ford Coppola", "theme": "Mafia", }, } ), TextNode( **{ "text": "Inception", "metadata": { "director": "Christopher Nolan", }, } ), ] vector_store = SupabaseVectorStore( postgres_connection_string=( "postgresql://<user>:<password>@<host>:<port>/<db_name>" ), collection_name="metadata_filters_demo", ) storage_context = StorageContext.from_defaults(vector_store=vector_store) index =
VectorStoreIndex(nodes, storage_context=storage_context)
llama_index.core.VectorStoreIndex
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-together') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') domain = "docs.llamaindex.ai" docs_url = "https://docs.llamaindex.ai/en/latest/" get_ipython().system('wget -e robots=off --recursive --no-clobber --page-requisites --html-extension --convert-links --restrict-file-names=windows --domains {domain} --no-parent {docs_url}') from llama_index.readers.file import UnstructuredReader from pathlib import Path from llama_index.llms.openai import OpenAI from llama_index.core import Document reader = UnstructuredReader() all_html_files = [ "docs.llamaindex.ai/en/latest/index.html", "docs.llamaindex.ai/en/latest/contributing/contributing.html", "docs.llamaindex.ai/en/latest/understanding/understanding.html", "docs.llamaindex.ai/en/latest/understanding/using_llms/using_llms.html", "docs.llamaindex.ai/en/latest/understanding/using_llms/privacy.html", "docs.llamaindex.ai/en/latest/understanding/loading/llamahub.html", "docs.llamaindex.ai/en/latest/optimizing/production_rag.html", "docs.llamaindex.ai/en/latest/module_guides/models/llms.html", ] doc_limit = 10 docs = [] for idx, f in enumerate(all_html_files): if idx > doc_limit: break print(f"Idx {idx}/{len(all_html_files)}") loaded_docs = reader.load_data(file=f, split_documents=True) start_idx = 64 loaded_doc = Document( id_=str(f), text="\n\n".join([d.get_content() for d in loaded_docs[start_idx:]]), metadata={"path": str(f)}, ) print(str(f)) docs.append(loaded_doc) from llama_index.embeddings.together import TogetherEmbedding from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.llms.openai import OpenAI api_key = "<api_key>" embed_model = TogetherEmbedding( model_name="togethercomputer/m2-bert-80M-32k-retrieval", api_key=api_key ) llm = OpenAI(temperature=0, model="gpt-3.5-turbo") from llama_index.core.storage.docstore import SimpleDocumentStore for doc in docs: embedding = embed_model.get_text_embedding(doc.get_content()) doc.embedding = embedding docstore = SimpleDocumentStore() docstore.add_documents(docs) from llama_index.core.schema import IndexNode from llama_index.core import ( load_index_from_storage, StorageContext, VectorStoreIndex, ) from llama_index.core.node_parser import SentenceSplitter from llama_index.core import SummaryIndex from llama_index.core.retrievers import RecursiveRetriever import os from tqdm.notebook import tqdm import pickle def build_index(docs, out_path: str = "storage/chunk_index"): nodes = [] splitter = SentenceSplitter(chunk_size=512, chunk_overlap=70) for idx, doc in enumerate(tqdm(docs)): cur_nodes = splitter.get_nodes_from_documents([doc]) for cur_node in cur_nodes: file_path = doc.metadata["path"] new_node = IndexNode( text=cur_node.text or "None", index_id=str(file_path), metadata=doc.metadata ) nodes.append(new_node) print("num nodes: " + str(len(nodes))) if not os.path.exists(out_path): index = VectorStoreIndex(nodes, embed_model=embed_model) index.set_index_id("simple_index") index.storage_context.persist(f"./{out_path}") else: storage_context = StorageContext.from_defaults( persist_dir=f"./{out_path}" ) index = load_index_from_storage( storage_context, index_id="simple_index", embed_model=embed_model ) return index index = build_index(docs) from llama_index.core.retrievers import BaseRetriever from llama_index.core.indices.query.embedding_utils import get_top_k_embeddings from llama_index.core import QueryBundle from llama_index.core.schema import NodeWithScore from typing import List, Any, Optional class HybridRetriever(BaseRetriever): """Hybrid retriever.""" def __init__( self, vector_index, docstore, similarity_top_k: int = 2, out_top_k: Optional[int] = None, alpha: float = 0.5, **kwargs: Any, ) -> None: """Init params.""" super().__init__(**kwargs) self._vector_index = vector_index self._embed_model = vector_index._embed_model self._retriever = vector_index.as_retriever( similarity_top_k=similarity_top_k ) self._out_top_k = out_top_k or similarity_top_k self._docstore = docstore self._alpha = alpha def _retrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]: """Retrieve nodes given query.""" nodes = self._retriever.retrieve(query_bundle.query_str) docs = [self._docstore.get_document(n.node.index_id) for n in nodes] doc_embeddings = [d.embedding for d in docs] query_embedding = self._embed_model.get_query_embedding( query_bundle.query_str ) doc_similarities, doc_idxs = get_top_k_embeddings( query_embedding, doc_embeddings ) result_tups = [] for doc_idx, doc_similarity in zip(doc_idxs, doc_similarities): node = nodes[doc_idx] full_similarity = (self._alpha * node.score) + ( (1 - self._alpha) * doc_similarity ) print( f"Doc {doc_idx} (node score, doc similarity, full similarity): {(node.score, doc_similarity, full_similarity)}" ) result_tups.append((full_similarity, node)) result_tups = sorted(result_tups, key=lambda x: x[0], reverse=True) for full_score, node in result_tups: node.score = full_score return [n for _, n in result_tups][:out_top_k] top_k = 10 out_top_k = 3 hybrid_retriever = HybridRetriever( index, docstore, similarity_top_k=top_k, out_top_k=3, alpha=0.5 ) base_retriever = index.as_retriever(similarity_top_k=out_top_k) def show_nodes(nodes, out_len: int = 200): for idx, n in enumerate(nodes): print(f"\n\n >>>>>>>>>>>> ID {n.id_}: {n.metadata['path']}") print(n.get_content()[:out_len]) query_str = "Tell me more about the LLM interface and where they're used" nodes = hybrid_retriever.retrieve(query_str) show_nodes(nodes) base_nodes = base_retriever.retrieve(query_str) show_nodes(base_nodes) from llama_index.core.query_engine import RetrieverQueryEngine query_engine =
RetrieverQueryEngine(hybrid_retriever)
llama_index.core.query_engine.RetrieverQueryEngine
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') get_ipython().run_line_magic('env', 'OPENAI_API_KEY=YOUR_OPENAI_KEY') get_ipython().system('pip install llama-index pypdf') get_ipython().system("mkdir -p 'data/'") get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') from pathlib import Path from llama_index.readers.file import PDFReader from llama_index.core.response.notebook_utils import display_source_node from llama_index.core.retrievers import RecursiveRetriever from llama_index.core.query_engine import RetrieverQueryEngine from llama_index.core import VectorStoreIndex from llama_index.llms.openai import OpenAI import json loader = PDFReader() docs0 = loader.load_data(file=Path("./data/llama2.pdf")) from llama_index.core import Document doc_text = "\n\n".join([d.get_content() for d in docs0]) docs = [Document(text=doc_text)] from llama_index.core.node_parser import SentenceSplitter from llama_index.core.schema import IndexNode node_parser = SentenceSplitter(chunk_size=1024) base_nodes = node_parser.get_nodes_from_documents(docs) for idx, node in enumerate(base_nodes): node.id_ = f"node-{idx}" from llama_index.core.embeddings import resolve_embed_model embed_model = resolve_embed_model("local:BAAI/bge-small-en") llm = OpenAI(model="gpt-3.5-turbo") base_index = VectorStoreIndex(base_nodes, embed_model=embed_model) base_retriever = base_index.as_retriever(similarity_top_k=2) retrievals = base_retriever.retrieve( "Can you tell me about the key concepts for safety finetuning" ) for n in retrievals: display_source_node(n, source_length=1500) query_engine_base = RetrieverQueryEngine.from_args(base_retriever, llm=llm) response = query_engine_base.query( "Can you tell me about the key concepts for safety finetuning" ) print(str(response)) sub_chunk_sizes = [128, 256, 512] sub_node_parsers = [ SentenceSplitter(chunk_size=c, chunk_overlap=20) for c in sub_chunk_sizes ] all_nodes = [] for base_node in base_nodes: for n in sub_node_parsers: sub_nodes = n.get_nodes_from_documents([base_node]) sub_inodes = [
IndexNode.from_text_node(sn, base_node.node_id)
llama_index.core.schema.IndexNode.from_text_node
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().handlers = [] logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import ( VectorStoreIndex, SimpleDirectoryReader, StorageContext, SimpleKeywordTableIndex, ) from llama_index.core import SummaryIndex from llama_index.core.node_parser import SentenceSplitter from llama_index.llms.openai import OpenAI get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() llm = OpenAI(model="gpt-4") splitter = SentenceSplitter(chunk_size=1024) nodes = splitter.get_nodes_from_documents(documents) storage_context = StorageContext.from_defaults() storage_context.docstore.add_documents(nodes) summary_index = SummaryIndex(nodes, storage_context=storage_context) vector_index = VectorStoreIndex(nodes, storage_context=storage_context) keyword_index = SimpleKeywordTableIndex(nodes, storage_context=storage_context) list_retriever = summary_index.as_retriever() vector_retriever = vector_index.as_retriever() keyword_retriever = keyword_index.as_retriever() from llama_index.core.tools import RetrieverTool list_tool = RetrieverTool.from_defaults( retriever=list_retriever, description=( "Will retrieve all context from Paul Graham's essay on What I Worked" " On. Don't use if the question only requires more specific context." ), ) vector_tool = RetrieverTool.from_defaults( retriever=vector_retriever, description=( "Useful for retrieving specific context from Paul Graham essay on What" " I Worked On." ), ) keyword_tool = RetrieverTool.from_defaults( retriever=keyword_retriever, description=( "Useful for retrieving specific context from Paul Graham essay on What" " I Worked On (using entities mentioned in query)" ), ) from llama_index.core.selectors import LLMSingleSelector, LLMMultiSelector from llama_index.core.selectors import ( PydanticMultiSelector, PydanticSingleSelector, ) from llama_index.core.retrievers import RouterRetriever from llama_index.core.response.notebook_utils import display_source_node retriever = RouterRetriever( selector=PydanticSingleSelector.from_defaults(llm=llm), retriever_tools=[ list_tool, vector_tool, ], ) nodes = retriever.retrieve( "Can you give me all the context regarding the author's life?" ) for node in nodes: display_source_node(node) nodes = retriever.retrieve("What did Paul Graham do after RISD?") for node in nodes: display_source_node(node) retriever = RouterRetriever( selector=
PydanticMultiSelector.from_defaults(llm=llm)
llama_index.core.selectors.PydanticMultiSelector.from_defaults
from llama_index.core import VectorStoreIndex from llama_index.core.objects import ObjectIndex, SimpleObjectNodeMapping obj1 = {"input": "Hey, how's it going"} obj2 = ["a", "b", "c", "d"] obj3 = "llamaindex is an awesome library!" arbitrary_objects = [obj1, obj2, obj3] obj_node_mapping = SimpleObjectNodeMapping.from_objects(arbitrary_objects) nodes = obj_node_mapping.to_nodes(arbitrary_objects) object_index = ObjectIndex( index=VectorStoreIndex(nodes=nodes), object_node_mapping=obj_node_mapping ) object_retriever = object_index.as_retriever(similarity_top_k=1) object_retriever.retrieve("llamaindex") object_index.persist() reloaded_object_index = ObjectIndex.from_persist_dir() reloaded_object_index._object_node_mapping.obj_node_mapping object_index._object_node_mapping.obj_node_mapping from llama_index.core.tools import FunctionTool from llama_index.core import SummaryIndex from llama_index.core.objects import SimpleToolNodeMapping def add(a: int, b: int) -> int: """Add two integers and returns the result integer""" return a + b def multiply(a: int, b: int) -> int: """Multiple two integers and returns the result integer""" return a * b multiply_tool = FunctionTool.from_defaults(fn=multiply) add_tool = FunctionTool.from_defaults(fn=add) object_mapping =
SimpleToolNodeMapping.from_objects([add_tool, multiply_tool])
llama_index.core.objects.SimpleToolNodeMapping.from_objects
get_ipython().run_line_magic('pip', 'install llama-index-llms-ai21') get_ipython().system('pip install llama-index') from llama_index.llms.ai21 import AI21 api_key = "Your api key" resp = AI21(api_key=api_key).complete("Paul Graham is ") print(resp) from llama_index.core.llms import ChatMessage from llama_index.llms.ai21 import AI21 messages = [ ChatMessage(role="user", content="hello there"), ChatMessage( role="assistant", content="Arrrr, matey! How can I help ye today?" ), ChatMessage(role="user", content="What is your name"), ] resp = AI21(api_key=api_key).chat( messages, preamble_override="You are a pirate with a colorful personality" ) print(resp) from llama_index.llms.ai21 import AI21 llm = AI21(model="j2-mid", api_key=api_key) resp = llm.complete("Paul Graham is ") print(resp) from llama_index.llms.ai21 import AI21 llm_good = AI21(api_key=api_key) llm_bad =
AI21(model="j2-mid", api_key="BAD_KEY")
llama_index.llms.ai21.AI21
get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia') get_ipython().run_line_magic('pip', 'install llama-index-finetuning') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-finetuning-callbacks') get_ipython().run_line_magic('pip', 'install llama-index-llms-huggingface') import nest_asyncio nest_asyncio.apply() import os HUGGING_FACE_TOKEN = os.getenv("HUGGING_FACE_TOKEN") OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") get_ipython().system('pip install wikipedia -q') from llama_index.readers.wikipedia import WikipediaReader cities = [ "San Francisco", "Toronto", "New York", "Vancouver", "Montreal", "Tokyo", "Singapore", "Paris", ] documents = WikipediaReader().load_data( pages=[f"History of {x}" for x in cities] ) QUESTION_GEN_PROMPT = ( "You are a Teacher/ Professor. Your task is to setup " "a quiz/examination. Using the provided context, formulate " "a single question that captures an important fact from the " "context. Restrict the question to the context information provided." ) from llama_index.core.evaluation import DatasetGenerator from llama_index.llms.openai import OpenAI gpt_35_llm = OpenAI(model="gpt-3.5-turbo", temperature=0.3) dataset_generator = DatasetGenerator.from_documents( documents, question_gen_query=QUESTION_GEN_PROMPT, llm=gpt_35_llm, num_questions_per_chunk=25, ) qrd = dataset_generator.generate_dataset_from_nodes(num=350) from llama_index.core import VectorStoreIndex from llama_index.core.retrievers import VectorIndexRetriever the_index = VectorStoreIndex.from_documents(documents=documents) the_retriever = VectorIndexRetriever( index=the_index, similarity_top_k=2, ) from llama_index.core.query_engine import RetrieverQueryEngine from llama_index.llms.huggingface import HuggingFaceInferenceAPI llm = HuggingFaceInferenceAPI( model_name="meta-llama/Llama-2-7b-chat-hf", context_window=2048, # to use refine token=HUGGING_FACE_TOKEN, ) query_engine = RetrieverQueryEngine.from_args(retriever=the_retriever, llm=llm) import tqdm train_dataset = [] num_train_questions = int(0.65 * len(qrd.qr_pairs)) for q, a in tqdm.tqdm(qrd.qr_pairs[:num_train_questions]): data_entry = {"question": q, "reference": a} response = query_engine.query(q) response_struct = {} response_struct["model"] = "llama-2" response_struct["text"] = str(response) response_struct["context"] = ( response.source_nodes[0].node.text[:1000] + "..." ) data_entry["response_data"] = response_struct train_dataset.append(data_entry) from llama_index.llms.openai import OpenAI from llama_index.finetuning.callbacks import OpenAIFineTuningHandler from llama_index.core.callbacks import CallbackManager from llama_index.core.evaluation import CorrectnessEvaluator finetuning_handler = OpenAIFineTuningHandler() callback_manager = CallbackManager([finetuning_handler]) gpt_4_llm = OpenAI( temperature=0, model="gpt-4", callback_manager=callback_manager ) gpt4_judge =
