repo_name
stringlengths
7
94
repo_path
stringlengths
4
237
repo_head_hexsha
stringlengths
40
40
content
stringlengths
10
680k
apis
stringlengths
2
680k
gfjiangly/AerialDetection
tools/aerial_detection.py
ee8a945c67c8e9ddef725900ac300d2d5a785e08
# -*- encoding:utf-8 -*- # @Time : 2021/1/3 15:15 # @Author : gfjiang import os.path as osp import mmcv import numpy as np import cvtools import matplotlib.pyplot as plt import cv2.cv2 as cv from functools import partial import torch import math from cvtools.utils.path import add_prefix_filename_suffix from mmdet.ops import nms from mmdet.apis import init_detector, inference_detector def draw_features(module, input, output, work_dir='./'): x = output.cpu().numpy() out_channels = list(output.shape)[1] height = int(math.sqrt(out_channels)) width = height if list(output.shape)[2] < 128: return fig = plt.figure(figsize=(32, 32)) fig.subplots_adjust(left=0.05, right=0.95, bottom=0.05, top=0.95, wspace=0.05, hspace=0.05) for i in range(height * width): plt.subplot(height, width, i + 1) plt.axis('off') img = x[0, i, :, :] pmin = np.min(img) pmax = np.max(img) img = ((img - pmin) / (pmax - pmin + 0.000001))*255 # float在[0,1]之间,转换成0-255 img = img.astype(np.uint8) # 转成unit8 img = cv.applyColorMap(img, cv.COLORMAP_JET) # 生成heat map img = img[:, :, ::-1] # 注意cv2(BGR)和matplotlib(RGB)通道是相反的 plt.imshow(img) # print("{}/{}".format(i,width*height)) savename = get_image_name_for_hook(module, work_dir) fig.savefig(savename, dpi=100) fig.clf() plt.close() def get_image_name_for_hook(module, work_dir='./'): """ Generate image filename for hook function Parameters: ----------- module: module of neural network """ # os.makedirs(work_dir, exist_ok=True) module_name = str(module) base_name = module_name.split('(')[0] index = 0 image_name = '.' # '.' is surely exist, to make first loop condition True while osp.exists(image_name): index += 1 image_name = osp.join( work_dir, 'feats', '%s_%d.png' % (base_name, index)) return image_name class AerialDetectionOBB(object): def __init__(self, config, pth): self.imgs = [] self.cfg = mmcv.Config.fromfile(config) self.pth = pth print('loading model {} ...'.format(pth)) self.model = init_detector(self.cfg, self.pth, device='cuda:0') self.results = [] self.img_detected = [] # self.vis_feats((torch.nn.Conv2d, torch.nn.MaxPool2d)) def __call__(self, imgs_or_path, det_thrs=0.5, vis=False, vis_thr=0.5, save_root=''): if isinstance(imgs_or_path, str): self.imgs += cvtools.get_files_list(imgs_or_path) else: self.imgs += imgs_or_path prog_bar = mmcv.ProgressBar(len(self.imgs)) for _, img in enumerate(self.imgs): self.detect(img, det_thrs=det_thrs, vis=vis, vis_thr=vis_thr, save_root=save_root) prog_bar.update() def detect(self, img, det_thrs=0.5, vis=False, vis_thr=0.5, save_root=''): result = inference_detector(self.model, img) # result = self.nms(result) if isinstance(det_thrs, float): det_thrs = [det_thrs] * len(result) if vis: to_file = osp.join(save_root, osp.basename(img)) to_file = add_prefix_filename_suffix(to_file, suffix='_obb') self.vis(img, result, vis_thr=vis_thr, to_file=to_file) result = [det[det[..., -1] > det_thr] for det, det_thr in zip(result, det_thrs)] if len(result) == 0: print('detect: image {} has no object.'.format(img)) self.img_detected.append(img) self.results.append(result) return result def nms(self, result, nms_th=0.3): dets_num = [len(det_cls) for det_cls in result] result = np.vstack(result) _, ids = nms(result, nms_th) total_num = 0 nms_result = [] for num in dets_num: ids_cls = ids[np.where((total_num <= ids) & (ids < num))[0]] nms_result.append(result[ids_cls]) total_num += num return nms_result def vis(self, img, bbox_result, vis_thr=0.5, to_file='vis.jpg'): bboxes = np.vstack(bbox_result) labels = [ np.full(bbox.shape[0], i, dtype=np.int32) for i, bbox in enumerate(bbox_result) ] labels = np.concatenate(labels) inds = np.where(bboxes[:, -1] > vis_thr)[0] bboxes = bboxes[inds] labels = labels[inds] texts = [self.model.CLASSES[index]+'|'+str(round(bbox[-1], 2)) for index, bbox in zip(labels, bboxes)] img = cvtools.draw_boxes_texts( img, bboxes[:, :-1], box_format='polygon', line_width=2) cvtools.imwrite(img, to_file) def vis_feats(self, modules_for_plot): h, w = self.cfg.data.train.img_scale for name, module in self.model.named_modules(): if isinstance(module, modules_for_plot): draw_features_func = partial( draw_features, work_dir=self.cfg.work_dir) module.register_forward_hook(draw_features_func) def save_results(self, save): str_results = '' for i, img in enumerate(self.img_detected): result = self.results[i] img = osp.basename(img) for cls_index, dets in enumerate(result): cls = self.model.CLASSES[cls_index] for box in dets: bbox_str = ','.join(map(str, map(int, box[:4]))) str_results += ' '.join([img, cls, bbox_str]) + '\n' with open(save, 'w') as f: f.write(str_results) if __name__ == '__main__': config_file = 'configs/DOTA/faster_rcnn_RoITrans_r50_fpn_1x_dota_1gpus_mdanet2.py' pth_file = 'work_dirs/faster_rcnn_RoITrans_r50_fpn_1x_dota_1gpus_mdanet2/epoch_12.pth' detector = AerialDetectionOBB(config_file, pth_file) detector('/media/data/DOTA/crop/P2701_2926_1597_3949_2620.png', vis=True, save_root='work_dirs/attention_vis/') detector.save_results('work_dirs/faster_rcnn_RoITrans_r50_fpn_1x_dota_1gpus_mdanet2/detect_result.txt')
[((643, 671), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(32, 32)'}), '(figsize=(32, 32))\n', (653, 671), True, 'import matplotlib.pyplot as plt\n'), ((1399, 1410), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (1408, 1410), True, 'import matplotlib.pyplot as plt\n'), ((1815, 1837), 'os.path.exists', 'osp.exists', (['image_name'], {}), '(image_name)\n', (1825, 1837), True, 'import os.path as osp\n'), ((538, 561), 'math.sqrt', 'math.sqrt', (['out_channels'], {}), '(out_channels)\n', (547, 561), False, 'import math\n'), ((812, 845), 'matplotlib.pyplot.subplot', 'plt.subplot', (['height', 'width', '(i + 1)'], {}), '(height, width, i + 1)\n', (823, 845), True, 'import matplotlib.pyplot as plt\n'), ((854, 869), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (862, 869), True, 'import matplotlib.pyplot as plt\n'), ((913, 924), 'numpy.min', 'np.min', (['img'], {}), '(img)\n', (919, 924), True, 'import numpy as np\n'), ((940, 951), 'numpy.max', 'np.max', (['img'], {}), '(img)\n', (946, 951), True, 'import numpy as np\n'), ((1098, 1136), 'cv2.cv2.applyColorMap', 'cv.applyColorMap', (['img', 'cv.COLORMAP_JET'], {}), '(img, cv.COLORMAP_JET)\n', (1114, 1136), True, 'import cv2.cv2 as cv\n'), ((1225, 1240), 'matplotlib.pyplot.imshow', 'plt.imshow', (['img'], {}), '(img)\n', (1235, 1240), True, 'import matplotlib.pyplot as plt\n'), ((1879, 1940), 'os.path.join', 'osp.join', (['work_dir', '"""feats"""', "('%s_%d.png' % (base_name, index))"], {}), "(work_dir, 'feats', '%s_%d.png' % (base_name, index))\n", (1887, 1940), True, 'import os.path as osp\n'), ((2092, 2120), 'mmcv.Config.fromfile', 'mmcv.Config.fromfile', (['config'], {}), '(config)\n', (2112, 2120), False, 'import mmcv\n'), ((2215, 2265), 'mmdet.apis.init_detector', 'init_detector', (['self.cfg', 'self.pth'], {'device': '"""cuda:0"""'}), "(self.cfg, self.pth, device='cuda:0')\n", (2228, 2265), False, 'from mmdet.apis import init_detector, inference_detector\n'), ((3136, 3171), 'mmdet.apis.inference_detector', 'inference_detector', (['self.model', 'img'], {}), '(self.model, img)\n', (3154, 3171), False, 'from mmdet.apis import init_detector, inference_detector\n'), ((3924, 3941), 'numpy.vstack', 'np.vstack', (['result'], {}), '(result)\n', (3933, 3941), True, 'import numpy as np\n'), ((3959, 3978), 'mmdet.ops.nms', 'nms', (['result', 'nms_th'], {}), '(result, nms_th)\n', (3962, 3978), False, 'from mmdet.ops import nms\n'), ((4328, 4350), 'numpy.vstack', 'np.vstack', (['bbox_result'], {}), '(bbox_result)\n', (4337, 4350), True, 'import numpy as np\n'), ((4501, 4523), 'numpy.concatenate', 'np.concatenate', (['labels'], {}), '(labels)\n', (4515, 4523), True, 'import numpy as np\n'), ((4778, 4863), 'cvtools.draw_boxes_texts', 'cvtools.draw_boxes_texts', (['img', 'bboxes[:, :-1]'], {'box_format': '"""polygon"""', 'line_width': '(2)'}), "(img, bboxes[:, :-1], box_format='polygon',\n line_width=2)\n", (4802, 4863), False, 'import cvtools\n'), ((4881, 4910), 'cvtools.imwrite', 'cvtools.imwrite', (['img', 'to_file'], {}), '(img, to_file)\n', (4896, 4910), False, 'import cvtools\n'), ((2630, 2666), 'cvtools.get_files_list', 'cvtools.get_files_list', (['imgs_or_path'], {}), '(imgs_or_path)\n', (2652, 2666), False, 'import cvtools\n'), ((3395, 3445), 'cvtools.utils.path.add_prefix_filename_suffix', 'add_prefix_filename_suffix', (['to_file'], {'suffix': '"""_obb"""'}), "(to_file, suffix='_obb')\n", (3421, 3445), False, 'from cvtools.utils.path import add_prefix_filename_suffix\n'), ((4382, 4423), 'numpy.full', 'np.full', (['bbox.shape[0]', 'i'], {'dtype': 'np.int32'}), '(bbox.shape[0], i, dtype=np.int32)\n', (4389, 4423), True, 'import numpy as np\n'), ((4539, 4574), 'numpy.where', 'np.where', (['(bboxes[:, (-1)] > vis_thr)'], {}), '(bboxes[:, (-1)] > vis_thr)\n', (4547, 4574), True, 'import numpy as np\n'), ((5454, 5471), 'os.path.basename', 'osp.basename', (['img'], {}), '(img)\n', (5466, 5471), True, 'import os.path as osp\n'), ((3354, 3371), 'os.path.basename', 'osp.basename', (['img'], {}), '(img)\n', (3366, 3371), True, 'import os.path as osp\n'), ((5150, 5200), 'functools.partial', 'partial', (['draw_features'], {'work_dir': 'self.cfg.work_dir'}), '(draw_features, work_dir=self.cfg.work_dir)\n', (5157, 5200), False, 'from functools import partial\n'), ((4080, 4122), 'numpy.where', 'np.where', (['((total_num <= ids) & (ids < num))'], {}), '((total_num <= ids) & (ids < num))\n', (4088, 4122), True, 'import numpy as np\n')]
federico123579/Trading212-API
tradingAPI/low_level.py
0fab20b71a2348e72bbe76071b81f3692128851f
# -*- coding: utf-8 -*- """ tradingAPI.low_level ~~~~~~~~~~~~~~ This module provides the low level functions with the service. """ import time import re from datetime import datetime from pyvirtualdisplay import Display from bs4 import BeautifulSoup from splinter import Browser from .glob import Glob from .links import path from .utils import num, expect, get_pip # exceptions from tradingAPI import exceptions import selenium.common.exceptions # logging import logging logger = logging.getLogger('tradingAPI.low_level') class Stock(object): """base class for stocks""" def __init__(self, product): self.product = product self.market = True self.records = [] def new_rec(self, rec): """add a record""" self.records.append(rec) return self.records class Movement(object): """class-storing movement""" def __init__(self, product, quantity, mode, price): self.product = product self.quantity = quantity self.mode = mode self.price = price class PurePosition(object): """class-storing position""" def __init__(self, product, quantity, mode, price): self.product = product self.quantity = quantity self.mode = mode self.price = price def __repr__(self): return ' - '.join([str(self.product), str(self.quantity), str(self.mode), str(self.price)]) class LowLevelAPI(object): """low level api to interface with the service""" def __init__(self, brow="firefox"): self.brow_name = brow self.positions = [] self.movements = [] self.stocks = [] # init globals Glob() def launch(self): """launch browser and virtual display, first of all to be launched""" try: # init virtual Display self.vbro = Display() self.vbro.start() logger.debug("virtual display launched") except Exception: raise exceptions.VBroException() try: self.browser = Browser(self.brow_name) logger.debug(f"browser {self.brow_name} launched") except Exception: raise exceptions.BrowserException( self.brow_name, "failed to launch") return True def css(self, css_path, dom=None): """css find function abbreviation""" if dom is None: dom = self.browser return expect(dom.find_by_css, args=[css_path]) def css1(self, css_path, dom=None): """return the first value of self.css""" if dom is None: dom = self.browser def _css1(path, domm): """virtual local func""" return self.css(path, domm)[0] return expect(_css1, args=[css_path, dom]) def search_name(self, name, dom=None): """name find function abbreviation""" if dom is None: dom = self.browser return expect(dom.find_by_name, args=[name]) def xpath(self, xpath, dom=None): """xpath find function abbreviation""" if dom is None: dom = self.browser return expect(dom.find_by_xpath, args=[xpath]) def elCss(self, css_path, dom=None): """check if element is present by css""" if dom is None: dom = self.browser return expect(dom.is_element_present_by_css, args=[css_path]) def elXpath(self, xpath, dom=None): """check if element is present by css""" if dom is None: dom = self.browser return expect(dom.is_element_present_by_xpath, args=[xpath]) def login(self, username, password, mode="demo"): """login function""" url = "https://trading212.com/it/login" try: logger.debug(f"visiting %s" % url) self.browser.visit(url) logger.debug(f"connected to %s" % url) except selenium.common.exceptions.WebDriverException: logger.critical("connection timed out") raise try: self.search_name("login[username]").fill(username) self.search_name("login[password]").fill(password) self.css1(path['log']).click() # define a timeout for logging in timeout = time.time() + 30 while not self.elCss(path['logo']): if time.time() > timeout: logger.critical("login failed") raise CredentialsException(username) time.sleep(1) logger.info(f"logged in as {username}") # check if it's a weekend if mode == "demo" and datetime.now().isoweekday() in range(5, 8): timeout = time.time() + 10 while not self.elCss(path['alert-box']): if time.time() > timeout: logger.warning("weekend trading alert-box not closed") break if self.elCss(path['alert-box']): self.css1(path['alert-box']).click() logger.debug("weekend trading alert-box closed") except Exception as e: logger.critical("login failed") raise exceptions.BaseExc(e) return True def logout(self): """logout func (quit browser)""" try: self.browser.quit() except Exception: raise exceptions.BrowserException(self.brow_name, "not started") return False self.vbro.stop() logger.info("logged out") return True def get_bottom_info(self, info): accepted_values = { 'free_funds': 'equity-free', 'account_value': 'equity-total', 'live_result': 'equity-ppl', 'used_margin': 'equity-margin'} try: info_label = accepted_values[info] val = self.css1("div#%s span.equity-item-value" % info_label).text return num(val) except KeyError as e: raise exceptions.BaseExc(e) def get_price(self, name): soup = BeautifulSoup( self.css1("div.scrollable-area-content").html, "html.parser") for product in soup.select("div.tradebox"): fullname = product.select("span.instrument-name")[0].text.lower() if name.lower() in fullname: mark_closed_list = [x for x in product.select( "div.quantity-list-input-wrapper") if x.select( "div.placeholder")[0].text.lower().find("close") != -1] if mark_closed_list: sell_price = product.select("div.tradebox-price-sell")[0]\ .text return float(sell_price) else: return False class MovementWindow(object): """add movement window""" def __init__(self, api, product): self.api = api self.product = product self.state = 'initialized' self.insfu = False def open(self, name_counter=None): """open the window""" if self.api.css1(path['add-mov']).visible: self.api.css1(path['add-mov']).click() else: self.api.css1('span.dataTable-no-data-action').click() logger.debug("opened window") self.api.css1(path['search-box']).fill(self.product) if self.get_result(0) is None: self.api.css1(path['close']).click() raise exceptions.ProductNotFound(self.product) result, product = self.search_res(self.product, name_counter) result.click() if self.api.elCss("div.widget_message"): self.decode(self.api.css1("div.widget_message")) self.product = product self.state = 'open' def _check_open(self): if self.state == 'open': return True else: raise exceptions.WindowException() def close(self): """close a movement""" self._check_open() self.api.css1(path['close']).click() self.state = 'closed' logger.debug("closed window") def confirm(self): """confirm the movement""" self._check_open() self.get_price() self.api.css1(path['confirm-btn']).click() widg = self.api.css("div.widget_message") if widg: self.decode(widg[0]) raise exceptions.WidgetException(widg) if all(x for x in ['quantity', 'mode'] if hasattr(self, x)): self.api.movements.append(Movement( self.product, self.quantity, self.mode, self.price)) logger.debug("%s movement appended to the list" % self.product) self.state = 'conclused' logger.debug("confirmed movement") def search_res(self, res, check_counter=None): """search for a res""" logger.debug("searching result") result = self.get_result(0) name = self.get_research_name(result) x = 0 while not self.check_name(res, name, counter=check_counter): name = self.get_research_name(self.get_result(x)) if name is None: self.api.css1(path['close']).click() raise exceptions.ProductNotFound(res) logger.debug(name) if self.check_name(res, name, counter=check_counter): return self.get_result(x) x += 1 logger.debug("found product at position %d" % (x + 1)) return result, name def check_name(self, name, string, counter=None): """if both in string return False""" name = name.lower() string = string.lower() if counter is None: if name in string: return True else: return False counter = counter.lower() if name in string and counter in string: logger.debug("check_name: counter found in string") return False elif name in string and counter not in string: return True else: return False def get_research_name(self, res): """return result name""" if res is None: return None return self.api.css1("span.instrument-name", res).text def get_result(self, pos): """get pos result, where 0 is first""" evalxpath = path['res'] + f"[{pos + 1}]" try: res = self.api.xpath(evalxpath)[0] return res except Exception: return None def set_limit(self, category, mode, value): """set limit in movement window""" self._check_open() if (mode not in ["unit", "value"] or category not in ["gain", "loss", "both"]): raise ValueError() if not hasattr(self, 'stop_limit'): self.stop_limit = {'gain': {}, 'loss': {}} logger.debug("initialized stop_limit") if category == 'gain': self.api.xpath( path['limit-gain-%s' % mode])[0].fill(str(value)) elif category == 'loss': self.api.xpath( path['limit-loss-%s' % mode])[0].fill(str(value)) if category != 'both': self.stop_limit[category]['mode'] = mode self.stop_limit[category]['value'] = value elif category == 'both': self.api.xpath( path['limit-gain-%s' % mode])[0].fill(str(value)) self.api.xpath( path['limit-loss-%s' % mode])[0].fill(str(value)) for cat in ['gain', 'loss']: self.stop_limit[cat]['mode'] = mode self.stop_limit[cat]['value'] = value logger.debug("set limit") def decode(self, message): """decode text pop-up""" title = self.api.css1("div.title", message).text text = self.api.css1("div.text", message).text if title == "Insufficient Funds": self.insfu = True elif title == "Maximum Quantity Limit": raise exceptions.MaxQuantLimit(num(text)) elif title == "Minimum Quantity Limit": raise exceptions.MinQuantLimit(num(text)) logger.debug("decoded message") def decode_update(self, message, value, mult=0.1): """decode and update the value""" try: msg_text = self.api.css1("div.text", message).text return num(msg_text) except Exception: if msg_text.lower().find("higher") != -1: value += value * mult return value else: self.decode(message) return None def get_mov_margin(self): """get the margin of the movement""" self._check_open() return num(self.api.css1("span.cfd-order-info-item-value").text) def set_mode(self, mode): """set mode (buy or sell)""" self._check_open() if mode not in ["buy", "sell"]: raise ValueError() self.api.css1(path[mode + '-btn']).click() self.mode = mode logger.debug("mode set") def get_quantity(self): """gte current quantity""" self._check_open() quant = int(num(self.api.css1(path['quantity']).value)) self.quantity = quant return quant def set_quantity(self, quant): """set quantity""" self._check_open() self.api.css1(path['quantity']).fill(str(int(quant))) self.quantity = quant logger.debug("quantity set") def get_price(self, mode='buy'): """get current price""" if mode not in ['buy', 'sell']: raise ValueError() self._check_open() price = num(self.api.css1( "div.orderdialog div.tradebox-price-%s" % mode).text) self.price = price return price def get_unit_value(self): """get unit value of stock based on margin, memoized""" # find in the collection try: unit_value = Glob().theCollector.collection['unit_value'] unit_value_res = unit_value[self.product] logger.debug("unit_value found in the collection") return unit_value_res except KeyError: logger.debug("unit_value not found in the collection") pip = get_pip(mov=self) quant = 1 / pip if hasattr(self, 'quantity'): old_quant == self.quantity self.set_quantity(quant) # update the site time.sleep(0.5) margin = self.get_mov_margin() logger.debug(f"quant: {quant} - pip: {pip} - margin: {margin}") if 'old_quant' in locals(): self.set_quantity(old_quant) unit_val = margin / quant self.unit_value = unit_val Glob().unit_valueHandler.add_val({self.product: unit_val}) return unit_val def new_mov(self, name): """factory method pattern""" return self.MovementWindow(self, name) class Position(PurePosition): """position object""" def __init__(self, api, html_div): """initialized from div""" self.api = api if isinstance(html_div, type('')): self.soup_data = BeautifulSoup(html_div, 'html.parser') else: self.soup_data = html_div self.product = self.soup_data.select("td.name")[0].text self.quantity = num(self.soup_data.select("td.quantity")[0].text) if ("direction-label-buy" in self.soup_data.select("td.direction")[0].span['class']): self.mode = 'buy' else: self.mode = 'sell' self.price = num(self.soup_data.select("td.averagePrice")[0].text) self.margin = num(self.soup_data.select("td.margin")[0].text) self.id = self.find_id() def update(self, soup): """update the soup""" self.soup_data = soup return soup def find_id(self): """find pos ID with with given data""" pos_id = self.soup_data['id'] self.id = pos_id return pos_id @property def close_tag(self): """obtain close tag""" return f"#{self.id} div.close-icon" def close(self): """close position via tag""" self.api.css1(self.close_tag).click() try: self.api.xpath(path['ok_but'])[0].click() except selenium.common.exceptions.ElementNotInteractableException: if (self.api.css1('.widget_message div.title').text == 'Market Closed'): logger.error("market closed, position can't be closed") raise exceptions.MarketClosed() raise exceptions.WidgetException( self.api.css1('.widget_message div.text').text) # wait until it's been closed # set a timeout timeout = time.time() + 10 while self.api.elCss(self.close_tag): time.sleep(0.1) if time.time() > timeout: raise TimeoutError("failed to close pos %s" % self.id) logger.debug("closed pos %s" % self.id) def get_gain(self): """get current profit""" gain = num(self.soup_data.select("td.ppl")[0].text) self.gain = gain return gain def bind_mov(self): """bind the corresponding movement""" logger = logging.getLogger("tradingAPI.low_level.bind_mov") mov_list = [x for x in