Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
csv
Sub-tasks:
open-domain-qa
Languages:
Polish
Size:
1K - 10K
License:
File size: 3,821 Bytes
ce5e40c dd7c3c3 ce5e40c dd7c3c3 ce5e40c dd7c3c3 ce5e40c dd7c3c3 ce5e40c dd7c3c3 ce5e40c dd7c3c3 ce5e40c dd7c3c3 ce5e40c dd7c3c3 ce5e40c dd7c3c3 ce5e40c 7135a55 ce5e40c 7135a55 ce5e40c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
---
annotations_creators:
- expert-generated
language_creators:
- other
language:
- pl
license:
- cc-by-sa-3.0
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- question-answering
task_ids:
- open-domain-qa
pretty_name: Did you know?
---
# klej-dyk
## Description
The Czy wiesz? (eng. Did you know?) the dataset consists of almost 5k question-answer pairs obtained from Czy wiesz... section of Polish Wikipedia. Each question is written by a Wikipedia collaborator and is answered with a link to a relevant Wikipedia article. In huggingface version of this dataset, they chose the negatives which have the largest token overlap with a question.
## Tasks (input, output, and metrics)
The task is to predict if the answer to the given question is correct or not.
**Input** ('question sentence', 'answer' columns): question and answer sentences
**Output** ('target' column): 1 if the answer is correct, 0 otherwise.
**Domain**: Wikipedia
**Measurements**: F1-Score
**Example**:
Input: `Czym zajmowali się świątnicy?` ; `Świątnik – osoba, która dawniej zajmowała się
obsługą kościoła (świątyni).`
Input (translated by DeepL): `What did the sacristans do?` ; `A sacristan - a person who used to be in charge of the handling the church (temple).`
Output: `1` (the answer is correct)
## Data splits
| Subset | Cardinality |
| ----------- | ----------: |
| train | 4154 |
| val | 0 |
| test | 1029 |
## Class distribution
| Class | train | validation | test |
|:----------|--------:|-------------:|-------:|
| incorrect | 0.831 | - | 0.831 |
| correct | 0.169 | - | 0.169 |
## Citation
```
@misc{11321/39,
title = {Pytania i odpowiedzi z serwisu wikipedyjnego "Czy wiesz", wersja 1.1},
author = {Marci{\'n}czuk, Micha{\l} and Piasecki, Dominik and Piasecki, Maciej and Radziszewski, Adam},
url = {http://hdl.handle.net/11321/39},
note = {{CLARIN}-{PL} digital repository},
year = {2013}
}
```
## License
```
Creative Commons Attribution ShareAlike 3.0 licence (CC-BY-SA 3.0)
```
## Links
[HuggingFace](https://huggingface.co/datasets/dyk)
[Source](http://nlp.pwr.wroc.pl/en/tools-and-resources/resources/czy-wiesz-question-answering-dataset)
[Source #2](https://clarin-pl.eu/dspace/handle/11321/39)
[Paper](https://www.researchgate.net/publication/272685895_Open_dataset_for_development_of_Polish_Question_Answering_systems)
## Examples
### Loading
```python
from pprint import pprint
from datasets import load_dataset
dataset = load_dataset("allegro/klej-dyk")
pprint(dataset['train'][100])
#{'answer': '"W wyborach prezydenckich w 2004 roku, Moroz przekazał swoje '
# 'poparcie Wiktorowi Juszczence. Po wyborach w 2006 socjaliści '
# 'początkowo tworzyli ""pomarańczową koalicję"" z Naszą Ukrainą i '
# 'Blokiem Julii Tymoszenko."',
# 'q_id': 'czywiesz4362',
# 'question': 'ile partii tworzy powołaną przez Wiktora Juszczenkę koalicję '
# 'Blok Nasza Ukraina?',
# 'target': 0}
```
### Evaluation
```python
import random
from pprint import pprint
from datasets import load_dataset, load_metric
dataset = load_dataset("allegro/klej-dyk")
dataset = dataset.class_encode_column("target")
references = dataset["test"]["target"]
# generate random predictions
predictions = [random.randrange(max(references) + 1) for _ in range(len(references))]
acc = load_metric("accuracy")
f1 = load_metric("f1")
acc_score = acc.compute(predictions=predictions, references=references)
f1_score = f1.compute(predictions=predictions, references=references, average="macro")
pprint(acc_score)
pprint(f1_score)
# {'accuracy': 0.5286686103012633}
# {'f1': 0.46700507614213194}
``` |