CorrectnessEvaluator(llm=gpt_4_llm)
llama_index.core.evaluation.CorrectnessEvaluator
from llama_index.agent import OpenAIAgent import openai openai.api_key = "sk-api-key" from llama_index.tools.gmail.base import GmailToolSpec from llama_index.tools.google_calendar.base import GoogleCalendarToolSpec from llama_index.tools.google_search.base import GoogleSearchToolSpec gmail_tools =
GmailToolSpec()
llama_index.tools.gmail.base.GmailToolSpec
get_ipython().run_line_magic('pip', 'install llama-index') get_ipython().run_line_magic('pip', 'install llama-index-readers-web') get_ipython().run_line_magic('pip', 'install llama-index-packs-arize-phoenix-query-engine') import os from llama_index.packs.arize_phoenix_query_engine import ArizePhoenixQueryEnginePack from llama_index.core.node_parser import SentenceSplitter from llama_index.readers.web import SimpleWebPageReader from tqdm.auto import tqdm os.environ["OPENAI_API_KEY"] = "copy-your-openai-api-key-here" documents =
SimpleWebPageReader()
llama_index.readers.web.SimpleWebPageReader
import openai openai.api_key = "sk-your-key" from llama_index.agent import OpenAIAgent from llama_index.tools.text_to_image.base import TextToImageToolSpec text_to_image_spec = TextToImageToolSpec() tools = text_to_image_spec.to_tool_list() agent =
OpenAIAgent.from_tools(tools, verbose=True)
llama_index.agent.OpenAIAgent.from_tools
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import logging import sys import pandas as pd logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core.evaluation import DatasetGenerator, RelevancyEvaluator from llama_index.core import SimpleDirectoryReader, VectorStoreIndex, Response from llama_index.llms.openai import OpenAI get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") reader = SimpleDirectoryReader("./data/paul_graham/") documents = reader.load_data() data_generator = DatasetGenerator.from_documents(documents) eval_questions = data_generator.generate_questions_from_nodes() eval_questions gpt4 = OpenAI(temperature=0, model="gpt-4") evaluator_gpt4 =
RelevancyEvaluator(llm=gpt4)
llama_index.core.evaluation.RelevancyEvaluator
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-firestore') get_ipython().run_line_magic('pip', 'install llama-index-storage-kvstore-firestore') get_ipython().run_line_magic('pip', 'install llama-index-storage-index-store-firestore') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import SimpleDirectoryReader, StorageContext from llama_index.core import VectorStoreIndex, SimpleKeywordTableIndex from llama_index.core import SummaryIndex from llama_index.core import ComposableGraph from llama_index.llms.openai import OpenAI from llama_index.core.response.notebook_utils import display_response from llama_index.core import Settings get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") reader = SimpleDirectoryReader("./data/paul_graham/") documents = reader.load_data() from llama_index.core.node_parser import SentenceSplitter nodes = SentenceSplitter().get_nodes_from_documents(documents) from llama_index.storage.kvstore.firestore import FirestoreKVStore from llama_index.storage.docstore.firestore import FirestoreDocumentStore from llama_index.storage.index_store.firestore import FirestoreIndexStore kvstore = FirestoreKVStore() storage_context = StorageContext.from_defaults( docstore=FirestoreDocumentStore(kvstore), index_store=FirestoreIndexStore(kvstore), ) storage_context.docstore.add_documents(nodes) summary_index = SummaryIndex(nodes, storage_context=storage_context) vector_index = VectorStoreIndex(nodes, storage_context=storage_context) keyword_table_index = SimpleKeywordTableIndex( nodes, storage_context=storage_context ) len(storage_context.docstore.docs) storage_context.persist() list_id = summary_index.index_id vector_id = vector_index.index_id keyword_id = keyword_table_index.index_id from llama_index.core import load_index_from_storage kvstore = FirestoreKVStore() storage_context = StorageContext.from_defaults( docstore=
FirestoreDocumentStore(kvstore)
llama_index.storage.docstore.firestore.FirestoreDocumentStore
get_ipython().run_line_magic('pip', 'install llama-index-llms-gemini') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-google') get_ipython().run_line_magic('pip', 'install llama-index-indices-managed-google') get_ipython().run_line_magic('pip', 'install llama-index-response-synthesizers-google') get_ipython().run_line_magic('pip', 'install llama-index') get_ipython().run_line_magic('pip', 'install "google-ai-generativelanguage>=0.4,<=1.0"') get_ipython().run_line_magic('pip', 'install google-auth-oauthlib') from google.oauth2 import service_account from llama_index.vector_stores.google import set_google_config credentials = service_account.Credentials.from_service_account_file( "service_account_key.json", scopes=[ "https://www.googleapis.com/auth/generative-language.retriever", ], ) set_google_config(auth_credentials=credentials) get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") import llama_index.core.vector_stores.google.generativeai.genai_extension as genaix from typing import Iterable from random import randrange LLAMA_INDEX_COLAB_CORPUS_ID_PREFIX = f"llama-index-colab" SESSION_CORPUS_ID_PREFIX = ( f"{LLAMA_INDEX_COLAB_CORPUS_ID_PREFIX}-{randrange(1000000)}" ) def corpus_id(num_id: int) -> str: return f"{SESSION_CORPUS_ID_PREFIX}-{num_id}" SESSION_CORPUS_ID = corpus_id(1) def list_corpora() -> Iterable[genaix.Corpus]: client = genaix.build_semantic_retriever() yield from
genaix.list_corpora(client=client)
llama_index.core.vector_stores.google.generativeai.genai_extension.list_corpora
import openai openai.api_key = "sk-xxx" from llama_index.agent.openai import OpenAIAgent from llama_index.tools.brave_search.base import BraveSearchToolSpec brave_tool =
BraveSearchToolSpec(api_key="your-api-key")
llama_index.tools.brave_search.base.BraveSearchToolSpec
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia') from llama_index.core.llama_dataset import ( LabelledRagDataExample, CreatedByType, CreatedBy, ) query = "This is a test query, is it not?" query_by = CreatedBy(type=CreatedByType.AI, model_name="gpt-4") reference_answer = "Yes it is." reference_answer_by = CreatedBy(type=CreatedByType.HUMAN) reference_contexts = ["This is a sample context"] rag_example = LabelledRagDataExample( query=query, query_by=query_by, reference_contexts=reference_contexts, reference_answer=reference_answer, reference_answer_by=reference_answer_by, ) print(rag_example.json()) LabelledRagDataExample.parse_raw(rag_example.json()) rag_example.dict() LabelledRagDataExample.parse_obj(rag_example.dict()) query = "This is a test query, is it so?" reference_answer = "I think yes, it is." reference_contexts = ["This is a second sample context"] rag_example_2 = LabelledRagDataExample( query=query, query_by=query_by, reference_contexts=reference_contexts, reference_answer=reference_answer, reference_answer_by=reference_answer_by, ) from llama_index.core.llama_dataset import LabelledRagDataset rag_dataset =
LabelledRagDataset(examples=[rag_example, rag_example_2])
llama_index.core.llama_dataset.LabelledRagDataset
get_ipython().system('pip install -U llama-index-multi-modal-llms-dashscope') get_ipython().run_line_magic('env', 'DASHSCOPE_API_KEY=YOUR_DASHSCOPE_API_KEY') from llama_index.multi_modal_llms.dashscope import ( DashScopeMultiModal, DashScopeMultiModalModels, ) from llama_index.core.multi_modal_llms.generic_utils import load_image_urls image_urls = [ "https://dashscope.oss-cn-beijing.aliyuncs.com/images/dog_and_girl.jpeg", ] image_documents = load_image_urls(image_urls) dashscope_multi_modal_llm = DashScopeMultiModal( model_name=DashScopeMultiModalModels.QWEN_VL_MAX, ) complete_response = dashscope_multi_modal_llm.complete( prompt="What's in the image?", image_documents=image_documents, ) print(complete_response) multi_image_urls = [ "https://dashscope.oss-cn-beijing.aliyuncs.com/images/dog_and_girl.jpeg", "https://dashscope.oss-cn-beijing.aliyuncs.com/images/panda.jpeg", ] multi_image_documents = load_image_urls(multi_image_urls) complete_response = dashscope_multi_modal_llm.complete( prompt="What animals are in the pictures?", image_documents=multi_image_documents, ) print(complete_response) stream_complete_response = dashscope_multi_modal_llm.stream_complete( prompt="What's in the image?", image_documents=image_documents, ) for r in stream_complete_response: print(r.delta, end="") from llama_index.core.base.llms.types import MessageRole from llama_index.multi_modal_llms.dashscope.utils import ( create_dashscope_multi_modal_chat_message, ) chat_message_user_1 = create_dashscope_multi_modal_chat_message( "What's in the image?", MessageRole.USER, image_documents ) chat_response = dashscope_multi_modal_llm.chat([chat_message_user_1]) print(chat_response.message.content[0]["text"]) chat_message_assistent_1 = create_dashscope_multi_modal_chat_message( chat_response.message.content[0]["text"], MessageRole.ASSISTANT, None ) chat_message_user_2 = create_dashscope_multi_modal_chat_message( "what are they doing?", MessageRole.USER, None ) chat_response = dashscope_multi_modal_llm.chat( [chat_message_user_1, chat_message_assistent_1, chat_message_user_2] ) print(chat_response.message.content[0]["text"]) stream_chat_response = dashscope_multi_modal_llm.stream_chat( [chat_message_user_1, chat_message_assistent_1, chat_message_user_2] ) for r in stream_chat_response: print(r.delta, end="") from llama_index.multi_modal_llms.dashscope.utils import load_local_images local_images = [ "file://THE_FILE_PATH1", "file://THE_FILE_PATH2", ] image_documents =
load_local_images(local_images)
llama_index.multi_modal_llms.dashscope.utils.load_local_images
get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().system('pip install llama-index') import pandas as pd pd.set_option("display.max_rows", None) pd.set_option("display.max_columns", None) pd.set_option("display.width", None) pd.set_option("display.max_colwidth", None) get_ipython().system('wget "https://www.dropbox.com/scl/fi/mlaymdy1ni1ovyeykhhuk/tesla_2021_10k.htm?rlkey=qf9k4zn0ejrbm716j0gg7r802&dl=1" -O tesla_2021_10k.htm') get_ipython().system('wget "https://www.dropbox.com/scl/fi/rkw0u959yb4w8vlzz76sa/tesla_2020_10k.htm?rlkey=tfkdshswpoupav5tqigwz1mp7&dl=1" -O tesla_2020_10k.htm') from llama_index.readers.file import FlatReader from pathlib import Path reader = FlatReader() docs = reader.load_data(Path("./tesla_2020_10k.htm")) from llama_index.core.evaluation import DatasetGenerator, QueryResponseDataset from llama_index.llms.openai import OpenAI from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.readers.file import FlatReader from llama_index.core.node_parser import HTMLNodeParser, SentenceSplitter from llama_index.core.ingestion import IngestionPipeline from pathlib import Path import nest_asyncio nest_asyncio.apply() reader = FlatReader() docs = reader.load_data(Path("./tesla_2020_10k.htm")) pipeline = IngestionPipeline( documents=docs, transformations=[ HTMLNodeParser.from_defaults(), SentenceSplitter(chunk_size=1024, chunk_overlap=200), OpenAIEmbedding(), ], ) eval_nodes = pipeline.run(documents=docs) eval_llm = OpenAI(model="gpt-3.5-turbo") dataset_generator = DatasetGenerator( eval_nodes[:100], llm=eval_llm, show_progress=True, num_questions_per_chunk=3, ) eval_dataset = await dataset_generator.agenerate_dataset_from_nodes(num=100) len(eval_dataset.qr_pairs) eval_dataset.save_json("data/tesla10k_eval_dataset.json") eval_dataset = QueryResponseDataset.from_json( "data/tesla10k_eval_dataset.json" ) eval_qs = eval_dataset.questions qr_pairs = eval_dataset.qr_pairs ref_response_strs = [r for (_, r) in qr_pairs] from llama_index.core.evaluation import ( CorrectnessEvaluator, SemanticSimilarityEvaluator, ) from llama_index.core.evaluation.eval_utils import ( get_responses, get_results_df, ) from llama_index.core.evaluation import BatchEvalRunner evaluator_c = CorrectnessEvaluator(llm=eval_llm) evaluator_s = SemanticSimilarityEvaluator(llm=eval_llm) evaluator_dict = { "correctness": evaluator_c, "semantic_similarity": evaluator_s, } batch_eval_runner = BatchEvalRunner( evaluator_dict, workers=2, show_progress=True ) from llama_index.core import VectorStoreIndex async def run_evals( pipeline, batch_eval_runner, docs, eval_qs, eval_responses_ref ): nodes = pipeline.run(documents=docs) vector_index = VectorStoreIndex(nodes) query_engine = vector_index.as_query_engine() pred_responses = get_responses(eval_qs, query_engine, show_progress=True) eval_results = await batch_eval_runner.aevaluate_responses( eval_qs, responses=pred_responses, reference=eval_responses_ref ) return eval_results from llama_index.core.node_parser import HTMLNodeParser, SentenceSplitter sent_parser_o0 = SentenceSplitter(chunk_size=1024, chunk_overlap=0) sent_parser_o200 = SentenceSplitter(chunk_size=1024, chunk_overlap=200) sent_parser_o500 = SentenceSplitter(chunk_size=1024, chunk_overlap=600) html_parser = HTMLNodeParser.from_defaults() parser_dict = { "sent_parser_o0": sent_parser_o0, "sent_parser_o200": sent_parser_o200, "sent_parser_o500": sent_parser_o500, } from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.core.ingestion import IngestionPipeline pipeline_dict = {} for k, parser in parser_dict.items(): pipeline = IngestionPipeline( documents=docs, transformations=[ html_parser, parser, OpenAIEmbedding(), ], ) pipeline_dict[k] = pipeline eval_results_dict = {} for k, pipeline in pipeline_dict.items(): eval_results = await run_evals( pipeline, batch_eval_runner, docs, eval_qs, ref_response_strs ) eval_results_dict[k] = eval_results import pickle pickle.dump(eval_results_dict, open("eval_results_1.pkl", "wb")) eval_results_list = list(eval_results_dict.items()) results_df = get_results_df( [v for _, v in eval_results_list], [k for k, _ in eval_results_list], ["correctness", "semantic_similarity"], ) display(results_df) for k, pipeline in pipeline_dict.items(): pipeline.cache.persist(f"./cache/{k}.json") from llama_index.core.extractors import ( TitleExtractor, QuestionsAnsweredExtractor, SummaryExtractor, ) from llama_index.core.node_parser import HTMLNodeParser, SentenceSplitter extractor_dict = { "summary": SummaryExtractor(in_place=False), "qa": QuestionsAnsweredExtractor(in_place=False), "default": None, } html_parser = HTMLNodeParser.from_defaults() sent_parser_o200 = SentenceSplitter(chunk_size=1024, chunk_overlap=200) pipeline_dict = {} html_parser = HTMLNodeParser.from_defaults() for k, extractor in extractor_dict.items(): if k == "default": transformations = [ html_parser, sent_parser_o200, OpenAIEmbedding(), ] else: transformations = [ html_parser, sent_parser_o200, extractor, OpenAIEmbedding(), ] pipeline =
IngestionPipeline(transformations=transformations)
llama_index.core.ingestion.IngestionPipeline
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-milvus') get_ipython().system(' pip install llama-index') import logging import sys from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Document from llama_index.vector_stores.milvus import MilvusVectorStore from IPython.display import Markdown, display import textwrap import openai openai.api_key = "sk-" get_ipython().system(" mkdir -p 'data/paul_graham/'") get_ipython().system(" wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() print("Document ID:", documents[0].doc_id) from llama_index.core import StorageContext vector_store = MilvusVectorStore(dim=1536, overwrite=True) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex.from_documents( documents, storage_context=storage_context ) query_engine = index.as_query_engine() response = query_engine.query("What did the author learn?") print(textwrap.fill(str(response), 100)) response = query_engine.query("What was a hard moment for the author?") print(textwrap.fill(str(response), 100)) vector_store = MilvusVectorStore(dim=1536, overwrite=True) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex.from_documents( [
Document(text="The number that is being searched for is ten.")
