Datasets:

Modalities:
Text
Formats:
csv
Languages:
Polish
Libraries:
Datasets
pandas
License:
klej-dyk / README.md
asawczyn's picture
Create README.md
82598f2
|
raw
history blame
3.76 kB
metadata
annotations_creators:
  - expert-generated
language_creators:
  - other
language:
  - pl
license:
  - cc-by-sa-3.0
multilinguality:
  - monolingual
pretty_name: Did you know?
size_categories:
  - 1K<n<10K
source_datasets:
  - original
task_categories:
  - question-answering
task_ids:
  - open-domain-question-answering

klej-dyk

Description

The Czy wiesz? (eng. Did you know?) the dataset consists of almost 5k question-answer pairs obtained from Czy wiesz... section of Polish Wikipedia. Each question is written by a Wikipedia collaborator and is answered with a link to a relevant Wikipedia article. In huggingface version of this dataset, they chose the negatives which have the largest token overlap with a question.

Tasks (input, output, and metrics)

The task is to predict if the answer to the given question is correct or not.

Input ('question sentence', 'answer' columns): question and answer sentences

Output ('target' column): 1 if the answer is correct, 0 otherwise. Note that the test split doesn't have target values so -1 is used instead

Domain: Wikipedia

Measurements: F1-Score

Example: Czym zajmowali się świątnicy? vs. Świątnik – osoba, która dawniej zajmowała się obsługą kościoła (świątyni).1 (the answer is correct)

Data splits

Subset Cardinality
train 4154
val 0
test 1029

Class distribution

Class train validation test
incorrect 0.831 - 0.831
correct 0.169 - 0.169

Citation

@misc{11321/39,	
 title = {Pytania i odpowiedzi z serwisu wikipedyjnego "Czy wiesz", wersja 1.1},	
 author = {Marci{\'n}czuk, Micha{\l} and Piasecki, Dominik and Piasecki, Maciej and Radziszewski, Adam},	
 url = {http://hdl.handle.net/11321/39},	
 note = {{CLARIN}-{PL} digital repository},	
 year = {2013}	
}

License

Creative Commons Attribution ShareAlike 3.0 licence (CC-BY-SA 3.0)

Links

HuggingFace

Source Source #2

Paper

Examples

Loading

from pprint import pprint

from datasets import load_dataset

dataset = load_dataset("allegro/klej-dyk")
pprint(dataset['train'][100])

#{'answer': '"W wyborach prezydenckich w 2004 roku, Moroz przekazał swoje '
#           'poparcie Wiktorowi Juszczence. Po wyborach w 2006 socjaliści '
#           'początkowo tworzyli ""pomarańczową koalicję"" z Naszą Ukrainą i '
#           'Blokiem Julii Tymoszenko."',
# 'q_id': 'czywiesz4362',
# 'question': 'ile partii tworzy powołaną przez Wiktora Juszczenkę koalicję '
#             'Blok Nasza Ukraina?',
# 'target': 0}

Evaluation

import random
from pprint import pprint

from datasets import load_dataset, load_metric

dataset = load_dataset("allegro/klej-dyk")
dataset = dataset.class_encode_column("target")
references = dataset["test"]["target"]

# generate random predictions
predictions = [random.randrange(max(references) + 1) for _ in range(len(references))]

acc = load_metric("accuracy")
f1 = load_metric("f1")

acc_score = acc.compute(predictions=predictions, references=references)
f1_score = f1.compute(predictions=predictions, references=references, average="macro")

pprint(acc_score)
pprint(f1_score)

# {'accuracy': 0.5286686103012633}
# {'f1': 0.46700507614213194}