self.api.movements if x.product == self.product and x.quantity == self.quantity and x.mode == self.mode] if not mov_list: logger.debug("fail: mov not found") return None else: logger.debug("success: found movement") for x in mov_list: # find approximate price max_roof = self.price + self.price * 0.01 min_roof = self.price - self.price * 0.01 if min_roof < x.price < max_roof: logger.debug("success: price corresponding") # bind mov self.mov = x return x else: logger.debug("fail: price %f not corresponding to %f" % (self.price, x.price)) continue # if nothing, return None return None def new_pos(self, html_div): """factory method pattern""" pos = self.Position(self, html_div) pos.bind_mov() self.positions.append(pos) return pos
[((485, 526), 'logging.getLogger', 'logging.getLogger', (['"""tradingAPI.low_level"""'], {}), "('tradingAPI.low_level')\n", (502, 526), False, 'import logging\n'), ((1879, 1888), 'pyvirtualdisplay.Display', 'Display', ([], {}), '()\n', (1886, 1888), False, 'from pyvirtualdisplay import Display\n'), ((2083, 2106), 'splinter.Browser', 'Browser', (['self.brow_name'], {}), '(self.brow_name)\n', (2090, 2106), False, 'from splinter import Browser\n'), ((4533, 4546), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (4543, 4546), False, 'import time\n'), ((15323, 15338), 'time.sleep', 'time.sleep', (['(0.5)'], {}), '(0.5)\n', (15333, 15338), False, 'import time\n'), ((18436, 18486), 'logging.getLogger', 'logging.getLogger', (['"""tradingAPI.low_level.bind_mov"""'], {}), "('tradingAPI.low_level.bind_mov')\n", (18453, 18486), False, 'import logging\n'), ((2016, 2042), 'tradingAPI.exceptions.VBroException', 'exceptions.VBroException', ([], {}), '()\n', (2040, 2042), False, 'from tradingAPI import exceptions\n'), ((2214, 2277), 'tradingAPI.exceptions.BrowserException', 'exceptions.BrowserException', (['self.brow_name', '"""failed to launch"""'], {}), "(self.brow_name, 'failed to launch')\n", (2241, 2277), False, 'from tradingAPI import exceptions\n'), ((4305, 4316), 'time.time', 'time.time', ([], {}), '()\n', (4314, 4316), False, 'import time\n'), ((5239, 5260), 'tradingAPI.exceptions.BaseExc', 'exceptions.BaseExc', (['e'], {}), '(e)\n', (5257, 5260), False, 'from tradingAPI import exceptions\n'), ((5434, 5492), 'tradingAPI.exceptions.BrowserException', 'exceptions.BrowserException', (['self.brow_name', '"""not started"""'], {}), "(self.brow_name, 'not started')\n", (5461, 5492), False, 'from tradingAPI import exceptions\n'), ((6049, 6070), 'tradingAPI.exceptions.BaseExc', 'exceptions.BaseExc', (['e'], {}), '(e)\n', (6067, 6070), False, 'from tradingAPI import exceptions\n'), ((7576, 7616), 'tradingAPI.exceptions.ProductNotFound', 'exceptions.ProductNotFound', (['self.product'], {}), '(self.product)\n', (7602, 7616), False, 'from tradingAPI import exceptions\n'), ((8040, 8068), 'tradingAPI.exceptions.WindowException', 'exceptions.WindowException', ([], {}), '()\n', (8066, 8068), False, 'from tradingAPI import exceptions\n'), ((8602, 8634), 'tradingAPI.exceptions.WidgetException', 'exceptions.WidgetException', (['widg'], {}), '(widg)\n', (8628, 8634), False, 'from tradingAPI import exceptions\n'), ((16087, 16125), 'bs4.BeautifulSoup', 'BeautifulSoup', (['html_div', '"""html.parser"""'], {}), "(html_div, 'html.parser')\n", (16100, 16125), False, 'from bs4 import BeautifulSoup\n'), ((17885, 17896), 'time.time', 'time.time', ([], {}), '()\n', (17894, 17896), False, 'import time\n'), ((17968, 17983), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (17978, 17983), False, 'import time\n'), ((4389, 4400), 'time.time', 'time.time', ([], {}), '()\n', (4398, 4400), False, 'import time\n'), ((4741, 4752), 'time.time', 'time.time', ([], {}), '()\n', (4750, 4752), False, 'import time\n'), ((9496, 9527), 'tradingAPI.exceptions.ProductNotFound', 'exceptions.ProductNotFound', (['res'], {}), '(res)\n', (9522, 9527), False, 'from tradingAPI import exceptions\n'), ((18003, 18014), 'time.time', 'time.time', ([], {}), '()\n', (18012, 18014), False, 'import time\n'), ((4838, 4849), 'time.time', 'time.time', ([], {}), '()\n', (4847, 4849), False, 'import time\n'), ((17645, 17670), 'tradingAPI.exceptions.MarketClosed', 'exceptions.MarketClosed', ([], {}), '()\n', (17668, 17670), False, 'from tradingAPI import exceptions\n'), ((4671, 4685), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (4683, 4685), False, 'from datetime import datetime\n')]
cvicens/lab-knative
.infra/setup/playbooks/roles/ansible.kubernetes-modules/library/openshift_v1_build_config_list.py
ef98aa111e566c6d33fd72c61f9c0d93a2c05b2f
#!/usr/bin/python # -*- coding: utf-8 -*- from ansible.module_utils.openshift_common import OpenShiftAnsibleModule, OpenShiftAnsibleException DOCUMENTATION = ''' module: openshift_v1_build_config_list short_description: OpenShift BuildConfigList description: - Retrieve a list of build_configs. List operations provide a snapshot read of the underlying objects, returning a resource_version representing a consistent version of the listed objects. version_added: 2.3.0 author: OpenShift (@openshift) options: api_key: description: - Token used to connect to the API. cert_file: description: - Path to a certificate used to authenticate with the API. type: path context: description: - The name of a context found in the Kubernetes config file. debug: description: - Enable debug output from the OpenShift helper. Logging info is written to KubeObjHelper.log default: false type: bool force: description: - If set to C(True), and I(state) is C(present), an existing object will updated, and lists will be replaced, rather than merged. default: false type: bool host: description: - Provide a URL for acessing the Kubernetes API. key_file: description: - Path to a key file used to authenticate with the API. type: path kubeconfig: description: - Path to an existing Kubernetes config file. If not provided, and no other connection options are provided, the openshift client will attempt to load the default configuration file from I(~/.kube/config.json). type: path password: description: - Provide a password for connecting to the API. Use in conjunction with I(username). resource_definition: description: - Provide the YAML definition for the object, bypassing any modules parameters intended to define object attributes. type: dict src: description: - Provide a path to a file containing the YAML definition of the object. Mutually exclusive with I(resource_definition). type: path ssl_ca_cert: description: - Path to a CA certificate used to authenticate with the API. type: path state: description: - Determines if an object should be created, patched, or deleted. When set to C(present), the object will be created, if it does not exist, or patched, if parameter values differ from the existing object's attributes, and deleted, if set to C(absent). A patch operation results in merging lists and updating dictionaries, with lists being merged into a unique set of values. If a list contains a dictionary with a I(name) or I(type) attribute, a strategic merge is performed, where individual elements with a matching I(name_) or I(type) are merged. To force the replacement of lists, set the I(force) option to C(True). default: present choices: - present - absent username: description: - Provide a username for connecting to the API. verify_ssl: description: - Whether or not to verify the API server's SSL certificates. type: bool requirements: - openshift == 0.3.3 ''' EXAMPLES = ''' ''' RETURN = ''' api_version: type: string description: Requested API version build_config_list: type: complex returned: when I(state) = C(present) contains: api_version: description: - APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. type: str items: description: - items is a list of build configs type: list contains: api_version: description: - APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. type: str kind: description: - Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. type: str metadata: description: - metadata for BuildConfig. type: complex contains: annotations: description: - Annotations is an unstructured key value map stored with a resource that may be set by external tools to store and retrieve arbitrary metadata. They are not queryable and should be preserved when modifying objects. type: complex contains: str, str cluster_name: description: - The name of the cluster which the object belongs to. This is used to distinguish resources with same name and namespace in different clusters. This field is not set anywhere right now and apiserver is going to ignore it if set in create or update request. type: str creation_timestamp: description: - CreationTimestamp is a timestamp representing the server time when this object was created. It is not guaranteed to be set in happens-before order across separate operations. Clients may not set this value. It is represented in RFC3339 form and is in UTC. Populated by the system. Read-only. Null for lists. type: complex contains: {} deletion_grace_period_seconds: description: - Number of seconds allowed for this object to gracefully terminate before it will be removed from the system. Only set when deletionTimestamp is also set. May only be shortened. Read-only. type: int deletion_timestamp: description: - DeletionTimestamp is RFC 3339 date and time at which this resource will be deleted. This field is set by the server when a graceful deletion is requested by the user, and is not directly settable by a client. The resource is expected to be deleted (no longer visible from resource lists, and not reachable by name) after the time in this field. Once set, this value may not be unset or be set further into the future, although it may be shortened or the resource may be deleted prior to this time. For example, a user may request that a pod is deleted in 30 seconds. The Kubelet will react by sending a graceful termination signal to the containers in the pod. After that 30 seconds, the Kubelet will send a hard termination signal (SIGKILL) to the container and after cleanup, remove the pod from the API. In the presence of network partitions, this object may still exist after this timestamp, until an administrator or automated process can determine the resource is fully terminated. If not set, graceful deletion of the object has not been requested. Populated by the system when a graceful deletion is requested. Read-only. type: complex contains: {} finalizers: description: - Must be empty before the object is deleted from the registry. Each entry is an identifier for the responsible component that will remove the entry from the list. If the deletionTimestamp of the object is non-nil, entries in this list can only be removed. type: list contains: str generate_name: description: - GenerateName is an optional prefix, used by the server, to generate a unique name ONLY IF the Name field has not been provided. If this field is used, the name returned to the client will be different than the name passed. This value will also be combined with a unique suffix. The provided value has the same validation rules as the Name field, and may be truncated by the length of the suffix required to make the value unique on the server. If this field is specified and the generated name exists, the server will NOT return a 409 - instead, it will either return 201 Created or 500 with Reason ServerTimeout indicating a unique name could not be found in the time allotted, and the client should retry (optionally after the time indicated in the Retry-After header). Applied only if Name is not specified. type: str generation: description: - A sequence number representing a specific generation of the desired state. Populated by the system. Read-only. type: int initializers: description: - An initializer is a controller which enforces some system invariant at object creation time. This field is a list of initializers that have not yet acted on this object. If nil or empty, this object has been completely initialized. Otherwise, the object is considered uninitialized and is hidden (in list/watch and get calls) from clients that haven't explicitly asked to observe uninitialized objects. When an object is created, the system will populate this list with the current set of initializers. Only privileged users may set or modify this list. Once it is empty, it may not be modified further by any user. type: complex contains: pending: description: - Pending is a list of initializers that must execute in order before this object is visible. When the last pending initializer is removed, and no failing result is set, the initializers struct will be set to nil and the object is considered as initialized and visible to all clients. type: list contains: name: description: - name of the process that is responsible for initializing this object. type: str result: description: - If result is set with the Failure field, the object will be persisted to storage and then deleted, ensuring that other clients can observe the deletion. type: complex contains: api_version: description: - APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. type: str code: description: - Suggested HTTP return code for this status, 0 if not set. type: int details: description: - Extended data associated with the reason. Each reason may define its own extended details. This field is optional and the data returned is not guaranteed to conform to any schema except that defined by the reason type. type: complex contains: causes: description: - The Causes array includes more details associated with the StatusReason failure. Not all StatusReasons may provide detailed causes. type: list contains: field: description: - 'The field of the resource that has caused this error, as named by its JSON serialization. May include dot and postfix notation for nested attributes. Arrays are zero-indexed. Fields may appear more than once in an array of causes due to fields having multiple errors. Optional. Examples: "name" - the field "name" on the current resource "items[0].name" - the field "name" on the first array entry in "items"' type: str message: description: - A human-readable description of the cause of the error. This field may be presented as-is to a reader. type: str reason: description: - A machine-readable description of the cause of the error. If this value is empty there is no information available. type: str group: description: - The group attribute of the resource associated with the status StatusReason. type: str kind: description: - The kind attribute of the resource associated with the status StatusReason. On some operations may differ from the requested resource Kind. type: str name: description: - The name attribute of the resource associated with the status StatusReason (when there is a single name which can be described). type: str retry_after_seconds: description: - If specified, the time in seconds before the operation should be retried. type: int uid: description: - UID of the resource. (when there is a single resource which can be described). type: str kind: description: - Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. type: str message: description: - A human-readable description of the status of this operation. type: str metadata: description: - Standard list metadata. type: complex contains: resource_version: description: - String that identifies the server's internal version of this object that can be used by clients to determine when objects have changed. Value must be treated as opaque by clients and passed unmodified back to the server. Populated by the system. Read-only. type: str self_link: description: - SelfLink is a URL representing this object. Populated by the system. Read-only. type: str reason: description: - A machine-readable description of why this operation is in the "Failure" status. If this value is empty there is no information available. A Reason clarifies an HTTP status code but does not override it. type: str status: description: - 'Status of the operation. One of: "Success" or "Failure".' type: str labels: description: - Map of string keys and values that can be used to organize and categorize (scope and select) objects. May match selectors of replication controllers and services. type: complex contains: str, str name: description: - Name must be unique within a namespace. Is required when creating resources, although some resources may allow a client to request the generation of an appropriate name automatically. Name is primarily intended for creation idempotence and configuration definition. Cannot be updated. type: str namespace: description: - Namespace defines the space within each name must be unique. An empty namespace is equivalent to the "default" namespace, but "default" is the canonical representation. Not all objects are required to be scoped to a namespace - the value of this field for those objects will be empty. Must be a DNS_LABEL. Cannot be updated. type: str owner_references: description: - List of objects depended by this object. If ALL objects in the list have been deleted, this object will be garbage collected. If this object is managed by a controller, then an entry in this list will point to this controller, with the controller field set to true. There cannot be more than one managing controller. type: list contains: api_version: description: - API version of the referent. type: str block_owner_deletion: description: - If true, AND if the owner has the "foregroundDeletion" finalizer, then the owner cannot be deleted from the key-value store until this reference is removed. Defaults to false. To set this field, a user needs "delete" permission of the owner, otherwise 422 (Unprocessable Entity) will be returned. type: bool controller: description: - If true, this reference points to the managing controller. type: bool kind: description: - Kind of the referent. type: str name: description: - Name of the referent. type: str uid: description: - UID of the referent. type: str resource_version: description: - An opaque value that represents the internal version of this object that can be used by clients to determine when objects have changed. May be used for optimistic concurrency, change detection, and the watch operation on a resource or set of resources. Clients must treat these values as opaque and passed unmodified back to the server. They may only be valid for a particular resource or set of resources. Populated by the system. Read-only. Value must be treated as opaque by clients and . type: str self_link: description: - SelfLink is a URL representing this object. Populated by the system. Read-only. type: str uid: description: - UID is the unique in time and space value for this object. It is typically generated by the server on successful creation of a resource and is not allowed to change on PUT operations. Populated by the system. Read-only. type: str spec: description: - spec holds all the input necessary to produce a new build, and the conditions when to trigger them. type: complex contains: completion_deadline_seconds: description: - completionDeadlineSeconds is an optional duration in seconds, counted from the time when a build pod gets scheduled in the system, that the build may be active on a node before the system actively tries to terminate the build; value must be positive integer type: int failed_builds_history_limit: description: - failedBuildsHistoryLimit is the number of old failed builds to retain. If not specified, all failed builds are retained. type: int node_selector: description: - nodeSelector is a selector which must be true for the build pod to fit on a node If nil, it can be overridden by default build nodeselector values for the cluster. If set to an empty map or a map with any values, default build nodeselector values are ignored. type: complex contains: str, str output: description: - output describes the Docker image the Strategy should produce. type: complex contains: image_labels: description: - imageLabels define a list of labels that are applied to the resulting image. If there are multiple labels with the same name then the last one in the list is used. type: list contains: name: description: - name defines the name of the label. It must have non-zero length. type: str value: description: - value defines the literal value of the label. type: str push_secret: description: - PushSecret is the name of a Secret that would be used for setting up the authentication for executing the Docker push to authentication enabled Docker Registry (or Docker Hub). type: complex contains: name: description: - Name of the referent. type: str to: description: - to defines an optional location to push the output of this build to. Kind must be one of 'ImageStreamTag' or 'DockerImage'. This value will be used to look up a Docker image repository to push to. In the case of an ImageStreamTag, the ImageStreamTag will be looked for in the namespace of the build unless Namespace is specified. type: complex contains: api_version: description: - API version of the referent. type: str field_path: description: - 'If referring to a piece of an object instead of an entire object, this string should contain a valid JSON/Go field access statement, such as desiredState.manifest.containers[2]. For example, if the object reference is to a container within a pod, this would take on a value like: "spec.containers{name}" (where "name" refers to the name of the container that triggered the event) or if no container name is specified "spec.containers[2]" (container with index 2 in this pod). This syntax is chosen only to have some well-defined way of referencing a part of an object.' type: str kind: description: - Kind of the referent. type: str name: description: - Name of the referent. type: str namespace: description: - Namespace of the referent. type: str resource_version: description: - Specific resourceVersion to which this reference is made, if any. type: str uid: description: - UID of the referent. type: str post_commit: description: - postCommit is a build hook executed after the build output image is committed, before it is pushed to a registry. type: complex contains: args: description: - args is a list of arguments that are provided to either Command, Script or the Docker image's default entrypoint. The arguments are placed immediately after the command to be run. type: list contains: str command: description: - command is the command to run. It may not be specified with Script. This might be needed if the image doesn't have `/bin/sh`, or if you do not want to use a shell. In all other cases, using Script might be more convenient. type: list contains: str script: description: - script is a shell script to be run with `/bin/sh -ic`. It may not be specified with Command. Use Script when a shell script is appropriate to execute the post build hook, for example for running unit tests with `rake test`. If you need control over the image entrypoint, or if the image does not have `/bin/sh`, use Command and/or Args. The `-i` flag is needed to support CentOS and RHEL images that use Software Collections (SCL), in order to have the appropriate collections enabled in the shell. E.g., in the Ruby image, this is necessary to make `ruby`, `bundle` and other binaries available in the PATH. type: str resources: description: - resources computes resource requirements to execute the build. type: complex contains: limits: description: - Limits describes the maximum amount of compute resources allowed. type: complex contains: str, str requests: description: - Requests describes the minimum amount of compute resources required. If Requests is omitted for a container, it defaults to Limits if that is explicitly specified, otherwise to an implementation-defined value. type: complex contains: str, str revision: description: - revision is the information from the source for a specific repo snapshot. This is optional. type: complex contains: git: description: - Git contains information about git-based build source type: complex contains: author: description: - author is the author of a specific commit type: complex contains: email: description: - email of the source control user type: str name: description: - name of the source control user type: str commit: description: - commit is the commit hash identifying a specific commit type: str committer: description: - committer is the committer of a specific commit type: complex contains: email: description: - email of the source control user type: str name: description: - name of the source control user type: str message: description: - message is the description of a specific commit type: str type: description: - type of the build source, may be one of 'Source', 'Dockerfile', 'Binary', or 'Images' type: str run_policy: description: - RunPolicy describes how the new build created from this build configuration will be scheduled for execution. This is optional, if not specified we default to "Serial". type: str service_account: description: - serviceAccount is the name of the ServiceAccount to use to run the pod created by this build. The pod will be allowed to use secrets referenced by the ServiceAccount type: str source: description: - source describes the SCM in use. type: complex contains: binary: description: - binary builds accept a binary as their input. The binary is generally assumed to be a tar, gzipped tar, or zip file depending on the strategy. For Docker builds, this is the build context and an optional Dockerfile may be specified to override any Dockerfile in the build context. For Source builds, this is assumed to be an archive as described above. For Source and Docker builds, if binary.asFile is set the build will receive a directory with a single file. contextDir may be used when an archive is provided. Custom builds will receive this binary as input on STDIN. type: complex contains: as_file: description: - asFile indicates that the provided binary input should be considered a single file within the build input. For example, specifying "webapp.war" would place the provided binary as `/webapp.war` for the builder. If left empty, the Docker and Source build strategies assume this file is a zip, tar, or tar.gz file and extract it as the source. The custom strategy receives this binary as standard input. This filename may not contain slashes or be '..' or '.'