llama_index.core.Document
get_ipython().run_line_magic('pip', 'install llama-index-readers-database') get_ipython().system('pip install llama-index') import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from __future__ import absolute_import import os os.environ["OPENAI_API_KEY"] = "" from llama_index.readers.database import DatabaseReader from llama_index.core import VectorStoreIndex db = DatabaseReader( scheme="postgresql", # Database Scheme host="localhost", # Database Host port="5432", # Database Port user="postgres", # Database User password="FakeExamplePassword", # Database Password dbname="postgres", # Database Name ) print(type(db)) print(type(db.load_data)) print(type(db.sql_database)) print(type(db.sql_database.from_uri)) print(type(db.sql_database.get_single_table_info)) print(type(db.sql_database.get_table_columns)) print(type(db.sql_database.get_usable_table_names)) print(type(db.sql_database.insert_into_table)) print(type(db.sql_database.run_sql)) print(type(db.sql_database.dialect)) print(type(db.sql_database.engine)) print(type(db.sql_database)) db_from_sql_database = DatabaseReader(sql_database=db.sql_database) print(type(db_from_sql_database)) print(type(db.sql_database.engine)) db_from_engine =
DatabaseReader(engine=db.sql_database.engine)
llama_index.readers.database.DatabaseReader
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-postprocessor-cohere-rerank') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import phoenix as px px.launch_app() import llama_index.core llama_index.core.set_global_handler("arize_phoenix") from llama_index.llms.openai import OpenAI from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.core import Settings Settings.llm = OpenAI(model="gpt-3.5-turbo") Settings.embed_model =
OpenAIEmbedding(model="text-embedding-3-small")
llama_index.embeddings.openai.OpenAIEmbedding
get_ipython().run_line_magic('pip', 'install llama-index-readers-notion') import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) get_ipython().system('pip install llama-index') from llama_index.core import SummaryIndex from llama_index.readers.notion import NotionPageReader from IPython.display import Markdown, display import os integration_token = os.getenv("NOTION_INTEGRATION_TOKEN") page_ids = ["<page_id>"] documents =
NotionPageReader(integration_token=integration_token)
llama_index.readers.notion.NotionPageReader
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-retrievers-bm25') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import os import openai os.environ["OPENAI_API_KEY"] = "sk-..." openai.api_key = os.environ["OPENAI_API_KEY"] import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().handlers = [] logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import ( SimpleDirectoryReader, StorageContext, VectorStoreIndex, ) from llama_index.retrievers.bm25 import BM25Retriever from llama_index.core.retrievers import VectorIndexRetriever from llama_index.core.node_parser import SentenceSplitter from llama_index.llms.openai import OpenAI get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham").load_data() llm = OpenAI(model="gpt-4") splitter = SentenceSplitter(chunk_size=1024) nodes = splitter.get_nodes_from_documents(documents) storage_context = StorageContext.from_defaults() storage_context.docstore.add_documents(nodes) index = VectorStoreIndex( nodes=nodes, storage_context=storage_context, ) retriever = BM25Retriever.from_defaults(nodes=nodes, similarity_top_k=2) from llama_index.core.response.notebook_utils import display_source_node nodes = retriever.retrieve("What happened at Viaweb and Interleaf?") for node in nodes: display_source_node(node) nodes = retriever.retrieve("What did Paul Graham do after RISD?") for node in nodes: display_source_node(node) from llama_index.core.tools import RetrieverTool vector_retriever = VectorIndexRetriever(index) bm25_retriever = BM25Retriever.from_defaults(nodes=nodes, similarity_top_k=2) retriever_tools = [ RetrieverTool.from_defaults( retriever=vector_retriever, description="Useful in most cases", ), RetrieverTool.from_defaults( retriever=bm25_retriever, description="Useful if searching about specific information", ), ] from llama_index.core.retrievers import RouterRetriever retriever = RouterRetriever.from_defaults( retriever_tools=retriever_tools, llm=llm, select_multi=True, ) nodes = retriever.retrieve( "Can you give me all the context regarding the author's life?" ) for node in nodes: display_source_node(node) get_ipython().system('curl https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_Chapter03.pdf --output IPCC_AR6_WGII_Chapter03.pdf') from llama_index.core import ( VectorStoreIndex, StorageContext, SimpleDirectoryReader, Document, ) from llama_index.core.node_parser import SentenceSplitter from llama_index.llms.openai import OpenAI documents = SimpleDirectoryReader( input_files=["IPCC_AR6_WGII_Chapter03.pdf"] ).load_data() llm = OpenAI(model="gpt-3.5-turbo") splitter =
SentenceSplitter(chunk_size=256)
llama_index.core.node_parser.SentenceSplitter
get_ipython().run_line_magic('pip', 'install llama-index-question-gen-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') from IPython.display import Markdown, display def display_prompt_dict(prompts_dict): for k, p in prompts_dict.items(): text_md = f"**Prompt Key**: {k}<br>" f"**Text:** <br>" display(Markdown(text_md)) print(p.get_template()) display(Markdown("<br><br>")) from llama_index.core.selectors import LLMSingleSelector, LLMMultiSelector from llama_index.core.selectors import ( PydanticMultiSelector, PydanticSingleSelector, ) selector = LLMMultiSelector.from_defaults() from llama_index.core.tools import ToolMetadata tool_choices = [ ToolMetadata( name="covid_nyt", description=("This tool contains a NYT news article about COVID-19"), ), ToolMetadata( name="covid_wiki", description=("This tool contains the Wikipedia page about COVID-19"), ), ToolMetadata( name="covid_tesla", description=("This tool contains the Wikipedia page about apples"), ), ] display_prompt_dict(selector.get_prompts()) selector_result = selector.select( tool_choices, query="Tell me more about COVID-19" ) selector_result.selections from llama_index.core import PromptTemplate from llama_index.llms.openai import OpenAI query_gen_str = """\ You are a helpful assistant that generates multiple search queries based on a \ single input query. Generate {num_queries} search queries, one on each line, \ related to the following input query: Query: {query} Queries: """ query_gen_prompt = PromptTemplate(query_gen_str) llm = OpenAI(model="gpt-3.5-turbo") def generate_queries(query: str, llm, num_queries: int = 4): response = llm.predict( query_gen_prompt, num_queries=num_queries, query=query ) queries = response.split("\n") queries_str = "\n".join(queries) print(f"Generated queries:\n{queries_str}") return queries queries = generate_queries("What happened at Interleaf and Viaweb?", llm) queries from llama_index.core.indices.query.query_transform import HyDEQueryTransform from llama_index.llms.openai import OpenAI hyde = HyDEQueryTransform(include_original=True) llm = OpenAI(model="gpt-3.5-turbo") query_bundle = hyde.run("What is Bel?") new_query.custom_embedding_strs from llama_index.core.question_gen import LLMQuestionGenerator from llama_index.question_gen.openai import OpenAIQuestionGenerator from llama_index.llms.openai import OpenAI llm = OpenAI() question_gen = OpenAIQuestionGenerator.from_defaults(llm=llm) display_prompt_dict(question_gen.get_prompts()) from llama_index.core.tools import ToolMetadata tool_choices = [ ToolMetadata( name="uber_2021_10k", description=( "Provides information about Uber financials for year 2021" ), ), ToolMetadata( name="lyft_2021_10k", description=( "Provides information about Lyft financials for year 2021" ), ), ] from llama_index.core import QueryBundle query_str = "Compare and contrast Uber and Lyft" choices = question_gen.generate(tool_choices, QueryBundle(query_str=query_str)) choices from llama_index.core.agent import ReActChatFormatter from llama_index.core.agent.react.output_parser import ReActOutputParser from llama_index.core.tools import FunctionTool from llama_index.core.llms import ChatMessage def execute_sql(sql: str) -> str: """Given a SQL input string, execute it.""" return f"Executed {sql}" def add(a: int, b: int) -> int: """Add two numbers.""" return a + b tool1 = FunctionTool.from_defaults(fn=execute_sql) tool2 = FunctionTool.from_defaults(fn=add) tools = [tool1, tool2] chat_formatter = ReActChatFormatter() output_parser =
ReActOutputParser()
llama_index.core.agent.react.output_parser.ReActOutputParser
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-mongodb') get_ipython().run_line_magic('pip', 'install llama-index-storage-index-store-mongodb') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import logging import sys import os logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import SimpleDirectoryReader, StorageContext from llama_index.core import VectorStoreIndex, SimpleKeywordTableIndex from llama_index.core import SummaryIndex from llama_index.core import ComposableGraph from llama_index.llms.openai import OpenAI from llama_index.core.response.notebook_utils import display_response from llama_index.core import Settings get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") reader = SimpleDirectoryReader("./data/paul_graham/") documents = reader.load_data() from llama_index.core.node_parser import SentenceSplitter nodes = SentenceSplitter().get_nodes_from_documents(documents) MONGO_URI = os.environ["MONGO_URI"] from llama_index.storage.docstore.mongodb import MongoDocumentStore from llama_index.storage.index_store.mongodb import MongoIndexStore storage_context = StorageContext.from_defaults( docstore=MongoDocumentStore.from_uri(uri=MONGO_URI), index_store=MongoIndexStore.from_uri(uri=MONGO_URI), ) storage_context.docstore.add_documents(nodes) summary_index = SummaryIndex(nodes, storage_context=storage_context) vector_index =
VectorStoreIndex(nodes, storage_context=storage_context)
llama_index.core.VectorStoreIndex
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-hub-llama-packs-tables-chain-of-table-base') get_ipython().system('wget "https://github.com/ppasupat/WikiTableQuestions/releases/download/v1.0.2/WikiTableQuestions-1.0.2-compact.zip" -O data.zip') get_ipython().system('unzip data.zip') import pandas as pd df = pd.read_csv("./WikiTableQuestions/csv/200-csv/3.csv") df from llama_index.packs.tables.chain_of_table.base import ( ChainOfTableQueryEngine, serialize_table, ) from llama_index.core.llama_pack import download_llama_pack download_llama_pack( "ChainOfTablePack", "./chain_of_table_pack", skip_load=True, ) from llama_index.llms.openai import OpenAI llm = OpenAI(model="gpt-4-1106-preview") import phoenix as px import llama_index.core px.launch_app() llama_index.core.set_global_handler("arize_phoenix") import pandas as pd df = pd.read_csv("~/Downloads/WikiTableQuestions/csv/200-csv/11.csv") df query_engine =
ChainOfTableQueryEngine(df, llm=llm, verbose=True)
llama_index.packs.tables.chain_of_table.base.ChainOfTableQueryEngine
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') import nest_asyncio nest_asyncio.apply() get_ipython().system('mkdir data && wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') get_ipython().system('pip install llama_hub') from pathlib import Path from llama_index.readers.file import PDFReader from llama_index.readers.file import UnstructuredReader from llama_index.readers.file import PyMuPDFReader loader = PDFReader() docs0 = loader.load_data(file=Path("./data/llama2.pdf")) from llama_index.core import Document doc_text = "\n\n".join([d.get_content() for d in docs0]) docs = [Document(text=doc_text)] from llama_index.core.node_parser import SentenceSplitter from llama_index.core.schema import IndexNode node_parser = SentenceSplitter(chunk_size=1024) base_nodes = node_parser.get_nodes_from_documents(docs) from llama_index.core import VectorStoreIndex from llama_index.llms.openai import OpenAI from llama_index.core import Settings Settings.llm = OpenAI(model="gpt-3.5-turbo") index = VectorStoreIndex(base_nodes) query_engine = index.as_query_engine(similarity_top_k=2) from llama_index.core.evaluation import DatasetGenerator, QueryResponseDataset from llama_index.core.node_parser import SimpleNodeParser dataset_generator = DatasetGenerator( base_nodes[:20], llm=OpenAI(model="gpt-4"), show_progress=True, num_questions_per_chunk=3, ) eval_dataset = await dataset_generator.agenerate_dataset_from_nodes(num=60) eval_dataset.save_json("data/llama2_eval_qr_dataset.json") eval_dataset = QueryResponseDataset.from_json( "data/llama2_eval_qr_dataset.json" ) import random full_qr_pairs = eval_dataset.qr_pairs num_exemplars = 2 num_eval = 40 exemplar_qr_pairs = random.sample(full_qr_pairs, num_exemplars) eval_qr_pairs = random.sample(full_qr_pairs, num_eval) len(exemplar_qr_pairs) from llama_index.core.evaluation.eval_utils import get_responses from llama_index.core.evaluation import CorrectnessEvaluator, BatchEvalRunner evaluator_c = CorrectnessEvaluator(llm=OpenAI(model="gpt-3.5-turbo")) evaluator_dict = { "correctness": evaluator_c, } batch_runner = BatchEvalRunner(evaluator_dict, workers=2, show_progress=True) async def get_correctness(query_engine, eval_qa_pairs, batch_runner): eval_qs = [q for q, _ in eval_qa_pairs] eval_answers = [a for _, a in eval_qa_pairs] pred_responses =
get_responses(eval_qs, query_engine, show_progress=True)
llama_index.core.evaluation.eval_utils.get_responses
get_ipython().system('pip install llama-index') import os os.environ["OPENAI_API_KEY"] = "sk-..." import nest_asyncio nest_asyncio.apply() from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.core.tools import QueryEngineTool, ToolMetadata from llama_index.core.query_engine import SubQuestionQueryEngine from llama_index.core.callbacks import CallbackManager, LlamaDebugHandler from llama_index.core import Settings llama_debug =
LlamaDebugHandler(print_trace_on_end=True)
llama_index.core.callbacks.LlamaDebugHandler
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-retrievers-bm25') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import os import openai os.environ["OPENAI_API_KEY"] = "sk-..." openai.api_key = os.environ["OPENAI_API_KEY"] import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().handlers = [] logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import ( SimpleDirectoryReader, StorageContext, VectorStoreIndex, ) from llama_index.retrievers.bm25 import BM25Retriever from llama_index.core.retrievers import VectorIndexRetriever from llama_index.core.node_parser import SentenceSplitter from llama_index.llms.openai import OpenAI get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham").load_data() llm = OpenAI(model="gpt-4") splitter = SentenceSplitter(chunk_size=1024) nodes = splitter.get_nodes_from_documents(documents) storage_context = StorageContext.from_defaults() storage_context.docstore.add_documents(nodes) index = VectorStoreIndex( nodes=nodes, storage_context=storage_context, ) retriever = BM25Retriever.from_defaults(nodes=nodes, similarity_top_k=2) from llama_index.core.response.notebook_utils import display_source_node nodes = retriever.retrieve("What happened at Viaweb and Interleaf?") for node in nodes: display_source_node(node) nodes = retriever.retrieve("What did Paul Graham do after RISD?") for node in nodes:
