ms2_sparse_mean / README.md
johngiorgi's picture
Update README.md
ff35b25
metadata
annotations_creators:
  - expert-generated
language_creators:
  - expert-generated
language:
  - en
license:
  - apache-2.0
multilinguality:
  - monolingual
size_categories:
  - 10K<n<100K
source_datasets:
  - extended|other-MS^2
  - extended|other-Cochrane
task_categories:
  - summarization
  - text2text-generation
paperswithcode_id: multi-document-summarization
pretty_name: MSLR Shared Task

This is a copy of the MS^2 dataset, except the input source documents of its validation split have been replaced by a sparse retriever. The retrieval pipeline used:

  • query: The background field of each example
  • corpus: The union of all documents in the train, validation and test splits. A document is the concatenation of the title and abstract.
  • retriever: BM25 via PyTerrier with default settings
  • top-k strategy: "mean", i.e. the number of documents retrieved, k, is set as the mean number of documents seen across examples in this dataset, in this case k==17

Retrieval results on the train set:

Recall@100 Rprec Precision@k Recall@k
0.4333 0.2163 0.2051 0.2197

Retrieval results on the validation set:

Recall@100 Rprec Precision@k Recall@k
0.3780 0.1827 0.1815 0.1792

Retrieval results on the test set:

Recall@100 Rprec Precision@k Recall@k
0.3928 0.1898 0.1951 0.1820