. type: str context_dir: description: - contextDir specifies the sub-directory where the source code for the application exists. This allows to have buildable sources in directory other than root of repository. type: str dockerfile: description: - dockerfile is the raw contents of a Dockerfile which should be built. When this option is specified, the FROM may be modified based on your strategy base image and additional ENV stanzas from your strategy environment will be added after the FROM, but before the rest of your Dockerfile stanzas. The Dockerfile source type may be used with other options like git - in those cases the Git repo will have any innate Dockerfile replaced in the context dir. type: str git: description: - git contains optional information about git build source type: complex contains: http_proxy: description: - httpProxy is a proxy used to reach the git repository over http type: str https_proxy: description: - httpsProxy is a proxy used to reach the git repository over https type: str no_proxy: description: - noProxy is the list of domains for which the proxy should not be used type: str ref: description: - ref is the branch/tag/ref to build. type: str uri: description: - uri points to the source that will be built. The structure of the source will depend on the type of build to run type: str images: description: - images describes a set of images to be used to provide source for the build type: list contains: _from: description: - from is a reference to an ImageStreamTag, ImageStreamImage, or DockerImage to copy source from. type: complex contains: api_version: description: - API version of the referent. type: str field_path: description: - 'If referring to a piece of an object instead of an entire object, this string should contain a valid JSON/Go field access statement, such as desiredState.manifest.containers[2]. For example, if the object reference is to a container within a pod, this would take on a value like: "spec.containers{name}" (where "name" refers to the name of the container that triggered the event) or if no container name is specified "spec.containers[2]" (container with index 2 in this pod). This syntax is chosen only to have some well-defined way of referencing a part of an object.' type: str kind: description: - Kind of the referent. type: str name: description: - Name of the referent. type: str namespace: description: - Namespace of the referent. type: str resource_version: description: - Specific resourceVersion to which this reference is made, if any. type: str uid: description: - UID of the referent. type: str paths: description: - paths is a list of source and destination paths to copy from the image. type: list contains: destination_dir: description: - destinationDir is the relative directory within the build directory where files copied from the image are placed. type: str source_path: description: - sourcePath is the absolute path of the file or directory inside the image to copy to the build directory. If the source path ends in /. then the content of the directory will be copied, but the directory itself will not be created at the destination. type: str pull_secret: description: - pullSecret is a reference to a secret to be used to pull the image from a registry If the image is pulled from the OpenShift registry, this field does not need to be set. type: complex contains: name: description: - Name of the referent. type: str secrets: description: - secrets represents a list of secrets and their destinations that will be used only for the build. type: list contains: destination_dir: description: - destinationDir is the directory where the files from the secret should be available for the build time. For the Source build strategy, these will be injected into a container where the assemble script runs. Later, when the script finishes, all files injected will be truncated to zero length. For the Docker build strategy, these will be copied into the build directory, where the Dockerfile is located, so users can ADD or COPY them during docker build. type: str secret: description: - secret is a reference to an existing secret that you want to use in your build. type: complex contains: name: description: - Name of the referent. type: str source_secret: description: - "sourceSecret is the name of a Secret that would be used for setting\ \ up the authentication for cloning private repository. The secret\ \ contains valid credentials for remote repository, where the\ \ data's key represent the authentication method to be used and\ \ value is the base64 encoded credentials. Supported auth methods\ \ are: ssh-privatekey." type: complex contains: name: description: - Name of the referent. type: str type: description: - type of build input to accept type: str strategy: description: - strategy defines how to perform a build. type: complex contains: custom_strategy: description: - customStrategy holds the parameters to the Custom build strategy type: complex contains: _from: description: - from is reference to an DockerImage, ImageStreamTag, or ImageStreamImage from which the docker image should be pulled type: complex contains: api_version: description: - API version of the referent. type: str field_path: description: - 'If referring to a piece of an object instead of an entire object, this string should contain a valid JSON/Go field access statement, such as desiredState.manifest.containers[2]. For example, if the object reference is to a container within a pod, this would take on a value like: "spec.containers{name}" (where "name" refers to the name of the container that triggered the event) or if no container name is specified "spec.containers[2]" (container with index 2 in this pod). This syntax is chosen only to have some well-defined way of referencing a part of an object.' type: str kind: description: - Kind of the referent. type: str name: description: - Name of the referent. type: str namespace: description: - Namespace of the referent. type: str resource_version: description: - Specific resourceVersion to which this reference is made, if any. type: str uid: description: - UID of the referent. type: str build_api_version: description: - buildAPIVersion is the requested API version for the Build object serialized and passed to the custom builder type: str env: description: - env contains additional environment variables you want to pass into a builder container. type: list contains: name: description: - Name of the environment variable. Must be a C_IDENTIFIER. type: str value: description: - 'Variable references $(VAR_NAME) are expanded using the previous defined environment variables in the container and any service environment variables. If a variable cannot be resolved, the reference in the input string will be unchanged. The $(VAR_NAME) syntax can be escaped with a double $$, ie: $$(VAR_NAME). Escaped references will never be expanded, regardless of whether the variable exists or not. Defaults to "".' type: str value_from: description: - Source for the environment variable's value. Cannot be used if value is not empty. type: complex contains: config_map_key_ref: description: - Selects a key of a ConfigMap. type: complex contains: key: description: - The key to select. type: str name: description: - Name of the referent. type: str optional: description: - Specify whether the ConfigMap or it's key must be defined type: bool field_ref: description: - 'Selects a field of the pod: supports metadata.name, metadata.namespace, metadata.labels, metadata.annotations, spec.nodeName, spec.serviceAccountName, status.hostIP, status.podIP.' type: complex contains: api_version: description: - Version of the schema the FieldPath is written in terms of, defaults to "v1". type: str field_path: description: - Path of the field to select in the specified API version. type: str resource_field_ref: description: - 'Selects a resource of the container: only resources limits and requests (limits.cpu, limits.memory, requests.cpu and requests.memory) are currently supported.' type: complex contains: container_name: description: - 'Container name: required for volumes, optional for env vars' type: str divisor: description: - Specifies the output format of the exposed resources, defaults to "1" type: str resource: description: - 'Required: resource to select' type: str secret_key_ref: description: - Selects a key of a secret in the pod's namespace type: complex contains: key: description: - The key of the secret to select from. Must be a valid secret key. type: str name: description: - Name of the referent. type: str optional: description: - Specify whether the Secret or it's key must be defined type: bool expose_docker_socket: description: - exposeDockerSocket will allow running Docker commands (and build Docker images) from inside the Docker container. type: bool force_pull: description: - forcePull describes if the controller should configure the build pod to always pull the images for the builder or only pull if it is not present locally type: bool pull_secret: description: - pullSecret is the name of a Secret that would be used for setting up the authentication for pulling the Docker images from the private Docker registries type: complex contains: name: description: - Name of the referent. type: str secrets: description: - secrets is a list of additional secrets that will be included in the build pod type: list contains: mount_path: description: - mountPath is the path at which to mount the secret type: str secret_source: description: - secretSource is a reference to the secret type: complex contains: name: description: - Name of the referent. type: str docker_strategy: description: - dockerStrategy holds the parameters to the Docker build strategy. type: complex contains: _from: description: - from is reference to an DockerImage, ImageStreamTag, or ImageStreamImage from which the docker image should be pulled the resulting image will be used in the FROM line of the Dockerfile for this build. type: complex contains: api_version: description: - API version of the referent. type: str field_path: description: - 'If referring to a piece of an object instead of an entire object, this string should contain a valid JSON/Go field access statement, such as desiredState.manifest.containers[2]. For example, if the object reference is to a container within a pod, this would take on a value like: "spec.containers{name}" (where "name" refers to the name of the container that triggered the event) or if no container name is specified "spec.containers[2]" (container with index 2 in this pod). This syntax is chosen only to have some well-defined way of referencing a part of an object.' type: str kind: description: - Kind of the referent. type: str name: description: - Name of the referent. type: str namespace: description: - Namespace of the referent. type: str resource_version: description: - Specific resourceVersion to which this reference is made, if any. type: str uid: description: - UID of the referent. type: str build_args: description: - buildArgs contains build arguments that will be resolved in the Dockerfile. See type: list contains: name: description: - Name of the environment variable. Must be a C_IDENTIFIER. type: str value: description: - 'Variable references $(VAR_NAME) are expanded using the previous defined environment variables in the container and any service environment variables. If a variable cannot be resolved, the reference in the input string will be unchanged. The $(VAR_NAME) syntax can be escaped with a double $$, ie: $$(VAR_NAME). Escaped references will never be expanded, regardless of whether the variable exists or not. Defaults to "".' type: str value_from: description: - Source for the environment variable's value. Cannot be used if value is not empty. type: complex contains: config_map_key_ref: description: - Selects a key of a ConfigMap. type: complex contains: key: description: - The key to select. type: str name: description: - Name of the referent. type: str optional: description: - Specify whether the ConfigMap or it's key must be defined type: bool field_ref: description: - 'Selects a field of the pod: supports metadata.name, metadata.namespace, metadata.labels, metadata.annotations, spec.nodeName, spec.serviceAccountName, status.hostIP, status.podIP.' type: complex contains: api_version: description: - Version of the schema the FieldPath is written in terms of, defaults to "v1". type: str field_path: description: - Path of the field to select in the specified API version. type: str resource_field_ref: description: - 'Selects a resource of the container: only resources limits and requests (limits.cpu, limits.memory, requests.cpu and requests.memory) are currently supported.' type: complex contains: container_name: description: - 'Container name: required for volumes, optional for env vars' type: str divisor: description: - Specifies the output format of the exposed resources, defaults to "1" type: str resource: description: - 'Required: resource to select' type: str secret_key_ref: description: - Selects a key of a secret in the pod's namespace type: complex contains: key: description: - The key of the secret to select from. Must be a valid secret key. type: str name: description: - Name of the referent. type: str optional: description: - Specify whether the Secret or it's key must be defined type: bool dockerfile_path: description: - dockerfilePath is the path of the Dockerfile that will be used to build the Docker image, relative to the root of the context (contextDir). type: str env: description: - env contains additional environment variables you want to pass into a builder container. type: list contains: name: description: - Name of the environment variable. Must be a C_IDENTIFIER. type: str value: description: - 'Variable references $(VAR_NAME) are expanded using the previous defined environment variables in the container and any service environment variables. If a variable cannot be resolved, the reference in the input string will be unchanged. The $(VAR_NAME) syntax can be escaped with a double $$, ie: $$(VAR_NAME). Escaped references will never be expanded, regardless of whether the variable exists or not. Defaults to "".' type: str value_from: description: - Source for the environment variable's value. Cannot be used if value is not empty. type: complex contains: config_map_key_ref: description: - Selects a key of a ConfigMap. type: complex contains: key: description: - The key to select. type: str name: description: - Name of the referent. type: str optional: description: - Specify whether the ConfigMap or it's key must be defined type: bool field_ref: description: - 'Selects a field of the pod: supports metadata.name, metadata.namespace, metadata.labels, metadata.annotations, spec.nodeName, spec.serviceAccountName, status.hostIP, status.podIP.' type: complex contains: api_version: description: - Version of the schema the FieldPath is written in terms of, defaults to "v1". type: str field_path: description: - Path of the field to select in the specified API version. type: str resource_field_ref: description: - 'Selects a resource of the container: only resources limits and requests (limits.cpu, limits.memory, requests.cpu and requests.memory) are currently supported.' type: complex contains: container_name: description: - 'Container name: required for volumes, optional for env vars' type: str divisor: description: - Specifies the output format of the exposed resources, defaults to "1" type: str resource: description: - 'Required: resource to select' type: str secret_key_ref: description: - Selects a key of a secret in the pod's namespace type: complex contains: key: description: - The key of the secret to select from. Must be a valid secret key. type: str name: description: - Name of the referent. type: str optional: description: - Specify whether the Secret or it's key must be defined type: bool force_pull: description: - forcePull describes if the builder should pull the images from registry prior to building. type: bool image_optimization_policy: description: - imageOptimizationPolicy describes what optimizations the system can use when building images to reduce the final size or time spent building the image. The default policy is 'None' which means the final build image will be equivalent to an image created by the Docker build API. The experimental policy 'SkipLayers' will avoid commiting new layers in between each image step, and will fail if the Dockerfile cannot provide compatibility with the 'None' policy. An additional experimental policy 'SkipLayersAndWarn' is the same as 'SkipLayers' but simply warns if compatibility cannot be preserved. type: str no_cache: description: - noCache if set to true indicates that the docker build must be executed with the --no-cache=true flag type: bool pull_secret: description: - pullSecret is the name of a Secret that would be used for setting up the authentication for pulling the Docker images from the private Docker registries type: complex contains: name: description: - Name of the referent. type: str jenkins_pipeline_strategy: description: - JenkinsPipelineStrategy holds the parameters to the Jenkins Pipeline build strategy. This strategy is in tech preview. type: complex contains: env: description: - env contains additional environment variables you want to pass into a build pipeline. type: list contains: name: description: - Name of the environment variable. Must be a C_IDENTIFIER. type: str value: description: - 'Variable references $(VAR_NAME) are expanded using the previous defined environment variables in the container and any service environment variables. If a variable cannot be resolved, the reference in the input string will be unchanged. The $(VAR_NAME) syntax can be escaped with a double $$, ie: $$(VAR_NAME). Escaped references will never be expanded, regardless of whether the variable exists or not. Defaults to "".' type: str value_from: description: - Source for the environment variable's value. Cannot be used if value is not empty. type: complex contains: config_map_key_ref: description: - Selects a key of a ConfigMap. type: complex contains: key: description: - The key to select. type: str name: description: - Name of the referent. type: str optional: description: - Specify whether the ConfigMap or it's key must be defined type: bool field_ref: description: - 'Selects a field of the pod: supports metadata.name, metadata.namespace, metadata.labels, metadata.annotations, spec.nodeName, spec.serviceAccountName, status.hostIP, status.podIP.' type: complex contains: api_version: description: - Version of the schema the FieldPath is written in terms of, defaults to "v1". type: str field_path: description: - Path of the field to select in the specified API version. type: str resource_field_ref: description: - 'Selects a resource of the container: only resources limits and requests (limits.cpu, limits.memory, requests.cpu and requests.memory) are currently supported.' type: complex contains: container_name: description: - 'Container name: required for volumes, optional for env vars' type: str divisor: description: - Specifies the output format of the exposed resources, defaults to "1" type: str resource: description: - 'Required: resource to select' type: str secret_key_ref: description: - Selects a key of a secret in the pod's namespace type: complex contains: key: description: - The key of the secret to select from. Must be a valid secret key. type: str name: description: - Name of the referent. type: str optional: description: - Specify whether the Secret or it's key must be defined type: bool jenkinsfile: description: - Jenkinsfile defines the optional raw contents of a Jenkinsfile which defines a Jenkins pipeline build. type: str jenkinsfile_path: description: - JenkinsfilePath is the optional path of the Jenkinsfile that will be used to configure the pipeline relative to the root of the context (contextDir). If both JenkinsfilePath & Jenkinsfile are both not specified, this defaults