display_source_node(node)
llama_index.core.response.notebook_utils.display_source_node
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-chroma') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-huggingface') get_ipython().system('pip install llama-index') from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.vector_stores.chroma import ChromaVectorStore from llama_index.core import StorageContext from llama_index.embeddings.huggingface import HuggingFaceEmbedding from IPython.display import Markdown, display import chromadb import os import getpass os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:") import openai openai.api_key = os.environ["OPENAI_API_KEY"] get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") chroma_client = chromadb.EphemeralClient() chroma_collection = chroma_client.create_collection("quickstart") embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-base-en-v1.5") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() vector_store =
ChromaVectorStore(chroma_collection=chroma_collection)
llama_index.vector_stores.chroma.ChromaVectorStore
get_ipython().run_line_magic('pip', 'install llama-index-readers-chroma') get_ipython().system('pip install llama-index') import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.readers.chroma import ChromaReader reader = ChromaReader( collection_name="chroma_collection", persist_directory="examples/data_connectors/chroma_collection", ) query_vector = [n1, n2, n3, ...] documents = reader.load_data( collection_name="demo", query_vector=query_vector, limit=5 ) from llama_index.core import SummaryIndex index =
SummaryIndex.from_documents(documents)
llama_index.core.SummaryIndex.from_documents
get_ipython().run_line_magic('pip', 'install llama-index-llms-gemini') get_ipython().system('pip install -q llama-index google-generativeai') get_ipython().run_line_magic('env', 'GOOGLE_API_KEY=...') import os GOOGLE_API_KEY = "" # add your GOOGLE API key here os.environ["GOOGLE_API_KEY"] = GOOGLE_API_KEY from llama_index.llms.gemini import Gemini resp = Gemini().complete("Write a poem about a magic backpack") print(resp) from llama_index.core.llms import ChatMessage from llama_index.llms.gemini import Gemini messages = [ ChatMessage(role="user", content="Hello friend!"), ChatMessage(role="assistant", content="Yarr what is shakin' matey?"), ChatMessage( role="user", content="Help me decide what to have for dinner." ), ] resp = Gemini().chat(messages) print(resp) from llama_index.llms.gemini import Gemini llm =
Gemini()
llama_index.llms.gemini.Gemini
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import os import openai os.environ["OPENAI_API_KEY"] = "sk-..." openai.api_key = os.environ["OPENAI_API_KEY"] import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.WARNING) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) import nest_asyncio nest_asyncio.apply() from llama_index.core import SimpleDirectoryReader, get_response_synthesizer from llama_index.core import DocumentSummaryIndex from llama_index.llms.openai import OpenAI from llama_index.core.node_parser import SentenceSplitter wiki_titles = ["Toronto", "Seattle", "Chicago", "Boston", "Houston"] from pathlib import Path import requests for title in wiki_titles: response = requests.get( "https://en.wikipedia.org/w/api.php", params={ "action": "query", "format": "json", "titles": title, "prop": "extracts", "explaintext": True, }, ).json() page = next(iter(response["query"]["pages"].values())) wiki_text = page["extract"] data_path = Path("data") if not data_path.exists(): Path.mkdir(data_path) with open(data_path / f"{title}.txt", "w") as fp: fp.write(wiki_text) city_docs = [] for wiki_title in wiki_titles: docs = SimpleDirectoryReader( input_files=[f"data/{wiki_title}.txt"] ).load_data() docs[0].doc_id = wiki_title city_docs.extend(docs) chatgpt = OpenAI(temperature=0, model="gpt-3.5-turbo") splitter = SentenceSplitter(chunk_size=1024) response_synthesizer = get_response_synthesizer( response_mode="tree_summarize", use_async=True ) doc_summary_index = DocumentSummaryIndex.from_documents( city_docs, llm=chatgpt, transformations=[splitter], response_synthesizer=response_synthesizer, show_progress=True, ) doc_summary_index.get_document_summary("Boston") doc_summary_index.storage_context.persist("index") from llama_index.core import load_index_from_storage from llama_index.core import StorageContext storage_context = StorageContext.from_defaults(persist_dir="index") doc_summary_index = load_index_from_storage(storage_context) query_engine = doc_summary_index.as_query_engine( response_mode="tree_summarize", use_async=True ) response = query_engine.query("What are the sports teams in Toronto?") print(response) from llama_index.core.indices.document_summary import ( DocumentSummaryIndexLLMRetriever, ) retriever = DocumentSummaryIndexLLMRetriever( doc_summary_index, ) retrieved_nodes = retriever.retrieve("What are the sports teams in Toronto?") print(len(retrieved_nodes)) print(retrieved_nodes[0].score) print(retrieved_nodes[0].node.get_text()) from llama_index.core.query_engine import RetrieverQueryEngine response_synthesizer = get_response_synthesizer(response_mode="tree_summarize") query_engine = RetrieverQueryEngine( retriever=retriever, response_synthesizer=response_synthesizer, ) response = query_engine.query("What are the sports teams in Toronto?") print(response) from llama_index.core.indices.document_summary import ( DocumentSummaryIndexEmbeddingRetriever, ) retriever = DocumentSummaryIndexEmbeddingRetriever( doc_summary_index, ) retrieved_nodes = retriever.retrieve("What are the sports teams in Toronto?") len(retrieved_nodes) print(retrieved_nodes[0].node.get_text()) from llama_index.core.query_engine import RetrieverQueryEngine response_synthesizer =
get_response_synthesizer(response_mode="tree_summarize")
llama_index.core.get_response_synthesizer
from llama_index.agent import OpenAIAgent import openai openai.api_key = "sk-your-key" from llama_index.tools.wikipedia.base import WikipediaToolSpec from llama_index.tools.tool_spec.load_and_search.base import LoadAndSearchToolSpec wiki_spec = WikipediaToolSpec() tool = wiki_spec.to_tool_list()[1] agent = OpenAIAgent.from_tools(
LoadAndSearchToolSpec.from_defaults(tool)
llama_index.tools.tool_spec.load_and_search.base.LoadAndSearchToolSpec.from_defaults
get_ipython().run_line_magic('pip', 'install llama-index-llms-gemini') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-google') get_ipython().run_line_magic('pip', 'install llama-index-indices-managed-google') get_ipython().run_line_magic('pip', 'install llama-index-response-synthesizers-google') get_ipython().run_line_magic('pip', 'install llama-index') get_ipython().run_line_magic('pip', 'install "google-ai-generativelanguage>=0.4,<=1.0"') get_ipython().run_line_magic('pip', 'install google-auth-oauthlib') from google.oauth2 import service_account from llama_index.vector_stores.google import set_google_config credentials = service_account.Credentials.from_service_account_file( "service_account_key.json", scopes=[ "https://www.googleapis.com/auth/generative-language.retriever", ], ) set_google_config(auth_credentials=credentials) get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") import llama_index.core.vector_stores.google.generativeai.genai_extension as genaix from typing import Iterable from random import randrange LLAMA_INDEX_COLAB_CORPUS_ID_PREFIX = f"llama-index-colab" SESSION_CORPUS_ID_PREFIX = ( f"{LLAMA_INDEX_COLAB_CORPUS_ID_PREFIX}-{randrange(1000000)}" ) def corpus_id(num_id: int) -> str: return f"{SESSION_CORPUS_ID_PREFIX}-{num_id}" SESSION_CORPUS_ID = corpus_id(1) def list_corpora() -> Iterable[genaix.Corpus]: client = genaix.build_semantic_retriever() yield from genaix.list_corpora(client=client) def delete_corpus(*, corpus_id: str) -> None: client =
genaix.build_semantic_retriever()
llama_index.core.vector_stores.google.generativeai.genai_extension.build_semantic_retriever
import openai openai.api_key = "sk-your-api-key" from llama_index.agent import OpenAIAgent import requests import yaml f = requests.get( "https://raw.githubusercontent.com/APIs-guru/openapi-directory/main/APIs/openai.com/1.2.0/openapi.yaml" ).text open_api_spec = yaml.safe_load(f) from llama_index.tools.openapi.base import OpenAPIToolSpec from llama_index.tools.requests.base import RequestsToolSpec from llama_index.tools.tool_spec.load_and_search.base import LoadAndSearchToolSpec open_spec = OpenAPIToolSpec(open_api_spec) open_spec =
OpenAPIToolSpec( url="https://raw.githubusercontent.com/APIs-guru/openapi-directory/main/APIs/openai.com/1.2.0/openapi.yaml" )
llama_index.tools.openapi.base.OpenAPIToolSpec
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import os os.environ["OPENAI_API_KEY"] = "sk-..." from llama_index.llms.openai import OpenAI from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.core import Settings Settings.llm = OpenAI(model="gpt-3.5-turbo-1106", temperature=0.2) Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small") from llama_index.core import SimpleDirectoryReader documents = SimpleDirectoryReader("../data/paul_graham").load_data() from llama_index.core import Settings Settings.chunk_size = 1024 nodes = Settings.node_parser.get_nodes_from_documents(documents) from llama_index.core import StorageContext storage_context = StorageContext.from_defaults() storage_context.docstore.add_documents(nodes) from llama_index.core import SummaryIndex from llama_index.core import VectorStoreIndex summary_index = SummaryIndex(nodes, storage_context=storage_context) vector_index = VectorStoreIndex(nodes, storage_context=storage_context) list_query_engine = summary_index.as_query_engine( response_mode="tree_summarize", use_async=True, ) vector_query_engine = vector_index.as_query_engine() from llama_index.core.tools import QueryEngineTool list_tool = QueryEngineTool.from_defaults( query_engine=list_query_engine, description=( "Useful for summarization questions related to Paul Graham eassy on" " What I Worked On." ), ) vector_tool = QueryEngineTool.from_defaults( query_engine=vector_query_engine, description=( "Useful for retrieving specific context from Paul Graham essay on What" " I Worked On." ), ) from llama_index.core.query_engine import RouterQueryEngine from llama_index.core.selectors import LLMSingleSelector, LLMMultiSelector from llama_index.core.selectors import ( PydanticMultiSelector, PydanticSingleSelector, ) query_engine = RouterQueryEngine( selector=PydanticSingleSelector.from_defaults(), query_engine_tools=[ list_tool, vector_tool, ], ) response = query_engine.query("What is the summary of the document?") print(str(response)) response = query_engine.query("What did Paul Graham do after RICS?") print(str(response)) query_engine = RouterQueryEngine( selector=LLMSingleSelector.from_defaults(), query_engine_tools=[ list_tool, vector_tool, ], ) response = query_engine.query("What is the summary of the document?") print(str(response)) response = query_engine.query("What did Paul Graham do after RICS?") print(str(response)) print(str(response.metadata["selector_result"])) from llama_index.core import SimpleKeywordTableIndex keyword_index = SimpleKeywordTableIndex(nodes, storage_context=storage_context) keyword_tool = QueryEngineTool.from_defaults( query_engine=vector_query_engine, description=( "Useful for retrieving specific context using keywords from Paul" " Graham essay on What I Worked On." ), ) query_engine = RouterQueryEngine( selector=
PydanticMultiSelector.from_defaults()
llama_index.core.selectors.PydanticMultiSelector.from_defaults
import openai openai.api_key = "sk-your-key" from llama_index.agent import OpenAIAgent from llama_index.tools.azure_cv.base import AzureCVToolSpec cv_tool =
AzureCVToolSpec(api_key="your-key", resource="your-resource")
llama_index.tools.azure_cv.base.AzureCVToolSpec
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') from llama_index.agent.openai import OpenAIAgent from llama_index.llms.openai import OpenAI from llama_index.core.tools import BaseTool, FunctionTool def multiply(a: int, b: int) -> int: """Multiple two integers and returns the result integer""" return a * b multiply_tool = FunctionTool.from_defaults(fn=multiply) def add(a: int, b: int) -> int: """Add two integers and returns the result integer""" return a + b add_tool = FunctionTool.from_defaults(fn=add) llm = OpenAI(model="gpt-3.5-turbo-1106") agent = OpenAIAgent.from_tools( [multiply_tool, add_tool], llm=llm, verbose=True ) response = agent.chat("What is (121 * 3) + 42?") print(str(response)) response = agent.stream_chat("What is (121 * 3) + 42?") import nest_asyncio nest_asyncio.apply() response = await agent.achat("What is (121 * 3) + 42?") print(str(response)) response = await agent.astream_chat("What is (121 * 3) + 42?") response_gen = response.response_gen async for token in response.async_response_gen(): print(token, end="") import json def get_current_weather(location, unit="fahrenheit"): """Get the current weather in a given location""" if "tokyo" in location.lower(): return json.dumps( {"location": location, "temperature": "10", "unit": "celsius"} ) elif "san francisco" in location.lower(): return json.dumps( {"location": location, "temperature": "72", "unit": "fahrenheit"} ) else: return json.dumps( {"location": location, "temperature": "22", "unit": "celsius"} ) weather_tool = FunctionTool.from_defaults(fn=get_current_weather) llm = OpenAI(model="gpt-3.5-turbo-1106") agent = OpenAIAgent.from_tools([weather_tool], llm=llm, verbose=True) response = agent.chat( "What's the weather like in San Francisco, Tokyo, and Paris?" ) llm = OpenAI(model="gpt-3.5-turbo-0613") agent =
OpenAIAgent.from_tools([weather_tool], llm=llm, verbose=True)
llama_index.agent.openai.OpenAIAgent.from_tools
get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') from llama_index import download_loader from base import DocugamiReader docset_id = "ecxqpipcoe2p" document_ids = ["43rj0ds7s0ur", "bpc1vibyeke2"] loader = DocugamiReader() documents = loader.load_data(docset_id=docset_id, document_ids=document_ids) from llama_index import VectorStoreIndex docset_id = "wh2kned25uqm" documents = loader.load_data(docset_id=docset_id) for d in documents: stripped_metadata = d.metadata.copy() for key in d.metadata: if key not in ["name", "xpath", "id", "structure"]: del stripped_metadata[key] d.metadata = stripped_metadata documents index = VectorStoreIndex.from_documents(documents) query_engine = index.as_query_engine(similarity_top_k=5) response = query_engine.query("What can tenants do with signage on their properties?") print(response.response) for node in response.source_nodes: print(node) response = query_engine.query( "What is the security deposit for the property owned by Birch Street?" ) print(response.response) # the correct answer should be $78,000 for node in response.source_nodes: print(node.node.extra_info["name"]) print(node.node.text) docset_id = "wh2kned25uqm" documents = loader.load_data(docset_id=docset_id) documents[0].metadata index =
VectorStoreIndex.from_documents(documents)
llama_index.VectorStoreIndex.from_documents
