Datasets:

Modalities:
Text
ArXiv:
Libraries:
Datasets
License:
xlel_wd / xlel_wd.py
adithya7
include test label_id
3fea611
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""
import json
import datasets
_CITATION = """\
@article{pratapa-etal-2022-multilingual,
title = {Multilingual Event Linking to Wikidata},
author = {Pratapa, Adithya and Gupta, Rishubh and Mitamura, Teruko},
publisher = {arXiv},
year = {2022},
url = {https://arxiv.org/abs/2204.06535},
}
"""
_DESCRIPTION = """\
XLEL-WD is a multilingual event linking dataset. \
This dataset contains mention references from multilingual Wikipedia/Wikinews articles to event items in Wikidata. \
The text descriptions for Wikidata events are compiled from Wikipedia articles.
"""
_HOMEPAGE = "https://github.com/adithya7/xlel-wd"
_LICENSE = "CC-BY-4.0"
# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {
"wikipedia-zero-shot": {
"train": "wikipedia.train.jsonl",
"dev": "wikipedia-zero-shot.dev.jsonl",
"test": "wikipedia-zero-shot.test.jsonl",
},
"wikinews-zero-shot": {"test": "wikinews-zero-shot.test.jsonl"},
"wikinews-cross-domain": {"test": "wikinews-cross-domain.test.jsonl"},
}
_WIKIPEDIA_ZERO_SHOT_LANGS = [
"af",
"ar",
"be",
"bg",
"bn",
"ca",
"cs",
"da",
"de",
"el",
"en",
"es",
"fa",
"fi",
"fr",
"he",
"hi",
"hu",
"id",
"it",
"ja",
"ko",
"ml",
"mr",
"ms",
"nl",
"no",
"pl",
"pt",
"ro",
"ru",
"si",
"sk",
"sl",
"sr",
"sv",
"sw",
"ta",
"te",
"th",
"tr",
"uk",
"vi",
"zh",
]
_WIKINEWS_CROSS_DOMAIN_LANGS = [
"ar",
"bg",
"ca",
"cs",
"de",
"el",
"en",
"es",
"fi",
"fr",
"he",
"hu",
"it",
"ja",
"ko",
"nl",
"no",
"pl",
"pt",
"ro",
"ru",
"sr",
"sv",
"ta",
"tr",
"uk",
"zh",
]
_WIKINEWS_ZERO_SHOT_LANGS = [
"ar",
"cs",
"de",
"en",
"es",
"fi",
"fr",
"it",
"ja",
"ko",
"nl",
"no",
"pl",
"pt",
"ru",
"sr",
"sv",
"ta",
"tr",
"uk",
"zh",
]
_TASK_NAMES = []
_TASK_DESCRIPTIONS = []
# wikipedia based tasks
_TASK_NAMES += ["wikipedia-zero-shot"]
_TASK_DESCRIPTIONS += [
"This task requires linking mentions from multilingual wiki to Wikidata events (zero-shot evaluation)"
]
for lang in _WIKIPEDIA_ZERO_SHOT_LANGS:
_TASK_NAMES += [f"wikipedia-zero-shot.{lang}"]
_TASK_DESCRIPTIONS += [
f"This task requires linking mentions from {lang}wiki to Wikidata events (zero-shot evaluation)."
]
# wikinews based tasks (zero-shot)
_TASK_NAMES += ["wikinews-zero-shot"]
_TASK_DESCRIPTIONS += [
"This task requires linking mentions from multilingual wikinews to Wikidata events (zero-shot evaluation)."
]
for lang in _WIKINEWS_ZERO_SHOT_LANGS:
_TASK_NAMES += [f"wikinews-zero-shot.{lang}"]
_TASK_DESCRIPTIONS += [
f"This task requires linking mentions from {lang}wikinews to Wikidata events (zero-shot evaluation)."
]
# wikinews based tasks (cross-domain)
_TASK_NAMES += ["wikinews-cross-domain"]
_TASK_DESCRIPTIONS += [
"This task requires linking mentions from multilingual wikinews to Wikidata events (cross-domain evaluation)."
]
for lang in _WIKINEWS_CROSS_DOMAIN_LANGS:
_TASK_NAMES += [f"wikinews-cross-domain.{lang}"]
_TASK_DESCRIPTIONS += [
f"This task requires linking mentions from {lang}wikinews to Wikidata events (cross-domain evaluation)."
]
class XlelWdConfig(datasets.BuilderConfig):
"""BuilderConfig for XLEL-WD"""
def __init__(self, features, citation, url, **kwargs) -> None:
super(XlelWdConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
self.features = features
self.citation = citation
self.url = url
class XlelWd(datasets.GeneratorBasedBuilder):
"""A dataset for multilingual linking of event mentions to Wikidata."""
VERSION = datasets.Version("1.0.0")
# the features different slightly for Wikipedia and Wikinews
# Wikinews dataset also contains the article title and publication date
BUILDER_CONFIGS = [
XlelWdConfig(
name=name,
description=desc,
features=["mention", "context_left", "context_right", "context_lang"],
citation=_CITATION,
url=_URLS[name.split(".")[0]],
)
if name.startswith("wikipedia")
else XlelWdConfig(
name=name,
description=desc,
features=[
"mention",
"context_left",
"context_right",
"context_lang",
"context_title",
"context_date",
],
citation=_CITATION,
url=_URLS[name.split(".")[0]],
)
for name, desc in zip(_TASK_NAMES, _TASK_DESCRIPTIONS)
]
def _info(self):
features = {
feature: datasets.Value("string") for feature in self.config.features
}
features["label_id"] = datasets.Value("string")
return datasets.DatasetInfo(
description=_DESCRIPTION + self.config.description,
features=datasets.Features(features),
homepage=_HOMEPAGE,
license=_LICENSE,
citation=self.config.citation,
)
def _split_generators(self, dl_manager):
urls = _URLS[self.config.name.split(".")[0]]
downloaded_files = dl_manager.download_and_extract(urls)
if self.config.name.startswith("wikipedia"):
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": downloaded_files["train"],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": downloaded_files["dev"],
"split": "dev",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": downloaded_files["test"],
"split": "test",
},
),
]
elif self.config.name.startswith("wikinews"):
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": downloaded_files["test"],
"split": "test",
},
),
]
def _generate_examples(self, filepath, split):
task_domain, *task_langs = self.config.name.split(".")
with open(filepath, encoding="utf-8") as f:
for key, row in enumerate(f):
data = json.loads(row)
# generate mention references for the specified language
# if no language is specific in the config, return all
if len(task_langs) == 0 or task_langs[0] == data["context_lang"]:
if task_domain.startswith("wikipedia"):
yield key, {
"mention": data["mention"],
"context_left": data["context_left"],
"context_right": data["context_right"],
"context_lang": data["context_lang"],
"label_id": data["label_id"],
}
elif task_domain.startswith("wikinews"):
yield key, {
"mention": data["mention"],
"context_left": data["context_left"],
"context_right": data["context_right"],
"context_lang": data["context_lang"],
"context_title": data["context_title"],
"context_date": data["context_date"],
"label_id": data["label_id"],
}