|
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
|
|
class RealTimeModel(nn.Module): |
|
def __init__(self, input_size, hidden_size, output_size): |
|
super(RealTimeModel, self).__init__() |
|
self.fc1 = nn.Linear(input_size, hidden_size) |
|
self.relu = nn.ReLU() |
|
self.fc2 = nn.Linear(hidden_size, output_size) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.relu(x) |
|
x = self.fc2(x) |
|
return x |
|
|
|
model = RealTimeModel(input_size=10, hidden_size=20, output_size=1) |
|
criterion = nn.MSELoss() |
|
optimizer = optim.SGD(model.parameters(), lr=0.01) |
|
|
|
import numpy as np |
|
import time |
|
|
|
def get_new_data(): |
|
return torch.tensor(np.random.rand(10), dtype=torch.float32) |
|
|
|
def real_time_update(): |
|
while True: |
|
new_data = get_new_data().unsqueeze(0) |
|
target = torch.tensor([0.5], dtype=torch.float32) |
|
|
|
output = model(new_data) |
|
loss = criterion(output, target) |
|
|
|
optimizer.zero_grad() |
|
loss.backward() |
|
optimzier.step() |
|
|
|
print(f"Real-Time Update - Loss: {loss.item():.4f}") |
|
time.sleep(1) |
|
|
|
import matplotlib.pyplot as plt |
|
|
|
def visualize_loss(loss_values): |
|
plt.plot(loss_values) |
|
plt.xlabel("Time") |
|
plt.ylabel("Loss") |
|
plt.show() |
|
|
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
import torch |
|
import time |
|
|
|
def get_new_data(): |
|
return torch.sin(torch.linspace(0,2 * np.p, 100) + time.time()).numpy() |
|
|
|
plt.ion() |
|
fig, ax = plt.subplots() |
|
x_data = np.linspace(0, 2 * np.pi, 100) |
|
y_data = get_new_data() |
|
line, = ax.plot(x_data, y_data) |
|
|
|
def real_time_plot(): |
|
while True: |
|
new_y_data = get_new_data() |
|
line.set_ydata(new_y_data) |
|
fig.canvas.draw() |
|
fig.canvas.flush_events() |
|
|
|
time.sleep(0.1) |
|
|
|
try: |
|
real_time_plot() |
|
except KeyboardInterrupt: |
|
print("Real-time plotting stopped.") |
|
finally: |
|
plt.ioff() |
|
plt.show() |