get_ipython().run_line_magic('pip', 'install llama-index-postprocessor-longllmlingua') get_ipython().system('pip install llmlingua llama-index') import openai openai.api_key = "<insert_openai_key>" get_ipython().system('wget "https://www.dropbox.com/s/f6bmb19xdg0xedm/paul_graham_essay.txt?dl=1" -O paul_graham_essay.txt') from llama_index.core import ( VectorStoreIndex, SimpleDirectoryReader, load_index_from_storage, StorageContext, ) documents = SimpleDirectoryReader( input_files=["paul_graham_essay.txt"] ).load_data() index = VectorStoreIndex.from_documents(documents) retriever = index.as_retriever(similarity_top_k=2) query_str = "Where did the author go for art school?" results = retriever.retrieve(query_str) print(results) results from llama_index.core.query_engine import RetrieverQueryEngine from llama_index.core.response_synthesizers import CompactAndRefine from llama_index.postprocessor.longllmlingua import LongLLMLinguaPostprocessor node_postprocessor = LongLLMLinguaPostprocessor( instruction_str="Given the context, please answer the final question", target_token=300, rank_method="longllmlingua", additional_compress_kwargs={ "condition_compare": True, "condition_in_question": "after", "context_budget": "+100", "reorder_context": "sort", # enable document reorder }, ) retrieved_nodes = retriever.retrieve(query_str) synthesizer =
CompactAndRefine()
llama_index.core.response_synthesizers.CompactAndRefine
get_ipython().run_line_magic('pip', 'install llama-index-packs-node-parser-semantic-chunking') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-hub-llama-packs-node-parser-semantic-chunking-base') from llama_index.core import SimpleDirectoryReader get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'pg_essay.txt'") documents = SimpleDirectoryReader(input_files=["pg_essay.txt"]).load_data() from llama_index.packs.node_parser_semantic_chunking.base import SemanticChunker from llama_index.core.llama_pack import download_llama_pack download_llama_pack( "SemanticChunkingQueryEnginePack", "./semantic_chunking_pack", skip_load=True, ) from semantic_chunking_pack.base import SemanticChunker from llama_index.core.node_parser import SentenceSplitter from llama_index.embeddings.openai import OpenAIEmbedding embed_model = OpenAIEmbedding() splitter = SemanticChunker( buffer_size=1, breakpoint_percentile_threshold=95, embed_model=embed_model ) base_splitter = SentenceSplitter(chunk_size=512) nodes = splitter.get_nodes_from_documents(documents) print(nodes[1].get_content()) print(nodes[2].get_content()) print(nodes[3].get_content()) base_nodes = base_splitter.get_nodes_from_documents(documents) print(base_nodes[2].get_content()) from llama_index.core import VectorStoreIndex from llama_index.core.response.notebook_utils import display_source_node vector_index = VectorStoreIndex(nodes) query_engine = vector_index.as_query_engine() base_vector_index = VectorStoreIndex(base_nodes) base_query_engine = base_vector_index.as_query_engine() response = query_engine.query( "Tell me about the author's programming journey through childhood to college" ) print(str(response)) for n in response.source_nodes: display_source_node(n, source_length=20000) base_response = base_query_engine.query( "Tell me about the author's programming journey through childhood to college" ) print(str(base_response)) for n in base_response.source_nodes: display_source_node(n, source_length=20000) response = query_engine.query("Tell me about the author's experience in YC") print(str(response)) base_response = base_query_engine.query("Tell me about the author's experience in YC") print(str(base_response)) from llama_index.packs.node_parser_semantic_chunking import ( SemanticChunkingQueryEnginePack, ) from llama_index.core.llama_pack import download_llama_pack pack =
SemanticChunkingQueryEnginePack(documents)
llama_index.packs.node_parser_semantic_chunking.SemanticChunkingQueryEnginePack
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-supabase') get_ipython().system('pip install llama-index') from llama_index.agent.openai import OpenAIAssistantAgent agent = OpenAIAssistantAgent.from_new( name="Math Tutor", instructions="You are a personal math tutor. Write and run code to answer math questions.", openai_tools=[{"type": "code_interpreter"}], instructions_prefix="Please address the user as Jane Doe. The user has a premium account.", ) agent.thread_id response = agent.chat( "I need to solve the equation `3x + 11 = 14`. Can you help me?" ) print(str(response)) from llama_index.agent.openai import OpenAIAssistantAgent agent = OpenAIAssistantAgent.from_new( name="SEC Analyst", instructions="You are a QA assistant designed to analyze sec filings.", openai_tools=[{"type": "retrieval"}], instructions_prefix="Please address the user as Jerry.", files=["data/10k/lyft_2021.pdf"], verbose=True, ) response = agent.chat("What was Lyft's revenue growth in 2021?") print(str(response)) from llama_index.agent.openai import OpenAIAssistantAgent from llama_index.core import ( SimpleDirectoryReader, VectorStoreIndex, StorageContext, load_index_from_storage, ) from llama_index.core.tools import QueryEngineTool, ToolMetadata try: storage_context = StorageContext.from_defaults( persist_dir="./storage/lyft" ) lyft_index = load_index_from_storage(storage_context) storage_context = StorageContext.from_defaults( persist_dir="./storage/uber" ) uber_index = load_index_from_storage(storage_context) index_loaded = True except: index_loaded = False get_ipython().system("mkdir -p 'data/10k/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10k/uber_2021.pdf' -O 'data/10k/uber_2021.pdf'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10k/lyft_2021.pdf' -O 'data/10k/lyft_2021.pdf'") if not index_loaded: lyft_docs = SimpleDirectoryReader( input_files=["./data/10k/lyft_2021.pdf"] ).load_data() uber_docs = SimpleDirectoryReader( input_files=["./data/10k/uber_2021.pdf"] ).load_data() lyft_index = VectorStoreIndex.from_documents(lyft_docs) uber_index = VectorStoreIndex.from_documents(uber_docs) lyft_index.storage_context.persist(persist_dir="./storage/lyft") uber_index.storage_context.persist(persist_dir="./storage/uber") lyft_engine = lyft_index.as_query_engine(similarity_top_k=3) uber_engine = uber_index.as_query_engine(similarity_top_k=3) query_engine_tools = [ QueryEngineTool( query_engine=lyft_engine, metadata=ToolMetadata( name="lyft_10k", description=( "Provides information about Lyft financials for year 2021. " "Use a detailed plain text question as input to the tool." ), ), ), QueryEngineTool( query_engine=uber_engine, metadata=ToolMetadata( name="uber_10k", description=( "Provides information about Uber financials for year 2021. " "Use a detailed plain text question as input to the tool." ), ), ), ] agent = OpenAIAssistantAgent.from_new( name="SEC Analyst", instructions="You are a QA assistant designed to analyze sec filings.", tools=query_engine_tools, instructions_prefix="Please address the user as Jerry.", verbose=True, run_retrieve_sleep_time=1.0, ) response = agent.chat("What was Lyft's revenue growth in 2021?") from llama_index.agent.openai import OpenAIAssistantAgent from llama_index.core import ( SimpleDirectoryReader, VectorStoreIndex, StorageContext, ) from llama_index.vector_stores.supabase import SupabaseVectorStore from llama_index.core.tools import QueryEngineTool, ToolMetadata get_ipython().system("mkdir -p 'data/10k/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10k/uber_2021.pdf' -O 'data/10k/uber_2021.pdf'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10k/lyft_2021.pdf' -O 'data/10k/lyft_2021.pdf'") reader = SimpleDirectoryReader(input_files=["./data/10k/lyft_2021.pdf"]) docs = reader.load_data() for doc in docs: doc.id_ = "lyft_docs" vector_store =
SupabaseVectorStore( postgres_connection_string=( "postgresql://<user>:<password>@<host>:<port>/<db_name>" )
llama_index.vector_stores.supabase.SupabaseVectorStore
get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().system('pip install llama-index') import pandas as pd pd.set_option("display.max_rows", None) pd.set_option("display.max_columns", None) pd.set_option("display.width", None) pd.set_option("display.max_colwidth", None) get_ipython().system('wget "https://www.dropbox.com/scl/fi/mlaymdy1ni1ovyeykhhuk/tesla_2021_10k.htm?rlkey=qf9k4zn0ejrbm716j0gg7r802&dl=1" -O tesla_2021_10k.htm') get_ipython().system('wget "https://www.dropbox.com/scl/fi/rkw0u959yb4w8vlzz76sa/tesla_2020_10k.htm?rlkey=tfkdshswpoupav5tqigwz1mp7&dl=1" -O tesla_2020_10k.htm') from llama_index.readers.file import FlatReader from pathlib import Path reader =
FlatReader()
llama_index.readers.file.FlatReader
from llama_index import VectorStoreIndex, SimpleDirectoryReader documents = SimpleDirectoryReader( "../../examples/data/paul_graham" ).load_data() index = VectorStoreIndex.from_documents(documents) import pinecone from llama_index import VectorStoreIndex, SimpleDirectoryReader, StorageContext from llama_index.vector_stores import PineconeVectorStore pinecone.init(api_key="<api_key>", environment="<environment>") pinecone.create_index( "quickstart", dimension=1536, metric="euclidean", pod_type="p1" ) storage_context = StorageContext.from_defaults( vector_store=PineconeVectorStore(pinecone.Index("quickstart")) ) documents = SimpleDirectoryReader( "../../examples/data/paul_graham" ).load_data() index = VectorStoreIndex.from_documents( documents, storage_context=storage_context ) vector_store = PineconeVectorStore(pinecone.Index("quickstart")) index = VectorStoreIndex.from_vector_store(vector_store=vector_store) query_engine = index.as_query_engine() response = query_engine.query("What did the author do growing up?") from llama_index.vector_stores.types import ExactMatchFilter, MetadataFilters query_engine = index.as_query_engine( similarity_top_k=3, vector_store_query_mode="default", filters=MetadataFilters( filters=[
ExactMatchFilter(key="name", value="paul graham")
llama_index.vector_stores.types.ExactMatchFilter
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') get_ipython().run_line_magic('env', 'OPENAI_API_KEY=') get_ipython().run_line_magic('env', 'BRAINTRUST_API_KEY=') get_ipython().run_line_magic('env', 'TOKENIZERS_PARALLELISM=true # This is needed to avoid a warning message from Chroma') get_ipython().run_line_magic('pip', 'install -U llama_hub llama_index braintrust autoevals pypdf pillow transformers torch torchvision') get_ipython().system('mkdir data') get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') from pathlib import Path from llama_index.readers.file import PDFReader from llama_index.core.response.notebook_utils import display_source_node from llama_index.core.retrievers import RecursiveRetriever from llama_index.core.query_engine import RetrieverQueryEngine from llama_index.core import VectorStoreIndex from llama_index.llms.openai import OpenAI import json loader = PDFReader() docs0 = loader.load_data(file=Path("./data/llama2.pdf")) from llama_index.core import Document doc_text = "\n\n".join([d.get_content() for d in docs0]) docs = [Document(text=doc_text)] from llama_index.core.node_parser import SentenceSplitter from llama_index.core.schema import IndexNode node_parser = SentenceSplitter(chunk_size=1024) base_nodes = node_parser.get_nodes_from_documents(docs) for idx, node in enumerate(base_nodes): node.id_ = f"node-{idx}" from llama_index.core.embeddings import resolve_embed_model embed_model = resolve_embed_model("local:BAAI/bge-small-en") llm = OpenAI(model="gpt-3.5-turbo") base_index = VectorStoreIndex(base_nodes, embed_model=embed_model) base_retriever = base_index.as_retriever(similarity_top_k=2) retrievals = base_retriever.retrieve( "Can you tell me about the key concepts for safety finetuning" ) for n in retrievals: display_source_node(n, source_length=1500) query_engine_base = RetrieverQueryEngine.from_args(base_retriever, llm=llm) response = query_engine_base.query( "Can you tell me about the key concepts for safety finetuning" ) print(str(response)) sub_chunk_sizes = [128, 256, 512] sub_node_parsers = [SentenceSplitter(chunk_size=c) for c in sub_chunk_sizes] all_nodes = [] for base_node in base_nodes: for n in sub_node_parsers: sub_nodes = n.get_nodes_from_documents([base_node]) sub_inodes = [ IndexNode.from_text_node(sn, base_node.node_id) for sn in sub_nodes ] all_nodes.extend(sub_inodes) original_node = IndexNode.from_text_node(base_node, base_node.node_id) all_nodes.append(original_node) all_nodes_dict = {n.node_id: n for n in all_nodes} vector_index_chunk = VectorStoreIndex(all_nodes, embed_model=embed_model) vector_retriever_chunk = vector_index_chunk.as_retriever(similarity_top_k=2) retriever_chunk = RecursiveRetriever( "vector", retriever_dict={"vector": vector_retriever_chunk}, node_dict=all_nodes_dict, verbose=True, ) nodes = retriever_chunk.retrieve( "Can you tell me about the key concepts for safety finetuning" ) for node in nodes: display_source_node(node, source_length=2000) query_engine_chunk = RetrieverQueryEngine.from_args(retriever_chunk, llm=llm) response = query_engine_chunk.query( "Can you tell me about the key concepts for safety finetuning" ) print(str(response)) from llama_index.core.node_parser import SentenceSplitter from llama_index.core.schema import IndexNode from llama_index.core.extractors import ( SummaryExtractor, QuestionsAnsweredExtractor, ) extractors = [ SummaryExtractor(summaries=["self"], show_progress=True),
QuestionsAnsweredExtractor(questions=5, show_progress=True)
llama_index.core.extractors.QuestionsAnsweredExtractor
get_ipython().run_line_magic('pip', 'install llama-index-callbacks-aim') get_ipython().system('pip install llama-index') from llama_index.core.callbacks import CallbackManager from llama_index.callbacks.aim import AimCallback from llama_index.core import SummaryIndex from llama_index.core import SimpleDirectoryReader get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") docs = SimpleDirectoryReader("./data/paul_graham").load_data() aim_callback = AimCallback(repo="./") callback_manager =
CallbackManager([aim_callback])
llama_index.core.callbacks.CallbackManager
get_ipython().run_line_magic('pip', 'install llama-index-postprocessor-rankgpt-rerank') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-packs-infer-retrieve-rerank') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import datasets dataset = datasets.load_dataset("BioDEX/BioDEX-ICSR") dataset from llama_index.core import get_tokenizer import re from typing import Set, List tokenizer =
get_tokenizer()
llama_index.core.get_tokenizer