to Jenkinsfile in the root of the specified contextDir. type: str source_strategy: description: - sourceStrategy holds the parameters to the Source build strategy. type: complex contains: _from: description: - from is reference to an DockerImage, ImageStreamTag, or ImageStreamImage from which the docker image should be pulled type: complex contains: api_version: description: - API version of the referent. type: str field_path: description: - 'If referring to a piece of an object instead of an entire object, this string should contain a valid JSON/Go field access statement, such as desiredState.manifest.containers[2]. For example, if the object reference is to a container within a pod, this would take on a value like: "spec.containers{name}" (where "name" refers to the name of the container that triggered the event) or if no container name is specified "spec.containers[2]" (container with index 2 in this pod). This syntax is chosen only to have some well-defined way of referencing a part of an object.' type: str kind: description: - Kind of the referent. type: str name: description: - Name of the referent. type: str namespace: description: - Namespace of the referent. type: str resource_version: description: - Specific resourceVersion to which this reference is made, if any. type: str uid: description: - UID of the referent. type: str env: description: - env contains additional environment variables you want to pass into a builder container. type: list contains: name: description: - Name of the environment variable. Must be a C_IDENTIFIER. type: str value: description: - 'Variable references $(VAR_NAME) are expanded using the previous defined environment variables in the container and any service environment variables. If a variable cannot be resolved, the reference in the input string will be unchanged. The $(VAR_NAME) syntax can be escaped with a double $$, ie: $$(VAR_NAME). Escaped references will never be expanded, regardless of whether the variable exists or not. Defaults to "".' type: str value_from: description: - Source for the environment variable's value. Cannot be used if value is not empty. type: complex contains: config_map_key_ref: description: - Selects a key of a ConfigMap. type: complex contains: key: description: - The key to select. type: str name: description: - Name of the referent. type: str optional: description: - Specify whether the ConfigMap or it's key must be defined type: bool field_ref: description: - 'Selects a field of the pod: supports metadata.name, metadata.namespace, metadata.labels, metadata.annotations, spec.nodeName, spec.serviceAccountName, status.hostIP, status.podIP.' type: complex contains: api_version: description: - Version of the schema the FieldPath is written in terms of, defaults to "v1". type: str field_path: description: - Path of the field to select in the specified API version. type: str resource_field_ref: description: - 'Selects a resource of the container: only resources limits and requests (limits.cpu, limits.memory, requests.cpu and requests.memory) are currently supported.' type: complex contains: container_name: description: - 'Container name: required for volumes, optional for env vars' type: str divisor: description: - Specifies the output format of the exposed resources, defaults to "1" type: str resource: description: - 'Required: resource to select' type: str secret_key_ref: description: - Selects a key of a secret in the pod's namespace type: complex contains: key: description: - The key of the secret to select from. Must be a valid secret key. type: str name: description: - Name of the referent. type: str optional: description: - Specify whether the Secret or it's key must be defined type: bool force_pull: description: - forcePull describes if the builder should pull the images from registry prior to building. type: bool incremental: description: - incremental flag forces the Source build to do incremental builds if true. type: bool pull_secret: description: - pullSecret is the name of a Secret that would be used for setting up the authentication for pulling the Docker images from the private Docker registries type: complex contains: name: description: - Name of the referent. type: str runtime_artifacts: description: - 'runtimeArtifacts specifies a list of source/destination pairs that will be copied from the builder to the runtime image. sourcePath can be a file or directory. destinationDir must be a directory. destinationDir can also be empty or equal to ".", in this case it just refers to the root of WORKDIR. Deprecated: This feature will be removed in a future release. Use ImageSource to copy binary artifacts created from one build into a separate runtime image.' type: list contains: destination_dir: description: - destinationDir is the relative directory within the build directory where files copied from the image are placed. type: str source_path: description: - sourcePath is the absolute path of the file or directory inside the image to copy to the build directory. If the source path ends in /. then the content of the directory will be copied, but the directory itself will not be created at the destination. type: str runtime_image: description: - 'runtimeImage is an optional image that is used to run an application without unneeded dependencies installed. The building of the application is still done in the builder image but, post build, you can copy the needed artifacts in the runtime image for use. Deprecated: This feature will be removed in a future release. Use ImageSource to copy binary artifacts created from one build into a separate runtime image.' type: complex contains: api_version: description: - API version of the referent. type: str field_path: description: - 'If referring to a piece of an object instead of an entire object, this string should contain a valid JSON/Go field access statement, such as desiredState.manifest.containers[2]. For example, if the object reference is to a container within a pod, this would take on a value like: "spec.containers{name}" (where "name" refers to the name of the container that triggered the event) or if no container name is specified "spec.containers[2]" (container with index 2 in this pod). This syntax is chosen only to have some well-defined way of referencing a part of an object.' type: str kind: description: - Kind of the referent. type: str name: description: - Name of the referent. type: str namespace: description: - Namespace of the referent. type: str resource_version: description: - Specific resourceVersion to which this reference is made, if any. type: str uid: description: - UID of the referent. type: str scripts: description: - scripts is the location of Source scripts type: str type: description: - type is the kind of build strategy. type: str successful_builds_history_limit: description: - successfulBuildsHistoryLimit is the number of old successful builds to retain. If not specified, all successful builds are retained. type: int triggers: description: - triggers determine how new Builds can be launched from a BuildConfig. If no triggers are defined, a new build can only occur as a result of an explicit client build creation. type: list contains: bitbucket: description: - BitbucketWebHook contains the parameters for a Bitbucket webhook type of trigger type: complex contains: allow_env: description: - allowEnv determines whether the webhook can set environment variables; can only be set to true for GenericWebHook. type: bool secret: description: - secret used to validate requests. type: str generic: description: - generic contains the parameters for a Generic webhook type of trigger type: complex contains: allow_env: description: - allowEnv determines whether the webhook can set environment variables; can only be set to true for GenericWebHook. type: bool secret: description: - secret used to validate requests. type: str github: description: - github contains the parameters for a GitHub webhook type of trigger type: complex contains: allow_env: description: - allowEnv determines whether the webhook can set environment variables; can only be set to true for GenericWebHook. type: bool secret: description: - secret used to validate requests. type: str gitlab: description: - GitLabWebHook contains the parameters for a GitLab webhook type of trigger type: complex contains: allow_env: description: - allowEnv determines whether the webhook can set environment variables; can only be set to true for GenericWebHook. type: bool secret: description: - secret used to validate requests. type: str image_change: description: - imageChange contains parameters for an ImageChange type of trigger type: complex contains: _from: description: - from is a reference to an ImageStreamTag that will trigger a build when updated It is optional. If no From is specified, the From image from the build strategy will be used. Only one ImageChangeTrigger with an empty From reference is allowed in a build configuration. type: complex contains: api_version: description: - API version of the referent. type: str field_path: description: - 'If referring to a piece of an object instead of an entire object, this string should contain a valid JSON/Go field access statement, such as desiredState.manifest.containers[2]. For example, if the object reference is to a container within a pod, this would take on a value like: "spec.containers{name}" (where "name" refers to the name of the container that triggered the event) or if no container name is specified "spec.containers[2]" (container with index 2 in this pod). This syntax is chosen only to have some well-defined way of referencing a part of an object.' type: str kind: description: - Kind of the referent. type: str name: description: - Name of the referent. type: str namespace: description: - Namespace of the referent. type: str resource_version: description: - Specific resourceVersion to which this reference is made, if any. type: str uid: description: - UID of the referent. type: str last_triggered_image_id: description: - lastTriggeredImageID is used internally by the ImageChangeController to save last used image ID for build type: str type: description: - type is the type of build trigger type: str status: description: - status holds any relevant information about a build config type: complex contains: last_version: description: - lastVersion is used to inform about number of last triggered build. type: int kind: description: - Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. type: str metadata: description: - metadata for BuildConfigList. type: complex contains: resource_version: description: - String that identifies the server's internal version of this object that can be used by clients to determine when objects have changed. Value must be treated as opaque by clients and passed unmodified back to the server. Populated by the system. Read-only. type: str self_link: description: - SelfLink is a URL representing this object. Populated by the system. Read-only. type: str ''' def main(): try: module = OpenShiftAnsibleModule('build_config_list', 'v1') except OpenShiftAnsibleException as exc: # The helper failed to init, so there is no module object. All we can do is raise the error. raise Exception(exc.message) try: module.execute_module() except OpenShiftAnsibleException as exc: module.fail_json(msg="Module failed!", error=str(exc)) if __name__ == '__main__': main()
[((96359, 96408), 'ansible.module_utils.openshift_common.OpenShiftAnsibleModule', 'OpenShiftAnsibleModule', (['"""build_config_list"""', '"""v1"""'], {}), "('build_config_list', 'v1')\n", (96381, 96408), False, 'from ansible.module_utils.openshift_common import OpenShiftAnsibleModule, OpenShiftAnsibleException\n')]
groorj/cloud-regions
aws-regions.py
f085491c71440d99000ad29a885e6090dfc9332a
import json import logging import os import inspect import urllib import urllib.request from urllib.error import HTTPError # logger logger = logging.getLogger() logger_level = logging.getLevelName(os.environ['LOGGER_LEVEL']) logger.setLevel(logger_level) # validate access def validate_access(event, context): logger.debug("Inside function: [%s]", inspect.currentframe().f_code.co_name) logger.debug("RESTRICTED_ACCESS_ENABLED: [%s]", os.environ['RESTRICTED_ACCESS_ENABLED']) error_message = "You are not allowed, get out!" if os.environ['RESTRICTED_ACCESS_ENABLED'] == 'true': logger.info("Restricted access is enabled") logger.info("Value for header [%s] is: [%s]", os.environ['RESTRICTED_ACCESS_HTTP_HEADER'], event["headers"][os.environ['RESTRICTED_ACCESS_HTTP_HEADER']]) if event["headers"][os.environ['RESTRICTED_ACCESS_HTTP_HEADER']] != os.environ['RESTRICTED_ACCESS_SECRET']: logger.info("Key provided is not valid") logger.debug("Error: [%s]", error_message) http_code = 403 raise ValueError(http_code, error_message) else: logger.info("Key provided is valid") else: logger.info("Restricted access is NOT enabled") # create response def create_response_new(status_code, message_body): logger.debug("Inside function: [%s]", inspect.currentframe().f_code.co_name) return { 'statusCode': str(status_code), 'body': json.dumps(message_body), 'headers': { 'Content-Type': 'application/json', 'Access-Control-Allow-Origin': '*' }, } # download json file def get_json(): logger.debug("Inside function: [%s]", inspect.currentframe().f_code.co_name) try: response = urllib.request.urlopen(os.environ['AWS_REGIONS_JSON_URL']) except HTTPError as err: # catch HTTP error logger.debug("HTTP error: [%s]", err) raise json_data = json.loads(response.read()) return json_data # entry point -> return region info def get_region_info(event, context): logger.debug("Inside function: [%s]", inspect.currentframe().f_code.co_name) return_info_final = {} # validate the access to this resource try: validate_access(event, context) except ValueError as err: return_info_final['request'] = { "request_status": "Fail", "error_message": err.args[1], "http_error_code": err.args[0] } return create_response_new(err.args[0], return_info_final) # get region info region_code = event['pathParameters']['region_code'] logger.debug("region_code: [%s]", region_code) try: json_data = get_json() except HTTPError as err: # http_code = err.code http_code = 500 return_info_final['request'] = { "request_status": "Fail", "error_message": "Error getting Regions information.", "http_error_code": err.code } return create_response_new(http_code, return_info_final) # logger.debug("json_data: [%s]", json_data) # logger.debug("type(json_data): [%s]", type(json_data)) for element in json_data['data']: # logger.debug("code: [%s] && region_code: [%s]", element['code'], region_code) if element['code'] == region_code: logger.info("region_code found") http_code = 200 return_info_final['request'] = { "request_status": "Success" } return_info_final['info'] = json_data['info'] return_info_final['data'] = element break else: logger.info("region_code NOT found") return_info = "Region code NOT found." http_code = 404 return_info_final['request'] = { "request_status": "Fail", "error_message": "Region code NOT found.", "http_error_code": http_code } return create_response_new(http_code, return_info_final) # entry point -> return region info def get_all_regions_info(event, context): logger.debug("Inside function: [%s]", inspect.currentframe().f_code.co_name) return_info_final = {} # validate the access to this resource try: validate_access(event, context) except ValueError as err: return_info_final['request'] = { "request_status": "Fail", "error_message": err.args[1], "http_error_code": err.args[0] } return create_response_new(err.args[0], return_info_final) # get regions info try: json_data = get_json() except HTTPError as err: # http_code = err.code http_code = 500 return_info_final['request'] = { "request_status": "Fail", "error_message": "Error getting Regions information.", "http_error_code": err.code } return create_response_new(http_code, return_info_final) logger.debug("json_data: [%s]", json_data) http_code = 200 return_info_final['request'] = { "request_status": "Success" } return_info_final['info'] = json_data['info'] return_info_final['data'] = json_data['data'] return create_response_new(http_code, return_info_final) # End;
[((142, 161), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (159, 161), False, 'import logging\n'), ((177, 225), 'logging.getLevelName', 'logging.getLevelName', (["os.environ['LOGGER_LEVEL']"], {}), "(os.environ['LOGGER_LEVEL'])\n", (197, 225), False, 'import logging\n'), ((1467, 1491), 'json.dumps', 'json.dumps', (['message_body'], {}), '(message_body)\n', (1477, 1491), False, 'import json\n'), ((1781, 1839), 'urllib.request.urlopen', 'urllib.request.urlopen', (["os.environ['AWS_REGIONS_JSON_URL']"], {}), "(os.environ['AWS_REGIONS_JSON_URL'])\n", (1803, 1839), False, 'import urllib\n'), ((354, 376), 'inspect.currentframe', 'inspect.currentframe', ([], {}), '()\n', (374, 376), False, 'import inspect\n'), ((1359, 1381), 'inspect.currentframe', 'inspect.currentframe', ([], {}), '()\n', (1379, 1381), False, 'import inspect\n'), ((1714, 1736), 'inspect.currentframe', 'inspect.currentframe', ([], {}), '()\n', (1734, 1736), False, 'import inspect\n'), ((2137, 2159), 'inspect.currentframe', 'inspect.currentframe', ([], {}), '()\n', (2157, 2159), False, 'import inspect\n'), ((4013, 4035), 'inspect.currentframe', 'inspect.currentframe', ([], {}), '()\n', (4033, 4035), False, 'import inspect\n')]
guowenying111/SEKE
src/models/encoder.py
a913a19090eb690c3188036795559210a5262f2b
import math import torch import torch.nn as nn from models.neural import MultiHeadedAttention, PositionwiseFeedForward from models.rnn import LayerNormLSTM class Classifier(nn.Module): def __init__(self, hidden_size): super(Classifier, self).__init__() self.linear1 = nn.Linear(hidden_size, 1) self.sigmoid = nn.Sigmoid() def forward(self, x, mask_cls): h = self.linear1(x).squeeze(-1) sent_scores = self.sigmoid(h) * mask_cls.float() return sent_scores class PositionalEncoding(nn.Module): def __init__(self, dropout, dim, max_len=5000): pe = torch.zeros(max_len, dim) position = torch.arange(0, max_len).unsqueeze(1) div_term = torch.exp((torch.arange(0, dim, 2, dtype=torch.float) * -(math.log(10000.0) / dim))) pe[:, 0::2] = torch.sin(position.float() * div_term) pe[:, 1::2] = torch.cos(position.float() * div_term) pe = pe.unsqueeze(0) super(PositionalEncoding, self).__init__() self.register_buffer('pe', pe) self.dropout = nn.Dropout(p=dropout) self.dim = dim def forward(self, emb, step=None): emb = emb * math.sqrt(self.dim) if (step): emb = emb + self.pe[:, step][:, None, :] else: emb = emb + self.pe[:, :emb.size(1)] emb = self.dropout(emb) return emb def get_emb(self, emb): return self.pe[:, :emb.size(1)] class TransformerEncoderLayer(nn.Module): def __init__(self, d_model, heads, d_ff, dropout): super(TransformerEncoderLayer, self).__init__() self.self_attn = MultiHeadedAttention( heads, d_model, dropout=dropout) self.feed_forward = PositionwiseFeedForward(d_model, d_ff, dropout) self.layer_norm = nn.LayerNorm(d_model, eps=1e-6) self.dropout = nn.Dropout(dropout) def forward(self, iter, query, inputs, mask): if (iter != 0): input_norm = self.layer_norm(inputs) else: input_norm = inputs mask = mask.unsqueeze(1) context = self.self_attn(input_norm, input_norm, input_norm, mask=mask) out = self.dropout(context) + inputs return self.feed_forward(out) class TransformerInterEncoder(nn.Module): def __init__(self, d_model, d_ff, heads, dropout, num_inter_layers=0): super(TransformerInterEncoder, self).__init__() self.d_model = d_model self.num_inter_layers = num_inter_layers self.pos_emb = PositionalEncoding(dropout, d_model) self.transformer_inter = nn.ModuleList( [TransformerEncoderLayer(d_model, heads, d_ff, dropout) for _ in range(num_inter_layers)]) self.dropout = nn.Dropout(dropout) self.layer_norm = nn.LayerNorm(d_model, eps=1e-6) self.wo = nn.Linear(d_model, 1, bias=True) self.sigmoid = nn.Sigmoid() def forward(self, top_vecs, mask): """ See :obj:`EncoderBase.forward()`""" batch_size, n_sents = top_vecs.size(0), top_vecs.size(1) pos_emb = self.pos_emb.pe[:, :n_sents] x = top_vecs * mask[:, :, None].float() x = x + pos_emb for i in range(self.num_inter_layers): x = self.transformer_inter[i](i, x, x, ~mask) # all_sents * max_tokens * dim x = self.layer_norm(x) sent_scores = self.sigmoid(self.wo(x)) sent_scores = sent_scores.squeeze(-1) * mask.float() return sent_scores class GRUEncoder_attn(nn.Module): def __init__(self,bidirectional, num_layers, input_size, hidden_size,dropout=0.0): super(GRUEncoder_attn,self).__init__() class RNNEncoder_attn(nn.Module): def __init__(self, bidirectional, num_layers, input_size, hidden_size, dropout=0.0): super(RNNEncoder_attn, self).__init__() num_directions = 2 if bidirectional else 1 assert hidden_size % num_directions == 0 hidden_size = hidden_size // num_directions self.relu = nn.ReLU() self.rnn = LayerNormLSTM( input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, bidirectional=bidirectional) self.wo = nn.Linear(num_directions * hidden_size, 1, bias=True) self.dropout = nn.Dropout(dropout) self.softmax = nn.Softmax() print('this is dropout',dropout) def forward(self, x, mask): """See :func:`EncoderBase.forward()`""" batch, layer, seq, hidden = x.size() x1=x.contiguous().view(batch * layer, -1, hidden) x1 = torch.transpose(x1, 1, 0) memory_bank, _ = self.rnn(x1) memory_bank = self.dropout(memory_bank) + x1 memory_bank = torch.transpose(memory_bank, 1, 0) # sent_scores = self.softmax(self.relu(self.wo(memory_bank)).squeeze(dim=-1)).unsqueeze(-1) sent_scores = self.softmax(self.relu(self.wo(memory_bank[:,-1,:])).squeeze(dim=-1).view(-1,layer)).unsqueeze(-1) x=x.transpose(1,2) sent_vec = torch.matmul(sent_scores.transpose(1,2).unsqueeze(dim = 1).expand(batch,seq,1,layer),x) return sent_vec.squeeze(dim = 2) class TransformerDecoderLayer(nn.Module): def __init__(self, d_model, heads, d_ff, dropout): super(TransformerDecoderLayer, self).__init__() self.self_attn = MultiHeadedAttention( heads, d_model, dropout=dropout) self.feed_forward = PositionwiseFeedForward(d_model, d_ff, dropout) self.layer_norm = nn.LayerNorm(d_model, eps=1e-6) def forward(self, iter, ent_enc, inputs, self_attn_mask=None,context_attn_mask=None): context = self.self_attn(inputs, inputs, inputs, mask=self_attn_mask) dec_output = self.self_attn( ent_enc, ent_enc, context, mask=context_attn_mask) dec_output = self.feed_forward(dec_output) return dec_output class TransformerInterDecoder(nn.Module): def __init__(self, d_model, d_ff, heads, dropout, d_hidden, num_inter_layers=0): super(TransformerInterDecoder, self).__init__() self.d_model = d_model self.num_inter_layers = num_inter_layers self.pos_emb = PositionalEncoding(dropout, d_model) self.transformer_inter = nn.ModuleList( [TransformerDecoderLayer(d_model, heads, d_ff, dropout) for _ in range(num_inter_layers)]) self.dropout = nn.Dropout(dropout) self.layer_norm = nn.LayerNorm(d_model, eps=1e-6) self.wo = nn.Linear(d_model, d_hidden , bias=True) self.wi = nn.Linear(d_model, d_hidden, bias=True) self.v = nn.Linear(d_hidden, 1, bias=True) self.LR = nn.LeakyReLU() self.softmax = nn.Softmax(dim=-1) def forward(self, top_vecs, inputs, mask, label_mask=None): """ See :obj:`EncoderBase.forward()`""" n_out = inputs.size(1) pos_emb = self.pos_emb.pe[:, :n_out] seq_mask=subsequent_mask(inputs) self_attn_mask = torch.gt((~label_mask.unsqueeze(1).expand(-1, n_out, -1) + seq_mask), 0) inputs=inputs+pos_emb for i in range(self.num_inter_layers): inputs = self.transformer_inter[i](i, top_vecs, inputs,self_attn_mask,~ mask.unsqueeze(1).expand(-1, n_out,-1)) scores=self.v(self.LR( self.wo(inputs.unsqueeze(2)).expand(-1, -1, top_vecs.size(1), -1) + self.wi(top_vecs).unsqueeze( 1))).squeeze(-1) sent_scores = self.softmax(scores) return sent_scores class RNNEncoder(nn.Module): def __init__(self, bidirectional, num_layers, input_size, hidden_size, dropout=0.0): super(RNNEncoder, self).__init__() num_directions = 2 if bidirectional else 1 assert hidden_size % num_directions == 0 hidden_size = hidden_size // num_directions self.rnn = LayerNormLSTM( input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, bidirectional=bidirectional) self.wo = nn.Linear(num_directions * hidden_size, 1, bias=True) self.dropout = nn.Dropout(dropout) self.sigmoid = nn.Sigmoid() def forward(self, x, mask): """See :func:`EncoderBase.forward()`""" x = torch.transpose(x, 1, 0) memory_bank, _ = self.rnn(x) memory_bank = self.dropout(memory_bank) + x memory_bank = torch.transpose(memory_bank, 1, 0) sent_scores = self.sigmoid(self.wo(memory_bank)) sent_scores = sent_scores.squeeze(-1) * mask.float() return sent_scores class GCN(nn.Module): def __init__(self,in_channel,out_channel,hidden_dim,drop): super(GCN, self).__init__() self.in_channel=in_channel self.out_channel=out_channel self.hidden_dim=hidden_dim self.dropout = nn.Dropout(p=drop) self.gcn_x_11=GCNConv(self.in_channel,self.hidden_dim) self.gcn_x_12=GCNConv(self.hidden_dim,self.out_channel)#No.1-*2*2 # self.gcn_x_21=GCNConv(self.in_channel,self.hidden_dim) # self.gcn_x_22=GCNConv(self.hidden_dim,self.out_channel)#No.2-*2 # self.gcn_mix=GCNConv(self.hidden_dim*2,self.hidden_dim)#No.2-*2 self.relu=nn.ReLU(inplace=True) def forward(self, x_1, edge_index_1, edge_index_2=None,edge_weight_1=None,edge_weight_2=None): syn=self.gcn_x_11(x_1, edge_index_1, edge_weight_1) syn=self.relu(syn) syn=self.dropout(syn) syn = self.gcn_x_12(syn, edge_index_1, edge_weight_1) syn = self.relu(syn) syn = self.dropout(syn) # x2 = self.gcn_x_21(x_1, edge_index_2, edge_weight_2) # x2 = self.relu(x2) # x2 = self.dropout(x2) # mix = self.gcn_mix(torch.cat((syn,x2),-1), edge_index_2, edge_weight_2) # x2 = self.gcn_x_22(mix, edge_index_2, edge_weight_2) # syn=self.gcn_x_12(mix, edge_index_1, edge_weight_1) # syn=self.relu(syn) # syn=self.dropout(syn) # x2 = self.relu(x2) # x2 = self.dropout(x2) return syn
