Datasets:
Upload mslr2022.py
#2
by
johngiorgi
- opened
- mslr2022.py +171 -0
mslr2022.py
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
"""
|
16 |
+
The Multidocument Summarization for Literature Review (MSLR) Shared Task aims to study how medical
|
17 |
+
evidence from different clinical studies are summarized in literature reviews. Reviews provide the
|
18 |
+
highest quality of evidence for clinical care, but are expensive to produce manually.
|
19 |
+
(Semi-)automation via NLP may facilitate faster evidence synthesis without sacrificing rigor. The
|
20 |
+
MSLR shared task uses two datasets to assess the current state of multidocument summarization for
|
21 |
+
this task, and to encourage the development of modeling contributions, scaffolding tasks, methods
|
22 |
+
for model interpretability, and improved automated evaluation methods in this domain.
|
23 |
+
"""
|
24 |
+
|
25 |
+
|
26 |
+
import os
|
27 |
+
|
28 |
+
import pandas as pd
|
29 |
+
|
30 |
+
import datasets
|
31 |
+
|
32 |
+
|
33 |
+
_CITATION = """\
|
34 |
+
@inproceedings{DeYoung2021MS2MS,
|
35 |
+
title = {MSˆ2: Multi-Document Summarization of Medical Studies},
|
36 |
+
author = {Jay DeYoung and Iz Beltagy and Madeleine van Zuylen and Bailey Kuehl and Lucy Lu Wang},
|
37 |
+
booktitle = {EMNLP},
|
38 |
+
year = {2021}
|
39 |
+
}
|
40 |
+
@article{Wallace2020GeneratingN,
|
41 |
+
title = {Generating (Factual?) Narrative Summaries of RCTs: Experiments with Neural Multi-Document Summarization},
|
42 |
+
author = {Byron C. Wallace and Sayantani Saha and Frank Soboczenski and Iain James Marshall},
|
43 |
+
year = 2020,
|
44 |
+
journal = {AMIA Annual Symposium},
|
45 |
+
volume = {abs/2008.11293}
|
46 |
+
}
|
47 |
+
"""
|
48 |
+
|
49 |
+
_DATASETNAME = "mslr2022"
|
50 |
+
|
51 |
+
_DESCRIPTION = """\
|
52 |
+
The Multidocument Summarization for Literature Review (MSLR) Shared Task aims to study how medical
|
53 |
+
evidence from different clinical studies are summarized in literature reviews. Reviews provide the
|
54 |
+
highest quality of evidence for clinical care, but are expensive to produce manually.
|
55 |
+
(Semi-)automation via NLP may facilitate faster evidence synthesis without sacrificing rigor.
|
56 |
+
The MSLR shared task uses two datasets to assess the current state of multidocument summarization
|
57 |
+
for this task, and to encourage the development of modeling contributions, scaffolding tasks, methods
|
58 |
+
for model interpretability, and improved automated evaluation methods in this domain.
|
59 |
+
"""
|
60 |
+
|
61 |
+
_HOMEPAGE = "https://github.com/allenai/mslr-shared-task"
|
62 |
+
|
63 |
+
_LICENSE = "Apache-2.0"
|
64 |
+
|
65 |
+
_URLS = {
|
66 |
+
_DATASETNAME: "https://ai2-s2-mslr.s3.us-west-2.amazonaws.com/mslr_data.tar.gz",
|
67 |
+
}
|
68 |
+
|
69 |
+
|
70 |
+
class MSLR2022(datasets.GeneratorBasedBuilder):
|
71 |
+
"""MSLR2022 Shared Task."""