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-indices-managed-vectara') get_ipython().system('pip install llama-index') import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core.schema import TextNode from llama_index.core.indices.managed.types import ManagedIndexQueryMode from llama_index.indices.managed.vectara import VectaraIndex from llama_index.indices.managed.vectara import VectaraAutoRetriever from llama_index.core.vector_stores import MetadataInfo, VectorStoreInfo from llama_index.llms.openai import OpenAI nodes = [ TextNode( text=( "A pragmatic paleontologist touring an almost complete theme park on an island " + "in Central America is tasked with protecting a couple of kids after a power " + "failure causes the park's cloned dinosaurs to run loose." ), metadata={"year": 1993, "rating": 7.7, "genre": "science fiction"}, ), TextNode( text=( "A thief who steals corporate secrets through the use of dream-sharing technology " + "is given the inverse task of planting an idea into the mind of a C.E.O., " + "but his tragic past may doom the project and his team to disaster." ), metadata={ "year": 2010, "director": "Christopher Nolan", "rating": 8.2, }, ), TextNode( text="Barbie suffers a crisis that leads her to question her world and her existence.", metadata={ "year": 2023, "director": "Greta Gerwig", "genre": "fantasy", "rating": 9.5, }, ), TextNode( text=( "A cowboy doll is profoundly threatened and jealous when a new spaceman action " + "figure supplants him as top toy in a boy's bedroom." ), metadata={"year": 1995, "genre": "animated", "rating": 8.3}, ), TextNode( text=( "When Woody is stolen by a toy collector, Buzz and his friends set out on a " + "rescue mission to save Woody before he becomes a museum toy property with his " + "roundup gang Jessie, Prospector, and Bullseye. " ), metadata={"year": 1999, "genre": "animated", "rating": 7.9}, ),
TextNode( text=( "The toys are mistakenly delivered to a day-care center instead of the attic " + "right before Andy leaves for college, and it's up to Woody to convince the " + "other toys that they weren't abandoned and to return home." )
llama_index.core.schema.TextNode
get_ipython().run_line_magic('pip', 'install llama-index-postprocessor-rankgpt-rerank') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-packs-infer-retrieve-rerank') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import datasets dataset = datasets.load_dataset("BioDEX/BioDEX-ICSR") dataset from llama_index.core import get_tokenizer import re from typing import Set, List tokenizer = get_tokenizer() sample_size = 5 def get_reactions_row(raw_target: str) -> List[str]: """Get reactions from a single row.""" reaction_pattern = re.compile(r"reactions:\s*(.*)") reaction_match = reaction_pattern.search(raw_target) if reaction_match: reactions = reaction_match.group(1).split(",") reactions = [r.strip().lower() for r in reactions] else: reactions = [] return reactions def get_reactions_set(dataset) -> Set[str]: """Get set of all reactions.""" reactions = set() for data in dataset["train"]: reactions.update(set(get_reactions_row(data["target"]))) return reactions def get_samples(dataset, sample_size: int = 5): """Get processed sample. Contains source text and also the reaction label. Parse reaction text to specifically extract reactions. """ samples = [] for idx, data in enumerate(dataset["train"]): if idx >= sample_size: break text = data["fulltext_processed"] raw_target = data["target"] reactions = get_reactions_row(raw_target) samples.append({"text": text, "reactions": reactions}) return samples from llama_index.packs.infer_retrieve_rerank import InferRetrieveRerankPack from llama_index.core.llama_pack import download_llama_pack InferRetrieveRerankPack = download_llama_pack( "InferRetrieveRerankPack", "./irr_pack", ) from llama_index.llms.openai import OpenAI llm = OpenAI(model="gpt-3.5-turbo-16k") pred_context = """\ The output predictins should be a list of comma-separated adverse \ drug reactions. \ """ reranker_top_n = 10 pack = InferRetrieveRerankPack( get_reactions_set(dataset), llm=llm, pred_context=pred_context, reranker_top_n=reranker_top_n, verbose=True, ) samples = get_samples(dataset, sample_size=5) pred_reactions = pack.run(inputs=[s["text"] for s in samples]) gt_reactions = [s["reactions"] for s in samples] pred_reactions[2] gt_reactions[2] from llama_index.core.retrievers import BaseRetriever from llama_index.core.llms import LLM from llama_index.llms.openai import OpenAI from llama_index.core import PromptTemplate from llama_index.core.query_pipeline import QueryPipeline from llama_index.core.postprocessor.types import BaseNodePostprocessor from llama_index.postprocessor.rankgpt_rerank import RankGPTRerank from llama_index.core.output_parsers import ChainableOutputParser from typing import List import random all_reactions = get_reactions_set(dataset) random.sample(all_reactions, 5) from llama_index.core.schema import TextNode from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.core.ingestion import IngestionPipeline from llama_index.core import VectorStoreIndex reaction_nodes = [
TextNode(text=r)
llama_index.core.schema.TextNode
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-lancedb') get_ipython().system('pip install llama-index') import logging import sys from llama_index.core import SimpleDirectoryReader, Document, StorageContext from llama_index.core import VectorStoreIndex from llama_index.vector_stores.lancedb import LanceDBVectorStore import textwrap import openai openai.api_key = "" get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() print("Document ID:", documents[0].doc_id, "Document Hash:", documents[0].hash) vector_store =
LanceDBVectorStore(uri="/tmp/lancedb")
llama_index.vector_stores.lancedb.LanceDBVectorStore
get_ipython().run_line_magic('pip', 'install llama-hub-llama-packs-agents-llm-compiler-step') get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import phoenix as px px.launch_app() import llama_index.core llama_index.core.set_global_handler("arize_phoenix") import nest_asyncio nest_asyncio.apply() from llama_index.packs.agents.llm_compiler.step import LLMCompilerAgentWorker from llama_index.core.llama_pack import download_llama_pack download_llama_pack( "LLMCompilerAgentPack", "./agent_pack", skip_load=True, ) from agent_pack.step import LLMCompilerAgentWorker import json from typing import Sequence, List from llama_index.llms.openai import OpenAI from llama_index.core.llms import ChatMessage from llama_index.core.tools import BaseTool, FunctionTool import nest_asyncio nest_asyncio.apply() def multiply(a: int, b: int) -> int: """Multiple two integers and returns the result integer""" return a * b multiply_tool = FunctionTool.from_defaults(fn=multiply) def add(a: int, b: int) -> int: """Add two integers and returns the result integer""" return a + b add_tool = FunctionTool.from_defaults(fn=add) tools = [multiply_tool, add_tool] multiply_tool.metadata.fn_schema_str from llama_index.core.agent import AgentRunner llm = OpenAI(model="gpt-4") callback_manager = llm.callback_manager agent_worker = LLMCompilerAgentWorker.from_tools( tools, llm=llm, verbose=True, callback_manager=callback_manager ) agent =
AgentRunner(agent_worker, callback_manager=callback_manager)
llama_index.core.agent.AgentRunner
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-redis') get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-mongodb') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-huggingface') get_ipython().system('mkdir -p data') get_ipython().system('echo "This is a test file: one!" > data/test1.txt') get_ipython().system('echo "This is a test file: two!" > data/test2.txt') from llama_index.core import SimpleDirectoryReader documents = SimpleDirectoryReader("./data", filename_as_id=True).load_data() from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_index.core.ingestion import IngestionPipeline from llama_index.core.storage.docstore import SimpleDocumentStore from llama_index.storage.docstore.redis import RedisDocumentStore from llama_index.storage.docstore.mongodb import MongoDocumentStore from llama_index.core.node_parser import SentenceSplitter pipeline = IngestionPipeline( transformations=[ SentenceSplitter(), HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5"), ], docstore=SimpleDocumentStore(), ) nodes = pipeline.run(documents=documents) print(f"Ingested {len(nodes)} Nodes") pipeline.persist("./pipeline_storage") pipeline = IngestionPipeline( transformations=[ SentenceSplitter(),
HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
llama_index.embeddings.huggingface.HuggingFaceEmbedding
get_ipython().run_line_magic('pip', 'install llama-index-llms-llama-cpp') get_ipython().system('pip install llama-index lm-format-enforcer llama-cpp-python') import lmformatenforcer import re from llama_index.core.prompts.lmformatenforcer_utils import ( activate_lm_format_enforcer, build_lm_format_enforcer_function, ) regex = r'"Hello, my name is (?P<name>[a-zA-Z]*)\. I was born in (?P<hometown>[a-zA-Z]*). Nice to meet you!"' from llama_index.llms.llama_cpp import LlamaCPP llm = LlamaCPP() regex_parser = lmformatenforcer.RegexParser(regex) lm_format_enforcer_fn =
build_lm_format_enforcer_function(llm, regex_parser)
llama_index.core.prompts.lmformatenforcer_utils.build_lm_format_enforcer_function
get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia') get_ipython().run_line_magic('pip', 'install llama-index-finetuning') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-finetuning-callbacks') get_ipython().run_line_magic('pip', 'install llama-index-llms-huggingface') import nest_asyncio nest_asyncio.apply() import os HUGGING_FACE_TOKEN = os.getenv("HUGGING_FACE_TOKEN") OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") get_ipython().system('pip install wikipedia -q') from llama_index.readers.wikipedia import WikipediaReader cities = [ "San Francisco", "Toronto", "New York", "Vancouver", "Montreal", "Tokyo", "Singapore", "Paris", ] documents = WikipediaReader().load_data( pages=[f"History of {x}" for x in cities] ) QUESTION_GEN_PROMPT = ( "You are a Teacher/ Professor. Your task is to setup " "a quiz/examination. Using the provided context, formulate " "a single question that captures an important fact from the " "context. Restrict the question to the context information provided." ) from llama_index.core.evaluation import DatasetGenerator from llama_index.llms.openai import OpenAI gpt_35_llm = OpenAI(model="gpt-3.5-turbo", temperature=0.3) dataset_generator = DatasetGenerator.from_documents( documents, question_gen_query=QUESTION_GEN_PROMPT, llm=gpt_35_llm, num_questions_per_chunk=25, ) qrd = dataset_generator.generate_dataset_from_nodes(num=350) from llama_index.core import VectorStoreIndex from llama_index.core.retrievers import VectorIndexRetriever the_index = VectorStoreIndex.from_documents(documents=documents) the_retriever = VectorIndexRetriever( index=the_index, similarity_top_k=2, ) from llama_index.core.query_engine import RetrieverQueryEngine from llama_index.llms.huggingface import HuggingFaceInferenceAPI llm = HuggingFaceInferenceAPI( model_name="meta-llama/Llama-2-7b-chat-hf", context_window=2048, # to use refine token=HUGGING_FACE_TOKEN, ) query_engine = RetrieverQueryEngine.from_args(retriever=the_retriever, llm=llm) import tqdm train_dataset = [] num_train_questions = int(0.65 * len(qrd.qr_pairs)) for q, a in tqdm.tqdm(qrd.qr_pairs[:num_train_questions]): data_entry = {"question": q, "reference": a} response = query_engine.query(q) response_struct = {} response_struct["model"] = "llama-2" response_struct["text"] = str(response) response_struct["context"] = ( response.source_nodes[0].node.text[:1000] + "..." ) data_entry["response_data"] = response_struct train_dataset.append(data_entry) from llama_index.llms.openai import OpenAI from llama_index.finetuning.callbacks import OpenAIFineTuningHandler from llama_index.core.callbacks import CallbackManager from llama_index.core.evaluation import CorrectnessEvaluator finetuning_handler = OpenAIFineTuningHandler() callback_manager =
CallbackManager([finetuning_handler])
llama_index.core.callbacks.CallbackManager
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia') from llama_index.core.llama_dataset import ( LabelledRagDataExample, CreatedByType, CreatedBy, ) query = "This is a test query, is it not?" query_by = CreatedBy(type=CreatedByType.AI, model_name="gpt-4") reference_answer = "Yes it is." reference_answer_by = CreatedBy(type=CreatedByType.HUMAN) reference_contexts = ["This is a sample context"] rag_example = LabelledRagDataExample( query=query, query_by=query_by, reference_contexts=reference_contexts, reference_answer=reference_answer, reference_answer_by=reference_answer_by, ) print(rag_example.json()) LabelledRagDataExample.parse_raw(rag_example.json()) rag_example.dict() LabelledRagDataExample.parse_obj(rag_example.dict()) query = "This is a test query, is it so?" reference_answer = "I think yes, it is." reference_contexts = ["This is a second sample context"] rag_example_2 = LabelledRagDataExample( query=query, query_by=query_by, reference_contexts=reference_contexts, reference_answer=reference_answer, reference_answer_by=reference_answer_by, ) from llama_index.core.llama_dataset import LabelledRagDataset rag_dataset = LabelledRagDataset(examples=[rag_example, rag_example_2]) rag_dataset.to_pandas() rag_dataset.save_json("rag_dataset.json") reload_rag_dataset = LabelledRagDataset.from_json("rag_dataset.json") reload_rag_dataset.to_pandas() import nest_asyncio nest_asyncio.apply() get_ipython().system('pip install wikipedia -q') from llama_index.readers.wikipedia import WikipediaReader from llama_index.core import VectorStoreIndex cities = [ "San Francisco", ] documents =
WikipediaReader()
llama_index.readers.wikipedia.WikipediaReader
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-llms-anthropic') import nest_asyncio nest_asyncio.apply() from llama_index.core import SimpleDirectoryReader, Document from llama_index.core import SummaryIndex from llama_index.llms.openai import OpenAI from llama_index.llms.anthropic import Anthropic from llama_index.core.evaluation import CorrectnessEvaluator get_ipython().system("mkdir -p 'data/10k/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10k/uber_2021.pdf' -O 'data/10k/uber_2021.pdf'") uber_docs0 = SimpleDirectoryReader( input_files=["./data/10k/uber_2021.pdf"] ).load_data() uber_doc = Document(text="\n\n".join([d.get_content() for d in uber_docs0])) from llama_index.core.utils import globals_helper num_tokens = len(globals_helper.tokenizer(uber_doc.get_content())) print(f"NUM TOKENS: {num_tokens}") context_str = "Jerry's favorite snack is Hot Cheetos." query_str = "What is Jerry's favorite snack?" def augment_doc(doc_str, context, position): """Augment doc with additional context at a given position.""" doc_str1 = doc_str[:position] doc_str2 = doc_str[position:] return f"{doc_str1}...\n\n{context}\n\n...{doc_str2}" test_str = augment_doc( uber_doc.get_content(), context_str, int(0.5 * len(uber_doc.get_content())) ) async def run_experiments( doc, position_percentiles, context_str, query, llm, response_mode="compact" ): eval_llm = OpenAI(model="gpt-4-1106-preview") correctness_evaluator = CorrectnessEvaluator(llm=eval_llm) eval_scores = {} for idx, position_percentile in enumerate(position_percentiles): print(f"Position percentile: {position_percentile}") position_idx = int(position_percentile * len(uber_doc.get_content())) new_doc_str = augment_doc( uber_doc.get_content(), context_str, position_idx ) new_doc = Document(text=new_doc_str) index = SummaryIndex.from_documents( [new_doc], ) query_engine = index.as_query_engine( response_mode=response_mode, llm=llm ) print(f"Query: {query}") response = query_engine.query(query) print(f"Response: {str(response)}") eval_result = correctness_evaluator.evaluate( query=query, response=str(response), reference=context_str ) eval_score = eval_result.score print(f"Eval score: {eval_score}") eval_scores[position_percentile] = eval_score return eval_scores position_percentiles = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] llm = OpenAI(model="gpt-4-1106-preview") eval_scores_gpt4 = await run_experiments( [uber_doc], position_percentiles, context_str, query_str, llm, response_mode="compact", ) llm = OpenAI(model="gpt-4-1106-preview") eval_scores_gpt4_ts = await run_experiments( [uber_doc], position_percentiles, context_str, query_str, llm, response_mode="tree_summarize", ) llm = Anthropic(model="claude-2") eval_scores_anthropic = await run_experiments( [uber_doc], position_percentiles, context_str, query_str, llm ) llm =