[((292, 317), 'torch.nn.Linear', 'nn.Linear', (['hidden_size', '(1)'], {}), '(hidden_size, 1)\n', (301, 317), True, 'import torch.nn as nn\n'), ((341, 353), 'torch.nn.Sigmoid', 'nn.Sigmoid', ([], {}), '()\n', (351, 353), True, 'import torch.nn as nn\n'), ((620, 645), 'torch.zeros', 'torch.zeros', (['max_len', 'dim'], {}), '(max_len, dim)\n', (631, 645), False, 'import torch\n'), ((1101, 1122), 'torch.nn.Dropout', 'nn.Dropout', ([], {'p': 'dropout'}), '(p=dropout)\n', (1111, 1122), True, 'import torch.nn as nn\n'), ((1663, 1716), 'models.neural.MultiHeadedAttention', 'MultiHeadedAttention', (['heads', 'd_model'], {'dropout': 'dropout'}), '(heads, d_model, dropout=dropout)\n', (1683, 1716), False, 'from models.neural import MultiHeadedAttention, PositionwiseFeedForward\n'), ((1758, 1805), 'models.neural.PositionwiseFeedForward', 'PositionwiseFeedForward', (['d_model', 'd_ff', 'dropout'], {}), '(d_model, d_ff, dropout)\n', (1781, 1805), False, 'from models.neural import MultiHeadedAttention, PositionwiseFeedForward\n'), ((1832, 1864), 'torch.nn.LayerNorm', 'nn.LayerNorm', (['d_model'], {'eps': '(1e-06)'}), '(d_model, eps=1e-06)\n', (1844, 1864), True, 'import torch.nn as nn\n'), ((1887, 1906), 'torch.nn.Dropout', 'nn.Dropout', (['dropout'], {}), '(dropout)\n', (1897, 1906), True, 'import torch.nn as nn\n'), ((2809, 2828), 'torch.nn.Dropout', 'nn.Dropout', (['dropout'], {}), '(dropout)\n', (2819, 2828), True, 'import torch.nn as nn\n'), ((2855, 2887), 'torch.nn.LayerNorm', 'nn.LayerNorm', (['d_model'], {'eps': '(1e-06)'}), '(d_model, eps=1e-06)\n', (2867, 2887), True, 'import torch.nn as nn\n'), ((2905, 2937), 'torch.nn.Linear', 'nn.Linear', (['d_model', '(1)'], {'bias': '(True)'}), '(d_model, 1, bias=True)\n', (2914, 2937), True, 'import torch.nn as nn\n'), ((2961, 2973), 'torch.nn.Sigmoid', 'nn.Sigmoid', ([], {}), '()\n', (2971, 2973), True, 'import torch.nn as nn\n'), ((4086, 4095), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (4093, 4095), True, 'import torch.nn as nn\n'), ((4116, 4234), 'models.rnn.LayerNormLSTM', 'LayerNormLSTM', ([], {'input_size': 'input_size', 'hidden_size': 'hidden_size', 'num_layers': 'num_layers', 'bidirectional': 'bidirectional'}), '(input_size=input_size, hidden_size=hidden_size, num_layers=\n num_layers, bidirectional=bidirectional)\n', (4129, 4234), False, 'from models.rnn import LayerNormLSTM\n'), ((4298, 4351), 'torch.nn.Linear', 'nn.Linear', (['(num_directions * hidden_size)', '(1)'], {'bias': '(True)'}), '(num_directions * hidden_size, 1, bias=True)\n', (4307, 4351), True, 'import torch.nn as nn\n'), ((4376, 4395), 'torch.nn.Dropout', 'nn.Dropout', (['dropout'], {}), '(dropout)\n', (4386, 4395), True, 'import torch.nn as nn\n'), ((4419, 4431), 'torch.nn.Softmax', 'nn.Softmax', ([], {}), '()\n', (4429, 4431), True, 'import torch.nn as nn\n'), ((4670, 4695), 'torch.transpose', 'torch.transpose', (['x1', '(1)', '(0)'], {}), '(x1, 1, 0)\n', (4685, 4695), False, 'import torch\n'), ((4809, 4843), 'torch.transpose', 'torch.transpose', (['memory_bank', '(1)', '(0)'], {}), '(memory_bank, 1, 0)\n', (4824, 4843), False, 'import torch\n'), ((5422, 5475), 'models.neural.MultiHeadedAttention', 'MultiHeadedAttention', (['heads', 'd_model'], {'dropout': 'dropout'}), '(heads, d_model, dropout=dropout)\n', (5442, 5475), False, 'from models.neural import MultiHeadedAttention, PositionwiseFeedForward\n'), ((5517, 5564), 'models.neural.PositionwiseFeedForward', 'PositionwiseFeedForward', (['d_model', 'd_ff', 'dropout'], {}), '(d_model, d_ff, dropout)\n', (5540, 5564), False, 'from models.neural import MultiHeadedAttention, PositionwiseFeedForward\n'), ((5591, 5623), 'torch.nn.LayerNorm', 'nn.LayerNorm', (['d_model'], {'eps': '(1e-06)'}), '(d_model, eps=1e-06)\n', (5603, 5623), True, 'import torch.nn as nn\n'), ((6513, 6532), 'torch.nn.Dropout', 'nn.Dropout', (['dropout'], {}), '(dropout)\n', (6523, 6532), True, 'import torch.nn as nn\n'), ((6559, 6591), 'torch.nn.LayerNorm', 'nn.LayerNorm', (['d_model'], {'eps': '(1e-06)'}), '(d_model, eps=1e-06)\n', (6571, 6591), True, 'import torch.nn as nn\n'), ((6609, 6648), 'torch.nn.Linear', 'nn.Linear', (['d_model', 'd_hidden'], {'bias': '(True)'}), '(d_model, d_hidden, bias=True)\n', (6618, 6648), True, 'import torch.nn as nn\n'), ((6668, 6707), 'torch.nn.Linear', 'nn.Linear', (['d_model', 'd_hidden'], {'bias': '(True)'}), '(d_model, d_hidden, bias=True)\n', (6677, 6707), True, 'import torch.nn as nn\n'), ((6725, 6758), 'torch.nn.Linear', 'nn.Linear', (['d_hidden', '(1)'], {'bias': '(True)'}), '(d_hidden, 1, bias=True)\n', (6734, 6758), True, 'import torch.nn as nn\n'), ((6777, 6791), 'torch.nn.LeakyReLU', 'nn.LeakyReLU', ([], {}), '()\n', (6789, 6791), True, 'import torch.nn as nn\n'), ((6815, 6833), 'torch.nn.Softmax', 'nn.Softmax', ([], {'dim': '(-1)'}), '(dim=-1)\n', (6825, 6833), True, 'import torch.nn as nn\n'), ((7959, 8077), 'models.rnn.LayerNormLSTM', 'LayerNormLSTM', ([], {'input_size': 'input_size', 'hidden_size': 'hidden_size', 'num_layers': 'num_layers', 'bidirectional': 'bidirectional'}), '(input_size=input_size, hidden_size=hidden_size, num_layers=\n num_layers, bidirectional=bidirectional)\n', (7972, 8077), False, 'from models.rnn import LayerNormLSTM\n'), ((8141, 8194), 'torch.nn.Linear', 'nn.Linear', (['(num_directions * hidden_size)', '(1)'], {'bias': '(True)'}), '(num_directions * hidden_size, 1, bias=True)\n', (8150, 8194), True, 'import torch.nn as nn\n'), ((8218, 8237), 'torch.nn.Dropout', 'nn.Dropout', (['dropout'], {}), '(dropout)\n', (8228, 8237), True, 'import torch.nn as nn\n'), ((8261, 8273), 'torch.nn.Sigmoid', 'nn.Sigmoid', ([], {}), '()\n', (8271, 8273), True, 'import torch.nn as nn\n'), ((8367, 8391), 'torch.transpose', 'torch.transpose', (['x', '(1)', '(0)'], {}), '(x, 1, 0)\n', (8382, 8391), False, 'import torch\n'), ((8503, 8537), 'torch.transpose', 'torch.transpose', (['memory_bank', '(1)', '(0)'], {}), '(memory_bank, 1, 0)\n', (8518, 8537), False, 'import torch\n'), ((8935, 8953), 'torch.nn.Dropout', 'nn.Dropout', ([], {'p': 'drop'}), '(p=drop)\n', (8945, 8953), True, 'import torch.nn as nn\n'), ((9322, 9343), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (9329, 9343), True, 'import torch.nn as nn\n'), ((1206, 1225), 'math.sqrt', 'math.sqrt', (['self.dim'], {}), '(self.dim)\n', (1215, 1225), False, 'import math\n'), ((665, 689), 'torch.arange', 'torch.arange', (['(0)', 'max_len'], {}), '(0, max_len)\n', (677, 689), False, 'import torch\n'), ((733, 775), 'torch.arange', 'torch.arange', (['(0)', 'dim', '(2)'], {'dtype': 'torch.float'}), '(0, dim, 2, dtype=torch.float)\n', (745, 775), False, 'import torch\n'), ((810, 827), 'math.log', 'math.log', (['(10000.0)'], {}), '(10000.0)\n', (818, 827), False, 'import math\n')]
DemarcusL/django_wiki_lab
djangox/lib/python3.8/site-packages/allauth/socialaccount/providers/dropbox/views.py
3b7cf18af7e0f89c94d10eb953ca018a150a2f55
import requests from allauth.socialaccount.providers.oauth2.views import ( OAuth2Adapter, OAuth2CallbackView, OAuth2LoginView, ) from .provider import DropboxOAuth2Provider class DropboxOAuth2Adapter(OAuth2Adapter): provider_id = DropboxOAuth2Provider.id access_token_url = "https://api.dropbox.com/oauth2/token" authorize_url = "https://www.dropbox.com/oauth2/authorize" profile_url = "https://api.dropbox.com/2/users/get_current_account" redirect_uri_protocol = "https" def complete_login(self, request, app, token, **kwargs): response = requests.post( self.profile_url, headers={"Authorization": "Bearer %s" % (token.token,)}, ) response.raise_for_status() return self.get_provider().sociallogin_from_response(request, response.json()) oauth_login = OAuth2LoginView.adapter_view(DropboxOAuth2Adapter) oauth_callback = OAuth2CallbackView.adapter_view(DropboxOAuth2Adapter)
[((852, 902), 'allauth.socialaccount.providers.oauth2.views.OAuth2LoginView.adapter_view', 'OAuth2LoginView.adapter_view', (['DropboxOAuth2Adapter'], {}), '(DropboxOAuth2Adapter)\n', (880, 902), False, 'from allauth.socialaccount.providers.oauth2.views import OAuth2Adapter, OAuth2CallbackView, OAuth2LoginView\n'), ((920, 973), 'allauth.socialaccount.providers.oauth2.views.OAuth2CallbackView.adapter_view', 'OAuth2CallbackView.adapter_view', (['DropboxOAuth2Adapter'], {}), '(DropboxOAuth2Adapter)\n', (951, 973), False, 'from allauth.socialaccount.providers.oauth2.views import OAuth2Adapter, OAuth2CallbackView, OAuth2LoginView\n'), ((589, 682), 'requests.post', 'requests.post', (['self.profile_url'], {'headers': "{'Authorization': 'Bearer %s' % (token.token,)}"}), "(self.profile_url, headers={'Authorization': 'Bearer %s' % (\n token.token,)})\n", (602, 682), False, 'import requests\n')]
Tatsh/upkeep
source/conf.py
7fa99ff54104e3dec15d611eb174910337cf1870
# SPDX-License-Identifier: MIT # pylint: disable=redefined-builtin,invalid-name """See https://www.sphinx-doc.org/en/master/usage/configuration.html""" from typing import Sequence import os import sys # region Path setup sys.path.insert(0, os.path.abspath('..')) # endregion # region Project information project = 'Upkeep' copyright = '2020, Andrew Udvare' author = 'Andrew Udvare' # The short X.Y version version = '1.2.7' # The full version, including alpha/beta/rc tags release = f'v{version}' # endregion # region General configuration # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.napoleon'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns: Sequence[str] = [] master_doc = 'index' # endregion # region Options for HTML output # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'alabaster' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # endregion # region Extension configuration # endregion
[((241, 262), 'os.path.abspath', 'os.path.abspath', (['""".."""'], {}), "('..')\n", (256, 262), False, 'import os\n')]
sweptlaser/pclpy
generators/generate_pybind11_bindings.py
ab84da7ed264b5bc918af0d858e6d4063275aab9
import os import platform import shutil import sys from collections import Counter from collections import defaultdict, OrderedDict from os.path import join from typing import List, Dict, Set from CppHeaderParser import CppHeaderParser from CppHeaderParser.CppHeaderParser import CppMethod import generators.dependency_tree from generators.config import common_includes, PCL_BASE, PATH_LOADER, PATH_MODULES, MODULES_TO_BUILD, \ HEADERS_TO_SKIP, ATTRIBUTES_TO_SKIP, CLASSES_TO_IGNORE, METHODS_TO_SKIP, SUBMODULES_TO_SKIP, EXPLICIT_INCLUDES, \ SPECIALIZED_TEMPLATED_TYPES_TO_SKIP from generators.definitions.function import generate_function_definitions, get_methods_defined_outside from generators.definitions.method import split_methods_by_type from generators.definitions.submodule_loader import generate_loader from generators.definitions.templated_class import ClassDefinition from generators.instantiations import Instantiations from generators.point_types_utils import unpack_yaml_point_types from generators.utils import make_header_include_name, sort_headers_by_dependencies, \ generate_main_loader, make_namespace_class, read_header_file def filter_methods_for_parser_errors(methods): return [m for m in methods if not m["name"] in ("void", "bool")] def filter_methods_to_skip(methods): filtered_methods = [] for m in methods: if (m["parent"]["name"], m["name"]) in METHODS_TO_SKIP: continue if "Callback" in m["name"]: single_argument = len(m["parameters"]) == 1 boost_function = single_argument and m["parameters"][0]["type"].startswith("boost::function") if not boost_function: continue filtered_methods.append(m) return filtered_methods def same_parameters(p1: Dict, p2: Dict) -> bool: fields = ["constant", "name", "raw_type", "reference", "static"] return all(p1[f] == p2[f] for f in fields) def same_methods(m1: CppMethod, m2: CppMethod) -> bool: if m1["name"] != m2["name"]: return False # bug in CppHeaderParser # in "void ImageGrabber<PointT>::publish", "void ImageGrabber<PointT>::" is the return type path = m1.get("path", m2.get("path")) path = path[path.rfind(":") + 1:] if not any(path in type_ for type_ in [m1["rtnType"], m2["rtnType"]]): return False # same parameters for p1 in m1["parameters"]: for p2 in m2["parameters"]: if m1["name"] == m2["name"] and same_parameters(p1, p2): break else: return False return len(m1["parameters"]) == len(m2["parameters"]) def private_methods_defined_outside(private_methods: List[CppMethod], methods_declared_outside: List[CppMethod]) -> List[CppMethod]: private_defined_outside = [] for m_private in private_methods: for m_outside in methods_declared_outside: if same_methods(m_private, m_outside): private_defined_outside.append(m_private) break return private_defined_outside def generate_class_definitions(main_classes, module, header_name, path, needs_overloading: List[str], methods_defined_outside: List[CppMethod]) -> str: text = [] a = text.append a(common_includes) a(EXPLICIT_INCLUDES.get((module, header_name), "")) a(make_header_include_name(module, header_name, path)) a("") namespaces = set([c["namespace"] for c in main_classes]) for namespace in namespaces: if not namespace == "pcl": a("using namespace %s;" % namespace) a("\n") for class_ in main_classes: methods = class_["methods"]["public"] methods = filter_methods_for_parser_errors(methods) methods = filter_methods_to_skip(methods) private_and_protected = class_["methods"]["private"] + class_["methods"]["protected"] methods += private_methods_defined_outside(private_and_protected, methods_defined_outside) class_properties = [p for p in class_["properties"]["public"] if not "using" in p["type"] and not "union" in p["type"]] union_properties = [p for nested_class in class_["nested_classes"] for p in nested_class["properties"]["public"] if "union" in nested_class["name"]] class_properties += union_properties class_properties = filter_class_properties(module, header_name, class_["name"], class_properties) constructors, variables, others = split_methods_by_type(methods, class_properties, needs_overloading) if not class_["can_be_instantiated"]: constructors = [] class_def = ClassDefinition(class_, constructors, variables, others, module) a(class_def.to_class_function_definition()) a("") return "\n".join(text) def filter_class_properties(module, header, class_name, properties): key = (module, header, class_name) # ignore properties without a name properties = [p for p in properties if p["name"]] if key in ATTRIBUTES_TO_SKIP: to_ignore = ATTRIBUTES_TO_SKIP[key] filtered_properties = [] for p in properties: if p["name"] in to_ignore: continue filtered_properties.append(p) properties = filtered_properties return properties def get_main_classes(header, module, header_name): # header = read_headers(base_path, header_name, module) main_classes = [c for c in header.classes.values() if c["namespace"] in ("pcl", "pcl::" + module)] filtered_main_classes = [] for class_ in main_classes: specialized_template = class_.get("template") and "<" in class_["name"] if specialized_template: to_skip = any(("<%s>" % type_) in class_["name"] for type_ in SPECIALIZED_TEMPLATED_TYPES_TO_SKIP) if not to_skip: message = "Warning: Template class specialization not implemented for class %s in %s" print(message % (class_["name"], header_name)) elif (module, header_name, class_["name"]) in CLASSES_TO_IGNORE: pass else: filtered_main_classes.append(class_) filtered_main_classes = sorted(filtered_main_classes, key=lambda c: c["name"]) return filtered_main_classes def get_functions(header, module): functions = [f for f in header.functions if f["namespace"] in ("pcl", "pcl::", "pcl::%s" % module, "pcl::%s::" % module)] functions = sorted(functions, key=lambda f: f["name"]) filtered = filter_module_level_functions(functions) return filtered def filter_module_level_functions(functions: List[CppMethod]): filtered = [] for f in functions: keep = True if f.get("returns_const"): keep = False for param in f["parameters"]: for type_ in SPECIALIZED_TEMPLATED_TYPES_TO_SKIP: if type_ in param["type"]: keep = False if keep: filtered.append(f) return filtered def get_variables(header): variables = [v for v in header.variables if v.get("defaultValue") and 'using' != v.get('type')] variables = sorted(variables, key=lambda v: v["name"]) return variables def get_enums(header): enums = [e for e in header.enums if e.get("name")] # skip nameless enums enums = sorted(enums, key=lambda v: v["name"]) return enums def read_header(header_path, skip_macros=None): # I tried to do this in multiple threads but it seems like CppHeaderParser is not thread safe... if skip_macros is None: skip_macros = [] header_file_str = read_header_file(header_path, skip_macros) parser = CppHeaderParser parser.debug = False header = parser.CppHeader(header_file_str, argType="string") return header def clean(): try: os.remove(PATH_LOADER) except FileNotFoundError: pass if os.path.exists(PATH_MODULES): shutil.rmtree(PATH_MODULES) def check_if_needs_overloading(main_classes): needs_overloading = {} classes_by_module = defaultdict(list) for (module, _), class_ in main_classes.items(): classes_by_module[module] += class_ for module, classes in classes_by_module.items(): needs = [] for class_ in classes: count = Counter(m["name"] for methods in class_["methods"].values() for m in methods) for name, count in count.items(): if count >= 2: needs.append(name) needs_overloading[module] = needs return needs_overloading def get_headers(modules=None, skip_modules=None): def listmod(module): found_modules = [] for base, folders, files in os.walk(join(PCL_BASE, module)): if any(base.endswith(m) for m in SUBMODULES_TO_SKIP): continue relative_base = os.path.abspath(base).replace(PCL_BASE, "")[1:] for f in files: if f.endswith(".h"): found_modules.append([f, join(relative_base, f)]) return found_modules if modules is None: modules = MODULES_TO_BUILD if skip_modules is not None: modules = [m for m in modules if m not in skip_modules] headers_to_generate = [(module, header_name, path) for module in modules for header_name, path in listmod(module)] base_headers = [("", f, f) for f in os.listdir(PCL_BASE) if f.endswith(".h")] headers_to_generate += base_headers headers_to_generate_temp = [] for module, header_name, path in headers_to_generate: if (module, header_name) in HEADERS_TO_SKIP: continue headers_to_generate_temp.append(tuple([module, header_name, path])) return headers_to_generate_temp def get_pure_virtual_methods(class_: CppHeaderParser.CppClass) -> Set[str]: access = "private protected public".split() return set([m["name"] for a in access for m in class_["methods"][a] if m["pure_virtual"]]) def get_all_class_methods_not_pure_virtual(class_: CppHeaderParser.CppClass) -> Set[str]: access = "private protected public".split() return set([m["name"] for a in access for m in class_["methods"][a] if not m["pure_virtual"]]) def flag_instantiatable_class(dependency_tree, main_classes): """determine if the class can be instantiated""" main_classes_by_name_namespace = {make_namespace_class(c["namespace"], c["name"]): c for classes in main_classes.values() for c in classes} for module, header_name in main_classes: for class_ in main_classes[(module, header_name)]: can_be_instantiated = True if class_["abstract"]: can_be_instantiated = False else: # check if any pure virtual method is not implemented all_implemented_inherited_methods = get_all_class_methods_not_pure_virtual(class_) namespace_class = make_namespace_class(class_["namespace"], class_["name"]) for base_name_nsp in dependency_tree.breadth_first_iterator(namespace_class): base_class = main_classes_by_name_namespace.get(base_name_nsp) if base_class: base_class_methods = get_all_class_methods_not_pure_virtual(base_class) all_implemented_inherited_methods.update(base_class_methods) for base_name_nsp in dependency_tree.breadth_first_iterator(namespace_class): base_class = main_classes_by_name_namespace.get(base_name_nsp) if base_class and base_class["abstract"]: base_pure_virtual_methods = get_pure_virtual_methods(base_class) if base_pure_virtual_methods - all_implemented_inherited_methods: can_be_instantiated = False class_["can_be_instantiated"] = can_be_instantiated def load_yaml_point_types(not_every_point_type): classes_point_types = unpack_yaml_point_types("point_types_generated.yml", not_every_point_type) extra_point_types = unpack_yaml_point_types("point_types_extra.yml") for k, v in extra_point_types.items(): if k in classes_point_types: classes_point_types[k].append(v) else: classes_point_types[k] = v return classes_point_types def make_module_dirs(modules): for module in modules: module_dir = join(PATH_MODULES, module) if not os.path.exists(module_dir): os.makedirs(module_dir) def is_file_different(path, text): v = open(path).read() if v != text: print("File is different: %s" % os.path.split(path)[1]) return True # print("File is the same: %s" % os.path.split(path)[1]) return False def write_if_different(files_to_write, delete_others): written = [] for base, folder, files in os.walk(PATH_MODULES): for f in files: path = join(base, f) if path in files_to_write: if is_file_different(path, files_to_write[path]): open(path, "w").write(files_to_write[path]) written.append(path) elif delete_others: os.remove(path) print("Deleted: " + path) # write new files for path, text in files_to_write.items(): if path not in written: open(path, "w").write(files_to_write[path]) def delete_other_dirs(modules): for f in os.listdir(PATH_MODULES): folder = join(PATH_MODULES, f) if f not in modules and os.path.isdir(folder): shutil.rmtree(folder, ignore_errors=True) def write_stuff_if_needed(generated_headers: OrderedDict, delete_others=True): modules = set(module for module, _ in generated_headers.keys()) make_module_dirs(modules) # hpp files_to_write = {} for (module, header_name), text in generated_headers.items(): if text: output_path = join(PATH_MODULES, module, header_name + "pp") files_to_write[output_path] = text # loaders loader_modules = defaultdict(list) for (module, header_name), text in generated_headers.items(): if text: loader_modules[module or "base"].append(header_name) for module, headers in loader_modules.items(): path_loader = join(PATH_MODULES, "_%s_loader.cpp" % module) files_to_write[path_loader] = generate_loader(module, headers) files_to_write[PATH_LOADER] = generate_main_loader(loader_modules) write_if_different(files_to_write, delete_others) if delete_others: delete_other_dirs(modules) def generate(headers_to_generate, skip_macros, not_every_point_type=False) -> OrderedDict: """ :return: OrderedDict """ main_classes, module_functions, module_variables, module_enums = {}, {}, {}, {} for module, header_name, path in headers_to_generate[:]: header_full_path = join(PCL_BASE, path) if path else join(PCL_BASE, module, header_name) header = read_header(header_full_path, skip_macros) main_classes[(module, header_name)] = get_main_classes(header, module, header_name) module_functions[(module, header_name)] = get_functions(header, module) module_variables[(module, header_name)] = get_variables(header) module_enums[(module, header_name)] = get_enums(header) classes = [c for module, header, path in headers_to_generate for c in main_classes[(module, header)]] dependency_tree = generators.dependency_tree.DependencyTree(classes) loaded_point_types = load_yaml_point_types(not_every_point_type) classes_point_types: OrderedDict = dependency_tree.get_point_types_with_dependencies(loaded_point_types) classes_sorted_base_first = list(dependency_tree.leaf_iterator()) def index_for_class(class_): return classes_sorted_base_first.index(make_namespace_class(class_["namespace"], class_["name"])) # sort classes inside modules based on inheritance for module, header in main_classes: main_classes[(module, header)] = list(sorted(main_classes[(module, header)], key=index_for_class)) headers_to_generate = sort_headers_by_dependencies(headers_to_generate, skip_macros=skip_macros) methods_need_overloading = check_if_needs_overloading(main_classes) flag_instantiatable_class(dependency_tree, main_classes) def generate_header(module, header, path, keep_if_no_instantiation) -> str: header_functions = module_functions[(module, header)] header_classes = main_classes[(module, header)] methods_defined_outside = get_methods_defined_outside(header_functions) class_definitions = generate_class_definitions(header_classes, module, header, path, methods_need_overloading.get(module), methods_defined_outside) function_definitions = generate_function_definitions(header_functions, module, header, not_every_point_type=not_every_point_type) instantiations = Instantiations(header_classes, module, header, classes_point_types, module_variables[(module, header)], module_enums[(module, header)], ) instantiation_function = instantiations.generate_instantiation_function(has_functions=bool(header_functions)) something_instantiated = len(instantiation_function.split("\n")) > 2 text = [] if something_instantiated or keep_if_no_instantiation: text = [class_definitions, function_definitions, instantiation_function] return "\n".join(text) generated_headers = OrderedDict() for module, header, path in headers_to_generate: generated_headers[(module, header)] = generate_header(module, header, path, keep_if_no_instantiation=False) return generated_headers def main(): import time t = time.time() windows = platform.system() == "Windows" skip_macros = [] skip_modules = [] if not windows: skip_macros = ["_MSC_VER"] #skip_modules = ["visualization"] skip_modules = [] all_headers = get_headers(skip_modules=skip_modules) not_every_point_type = "--not-every-point-type" in sys.argv generated_headers = generate(all_headers, skip_macros, not_every_point_type) write_stuff_if_needed(generated_headers, delete_others=True) print("generated in %.2f s" % (time.time() - t,)) if __name__ == '__main__': main()
[((8144, 8186), 'generators.utils.read_header_file', 'read_header_file', (['header_path', 'skip_macros'], {}), '(header_path, skip_macros)\n', (8160, 8186), False, 'from generators.utils import make_header_include_name, sort_headers_by_dependencies, generate_main_loader, make_namespace_class, read_header_file\n'), ((8429, 8457), 'os.path.exists', 'os.path.exists', (['PATH_MODULES'], {}), '(PATH_MODULES)\n', (8443, 8457), False, 'import os\n'), ((8594, 8611), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (8605, 8611), False, 'from collections import defaultdict, OrderedDict\n'), ((12582, 12656), 'generators.point_types_utils.unpack_yaml_point_types', 'unpack_yaml_point_types', (['"""point_types_generated.yml"""', 'not_every_point_type'], {}), "('point_types_generated.yml', not_every_point_type)\n", (12605, 12656), False, 'from generators.point_types_utils import unpack_yaml_point_types\n'), ((12681, 12729), 'generators.point_types_utils.unpack_yaml_point_types', 'unpack_yaml_point_types', (['"""point_types_extra.yml"""'], {}), "('point_types_extra.yml')\n", (12704, 12729), False, 'from generators.point_types_utils import unpack_yaml_point_types\n'), ((13475, 13496), 'os.walk', 'os.walk', (['PATH_MODULES'], {}), '(PATH_MODULES)\n', (13482, 13496), False, 'import os\n'), ((14075, 14099), 'os.listdir', 'os.listdir', (['PATH_MODULES'], {}), '(PATH_MODULES)\n', (14085, 14099), False, 'import os\n'), ((14703, 14720), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (14714, 14720), False, 'from collections import defaultdict, OrderedDict\n'), ((15094, 15130), 'generators.utils.generate_main_loader', 'generate_main_loader', (['loader_modules'], {}), '(loader_modules)\n', (15114, 15130), False, 'from generators.utils import make_header_include_name, sort_headers_by_dependencies, generate_main_loader, make_namespace_class, read_header_file\n'), ((16805, 16879), 'generators.utils.sort_headers_by_dependencies', 'sort_headers_by_dependencies', (['headers_to_generate'], {'skip_macros': 'skip_macros'}), '(headers_to_generate, skip_macros=skip_macros)\n', (16833, 16879), False, 'from generators.utils import make_header_include_name, sort_headers_by_dependencies, generate_main_loader, make_namespace_class, read_header_file\n'), ((18870, 18883), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (18881, 18883), False, 'from collections import defaultdict, OrderedDict\n'), ((19121, 19132), 'time.time', 'time.time', ([], {}), '()\n', (19130, 19132), False, 'import time\n'), ((3462, 3510), 'generators.config.EXPLICIT_INCLUDES.get', 'EXPLICIT_INCLUDES.get', (['(module, header_name)', '""""""'], {}), "((module, header_name), '')\n", (3483, 3510), False, 'from generators.config import common_includes, PCL_BASE, PATH_LOADER, PATH_MODULES, MODULES_TO_BUILD, HEADERS_TO_SKIP, ATTRIBUTES_TO_SKIP, CLASSES_TO_IGNORE, METHODS_TO_SKIP, SUBMODULES_TO_SKIP, EXPLICIT_INCLUDES, SPECIALIZED_TEMPLATED_TYPES_TO_SKIP\n'), ((3518, 3569), 'generators.utils.make_header_include_name', 'make_header_include_name', (['module', 'header_name', 'path'], {}), '(module, header_name, path)\n', (3542, 3569), False, 'from generators.utils import make_header_include_name, sort_headers_by_dependencies, generate_main_loader, make_namespace_class, read_header_file\n'), ((4744, 4811), 'generators.definitions.method.split_methods_by_type', 'split_methods_by_type', (['methods', 'class_properties', 'needs_overloading'], {}), '(methods, class_properties, needs_overloading)\n', (4765, 4811), False, 'from generators.definitions.method import split_methods_by_type\n'), ((4972, 5036), 'generators.definitions.templated_class.ClassDefinition', 'ClassDefinition', (['class_', 'constructors', 'variables', 'others', 'module'], {}), '(class_, constructors, variables, others, module)\n', (4987, 5036), False, 'from generators.definitions.templated_class import ClassDefinition\n'), ((8356, 8378), 'os.remove', 'os.remove', (['PATH_LOADER'], {}), '(PATH_LOADER)\n', (8365, 8378), False, 'import os\n'), ((8467, 8494), 'shutil.rmtree', 'shutil.rmtree', (['PATH_MODULES'], {}), '(PATH_MODULES)\n', (8480, 8494), False, 'import shutil\n'), ((10926, 10973), 'generators.utils.make_namespace_class', 'make_namespace_class', (["c['namespace']", "c['name']"], {}), "(c['namespace'], c['name'])\n", (10946, 10973), False, 'from generators.utils import make_header_include_name, sort_headers_by_dependencies, generate_main_loader, make_namespace_class, read_header_file\n'), ((13020, 13046), 'os.path.join', 'join', (['PATH_MODULES', 'module'], {}), '(PATH_MODULES, module)\n', (13024, 13046), False, 'from os.path import join\n'), ((14118, 14139), 'os.path.join', 'join', (['PATH_MODULES', 'f'], {}), '(PATH_MODULES, f)\n', (14122, 14139), False, 'from os.path import join\n'), ((14942, 14987), 'os.path.join', 'join', (['PATH_MODULES', "('_%s_loader.cpp' % module)"], {}), "(PATH_MODULES, '_%s_loader.cpp' % module)\n", (14946, 14987), False, 'from os.path import join\n'), ((15026, 15058), 'generators.definitions.submodule_loader.generate_loader', 'generate_loader', (['module', 'headers'], {}), '(module, headers)\n', (15041, 15058), False, 'from generators.definitions.submodule_loader import generate_loader\n'), ((17249, 17294), 'generators.definitions.function.get_methods_defined_outside', 'get_methods_defined_outside', (['header_functions'], {}), '(header_functions)\n', (17276, 17294), False, 'from generators.definitions.function import generate_function_definitions, get_methods_defined_outside\n'), ((17759, 17869), 'generators.definitions.function.generate_function_definitions', 'generate_function_definitions', (['header_functions', 'module', 'header'], {'not_every_point_type': 'not_every_point_type'}), '(header_functions, module, header,\n not_every_point_type=not_every_point_type)\n', (17788, 17869), False, 'from generators.definitions.function import generate_function_definitions, get_methods_defined_outside\n'), ((18074, 18209), 'generators.instantiations.Instantiations', 'Instantiations', (['header_classes', 'module', 'header', 'classes_point_types', 'module_variables[module, header]', 'module_enums[module, header]'], {}), '(header_classes, module, header, classes_point_types,\n module_variables[module, header], module_enums[module, header])\n', (18088, 18209), False, 'from generators.instantiations import Instantiations\n'), ((19148, 19165), 'platform.system', 'platform.system', ([], {}), '()\n', (19163, 19165), False, 'import platform\n'), ((9248, 9270), 'os.path.join', 'join', (['PCL_BASE', 'module'], {}), '(PCL_BASE, module)\n', (9252, 9270), False, 'from os.path import join\n'), ((9949, 9969), 'os.listdir', 'os.listdir', (['PCL_BASE'], {}), '(PCL_BASE)\n', (9959, 9969), False, 'import os\n'), ((13062, 13088), 'os.path.exists', 'os.path.exists', (['module_dir'], {}), '(module_dir)\n', (13076, 13088), False, 'import os\n'), ((13102, 13125), 'os.makedirs', 'os.makedirs', (['module_dir'], {}), '(module_dir)\n', (13113, 13125), False, 'import os\n'), ((13541, 13554), 'os.path.join', 'join', (['base', 'f'], {}), '(base, f)\n', (13545, 13554), False, 'from os.path import join\n'), ((14172, 14193), 'os.path.isdir', 'os.path.isdir', (['folder'], {}), '(folder)\n', (14185, 14193), False, 'import os\n'), ((14207, 14248), 'shutil.rmtree', 'shutil.rmtree', (['folder'], {'ignore_errors': '(True)'}), '(folder, ignore_errors=True)\n', (14220, 14248), False, 'import shutil\n'), ((14573, 14619), 'os.path.join', 'join', (['PATH_MODULES', 'module', "(header_name + 'pp')"], {}), "(PATH_MODULES, module, header_name + 'pp')\n", (14577, 14619), False, 'from os.path import join\n'), ((15551, 15571), 'os.path.join', 'join', (['PCL_BASE', 'path'], {}), '(PCL_BASE, path)\n', (15555, 15571), False, 'from os.path import join\n'), ((15585, 15620), 'os.path.join', 'join', (['PCL_BASE', 'module', 'header_name'], {}), '(PCL_BASE, module, header_name)\n', (15589, 15620), False, 'from os.path import join\n'), ((16516, 16573), 'generators.utils.make_namespace_class', 'make_namespace_class', (["class_['namespace']", "class_['name']"], {}), "(class_['namespace'], class_['name'])\n", (16536, 16573), False, 'from generators.utils import make_header_include_name, sort_headers_by_dependencies, generate_main_loader, make_namespace_class, read_header_file\n'), ((11514, 11571), 'generators.utils.make_namespace_class', 'make_namespace_class', (["class_['namespace']", "class_['name']"], {}), "(class_['namespace'], class_['name'])\n", (11534, 11571), False, 'from generators.utils import make_header_include_name, sort_headers_by_dependencies, generate_main_loader, make_namespace_class, read_header_file\n'), ((13247, 13266), 'os.path.split', 'os.path.split', (['path'], {}), '(path)\n', (13260, 13266), False, 'import os\n'), ((13813, 13828), 'os.remove', 'os.remove', (['path'], {}), '(path)\n', (13822, 13828), False, 'import os\n'), ((19651, 19662), 'time.time', 'time.time', ([], {}), '()\n', (19660, 19662), False, 'import time\n'), ((9392, 9413), 'os.path.abspath', 'os.path.abspath', (['base'], {}), '(base)\n', (9407, 9413), False, 'import os\n'), ((9550, 9572), 'os.path.join', 'join', (['relative_base', 'f'], {}), '(relative_base, f)\n', (9554, 9572), False, 'from os.path import join\n')]
bcvsolutions/winrm-ad-connector
scripts_python3/exchange/deleteExchange.py
9b45dae78d3ba24fe6b00e090f8763d3162e1570
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # All params from IdM is stored in environment and you can get them by os.environ["paramName"] import sys, os # this is needed for importing file winrm_wrapper from parent dir sys.path.append(os.path.join(os.path.dirname(__file__), '..')) import winrm_wrapper import codecs uid = os.environ["__UID__"] winrm_wrapper.writeLog("Delete start for " + uid) # Load PS script from file and replace params winrm_wrapper.writeLog("loading script") f = codecs.open(os.environ["script"], encoding='utf-8', mode='r') command = f.read() command = command.replace("$uid", uid) # Call wrapper winrm_wrapper.executeScript(os.environ["endpoint"], os.environ["authentication"], os.environ["user"], os.environ["password"], os.environ["caTrustPath"], os.environ["ignoreCaValidation"], command, uid) winrm_wrapper.writeLog("Delete end for " + uid) print("__UID__=" + uid) sys.exit()
[((351, 400), 'winrm_wrapper.writeLog', 'winrm_wrapper.writeLog', (["('Delete start for ' + uid)"], {}), "('Delete start for ' + uid)\n", (373, 400), False, 'import winrm_wrapper\n'), ((448, 488), 'winrm_wrapper.writeLog', 'winrm_wrapper.writeLog', (['"""loading script"""'], {}), "('loading script')\n", (470, 488), False, 'import winrm_wrapper\n'), ((493, 554), 'codecs.open', 'codecs.open', (["os.environ['script']"], {'encoding': '"""utf-8"""', 'mode': '"""r"""'}), "(os.environ['script'], encoding='utf-8', mode='r')\n", (504, 554), False, 'import codecs\n'), ((629, 839), 'winrm_wrapper.executeScript', 'winrm_wrapper.executeScript', (["os.environ['endpoint']", "os.environ['authentication']", "os.environ['user']", "os.environ['password']", "os.environ['caTrustPath']", "os.environ['ignoreCaValidation']", 'command', 'uid'], {}), "(os.environ['endpoint'], os.environ[\n 'authentication'], os.environ['user'], os.environ['password'], os.\n environ['caTrustPath'], os.environ['ignoreCaValidation'], command, uid)\n", (656, 839), False, 'import winrm_wrapper\n'), ((867, 914), 'winrm_wrapper.writeLog', 'winrm_wrapper.writeLog', (["('Delete end for ' + uid)"], {}), "('Delete end for ' + uid)\n", (889, 914), False, 'import winrm_wrapper\n'), ((939, 949), 'sys.exit', 'sys.exit', ([], {}), '()\n', (947, 949), False, 'import sys, os\n'), ((252, 277), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (267, 277), False, 'import sys, os\n')]
Walon1998/dace
tests/registry_test.py
95ddfd3e9a5c654f0f0d66d026e0b64ec0f028a0
# Copyright 2019-2021 ETH Zurich and the DaCe authors. All rights reserved. import unittest from aenum import Enum, auto from dace import registry @registry.make_registry class ExtensibleClass(object): pass class Extension(ExtensibleClass): pass @registry.extensible_enum class ExtensibleEnumeration(Enum): a = auto() b = auto() class RegistryTests(unittest.TestCase): def test_class_registry(self): ExtensibleClass.register(Extension) self.assertTrue(Extension in ExtensibleClass.extensions()) ExtensibleClass.unregister(Extension) self.assertTrue(Extension not in ExtensibleClass.extensions()) def test_autoregister(self): @registry.autoregister class Extension2(ExtensibleClass): pass self.assertTrue(Extension2 in ExtensibleClass.extensions()) def test_class_registry_args(self): ExtensibleClass.register(Extension, a=True, b=1, c=2) self.assertTrue(Extension in ExtensibleClass.extensions()) self.assertEqual(ExtensibleClass.extensions()[Extension], dict(a=True, b=1, c=2)) ExtensibleClass.unregister(Extension) self.assertTrue(Extension not in ExtensibleClass.extensions()) def test_autoregister_args(self): @registry.autoregister_params(a=False, b=0) class Extension3(ExtensibleClass): pass self.assertTrue(Extension3 in ExtensibleClass.extensions()) self.assertEqual(ExtensibleClass.extensions()[Extension3], dict(a=False, b=0)) def test_autoregister_fail(self): with self.assertRaises(TypeError): @registry.autoregister class Extension4(object): pass def test_enum_registry(self): ExtensibleEnumeration.register('c') self.assertTrue(ExtensibleEnumeration.c in ExtensibleEnumeration) self.assertEqual(ExtensibleEnumeration.c.value, 3) def test_enum_registry_fail(self): with self.assertRaises(TypeError): @registry.extensible_enum class NotAnEnum(object): pass if __name__ == '__main__': unittest.main()
[((329, 335), 'aenum.auto', 'auto', ([], {}), '()\n', (333, 335), False, 'from aenum import Enum, auto\n'), ((344, 350), 'aenum.auto', 'auto', ([], {}), '()\n', (348, 350), False, 'from aenum import Enum, auto\n'), ((2136, 2151), 'unittest.main', 'unittest.main', ([], {}), '()\n', (2149, 2151), False, 'import unittest\n'), ((1275, 1317), 'dace.registry.autoregister_params', 'registry.autoregister_params', ([], {'a': '(False)', 'b': '(0)'}), '(a=False, b=0)\n', (1303, 1317), False, 'from dace import registry\n')]
aviramha/aiologstash2
tests/conftest.py
08c5127bf77e3b66ddcb2e8acff82368dbc58af7
import asyncio import logging from json import loads import pytest from aiologstash2 import create_tcp_handler logging.getLogger().setLevel(logging.DEBUG) class FakeTcpServer: def __init__(self): self.data = bytearray() self.server = None self.futs = set() async def start(self): self.server = await asyncio.start_server(self.on_connect, host="127.0.0.1") @property def port(self): return self.server.sockets[0].getsockname()[1] @property def jsons(self): s = self.data.decode("utf8") return [loads(i) for i in s.split("\n") if i] async def close(self): if self.server is None: return self.server.close() await self.server.wait_closed() self.server = None async def on_connect(self, reader, writer): while True: data = await reader.read(1024) if not data: break self.data.extend(data) for fut in self.futs: if not fut.done(): fut.set_result(None) async def wait(self): fut = asyncio.get_event_loop().create_future() self.futs.add(fut) await fut self.futs.remove(fut) @pytest.fixture async def make_tcp_server(): servers = [] async def go(): server = FakeTcpServer() await server.start() servers.append(server) return server yield go async def finalize(): for server in servers: await server.close() await finalize() @pytest.fixture async def make_tcp_handler(make_tcp_server): handlers = [] async def go(*args, level=logging.DEBUG, **kwargs): server = await make_tcp_server() handler = await create_tcp_handler("127.0.0.1", server.port, **kwargs) handlers.append(handler) return handler, server yield go async def finalize(): for handler in handlers: handler.close() await handler.wait_closed() await finalize() @pytest.fixture async def setup_logger(make_tcp_handler): async def go(*args, **kwargs): handler, server = await make_tcp_handler(*args, **kwargs) logger = logging.getLogger("aiologstash_test") logger.addHandler(handler) return logger, handler, server yield go
[((115, 134), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (132, 134), False, 'import logging\n'), ((2246, 2283), 'logging.getLogger', 'logging.getLogger', (['"""aiologstash_test"""'], {}), "('aiologstash_test')\n", (2263, 2283), False, 'import logging\n'), ((347, 402), 'asyncio.start_server', 'asyncio.start_server', (['self.on_connect'], {'host': '"""127.0.0.1"""'}), "(self.on_connect, host='127.0.0.1')\n", (367, 402), False, 'import asyncio\n'), ((582, 590), 'json.loads', 'loads', (['i'], {}), '(i)\n', (587, 590), False, 'from json import loads\n'), ((1785, 1839), 'aiologstash2.create_tcp_handler', 'create_tcp_handler', (['"""127.0.0.1"""', 'server.port'], {}), "('127.0.0.1', server.port, **kwargs)\n", (1803, 1839), False, 'from aiologstash2 import create_tcp_handler\n'), ((1139, 1163), 'asyncio.get_event_loop', 'asyncio.get_event_loop', ([], {}), '()\n', (1161, 1163), False, 'import asyncio\n')]
RichieB2B/tcex
tcex/playbooks/playbooks_base.py
eba20a67d4b8e3596c895b7c45325716267d7c85