|
72 |
+
|
73 |
+
VERSION = datasets.Version("1.0.0")
|
74 |
+
|
75 |
+
BUILDER_CONFIGS = [
|
76 |
+
datasets.BuilderConfig(
|
77 |
+
name="ms2",
|
78 |
+
version=VERSION,
|
79 |
+
description="This dataset consists of around 20K reviews and 470K studies collected from PubMed. For details on dataset contents and construction, please read the MS^2 paper (https://arxiv.org/abs/2104.06486).",
|
80 |
+
),
|
81 |
+
datasets.BuilderConfig(
|
82 |
+
name="cochrane",
|
83 |
+
version=VERSION,
|
84 |
+
description="This is a dataset of 4.5K reviews collected from Cochrane systematic reviews. For details on dataset contents and construction, please read the AMIA paper (https://arxiv.org/abs/2008.11293).",
|
85 |
+
),
|
86 |
+
]
|
87 |
+
|
88 |
+
def _info(self):
|
89 |
+
fields = {
|
90 |
+
"review_id": datasets.Value("string"),
|
91 |
+
"pmid": datasets.Sequence(datasets.Value("string")),
|
92 |
+
"title": datasets.Sequence(datasets.Value("string")),
|
93 |
+
"abstract": datasets.Sequence(datasets.Value("string")),
|
94 |
+
"target": datasets.Value("string"),
|
95 |
+
}
|
96 |
+
# These are unique to MS^2
|
97 |
+
if self.config.name == "ms2":
|
98 |
+
fields["background"] = datasets.Value("string")
|
99 |
+
|
100 |
+
features = datasets.Features(fields)
|
101 |
+
|
102 |
+
return datasets.DatasetInfo(
|
103 |
+
description=_DESCRIPTION,
|
104 |
+
features=features,
|
105 |
+
homepage=_HOMEPAGE,
|
106 |
+
license=_LICENSE,
|
107 |
+
citation=_CITATION,
|
108 |
+
)
|
109 |
+
|
110 |
+
def _split_generators(self, dl_manager):
|
111 |
+
urls = _URLS[_DATASETNAME]
|
112 |
+
data_dir = dl_manager.download_and_extract(urls)
|
113 |
+
mslr_data_dir = os.path.join(data_dir, "mslr_data", self.config.name)
|
114 |
+
return [
|
115 |
+
datasets.SplitGenerator(
|
116 |
+
name=datasets.Split.TRAIN,
|
117 |
+
gen_kwargs={
|
118 |
+
"data_dir": mslr_data_dir,
|
119 |
+
"split": "train",
|
120 |
+
},
|
121 |
+
),
|
122 |
+
datasets.SplitGenerator(
|
123 |
+
name=datasets.Split.TEST,
|
124 |
+
gen_kwargs={"data_dir": mslr_data_dir, "split": "test"},
|
125 |
+
),
|
126 |
+
datasets.SplitGenerator(
|
127 |
+
name=datasets.Split.VALIDATION,
|
128 |
+
gen_kwargs={
|
129 |
+
"data_dir": mslr_data_dir,
|
130 |
+
"split": "dev",
|
131 |
+
},
|
132 |
+
),
|
133 |
+
]
|
134 |
+
|
135 |
+
def _generate_examples(self, data_dir, split):
|
136 |
+
inputs_filepath = os.path.join(data_dir, f"{split}-inputs.csv")
|
137 |
+
# At least one element in ReviewID is not a string, so explicitly cast it as such
|
138 |
+
inputs_df = pd.read_csv(inputs_filepath, index_col=0, dtype={"ReviewID": "string"})
|
139 |
+
|
140 |
+
# Only the train and dev splits have targets
|
141 |
+
if split != "test":
|
142 |
+
targets_filepath = os.path.join(data_dir, f"{split}-targets.csv")
|
143 |
+
targets_df = pd.read_csv(targets_filepath, index_col=0, dtype={"ReviewID": "string"})
|
144 |
+
|
145 |
+
# Only MS^2 has the *-reviews-info.csv files
|
146 |
+
if self.config.name == "ms2":
|
147 |
+
reviews_info_filepath = os.path.join(data_dir, f"{split}-reviews-info.csv")
|
148 |
+
reviews_info_df = pd.read_csv(reviews_info_filepath, index_col=0, dtype={"ReviewID": "string"})
|
149 |
+
|
150 |
+
for review_id in inputs_df.ReviewID.unique():
|
151 |
+
inputs = inputs_df[inputs_df.ReviewID == review_id]
|
152 |
+
|
153 |
+
example = {
|
154 |
+
"review_id": review_id,
|
155 |
+
"pmid": inputs.PMID.values.tolist(),
|
156 |
+
"title": inputs.Title.values.tolist(),
|
157 |
+
"abstract": inputs.Abstract.values.tolist(),
|
158 |
+
"target": "",
|
159 |
+
}
|
160 |
+
|
161 |
+
# Only the train and dev splits have targets
|
162 |
+
if split != "test":
|
163 |
+
targets = targets_df[targets_df.ReviewID == review_id]
|
164 |
+
example["target"] = targets.Target.values[0]
|
165 |
+
|
166 |
+
# Only MS^2 has the background section
|
167 |
+
if self.config.name == "ms2":
|
168 |
+
reviews_info = reviews_info_df[reviews_info_df.ReviewID == review_id]
|
169 |
+
example["background"] = reviews_info.Background.values[0]
|
170 |
+
|
171 |
+
yield review_id, example
|