Anthropic(model="claude-2")
llama_index.llms.anthropic.Anthropic
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-epsilla') get_ipython().system('pip/pip3 install pyepsilla') get_ipython().system('pip install llama-index') import logging import sys from llama_index.core import SimpleDirectoryReader, Document, StorageContext from llama_index.core import VectorStoreIndex from llama_index.vector_stores.epsilla import EpsillaVectorStore import textwrap import openai import getpass OPENAI_API_KEY = getpass.getpass("OpenAI API Key:") openai.api_key = OPENAI_API_KEY get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() print(f"Total documents: {len(documents)}") print(f"First document, id: {documents[0].doc_id}") print(f"First document, hash: {documents[0].hash}") from pyepsilla import vectordb client = vectordb.Client() vector_store = EpsillaVectorStore(client=client, db_path="/tmp/llamastore") storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex.from_documents( documents, storage_context=storage_context ) query_engine = index.as_query_engine() response = query_engine.query("Who is the author?") print(textwrap.fill(str(response), 100)) response = query_engine.query("How did the author learn about AI?") print(textwrap.fill(str(response), 100)) vector_store = EpsillaVectorStore(client=client, overwrite=True) storage_context = StorageContext.from_defaults(vector_store=vector_store) single_doc = Document(text="Epsilla is the vector database we are using.") index = VectorStoreIndex.from_documents( [single_doc], storage_context=storage_context, ) query_engine = index.as_query_engine() response = query_engine.query("Who is the author?") print(textwrap.fill(str(response), 100)) response = query_engine.query("What vector database is being used?") print(textwrap.fill(str(response), 100)) vector_store = EpsillaVectorStore(client=client, overwrite=False) index =
VectorStoreIndex.from_vector_store(vector_store=vector_store)
llama_index.core.VectorStoreIndex.from_vector_store
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-qdrant') get_ipython().system('pip install llama-index qdrant_client') import qdrant_client from llama_index.core import VectorStoreIndex from llama_index.vector_stores.qdrant import QdrantVectorStore client = qdrant_client.QdrantClient( location=":memory:" ) from llama_index.core.schema import TextNode nodes = [ TextNode( text="The Shawshank Redemption", metadata={ "author": "Stephen King", "theme": "Friendship", "year": 1994, }, ), TextNode( text="The Godfather", metadata={ "director": "Francis Ford Coppola", "theme": "Mafia", "year": 1972, }, ), TextNode( text="Inception", metadata={ "director": "Christopher Nolan", "theme": "Fiction", "year": 2010, }, ), TextNode( text="To Kill a Mockingbird", metadata={ "author": "Harper Lee", "theme": "Mafia", "year": 1960, }, ), TextNode( text="1984", metadata={ "author": "George Orwell", "theme": "Totalitarianism", "year": 1949, }, ), TextNode( text="The Great Gatsby", metadata={ "author": "F. Scott Fitzgerald", "theme": "The American Dream", "year": 1925, }, ), TextNode( text="Harry Potter and the Sorcerer's Stone", metadata={ "author": "J.K. Rowling", "theme": "Fiction", "year": 1997, }, ), ] import os from llama_index.core import StorageContext os.environ["OPENAI_API_KEY"] = "sk-..." vector_store = QdrantVectorStore( client=client, collection_name="test_collection_1" ) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex(nodes, storage_context=storage_context) from llama_index.core.vector_stores import ( MetadataFilter, MetadataFilters, FilterOperator, ) filters = MetadataFilters( filters=[
MetadataFilter(key="theme", operator=FilterOperator.EQ, value="Mafia")
llama_index.core.vector_stores.MetadataFilter
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-weaviate') get_ipython().system('pip install llama-index') import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) import weaviate resource_owner_config = weaviate.AuthClientPassword( username="<username>", password="<password>", ) client = weaviate.Client("http://localhost:8080") from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.vector_stores.weaviate import WeaviateVectorStore from llama_index.core.response.notebook_utils import display_response get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() from llama_index.core import StorageContext vector_store =
WeaviateVectorStore(weaviate_client=client)
llama_index.vector_stores.weaviate.WeaviateVectorStore
get_ipython().run_line_magic('pip', 'install llama-index-readers-twitter') import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) get_ipython().system('pip install llama-index') from llama_index.core import VectorStoreIndex from llama_index.readers.twitter import TwitterTweetReader from IPython.display import Markdown, display import os BEARER_TOKEN = "<bearer_token>" reader =
TwitterTweetReader(BEARER_TOKEN)
llama_index.readers.twitter.TwitterTweetReader
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-mongodb') get_ipython().run_line_magic('pip', 'install llama-index-storage-index-store-mongodb') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') import nest_asyncio nest_asyncio.apply() import logging import sys import os logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import SimpleDirectoryReader, StorageContext from llama_index.core import VectorStoreIndex, SimpleKeywordTableIndex from llama_index.core import SummaryIndex from llama_index.core import ComposableGraph from llama_index.llms.openai import OpenAI from llama_index.core.response.notebook_utils import display_response from llama_index.core import Settings get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") reader = SimpleDirectoryReader("./data/paul_graham/") documents = reader.load_data() from llama_index.core.node_parser import SentenceSplitter nodes = SentenceSplitter().get_nodes_from_documents(documents) MONGO_URI = os.environ["MONGO_URI"] from llama_index.storage.docstore.mongodb import MongoDocumentStore from llama_index.storage.index_store.mongodb import MongoIndexStore storage_context = StorageContext.from_defaults( docstore=MongoDocumentStore.from_uri(uri=MONGO_URI), index_store=MongoIndexStore.from_uri(uri=MONGO_URI), ) storage_context.docstore.add_documents(nodes) summary_index = SummaryIndex(nodes, storage_context=storage_context) vector_index = VectorStoreIndex(nodes, storage_context=storage_context) keyword_table_index = SimpleKeywordTableIndex( nodes, storage_context=storage_context ) len(storage_context.docstore.docs) storage_context.persist() list_id = summary_index.index_id vector_id = vector_index.index_id keyword_id = keyword_table_index.index_id from llama_index.core import load_index_from_storage storage_context = StorageContext.from_defaults( docstore=MongoDocumentStore.from_uri(uri=MONGO_URI), index_store=MongoIndexStore.from_uri(uri=MONGO_URI), ) summary_index = load_index_from_storage( storage_context=storage_context, index_id=list_id ) vector_index = load_index_from_storage( storage_context=storage_context, vector_id=vector_id ) keyword_table_index = load_index_from_storage( storage_context=storage_context, keyword_id=keyword_id ) chatgpt = OpenAI(temperature=0, model="gpt-3.5-turbo") Settings.llm = chatgpt Settings.chunk_size = 1024 query_engine = summary_index.as_query_engine() list_response = query_engine.query("What is a summary of this document?")
display_response(list_response)
llama_index.core.response.notebook_utils.display_response
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().system('pip install llama-index') from llama_index.core.agent import ReActAgent from llama_index.llms.openai import OpenAI from llama_index.core.llms import ChatMessage from llama_index.core.tools import BaseTool, FunctionTool def multiply(a: int, b: int) -> int: """Multiply two integers and returns the result integer""" return a * b multiply_tool = FunctionTool.from_defaults(fn=multiply) def add(a: int, b: int) -> int: """Add two integers and returns the result integer""" return a + b add_tool = FunctionTool.from_defaults(fn=add) llm = OpenAI(model="gpt-3.5-turbo-instruct") agent = ReActAgent.from_tools([multiply_tool, add_tool], llm=llm, verbose=True) response = agent.chat("What is 20+(2*4)? Calculate step by step ") response_gen = agent.stream_chat("What is 20+2*4? Calculate step by step") response_gen.print_response_stream() llm = OpenAI(model="gpt-4") agent =
ReActAgent.from_tools([multiply_tool, add_tool], llm=llm, verbose=True)
llama_index.core.agent.ReActAgent.from_tools
get_ipython().run_line_magic('pip', 'install llama-index-readers-web') get_ipython().run_line_magic('pip', 'install llama-index-program-openai') import nest_asyncio nest_asyncio.apply() import os import openai os.environ["OPENAI_API_KEY"] = "YOUR_API_KEY" openai.api_key = os.getenv("OPENAI_API_KEY") from pydantic import BaseModel, Field from typing import List class NodeMetadata(BaseModel): """Node metadata.""" entities: List[str] = Field( ..., description="Unique entities in this text chunk." ) summary: str = Field( ..., description="A concise summary of this text chunk." ) contains_number: bool = Field( ..., description=( "Whether the text chunk contains any numbers (ints, floats, etc.)" ), ) from llama_index.program.openai import OpenAIPydanticProgram from llama_index.core.extractors import PydanticProgramExtractor EXTRACT_TEMPLATE_STR = """\ Here is the content of the section: ---------------- {context_str} ---------------- Given the contextual information, extract out a {class_name} object.\ """ openai_program = OpenAIPydanticProgram.from_defaults( output_cls=NodeMetadata, prompt_template_str="{input}", ) program_extractor = PydanticProgramExtractor( program=openai_program, input_key="input", show_progress=True ) from llama_index.readers.web import SimpleWebPageReader from llama_index.core.node_parser import SentenceSplitter reader = SimpleWebPageReader(html_to_text=True) docs = reader.load_data(urls=["https://eugeneyan.com/writing/llm-patterns/"]) from llama_index.core.ingestion import IngestionPipeline node_parser = SentenceSplitter(chunk_size=1024) pipeline =
IngestionPipeline(transformations=[node_parser, program_extractor])
llama_index.core.ingestion.IngestionPipeline
get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') from llama_index.core.agent import ( CustomSimpleAgentWorker, Task, AgentChatResponse, ) from typing import Dict, Any, List, Tuple, Optional from llama_index.core.tools import BaseTool, QueryEngineTool from llama_index.core.program import LLMTextCompletionProgram from llama_index.core.output_parsers import PydanticOutputParser from llama_index.core.query_engine import RouterQueryEngine from llama_index.core import ChatPromptTemplate, PromptTemplate from llama_index.core.selectors import PydanticSingleSelector from llama_index.core.bridge.pydantic import Field, BaseModel from llama_index.core.llms import ChatMessage, MessageRole DEFAULT_PROMPT_STR = """ Given previous question/response pairs, please determine if an error has occurred in the response, and suggest \ a modified question that will not trigger the error. Examples of modified questions: - The question itself is modified to elicit a non-erroneous response - The question is augmented with context that will help the downstream system better answer the question. - The question is augmented with examples of negative responses, or other negative questions. An error means that either an exception has triggered, or the response is completely irrelevant to the question. Please return the evaluation of the response in the following JSON format. """ def get_chat_prompt_template( system_prompt: str, current_reasoning: Tuple[str, str] ) -> ChatPromptTemplate: system_msg = ChatMessage(role=MessageRole.SYSTEM, content=system_prompt) messages = [system_msg] for raw_msg in current_reasoning: if raw_msg[0] == "user": messages.append( ChatMessage(role=MessageRole.USER, content=raw_msg[1]) ) else: messages.append( ChatMessage(role=MessageRole.ASSISTANT, content=raw_msg[1]) ) return ChatPromptTemplate(message_templates=messages) class ResponseEval(BaseModel): """Evaluation of whether the response has an error.""" has_error: bool = Field( ..., description="Whether the response has an error." ) new_question: str = Field(..., description="The suggested new question.") explanation: str = Field( ..., description=( "The explanation for the error as well as for the new question." "Can include the direct stack trace as well." ), ) from llama_index.core.bridge.pydantic import PrivateAttr class RetryAgentWorker(CustomSimpleAgentWorker): """Agent worker that adds a retry layer on top of a router. Continues iterating until there's no errors / task is done. """ prompt_str: str = Field(default=DEFAULT_PROMPT_STR) max_iterations: int = Field(default=10) _router_query_engine: RouterQueryEngine =
PrivateAttr()
llama_index.core.bridge.pydantic.PrivateAttr
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-pinecone') get_ipython().system('pip install llama-index') import os import pinecone api_key = os.environ["PINECONE_API_KEY"] pinecone.init(api_key=api_key, environment="eu-west1-gcp") indexes = pinecone.list_indexes() print(indexes) if "quickstart-index" not in indexes: pinecone.create_index( "quickstart-index", dimension=1536, metric="euclidean", pod_type="p1" ) pinecone_index = pinecone.Index("quickstart-index") pinecone_index.delete(deleteAll="true") books = [ { "title": "To Kill a Mockingbird", "author": "Harper Lee", "content": ( "To Kill a Mockingbird is a novel by Harper Lee published in" " 1960..." ), "year": 1960, }, { "title": "1984", "author": "George Orwell", "content": ( "1984 is a dystopian novel by George Orwell published in 1949..." ), "year": 1949, }, { "title": "The Great Gatsby", "author": "F. Scott Fitzgerald", "content": ( "The Great Gatsby is a novel by F. Scott Fitzgerald published in" " 1925..." ), "year": 1925, }, { "title": "Pride and Prejudice", "author": "Jane Austen", "content": ( "Pride and Prejudice is a novel by Jane Austen published in" " 1813..." ), "year": 1813, }, ] import uuid from llama_index.embeddings.openai import OpenAIEmbedding embed_model = OpenAIEmbedding() entries = [] for book in books: vector = embed_model.get_text_embedding(book["content"]) entries.append( {"id": str(uuid.uuid4()), "values": vector, "metadata": book} ) pinecone_index.upsert(entries) from llama_index.vector_stores.pinecone import PineconeVectorStore from llama_index.core import VectorStoreIndex from llama_index.core.response.pprint_utils import pprint_source_node vector_store = PineconeVectorStore( pinecone_index=pinecone_index, text_key="content" ) retriever = VectorStoreIndex.from_vector_store(vector_store).as_retriever( similarity_top_k=1 ) nodes = retriever.retrieve("What is that book about a bird again?")
pprint_source_node(nodes[0])
llama_index.core.response.pprint_utils.pprint_source_node
get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-pinecone') get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().system('pip install llama-index') import pinecone import os api_key = os.environ["PINECONE_API_KEY"] pinecone.init(api_key=api_key, environment="us-west1-gcp") pinecone.create_index( "quickstart", dimension=1536, metric="euclidean", pod_type="p1" ) pinecone_index = pinecone.Index("quickstart") pinecone_index.delete(deleteAll=True) from llama_index.vector_stores.pinecone import PineconeVectorStore vector_store = PineconeVectorStore(pinecone_index=pinecone_index) get_ipython().system('mkdir data') get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"') from pathlib import Path from llama_index.readers.file import PyMuPDFReader loader = PyMuPDFReader() documents = loader.load(file_path="./data/llama2.pdf") from llama_index.core import VectorStoreIndex from llama_index.core.node_parser import SentenceSplitter from llama_index.core import StorageContext splitter = SentenceSplitter(chunk_size=1024) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex.from_documents( documents, transformations=[splitter], storage_context=storage_context ) query_str = "Can you tell me about the key concepts for safety finetuning" from llama_index.embeddings.openai import OpenAIEmbedding embed_model = OpenAIEmbedding() query_embedding = embed_model.get_query_embedding(query_str) from llama_index.core.vector_stores import VectorStoreQuery query_mode = "default" vector_store_query = VectorStoreQuery( query_embedding=query_embedding, similarity_top_k=2, mode=query_mode ) query_result = vector_store.query(vector_store_query) query_result from llama_index.core.schema import NodeWithScore from typing import Optional nodes_with_scores = [] for index, node in enumerate(query_result.nodes): score: Optional[float] = None if query_result.similarities is not None: score = query_result.similarities[index] nodes_with_scores.append(
NodeWithScore(node=node, score=score)
llama_index.core.schema.NodeWithScore
get_ipython().run_line_magic('pip', 'install llama-index-llms-anthropic') get_ipython().system('pip install llama-index') from llama_index.llms.anthropic import Anthropic from llama_index.core import Settings tokenizer = Anthropic().tokenizer Settings.tokenizer = tokenizer import os os.environ["ANTHROPIC_API_KEY"] = "YOUR ANTHROPIC API KEY" from llama_index.llms.anthropic import Anthropic llm =
Anthropic(model="claude-3-opus-20240229")
llama_index.llms.anthropic.Anthropic
get_ipython().system('pip install llama-index') from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.core.postprocessor import ( PrevNextNodePostprocessor, AutoPrevNextNodePostprocessor, ) from llama_index.core.node_parser import SentenceSplitter from llama_index.core.storage.docstore import SimpleDocumentStore get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") from llama_index.core import StorageContext documents = SimpleDirectoryReader("./data/paul_graham").load_data() from llama_index.core import Settings Settings.chunk_size = 512 nodes =
Settings.node_parser.get_nodes_from_documents(documents)
llama_index.core.Settings.node_parser.get_nodes_from_documents
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-typesense') get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") from llama_index.core import ( VectorStoreIndex, SimpleDirectoryReader, StorageContext, ) from IPython.display import Markdown, display documents = SimpleDirectoryReader("./data/paul_graham/").load_data() from llama_index.vector_stores.typesense import TypesenseVectorStore from typesense import Client typesense_client = Client( { "api_key": "xyz", "nodes": [{"host": "localhost", "port": "8108", "protocol": "http"}], "connection_timeout_seconds": 2, } ) typesense_vector_store =
TypesenseVectorStore(typesense_client)
llama_index.vector_stores.typesense.TypesenseVectorStore
get_ipython().run_line_magic('pip', 'install llama-index-finetuning') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') get_ipython().run_line_magic('pip', 'install llama-index-finetuning-callbacks') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().run_line_magic('pip', 'install llama-index-program-openai') import nest_asyncio nest_asyncio.apply() import os import openai os.environ["OPENAI_API_KEY"] = "sk-..." openai.api_key = os.environ["OPENAI_API_KEY"] from llama_index.program.openai import OpenAIPydanticProgram from pydantic import BaseModel from llama_index.llms.openai import OpenAI from llama_index.finetuning.callbacks import OpenAIFineTuningHandler from llama_index.core.callbacks import CallbackManager from typing import List class Song(BaseModel): """Data model for a song.""" title: str length_seconds: int class Album(BaseModel): """Data model for an album.""" name: str artist: str songs: List[Song] finetuning_handler =
OpenAIFineTuningHandler()
llama_index.finetuning.callbacks.OpenAIFineTuningHandler
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-mongodb') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-qdrant') get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-firestore') get_ipython().run_line_magic('pip', 'install llama-index-retrievers-bm25') get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-redis') get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-dynamodb') get_ipython().run_line_magic('pip', 'install llama-index-readers-file') get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "./llama2.pdf"') get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/1706.03762.pdf" -O "./attention.pdf"') from llama_index.core import download_loader from llama_index.readers.file import PyMuPDFReader llama2_docs = PyMuPDFReader().load_data( file_path="./llama2.pdf", metadata=True ) attention_docs = PyMuPDFReader().load_data( file_path="./attention.pdf", metadata=True ) import os os.environ["OPENAI_API_KEY"] = "sk-..." from llama_index.core.node_parser import TokenTextSplitter nodes = TokenTextSplitter( chunk_size=1024, chunk_overlap=128 ).get_nodes_from_documents(llama2_docs + attention_docs) from llama_index.core.storage.docstore import SimpleDocumentStore from llama_index.storage.docstore.redis import RedisDocumentStore from llama_index.storage.docstore.mongodb import MongoDocumentStore from llama_index.storage.docstore.firestore import FirestoreDocumentStore from llama_index.storage.docstore.dynamodb import DynamoDBDocumentStore docstore = SimpleDocumentStore() docstore.add_documents(nodes) from llama_index.core import VectorStoreIndex, StorageContext from llama_index.retrievers.bm25 import BM25Retriever from llama_index.vector_stores.qdrant import QdrantVectorStore from qdrant_client import QdrantClient client = QdrantClient(path="./qdrant_data") vector_store = QdrantVectorStore("composable", client=client) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex(nodes=nodes) vector_retriever = index.as_retriever(similarity_top_k=2) bm25_retriever = BM25Retriever.from_defaults( docstore=docstore, similarity_top_k=2 ) from llama_index.core.schema import IndexNode vector_obj = IndexNode( index_id="vector", obj=vector_retriever, text="Vector Retriever" ) bm25_obj = IndexNode( index_id="bm25", obj=bm25_retriever, text="BM25 Retriever" ) from llama_index.core import SummaryIndex summary_index =
SummaryIndex(objects=[vector_obj, bm25_obj])
llama_index.core.SummaryIndex
get_ipython().run_line_magic('pip', 'install llama-hub-llama-packs-agents-llm-compiler-step') get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia') get_ipython().run_line_magic('pip', 'install llama-index-llms-openai') import phoenix as px px.launch_app() import llama_index.core llama_index.core.set_global_handler("arize_phoenix") import nest_asyncio nest_asyncio.apply() from llama_index.packs.agents.llm_compiler.step import LLMCompilerAgentWorker from llama_index.core.llama_pack import download_llama_pack download_llama_pack( "LLMCompilerAgentPack", "./agent_pack", skip_load=True, ) from agent_pack.step import LLMCompilerAgentWorker import json from typing import Sequence, List from llama_index.llms.openai import OpenAI from llama_index.core.llms import ChatMessage from llama_index.core.tools import BaseTool, FunctionTool import nest_asyncio nest_asyncio.apply() def multiply(a: int, b: int) -> int: """Multiple two integers and returns the result integer""" return a * b multiply_tool = FunctionTool.from_defaults(fn=multiply) def add(a: int, b: int) -> int: """Add two integers and returns the result integer""" return a + b add_tool = FunctionTool.from_defaults(fn=add) tools = [multiply_tool, add_tool] multiply_tool.metadata.fn_schema_str from llama_index.core.agent import AgentRunner llm = OpenAI(model="gpt-4") callback_manager = llm.callback_manager agent_worker = LLMCompilerAgentWorker.from_tools( tools, llm=llm, verbose=True, callback_manager=callback_manager ) agent = AgentRunner(agent_worker, callback_manager=callback_manager) response = agent.chat("What is (121 * 3) + 42?") response agent.memory.get_all() get_ipython().system('pip install llama-index-readers-wikipedia') from llama_index.readers.wikipedia import WikipediaReader wiki_titles = ["Toronto", "Seattle", "Chicago", "Boston", "Miami"] city_docs = {} reader = WikipediaReader() for wiki_title in wiki_titles: docs = reader.load_data(pages=[wiki_title]) city_docs[wiki_title] = docs from llama_index.core import ServiceContext from llama_index.llms.openai import OpenAI from llama_index.core.callbacks import CallbackManager llm = OpenAI(temperature=0, model="gpt-4") service_context =
ServiceContext.from_defaults(llm=llm)
llama_index.core.ServiceContext.from_defaults
get_ipython().run_line_magic('pip', 'install llama-index-llms-gemini') get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-google') get_ipython().run_line_magic('pip', 'install llama-index-indices-managed-google') get_ipython().run_line_magic('pip', 'install llama-index-response-synthesizers-google') get_ipython().run_line_magic('pip', 'install llama-index') get_ipython().run_line_magic('pip', 'install "google-ai-generativelanguage>=0.4,<=1.0"') get_ipython().run_line_magic('pip', 'install google-auth-oauthlib') from google.oauth2 import service_account from llama_index.vector_stores.google import set_google_config credentials = service_account.Credentials.from_service_account_file( "service_account_key.json", scopes=[ "https://www.googleapis.com/auth/generative-language.retriever", ], ) set_google_config(auth_credentials=credentials) get_ipython().system("mkdir -p 'data/paul_graham/'") get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'") import llama_index.core.vector_stores.google.generativeai.genai_extension as genaix from typing import Iterable from random import randrange LLAMA_INDEX_COLAB_CORPUS_ID_PREFIX = f"llama-index-colab" SESSION_CORPUS_ID_PREFIX = ( f"{LLAMA_INDEX_COLAB_CORPUS_ID_PREFIX}-{randrange(1000000)}" ) def corpus_id(num_id: int) -> str: return f"{SESSION_CORPUS_ID_PREFIX}-{num_id}" SESSION_CORPUS_ID = corpus_id(1) def list_corpora() -> Iterable[genaix.Corpus]: client = genaix.build_semantic_retriever() yield from genaix.list_corpora(client=client) def delete_corpus(*, corpus_id: str) -> None: client = genaix.build_semantic_retriever() genaix.delete_corpus(corpus_id=corpus_id, client=client) def cleanup_colab_corpora(): for corpus in list_corpora(): if corpus.corpus_id.startswith(LLAMA_INDEX_COLAB_CORPUS_ID_PREFIX): try: delete_corpus(corpus_id=corpus.corpus_id) print(f"Deleted corpus {corpus.corpus_id}.") except Exception: pass cleanup_colab_corpora() from llama_index.core import SimpleDirectoryReader from llama_index.indices.managed.google import GoogleIndex from llama_index.core import Response import time index = GoogleIndex.create_corpus( corpus_id=SESSION_CORPUS_ID, display_name="My first corpus!" ) print(f"Newly created corpus ID is {index.corpus_id}.") documents = SimpleDirectoryReader("./data/paul_graham/").load_data() index.insert_documents(documents) for corpus in list_corpora(): print(corpus) query_engine = index.as_query_engine() response = query_engine.query("What did Paul Graham do growing up?") assert isinstance(response, Response) print(f"Response is {response.response}") for cited_text in [node.text for node in response.source_nodes]: print(f"Cited text: {cited_text}") if response.metadata: print( f"Answerability: {response.metadata.get('answerable_probability', 0)}" ) index = GoogleIndex.from_corpus(corpus_id=SESSION_CORPUS_ID) query_engine = index.as_query_engine() response = query_engine.query("Which company did Paul Graham build?") assert isinstance(response, Response) print(f"Response is {response.response}") from llama_index.core.schema import NodeRelationship, RelatedNodeInfo, TextNode index = GoogleIndex.from_corpus(corpus_id=SESSION_CORPUS_ID) index.insert_nodes( [ TextNode( text="It was the best of times.", relationships={ NodeRelationship.SOURCE: RelatedNodeInfo( node_id="123", metadata={"file_name": "Tale of Two Cities"}, ) }, ), TextNode( text="It was the worst of times.", relationships={ NodeRelationship.SOURCE: RelatedNodeInfo( node_id="123", metadata={"file_name": "Tale of Two Cities"}, ) }, ), TextNode( text="Bugs Bunny: Wassup doc?", relationships={ NodeRelationship.SOURCE: RelatedNodeInfo( node_id="456", metadata={"file_name": "Bugs Bunny Adventure"}, ) }, ), ] ) from google.ai.generativelanguage import ( GenerateAnswerRequest, HarmCategory, SafetySetting, ) index = GoogleIndex.from_corpus(corpus_id=SESSION_CORPUS_ID) query_engine = index.as_query_engine( temperature=0.2, answer_style=GenerateAnswerRequest.AnswerStyle.ABSTRACTIVE, safety_setting=[ SafetySetting( category=HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT, threshold=SafetySetting.HarmBlockThreshold.BLOCK_LOW_AND_ABOVE, ), SafetySetting( category=HarmCategory.HARM_CATEGORY_VIOLENCE, threshold=SafetySetting.HarmBlockThreshold.BLOCK_ONLY_HIGH, ), ], ) response = query_engine.query("What was Bugs Bunny's favorite saying?") print(response) from llama_index.core import Response response = query_engine.query("What were Paul Graham's achievements?") assert isinstance(response, Response) print(f"Response is {response.response}") for cited_text in [node.text for node in response.source_nodes]: print(f"Cited text: {cited_text}") if response.metadata: print( f"Answerability: {response.metadata.get('answerable_probability', 0)}" ) from llama_index.llms.gemini import Gemini GEMINI_API_KEY = "" # @param {type:"string"} gemini = Gemini(api_key=GEMINI_API_KEY) from llama_index.response_synthesizers.google import GoogleTextSynthesizer from llama_index.vector_stores.google import GoogleVectorStore from llama_index.core import VectorStoreIndex from llama_index.core.postprocessor import LLMRerank from llama_index.core.query_engine import RetrieverQueryEngine from llama_index.core.retrievers import VectorIndexRetriever store = GoogleVectorStore.from_corpus(corpus_id=SESSION_CORPUS_ID) index = VectorStoreIndex.from_vector_store( vector_store=store, ) response_synthesizer = GoogleTextSynthesizer.from_defaults( temperature=0.2, answer_style=GenerateAnswerRequest.AnswerStyle.ABSTRACTIVE, ) reranker = LLMRerank( top_n=10, llm=gemini, ) query_engine = RetrieverQueryEngine.from_args( retriever=VectorIndexRetriever( index=index, similarity_top_k=20, ), node_postprocessors=[reranker], response_synthesizer=response_synthesizer, ) response = query_engine.query("What were Paul Graham's achievements?") print(response) from llama_index.core.indices.query.query_transform.base import ( StepDecomposeQueryTransform, ) from llama_index.core.query_engine import MultiStepQueryEngine store = GoogleVectorStore.from_corpus(corpus_id=SESSION_CORPUS_ID) index = VectorStoreIndex.from_vector_store( vector_store=store, ) response_synthesizer = GoogleTextSynthesizer.from_defaults( temperature=0.2, answer_style=GenerateAnswerRequest.AnswerStyle.ABSTRACTIVE, ) single_step_query_engine = index.as_query_engine( similarity_top_k=10, response_synthesizer=response_synthesizer, ) step_decompose_transform = StepDecomposeQueryTransform( llm=gemini, verbose=True, ) query_engine = MultiStepQueryEngine( query_engine=single_step_query_engine, query_transform=step_decompose_transform, response_synthesizer=response_synthesizer, index_summary="Ask me anything.", num_steps=6, ) response = query_engine.query("What were Paul Graham's achievements?") print(response) from llama_index.core.indices.query.query_transform import HyDEQueryTransform from llama_index.core.query_engine import TransformQueryEngine store = GoogleVectorStore.from_corpus(corpus_id=SESSION_CORPUS_ID) index = VectorStoreIndex.from_vector_store( vector_store=store, ) response_synthesizer = GoogleTextSynthesizer.from_defaults( temperature=0.2, answer_style=GenerateAnswerRequest.AnswerStyle.ABSTRACTIVE, ) base_query_engine = index.as_query_engine( similarity_top_k=10, response_synthesizer=response_synthesizer, ) hyde = HyDEQueryTransform( llm=gemini, include_original=False, ) hyde_query_engine =
TransformQueryEngine(base_query_engine, hyde)
llama_index.core.query_engine.TransformQueryEngine
README.md exists but content is empty. Use the Edit dataset card button to edit it.
Downloads last month
47
Edit dataset card