"""TcEx Framework Playbook module""" # standard library import base64 import json import re from collections import OrderedDict from collections.abc import Iterable class PlaybooksBase: """TcEx Playbook Module Base Class Args: tcex (TcEx): Instance of TcEx class. context (str): The Redis context (hash). output_variables (list): The requested output variables. """ def __init__(self, tcex, context, output_variables): """Initialize the Class properties.""" self.tcex = tcex self._context = context self._output_variables = output_variables or [] # properties self._output_variables_by_name = None self._output_variables_by_type = None self.log = tcex.log # match full variable self._variable_match = re.compile(fr'^{self._variable_pattern}$') # capture variable parts (exactly a variable) self._variable_parse = re.compile(self._variable_pattern) # match embedded variables without quotes (#App:7979:variable_name!StringArray) self._vars_keyvalue_embedded = re.compile(fr'(?:\"\:\s?)[^\"]?{self._variable_pattern}') def _coerce_string_value(self, value): """Return a string value from an bool or int.""" # coerce bool before int as python says a bool is an int if isinstance(value, bool): # coerce bool to str type self.log.warning(f'Coercing bool value ({value}) to a string ("{str(value).lower()}").') value = str(value).lower() # coerce int to str type if isinstance(value, (float, int)): self.log.warning(f'Coercing float/int value ({value}) to a string ("{str(value)}").') value = str(value) return value def _create(self, key, value, validate=True): """Create the value in Redis if applicable.""" if key is None or value is None: self.log.warning('The key or value field is None.') return None # get variable type from variable value variable_type = self.variable_type(key) if variable_type == 'Binary': # if not isinstance(value, bytes): # value = value.encode('utf-8') if validate and not isinstance(value, bytes): raise RuntimeError('Invalid data provided for Binary.') value = base64.b64encode(value).decode('utf-8') elif variable_type == 'KeyValue': if validate and (not isinstance(value, dict) or not self._is_key_value(value)): raise RuntimeError('Invalid data provided for KeyValue.') elif variable_type == 'String': # coerce string values value = self._coerce_string_value(value) if validate and not isinstance(value, str): raise RuntimeError('Invalid data provided for String.') elif variable_type == 'TCEntity': if validate and (not isinstance(value, dict) or not self._is_tc_entity(value)): raise RuntimeError('Invalid data provided for TcEntity.') # self.log.trace(f'pb create - context: {self._context}, key: {key}, value: {value}') try: value = json.dumps(value) except ValueError as e: # pragma: no cover raise RuntimeError(f'Failed to serialize value ({e}).') try: return self.tcex.key_value_store.create(self._context, key.strip(), value) except RuntimeError as e: self.log.error(e) return None def _create_array(self, key, value, validate=True): """Create the value in Redis if applicable.""" if key is None or value is None: self.log.warning('The key or value field is None.') return None # get variable type from variable value variable_type = self.variable_type(key) # Enhanced entity array is the wild-wild west, don't validate it if variable_type != 'TCEnhancedEntityArray': if validate and (not isinstance(value, Iterable) or isinstance(value, (str, dict))): raise RuntimeError(f'Invalid data provided for {variable_type}.') value = [ *value ] # spread the value so that we know it's a list (as opposed to an iterable) if variable_type == 'BinaryArray': value_encoded = [] for v in value: if v is not None: if validate and not isinstance(v, bytes): raise RuntimeError('Invalid data provided for Binary.') # if not isinstance(v, bytes): # v = v.encode('utf-8') v = base64.b64encode(v).decode('utf-8') value_encoded.append(v) value = value_encoded elif variable_type == 'KeyValueArray': if validate and not self._is_key_value_array(value): raise RuntimeError('Invalid data provided for KeyValueArray.') elif variable_type == 'StringArray': value_coerced = [] for v in value: # coerce string values v = self._coerce_string_value(v) if validate and not isinstance(v, (type(None), str)): raise RuntimeError('Invalid data provided for StringArray.') value_coerced.append(v) value = value_coerced elif variable_type == 'TCEntityArray': if validate and not self._is_tc_entity_array(value): raise RuntimeError('Invalid data provided for TcEntityArray.') # self.log.trace(f'pb create - context: {self._context}, key: {key}, value: {value}') try: value = json.dumps(value) except ValueError as e: # pragma: no cover raise RuntimeError(f'Failed to serialize value ({e}).') try: return self.tcex.key_value_store.create(self._context, key.strip(), value) except RuntimeError as e: self.log.error(e) return None @staticmethod def _decode_binary(data): """Return decoded bytes data handling data written by java apps.""" try: data = data.decode('utf-8') except UnicodeDecodeError: # pragma: no cover # for data written an upstream java App data = data.decode('latin-1') return data @staticmethod def _is_key_value(data): """Return True if provided data has proper structure for Key Value.""" if data is None: return False return all(x in data for x in ['key', 'value']) def _is_key_value_array(self, data): """Return True if provided data has proper structure for Key Value Array.""" for d in data: if not self._is_key_value(d): return False return True @staticmethod def _is_tc_entity(data): """Return True if provided data has proper structure for TC Entity.""" if data is None: return False return all(x in data for x in ['id', 'value', 'type']) def _is_tc_entity_array(self, data): """Return True if provided data has proper structure for TC Entity Array.""" for d in data: if not self._is_tc_entity(d): return False return True @staticmethod def _load_value(value): """Return the loaded JSON value or raise an error. Args: value (str): The data from key/value store. Raises: RuntimeError: Raise error when data can't be loaded as JSON data. Returns: any: The de-serialized value from the key/value store. """ try: return json.loads(value, object_pairs_hook=OrderedDict) except ValueError as e: # pragma: no cover raise RuntimeError(f'Failed to JSON load data "{value}" ({e}).') def _parse_output_variables(self): """Parse the output variables provided to Playbook Class. **Example Variable Format**:: ['#App:1234:status!String', '#App:1234:status_code!String'] """ self._output_variables_by_name = {} self._output_variables_by_type = {} for ov in self._output_variables: # parse the variable to get individual parts parsed_variable = self.parse_variable(ov) variable_name = parsed_variable.get('name') variable_type = parsed_variable.get('type') # store the variables in dict by name (e.g. "status_code") self._output_variables_by_name[variable_name] = {'variable': ov} # store the variables in dict by name-type (e.g. "status_code-String") self._output_variables_by_type[f'{variable_name}-{variable_type}'] = {'variable': ov} def _read(self, key, embedded=True, b64decode=True, decode=False): """Create the value in Redis if applicable.""" if key is None: self.log.warning('The key is None.') return None # get variable type from variable value variable_type = self.variable_type(key) try: value = self.tcex.key_value_store.read(self._context, key.strip()) except RuntimeError as e: self.log.error(e) return None if value is None: return value if variable_type == 'Binary': value = self._load_value(value) if b64decode: value = base64.b64decode(value) if decode: value = self._decode_binary(value) elif variable_type == 'KeyValue': # embedded variable can be unquoted, which breaks JSON. value = self._wrap_embedded_keyvalue(value) if embedded: value = self._read_embedded(value) value = self._load_value(value) elif variable_type == 'String': if embedded: value = self._read_embedded(value) # coerce string values value = self._coerce_string_value(self._load_value(value)) elif variable_type == 'TCEntity': value = self._load_value(value) return value def _read_array(self, key, embedded=True, b64decode=True, decode=False): """Create the value in Redis if applicable.""" if key is None: # pragma: no cover self.log.warning('The null value for key was provided.') return None # get variable type from variable value variable_type = self.variable_type(key) try: value = self.tcex.key_value_store.read(self._context, key.strip()) except RuntimeError as e: self.log.error(e) return None if value is None: return value if variable_type == 'BinaryArray': value = json.loads(value, object_pairs_hook=OrderedDict) values = [] for v in value: if v is not None and b64decode: v = base64.b64decode(v) if decode: v = self._decode_binary(v) values.append(v) value = values elif variable_type == 'KeyValueArray': # embedded variable can be unquoted, which breaks JSON. value = self._wrap_embedded_keyvalue(value) if embedded: value = self._read_embedded(value) try: value = json.loads(value, object_pairs_hook=OrderedDict) except ValueError as e: # pragma: no cover raise RuntimeError(f'Failed loading JSON data ({value}). Error: ({e})') elif variable_type == 'StringArray': if embedded: value = self._read_embedded(value) # convert int to str value_coerced = [] for v in self._load_value(value): # coerce string values value_coerced.append(self._coerce_string_value(v)) value = value_coerced elif variable_type in ['TCEntityArray', 'TCEnhancedEntity', 'TCEnhancedEntityArray']: value = self._load_value(value) # self.log.trace(f'pb create - context: {self._context}, key: {key}, value: {value}') return value def _read_embedded(self, value): """Read method for "embedded" variables. .. Note:: The ``read()`` method will automatically determine if the input is a variable or needs to be searched for embedded variables. Embedded variable rules: * Only user input can have embedded variables. * Only String and KeyValueArray variables can have embedded variables. * Variables can only be embedded one level deep. This method will automatically covert variables embedded in a string with value retrieved from DB. If there are no keys/variables the raw string will be returned. Examples:: DB Values #App:7979:variable_name!String: "embedded \\"variable\\"" #App:7979:two!String: "two" #App:7979:variable_name!StringArray: ["one", "two", "three"] Examples 1: Input: "This input has a embedded #App:7979:variable_name!String" Examples 2: Input: ["one", #App:7979:two!String, "three"] Examples 3: Input: [{ "key": "embedded string", "value": "This input has a embedded #App:7979:variable_name!String" }, { "key": "string array", "value": #App:7979:variable_name!StringArray }, { "key": "string", "value": #App:7979:variable_name!String }] Args: value (str): The value to parsed and updated from the DB. Returns: (str): Results retrieved from DB """ if value is None: # pragma: no cover return value for variable in (v.group(0) for v in re.finditer(self._variable_parse, str(value))): v = self.read(variable) self.log.trace(f'embedded variable: {variable}, value: {v}') if isinstance(v, (dict, list)): v = json.dumps(v) # for KeyValueArray with nested dict/list type replace the # quoted value to ensure the resulting data is loadable JSON value = re.sub(f'"{variable}"', v, value) if v is not None: # only replace variable if a non-null value is returned from kv store # APP-1030 need to revisit this to handle variable references in kv/kvarrays that # are None. Would like to be able to say if value is just the variable reference, # sub None value, else insert '' in string. That would require a kv-specific # version of this method that gets the entire list/dict instead of just the string. value = re.sub(variable, v, value) return value @property def _variable_pattern(self): """Regex pattern to match and parse a playbook variable.""" variable_pattern = r'#([A-Za-z]+)' # match literal (#App,#Trigger) at beginning of String variable_pattern += r':([\d]+)' # app id (:7979) variable_pattern += r':([A-Za-z0-9_\.\-\[\]]+)' # variable name (:variable_name) variable_pattern += r'!(StringArray|BinaryArray|KeyValueArray' # variable type (array) variable_pattern += r'|TCEntityArray|TCEnhancedEntityArray' # variable type (array) variable_pattern += r'|String|Binary|KeyValue|TCEntity|TCEnhancedEntity' # variable type variable_pattern += r'|(?:(?!String)(?!Binary)(?!KeyValue)' # non matching for custom variable_pattern += r'(?!TCEntity)(?!TCEnhancedEntity)' # non matching for custom variable_pattern += r'[A-Za-z0-9_-]+))' # variable type (custom) return variable_pattern @property def _variable_array_types(self): """Return list of standard playbook array variable types.""" return [ 'BinaryArray', 'KeyValueArray', 'StringArray', 'TCEntityArray', 'TCEnhancedEntityArray', ] @property def _variable_single_types(self): """Return list of standard playbook single variable types.""" return [ 'Binary', 'KeyValue', 'String', 'TCEntity', 'TCEnhancedEntity', ] @property def _variable_types(self): """Return list of standard playbook variable typesd.""" return self._variable_single_types + self._variable_array_types def _wrap_embedded_keyvalue(self, data): """Wrap keyvalue embedded variable in double quotes. Args: data (str): The data with embedded variables. Returns: (str): Results retrieved from DB """ # TODO: need to verify if core still sends improper JSON for KeyValueArrays if data is not None: # pragma: no cover variables = [] for v in re.finditer(self._vars_keyvalue_embedded, data): variables.append(v.group(0)) for var in set(variables): # recursion over set to handle duplicates # pull (#App:1441:embedded_string!String) from (": #App:1441:embedded_string!String) variable_string = re.search(self._variable_parse, var).group(0) # reformat to replace the correct instance only, handling the case where a variable # is embedded multiple times in the same key value array. data = data.replace(var, f'": "{variable_string}"') return data def create_raw(self, key, value): """Create method of CRUD operation for raw data. ..important:: Raw data can only be a byte, str or int. Other data structures (dict, list, etc) must be serialized. Args: key (str): The variable to write to the DB. value (bytes|int|string): The data to write to the DB. Returns: (str): Result of DB write. """ data = None if key is not None and value is not None: try: data = self.tcex.key_value_store.create(self._context, key.strip(), value) except RuntimeError as e: self.log.error(e) else: self.log.warning('The key or value field was None.') return data def read_raw(self, key): """Read method of CRUD operation for raw data. ..important:: Bytes input will be returned a as string as there is no way to determine data from redis originated as bytes or string. Args: key (str): The variable to read from the DB. Returns: (str): Results retrieved from DB. """ value = None if key is not None: value = self.tcex.key_value_store.read(self._context, key.strip()) else: self.log.warning('The key field was None.') return value def parse_variable(self, variable): # pragma: no cover """Set placeholder for child method.""" raise NotImplementedError('Implemented in child class') def read(self, key, array=False, embedded=True): # pragma: no cover """Set placeholder for child method.""" raise NotImplementedError('Implemented in child class') def variable_type(self, variable): # pragma: no cover """Set placeholder for child method.""" raise NotImplementedError('Implemented in child class')
[((827, 868), 're.compile', 're.compile', (['f"""^{self._variable_pattern}$"""'], {}), "(f'^{self._variable_pattern}$')\n", (837, 868), False, 'import re\n'), ((955, 989), 're.compile', 're.compile', (['self._variable_pattern'], {}), '(self._variable_pattern)\n', (965, 989), False, 'import re\n'), ((1117, 1177), 're.compile', 're.compile', (['f"""(?:\\\\"\\\\:\\\\s?)[^\\\\"]?{self._variable_pattern}"""'], {}), '(f\'(?:\\\\"\\\\:\\\\s?)[^\\\\"]?{self._variable_pattern}\')\n', (1127, 1177), False, 'import re\n'), ((3241, 3258), 'json.dumps', 'json.dumps', (['value'], {}), '(value)\n', (3251, 3258), False, 'import json\n'), ((5784, 5801), 'json.dumps', 'json.dumps', (['value'], {}), '(value)\n', (5794, 5801), False, 'import json\n'), ((7810, 7858), 'json.loads', 'json.loads', (['value'], {'object_pairs_hook': 'OrderedDict'}), '(value, object_pairs_hook=OrderedDict)\n', (7820, 7858), False, 'import json\n'), ((10979, 11027), 'json.loads', 'json.loads', (['value'], {'object_pairs_hook': 'OrderedDict'}), '(value, object_pairs_hook=OrderedDict)\n', (10989, 11027), False, 'import json\n'), ((17427, 17474), 're.finditer', 're.finditer', (['self._vars_keyvalue_embedded', 'data'], {}), '(self._vars_keyvalue_embedded, data)\n', (17438, 17474), False, 'import re\n'), ((9590, 9613), 'base64.b64decode', 'base64.b64decode', (['value'], {}), '(value)\n', (9606, 9613), False, 'import base64\n'), ((14492, 14505), 'json.dumps', 'json.dumps', (['v'], {}), '(v)\n', (14502, 14505), False, 'import json\n'), ((14682, 14715), 're.sub', 're.sub', (['f""""{variable}\\""""', 'v', 'value'], {}), '(f\'"{variable}"\', v, value)\n', (14688, 14715), False, 'import re\n'), ((15248, 15274), 're.sub', 're.sub', (['variable', 'v', 'value'], {}), '(variable, v, value)\n', (15254, 15274), False, 'import re\n'), ((2400, 2423), 'base64.b64encode', 'base64.b64encode', (['value'], {}), '(value)\n', (2416, 2423), False, 'import base64\n'), ((11153, 11172), 'base64.b64decode', 'base64.b64decode', (['v'], {}), '(v)\n', (11169, 11172), False, 'import base64\n'), ((11605, 11653), 'json.loads', 'json.loads', (['value'], {'object_pairs_hook': 'OrderedDict'}), '(value, object_pairs_hook=OrderedDict)\n', (11615, 11653), False, 'import json\n'), ((17739, 17775), 're.search', 're.search', (['self._variable_parse', 'var'], {}), '(self._variable_parse, var)\n', (17748, 17775), False, 'import re\n'), ((4746, 4765), 'base64.b64encode', 'base64.b64encode', (['v'], {}), '(v)\n', (4762, 4765), False, 'import base64\n')]
puririshi98/benchmark
DeepLearningExamples/TensorFlow/LanguageModeling/BERT/run_classifier.py
79f554f1e1cf36f62994c78e0e6e5b360f554022
# coding=utf-8 # Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved. # Copyright 2018 The Google AI Language Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """BERT finetuning runner.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import csv import os import modeling import optimization import tokenization import tensorflow as tf import horovod.tensorflow as hvd import time from utils.utils import LogEvalRunHook, LogTrainRunHook, setup_xla_flags from utils.gpu_affinity import set_affinity import utils.dllogger_class from dllogger import Verbosity from utils.create_glue_data import * import numpy as np import tf_metrics flags = tf.flags FLAGS = flags.FLAGS ## Required parameters flags.DEFINE_string( "data_dir", None, "The input data dir. Should contain the .tsv files (or other data files) " "for the task.") flags.DEFINE_string( "bert_config_file", None, "The config json file corresponding to the pre-trained BERT model. " "This specifies the model architecture.") flags.DEFINE_string("task_name", None, "The name of the task to train.") flags.DEFINE_string("vocab_file", None, "The vocabulary file that the BERT model was trained on.") flags.DEFINE_string( "output_dir", None, "The output directory where the model checkpoints will be written.") ## Other parameters flags.DEFINE_string( "dllog_path", "/results/bert_dllog.json", "filename where dllogger writes to") flags.DEFINE_string( "optimizer_type", "lamb", "Optimizer type : adam or lamb") flags.DEFINE_string( "init_checkpoint", None, "Initial checkpoint (usually from a pre-trained BERT model).") flags.DEFINE_bool( "do_lower_case", True, "Whether to lower case the input text. Should be True for uncased " "models and False for cased models.") flags.DEFINE_integer( "max_seq_length", 128, "The maximum total input sequence length after WordPiece tokenization. " "Sequences longer than this will be truncated, and sequences shorter " "than this will be padded.") flags.DEFINE_bool("do_train", False, "Whether to run training.") flags.DEFINE_bool("do_eval", False, "Whether to run eval on the dev set.") flags.DEFINE_bool( "do_predict", False, "Whether to run the model in inference mode on the test set.") flags.DEFINE_integer("train_batch_size", 32, "Total batch size for training.") flags.DEFINE_integer("eval_batch_size", 8, "Total batch size for eval.") flags.DEFINE_integer("predict_batch_size", 8, "Total batch size for predict.") flags.DEFINE_float("learning_rate", 5e-5, "The initial learning rate for Adam.") flags.DEFINE_bool("use_trt", False, "Whether to use TF-TRT") flags.DEFINE_float("num_train_epochs", 3.0, "Total number of training epochs to perform.") flags.DEFINE_float( "warmup_proportion", 0.1, "Proportion of training to perform linear learning rate warmup for. " "E.g., 0.1 = 10% of training.") flags.DEFINE_integer("save_checkpoints_steps", 1000, "How often to save the model checkpoint.") flags.DEFINE_integer("display_loss_steps", 10, "How often to print loss from estimator") flags.DEFINE_integer("iterations_per_loop", 1000, "How many steps to make in each estimator call.") flags.DEFINE_integer("num_accumulation_steps", 1, "Number of accumulation steps before gradient update" "Global batch size = num_accumulation_steps * train_batch_size") flags.DEFINE_bool("amp", True, "Whether to enable AMP ops. When false, uses TF32 on A100 and FP32 on V100 GPUS.") flags.DEFINE_bool("use_xla", True, "Whether to enable XLA JIT compilation.") flags.DEFINE_bool("horovod", False, "Whether to use Horovod for multi-gpu runs") flags.DEFINE_bool( "verbose_logging", False, "If true, all of the warnings related to data processing will be printed. " "A number of warnings are expected for a normal SQuAD evaluation.") def file_based_input_fn_builder(input_file, batch_size, seq_length, is_training, drop_remainder, hvd=None): """Creates an `input_fn` closure to be passed to Estimator.""" name_to_features = { "input_ids": tf.io.FixedLenFeature([seq_length], tf.int64), "input_mask": tf.io.FixedLenFeature([seq_length], tf.int64), "segment_ids": tf.io.FixedLenFeature([seq_length], tf.int64), "label_ids": tf.io.FixedLenFeature([], tf.int64), } def _decode_record(record, name_to_features): """Decodes a record to a TensorFlow example.""" example = tf.parse_single_example(record, name_to_features) # tf.Example only supports tf.int64, but the TPU only supports tf.int32. # So cast all int64 to int32. for name in list(example.keys()): t = example[name] if t.dtype == tf.int64: t = tf.to_int32(t) example[name] = t return example def input_fn(): """The actual input function.""" # For training, we want a lot of parallel reading and shuffling. # For eval, we want no shuffling and parallel reading doesn't matter. d = tf.data.TFRecordDataset(input_file) if is_training: if hvd is not None: d = d.shard(hvd.size(), hvd.rank()) d = d.repeat() d = d.shuffle(buffer_size=100) d = d.apply( tf.contrib.data.map_and_batch( lambda record: _decode_record(record, name_to_features), batch_size=batch_size, drop_remainder=drop_remainder)) return d return input_fn def create_model(bert_config, is_training, input_ids, input_mask, segment_ids, labels, num_labels, use_one_hot_embeddings): """Creates a classification model.""" model = modeling.BertModel( config=bert_config, is_training=is_training, input_ids=input_ids, input_mask=input_mask, token_type_ids=segment_ids, use_one_hot_embeddings=use_one_hot_embeddings, compute_type=tf.float32) # In the demo, we are doing a simple classification task on the entire # segment. # # If you want to use the token-level output, use model.get_sequence_output() # instead. output_layer = model.get_pooled_output() hidden_size = output_layer.shape[-1].value output_weights = tf.get_variable( "output_weights", [num_labels, hidden_size], initializer=tf.truncated_normal_initializer(stddev=0.02)) output_bias = tf.get_variable( "output_bias", [num_labels], initializer=tf.zeros_initializer()) with tf.variable_scope("loss"): if is_training: # I.e., 0.1 dropout output_layer = tf.nn.dropout(output_layer, keep_prob=0.9) logits = tf.matmul(output_layer, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias, name='cls_logits') probabilities = tf.nn.softmax(logits, axis=-1, name='cls_probabilities') log_probs = tf.nn.log_softmax(logits, axis=-1) one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32) per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1, name='cls_per_example_loss') loss = tf.reduce_mean(per_example_loss, name='cls_loss') return (loss, per_example_loss, logits, probabilities) def get_frozen_tftrt_model(bert_config, shape, num_labels, use_one_hot_embeddings, init_checkpoint): tf_config = tf.compat.v1.ConfigProto() tf_config.gpu_options.allow_growth = True output_node_names = ['loss/cls_loss', 'loss/cls_per_example_loss', 'loss/cls_logits', 'loss/cls_probabilities'] with tf.Session(config=tf_config) as tf_sess: input_ids = tf.placeholder(tf.int32, shape, 'input_ids') input_mask = tf.placeholder(tf.int32, shape, 'input_mask') segment_ids = tf.placeholder(tf.int32, shape, 'segment_ids') label_ids = tf.placeholder(tf.int32, (None), 'label_ids') create_model(bert_config, False, input_ids, input_mask, segment_ids, label_ids, num_labels, use_one_hot_embeddings) tvars = tf.trainable_variables() (assignment_map, initialized_variable_names) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint) tf.train.init_from_checkpoint(init_checkpoint, assignment_map) tf_sess.run(tf.global_variables_initializer()) print("LOADED!") tf.compat.v1.logging.info("**** Trainable Variables ****") for var in tvars: init_string = "" if var.name in initialized_variable_names: init_string = ", *INIT_FROM_CKPT*" else: init_string = ", *NOTTTTTTTTTTTTTTTTTTTTT" tf.compat.v1.logging.info(" name = %s, shape = %s%s", var.name, var.shape, init_string) frozen_graph = tf.graph_util.convert_variables_to_constants(tf_sess, tf_sess.graph.as_graph_def(), output_node_names) num_nodes = len(frozen_graph.node) print('Converting graph using TensorFlow-TensorRT...') from tensorflow.python.compiler.tensorrt import trt_convert as trt converter = trt.TrtGraphConverter( input_graph_def=frozen_graph, nodes_blacklist=output_node_names, max_workspace_size_bytes=(4096 << 20) - 1000, precision_mode = "FP16" if FLAGS.amp else "FP32", minimum_segment_size=4, is_dynamic_op=True, maximum_cached_engines=1000 ) frozen_graph = converter.convert() print('Total node count before and after TF-TRT conversion:', num_nodes, '->', len(frozen_graph.node)) print('TRT node count:', len([1 for n in frozen_graph.node if str(n.op) == 'TRTEngineOp'])) with tf.io.gfile.GFile("frozen_modelTRT.pb", "wb") as f: f.write(frozen_graph.SerializeToString()) return frozen_graph def model_fn_builder(task_name, bert_config, num_labels, init_checkpoint, learning_rate, num_train_steps, num_warmup_steps, use_one_hot_embeddings, hvd=None): """Returns `model_fn` closure for Estimator.""" def model_fn(features, labels, mode, params): # pylint: disable=unused-argument """The `model_fn` for Estimator.""" def metric_fn(per_example_loss, label_ids, logits): predictions = tf.argmax(logits, axis=-1, output_type=tf.int32) if task_name == "cola": FN, FN_op = tf.metrics.false_negatives(labels=label_ids, predictions=predictions) FP, FP_op = tf.metrics.false_positives(labels=label_ids, predictions=predictions) TP, TP_op = tf.metrics.true_positives(labels=label_ids, predictions=predictions) TN, TN_op = tf.metrics.true_negatives(labels=label_ids, predictions=predictions) MCC = (TP * TN - FP * FN) / ((TP + FP) * (TP + FN) * (TN + FP) * (TN + FN)) ** 0.5 MCC_op = tf.group(FN_op, TN_op, TP_op, FP_op, tf.identity(MCC, name="MCC")) return {"MCC": (MCC, MCC_op)} elif task_name == "mrpc": accuracy = tf.metrics.accuracy( labels=label_ids, predictions=predictions) loss = tf.metrics.mean(values=per_example_loss) f1 = tf_metrics.f1(labels=label_ids, predictions=predictions, num_classes=2, pos_indices=[1]) return { "eval_accuracy": accuracy, "eval_f1": f1, "eval_loss": loss, } else: accuracy = tf.metrics.accuracy( labels=label_ids, predictions=predictions) loss = tf.metrics.mean(values=per_example_loss) return { "eval_accuracy": accuracy, "eval_loss": loss, } tf.compat.v1.logging.info("*** Features ***") tf.compat.v1.logging.info("*** Features ***") for name in sorted(features.keys()): tf.compat.v1.logging.info(" name = %s, shape = %s" % (name, features[name].shape)) input_ids = features["input_ids"] input_mask = features["input_mask"] segment_ids = features["segment_ids"] label_ids = features["label_ids"] is_training = (mode == tf.estimator.ModeKeys.TRAIN) if not is_training and FLAGS.use_trt: trt_graph = get_frozen_tftrt_model(bert_config, input_ids.shape, num_labels, use_one_hot_embeddings, init_checkpoint) (total_loss, per_example_loss, logits, probabilities) = tf.import_graph_def(trt_graph, input_map={'input_ids':input_ids, 'input_mask':input_mask, 'segment_ids':segment_ids, 'label_ids':label_ids}, return_elements=['loss/cls_loss:0', 'loss/cls_per_example_loss:0', 'loss/cls_logits:0', 'loss/cls_probabilities:0'], name='') if mode == tf.estimator.ModeKeys.PREDICT: predictions = {"probabilities": probabilities} output_spec = tf.estimator.EstimatorSpec( mode=mode, predictions=predictions) elif mode == tf.estimator.ModeKeys.EVAL: eval_metric_ops = metric_fn(per_example_loss, label_ids, logits) output_spec = tf.estimator.EstimatorSpec( mode=mode, loss=total_loss, eval_metric_ops=eval_metric_ops) return output_spec (total_loss, per_example_loss, logits, probabilities) = create_model( bert_config, is_training, input_ids, input_mask, segment_ids, label_ids, num_labels, use_one_hot_embeddings) tvars = tf.trainable_variables() initialized_variable_names = {} if init_checkpoint and (hvd is None or hvd.rank() == 0): (assignment_map, initialized_variable_names ) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint) tf.train.init_from_checkpoint(init_checkpoint, assignment_map) if FLAGS.verbose_logging: tf.compat.v1.logging.info("**** Trainable Variables ****") for var in tvars: init_string = "" if var.name in initialized_variable_names: init_string = ", *INIT_FROM_CKPT*" tf.compat.v1.logging.info(" name = %s, shape = %s%s", var.name, var.shape, init_string) output_spec = None if mode == tf.estimator.ModeKeys.TRAIN: train_op = optimization.create_optimizer( total_loss, learning_rate, num_train_steps, num_warmup_steps, hvd, False, FLAGS.amp, FLAGS.num_accumulation_steps, FLAGS.optimizer_type) output_spec = tf.estimator.EstimatorSpec( mode=mode, loss=total_loss, train_op=train_op) elif mode == tf.estimator.ModeKeys.EVAL: dummy_op = tf.no_op() # Need to call mixed precision graph rewrite if fp16 to enable graph rewrite if FLAGS.amp: loss_scaler = tf.train.experimental.FixedLossScale(1) dummy_op = tf.train.experimental.enable_mixed_precision_graph_rewrite( optimization.LAMBOptimizer(learning_rate=0.0), loss_scaler) eval_metric_ops = metric_fn(per_example_loss, label_ids, logits) output_spec = tf.estimator.EstimatorSpec( mode=mode, loss=total_loss, eval_metric_ops=eval_metric_ops) else: dummy_op = tf.no_op() # Need to call mixed precision graph rewrite if fp16 to enable graph rewrite if FLAGS.amp: dummy_op = tf.train.experimental.enable_mixed_precision_graph_rewrite( optimization.LAMBOptimizer(learning_rate=0.0)) output_spec = tf.estimator.EstimatorSpec( mode=mode, predictions=probabilities) return output_spec return model_fn # This function is not used by this file but is still used by the Colab and # people who depend on it. def input_fn_builder(features, batch_size, seq_length, is_training, drop_remainder, hvd=None): """Creates an `input_fn` closure to be passed to Estimator.""" all_input_ids = [] all_input_mask = [] all_segment_ids = [] all_label_ids = [] for feature in features: all_input_ids.append(feature.input_ids) all_input_mask.append(feature.input_mask) all_segment_ids.append(feature.segment_ids) all_label_ids.append(feature.label_id) def input_fn(): """The actual input function.""" num_examples = len(features) # This is for demo purposes and does NOT scale to large data sets. We do # not use Dataset.from_generator() because that uses tf.py_func which is # not TPU compatible. The right way to load data is with TFRecordReader. d = tf.data.Dataset.from_tensor_slices({ "input_ids": tf.constant( all_input_ids, shape=[num_examples, seq_length], dtype=tf.int32), "input_mask": tf.constant( all_input_mask, shape=[num_examples, seq_length], dtype=tf.int32), "segment_ids": tf.constant( all_segment_ids, shape=[num_examples, seq_length], dtype=tf.int32), "label_ids": tf.constant(all_label_ids, shape=[num_examples], dtype=tf.int32), }) if is_training: if hvd is not None: d = d.shard(hvd.size(), hvd.rank()) d = d.repeat() d = d.shuffle(buffer_size=100) d = d.batch(batch_size=batch_size, drop_remainder=drop_remainder) return d return input_fn def main(_): setup_xla_flags() tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO) dllogging = utils.dllogger_class.dllogger_class(FLAGS.dllog_path) if FLAGS.horovod: hvd.init() processors = { "cola": ColaProcessor, "mnli": MnliProcessor, "mrpc": MrpcProcessor, "xnli": XnliProcessor, } if not FLAGS.do_train and not FLAGS.do_eval and not FLAGS.do_predict: raise ValueError( "At least one of `do_train`, `do_eval` or `do_predict' must be True.") bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file) if FLAGS.max_seq_length > bert_config.max_position_embeddings: raise ValueError( "Cannot use sequence length %d because the BERT model " "was only trained up to sequence length %d" % (FLAGS.max_seq_length, bert_config.max_position_embeddings)) tf.io.gfile.makedirs(FLAGS.output_dir) task_name = FLAGS.task_name.lower() if task_name not in processors: raise ValueError("Task not found: %s" % (task_name)) processor = processors[task_name]() label_list = processor.get_labels() tokenizer = tokenization.FullTokenizer( vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) master_process = True training_hooks = [] global_batch_size = FLAGS.train_batch_size * FLAGS.num_accumulation_steps hvd_rank = 0 config = tf.compat.v1.ConfigProto() if FLAGS.horovod: tf.compat.v1.logging.info("Multi-GPU training with TF Horovod") tf.compat.v1.logging.info("hvd.size() = %d hvd.rank() = %d", hvd.size(), hvd.rank()) global_batch_size = FLAGS.train_batch_size * FLAGS.num_accumulation_steps * hvd.size() master_process = (hvd.rank() == 0) hvd_rank = hvd.rank() config.gpu_options.visible_device_list = str(hvd.local_rank()) set_affinity(hvd.local_rank()) if hvd.size() > 1: training_hooks.append(hvd.BroadcastGlobalVariablesHook(0)) if FLAGS.use_xla: config.graph_options.optimizer_options.global_jit_level = tf.compat.v1.OptimizerOptions.ON_1 if FLAGS.amp: tf.enable_resource_variables() run_config = tf.estimator.RunConfig( model_dir=FLAGS.output_dir if master_process else None, session_config=config, save_checkpoints_steps=FLAGS.save_checkpoints_steps if master_process else None, save_summary_steps=FLAGS.save_checkpoints_steps if master_process else None, log_step_count_steps=FLAGS.display_loss_steps, keep_checkpoint_max=1) if master_process: tf.compat.v1.logging.info("***** Configuaration *****") for key in FLAGS.__flags.keys(): tf.compat.v1.logging.info(' {}: {}'.format(key, getattr(FLAGS, key))) tf.compat.v1.logging.info("**************************") train_examples = None num_train_steps = None num_warmup_steps = None training_hooks.append(LogTrainRunHook(global_batch_size, hvd_rank, FLAGS.save_checkpoints_steps, num_steps_ignore_xla=25)) if FLAGS.do_train: train_examples = processor.get_train_examples(FLAGS.data_dir) num_train_steps = int( len(train_examples) / global_batch_size * FLAGS.num_train_epochs) num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion) start_index = 0 end_index = len(train_examples) tmp_filenames = [os.path.join(FLAGS.output_dir, "train.tf_record")] if FLAGS.horovod: tmp_filenames = [os.path.join(FLAGS.output_dir, "train.tf_record{}".format(i)) for i in range(hvd.size())] num_examples_per_rank = len(train_examples) // hvd.size() remainder = len(train_examples) % hvd.size() if hvd.rank() < remainder: start_index = hvd.rank() * (num_examples_per_rank+1) end_index = start_index + num_examples_per_rank + 1 else: start_index = hvd.rank() * num_examples_per_rank + remainder end_index = start_index + (num_examples_per_rank) model_fn = model_fn_builder( task_name=task_name, bert_config=bert_config, num_labels=len(label_list), init_checkpoint=FLAGS.init_checkpoint, learning_rate=FLAGS.learning_rate if not FLAGS.horovod else FLAGS.learning_rate * hvd.size(), num_train_steps=num_train_steps, num_warmup_steps=num_warmup_steps, use_one_hot_embeddings=False, hvd=None if not FLAGS.horovod else hvd) estimator = tf.estimator.Estimator( model_fn=model_fn, config=run_config) if FLAGS.do_train: file_based_convert_examples_to_features( train_examples[start_index:end_index], label_list, FLAGS.max_seq_length, tokenizer, tmp_filenames[hvd_rank]) tf.compat.v1.logging.info("***** Running training *****") tf.compat.v1.logging.info(" Num examples = %d", len(train_examples)) tf.compat.v1.logging.info(" Batch size = %d", FLAGS.train_batch_size) tf.compat.v1.logging.info(" Num steps = %d", num_train_steps) train_input_fn = file_based_input_fn_builder( input_file=tmp_filenames, batch_size=FLAGS.train_batch_size, seq_length=FLAGS.max_seq_length, is_training=True, drop_remainder=True, hvd=None if not FLAGS.horovod else hvd) train_start_time = time.time() estimator.train(input_fn=train_input_fn, max_steps=num_train_steps, hooks=training_hooks) train_time_elapsed = time.time() - train_start_time train_time_wo_overhead = training_hooks[-1].total_time avg_sentences_per_second = num_train_steps * global_batch_size * 1.0 / train_time_elapsed ss_sentences_per_second = (training_hooks[-1].count - training_hooks[-1].skipped) * global_batch_size * 1.0 / train_time_wo_overhead if master_process: tf.compat.v1.logging.info("-----------------------------") tf.compat.v1.logging.info("Total Training Time = %0.2f for Sentences = %d", train_time_elapsed, num_train_steps * global_batch_size) tf.compat.v1.logging.info("Total Training Time W/O Overhead = %0.2f for Sentences = %d", train_time_wo_overhead, (training_hooks[-1].count - training_hooks[-1].skipped) * global_batch_size) tf.compat.v1.logging.info("Throughput Average (sentences/sec) with overhead = %0.2f", avg_sentences_per_second) tf.compat.v1.logging.info("Throughput Average (sentences/sec) = %0.2f", ss_sentences_per_second) tf.compat.v1.logging.info("-----------------------------") if FLAGS.do_eval and master_process: eval_examples = processor.get_dev_examples(FLAGS.data_dir) eval_file = os.path.join(FLAGS.output_dir, "eval.tf_record") file_based_convert_examples_to_features( eval_examples, label_list, FLAGS.max_seq_length, tokenizer, eval_file) tf.compat.v1.logging.info("***** Running evaluation *****") tf.compat.v1.logging.info(" Num examples = %d", len(eval_examples)) tf.compat.v1.logging.info(" Batch size = %d", FLAGS.eval_batch_size) eval_drop_remainder = False eval_input_fn = file_based_input_fn_builder( input_file=eval_file, batch_size=FLAGS.eval_batch_size, seq_length=FLAGS.max_seq_length, is_training=False, drop_remainder=eval_drop_remainder) eval_hooks = [LogEvalRunHook(FLAGS.eval_batch_size)] eval_start_time = time.time() result = estimator.evaluate(input_fn=eval_input_fn, hooks=eval_hooks) eval_time_elapsed = time.time() - eval_start_time time_list = eval_hooks[-1].time_list time_list.sort() # Removing outliers (init/warmup) in throughput computation. eval_time_wo_overhead = sum(time_list[:int(len(time_list) * 0.8)]) num_sentences = (int(len(time_list) * 0.8)) * FLAGS.eval_batch_size avg = np.mean(time_list) cf_50 = max(time_list[:int(len(time_list) * 0.50)]) cf_90 = max(time_list[:int(len(time_list) * 0.90)]) cf_95 = max(time_list[:int(len(time_list) * 0.95)]) cf_99 = max(time_list[:int(len(time_list) * 0.99)]) cf_100 = max(time_list[:int(len(time_list) * 1)]) ss_sentences_per_second = num_sentences * 1.0 / eval_time_wo_overhead tf.compat.v1.logging.info("-----------------------------") tf.compat.v1.logging.info("Total Inference Time = %0.2f for Sentences = %d", eval_time_elapsed, eval_hooks[-1].count * FLAGS.eval_batch_size) tf.compat.v1.logging.info("Total Inference Time W/O Overhead = %0.2f for Sentences = %d", eval_time_wo_overhead, num_sentences) tf.compat.v1.logging.info("Summary Inference Statistics on EVAL set") tf.compat.v1.logging.info("Batch size = %d", FLAGS.eval_batch_size) tf.compat.v1.logging.info("Sequence Length = %d", FLAGS.max_seq_length) tf.compat.v1.logging.info("Precision = %s", "fp16" if FLAGS.amp else "fp32") tf.compat.v1.logging.info("Latency Confidence Level 50 (ms) = %0.2f", cf_50 * 1000) tf.compat.v1.logging.info("Latency Confidence Level 90 (ms) = %0.2f", cf_90 * 1000) tf.compat.v1.logging.info("Latency Confidence Level 95 (ms) = %0.2f", cf_95 * 1000) tf.compat.v1.logging.info("Latency Confidence Level 99 (ms) = %0.2f", cf_99 * 1000) tf.compat.v1.logging.info("Latency Confidence Level 100 (ms) = %0.2f", cf_100 * 1000) tf.compat.v1.logging.info("Latency Average (ms) = %0.2f", avg * 1000) tf.compat.v1.logging.info("Throughput Average (sentences/sec) = %0.2f", ss_sentences_per_second) dllogging.logger.log(step=(), data={"throughput_val": ss_sentences_per_second}, verbosity=Verbosity.DEFAULT) tf.compat.v1.logging.info("-----------------------------") output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt") with tf.io.gfile.GFile(output_eval_file, "w") as writer: tf.compat.v1.logging.info("***** Eval results *****") for key in sorted(result.keys()): dllogging.logger.log(step=(), data={key: float(result[key])}, verbosity=Verbosity.DEFAULT) tf.compat.v1.logging.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) if FLAGS.do_predict and master_process: predict_examples = processor.get_test_examples(FLAGS.data_dir) predict_file = os.path.join(FLAGS.output_dir, "predict.tf_record") file_based_convert_examples_to_features(predict_examples, label_list, FLAGS.max_seq_length, tokenizer, predict_file) tf.compat.v1.logging.info("***** Running prediction*****") tf.compat.v1.logging.info(" Num examples = %d", len(predict_examples)) tf.compat.v1.logging.info(" Batch size = %d", FLAGS.predict_batch_size) predict_drop_remainder = False predict_input_fn = file_based_input_fn_builder( input_file=predict_file, batch_size=FLAGS.predict_batch_size, seq_length=FLAGS.max_seq_length, is_training=False, drop_remainder=predict_drop_remainder) predict_hooks = [LogEvalRunHook(FLAGS.predict_batch_size)] predict_start_time = time.time() output_predict_file = os.path.join(FLAGS.output_dir, "test_results.tsv") with tf.io.gfile.GFile(output_predict_file, "w") as writer: tf.compat.v1.logging.info("***** Predict results *****") for prediction in estimator.predict(input_fn=predict_input_fn, hooks=predict_hooks, yield_single_examples=False): output_line = "\t".join( str(class_probability) for class_probability in prediction) + "\n" writer.write(output_line) predict_time_elapsed = time.time() - predict_start_time time_list = predict_hooks[-1].time_list time_list.sort() # Removing outliers (init/warmup) in throughput computation. predict_time_wo_overhead = sum(time_list[:int(len(time_list) * 0.8)]) num_sentences = (int(len(time_list) * 0.8)) * FLAGS.predict_batch_size avg = np.mean(time_list) cf_50 = max(time_list[:int(len(time_list) * 0.50)]) cf_90 = max(time_list[:int(len(time_list) * 0.90)]) cf_95 = max(time_list[:int(len(time_list) * 0.95)]) cf_99 = max(time_list[:int(len(time_list) * 0.99)]) cf_100 = max(time_list[:int(len(time_list) * 1)]) ss_sentences_per_second = num_sentences * 1.0 / predict_time_wo_overhead tf.compat.v1.logging.info("-----------------------------") tf.compat.v1.logging.info("Total Inference Time = %0.2f for Sentences = %d", predict_time_elapsed, predict_hooks[-1].count * FLAGS.predict_batch_size) tf.compat.v1.logging.info("Total Inference Time W/O Overhead = %0.2f for Sentences = %d", predict_time_wo_overhead, num_sentences) tf.compat.v1.logging.info("Summary Inference Statistics on TEST SET") tf.compat.v1.logging.info("Batch size = %d", FLAGS.predict_batch_size) tf.compat.v1.logging.info("Sequence Length = %d", FLAGS.max_seq_length) tf.compat.v1.logging.info("Precision = %s", "fp16" if FLAGS.amp else "fp32") tf.compat.v1.logging.info("Latency Confidence Level 50 (ms) = %0.2f", cf_50 * 1000) tf.compat.v1.logging.info("Latency Confidence Level 90 (ms) = %0.2f", cf_90 * 1000) tf.compat.v1.logging.info("Latency Confidence Level 95 (ms) = %0.2f", cf_95 * 1000) tf.compat.v1.logging.info("Latency Confidence Level 99 (ms) = %0.2f", cf_99 * 1000) tf.compat.v1.logging.info("Latency Confidence Level 100 (ms) = %0.2f", cf_100 * 1000) tf.compat.v1.logging.info("Latency Average (ms) = %0.2f", avg * 1000) tf.compat.v1.logging.info("Throughput Average (sentences/sec) = %0.2f", ss_sentences_per_second) dllogging.logger.log(step=(), data={"throughput_val": ss_sentences_per_second}, verbosity=Verbosity.DEFAULT) tf.compat.v1.logging.info("-----------------------------") if __name__ == "__main__": flags.mark_flag_as_required("data_dir") flags.mark_flag_as_required("task_name") flags.mark_flag_as_required("vocab_file") flags.mark_flag_as_required("bert_config_file") flags.mark_flag_as_required("output_dir") tf.compat.v1.app.run()
[((6344, 6560), 'modeling.BertModel', 'modeling.BertModel', ([], {'config': 'bert_config', 'is_training': 'is_training', 'input_ids': 'input_ids', 'input_mask': 'input_mask', 'token_type_ids': 'segment_ids', 'use_one_hot_embeddings': 'use_one_hot_embeddings', 'compute_type': 'tf.float32'}), '(config=bert_config, is_training=is_training, input_ids=\n input_ids, input_mask=input_mask, token_type_ids=segment_ids,\n use_one_hot_embeddings=use_one_hot_embeddings, compute_type=tf.float32)\n', (6362, 6560), False, 'import modeling\n'), ((7956, 7982), 'tensorflow.compat.v1.ConfigProto', 'tf.compat.v1.ConfigProto', ([], {}), '()\n', (7980, 7982), True, 'import tensorflow as tf\n'), ((17775, 17792), 'utils.utils.setup_xla_flags', 'setup_xla_flags', ([], {}), '()\n', (17790, 17792), False, 'from utils.utils import LogEvalRunHook, LogTrainRunHook, setup_xla_flags\n'), ((17796, 17857), 'tensorflow.compat.v1.logging.set_verbosity', 'tf.compat.v1.logging.set_verbosity', (['tf.compat.v1.logging.INFO'], {}), '(tf.compat.v1.logging.INFO)\n', (17830, 17857), True, 'import tensorflow as tf\n'), ((18291, 18349), 'modeling.BertConfig.from_json_file', 'modeling.BertConfig.from_json_file', (['FLAGS.bert_config_file'], {}), '(FLAGS.bert_config_file)\n', (18325, 18349), False, 'import modeling\n'), ((18628, 18666), 'tensorflow.io.gfile.makedirs', 'tf.io.gfile.makedirs', (['FLAGS.output_dir'], {}), '(FLAGS.output_dir)\n', (18648, 18666), True, 'import tensorflow as tf\n'), ((18891, 18986), 'tokenization.FullTokenizer', 'tokenization.FullTokenizer', ([], {'vocab_file': 'FLAGS.vocab_file', 'do_lower_case': 'FLAGS.do_lower_case'}), '(vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS\n .do_lower_case)\n', (18917, 18986), False, 'import tokenization\n'), ((19139, 19165), 'tensorflow.compat.v1.ConfigProto', 'tf.compat.v1.ConfigProto', ([], {}), '()\n', (19163, 19165), True, 'import tensorflow as tf\n'), ((19898, 20245), 'tensorflow.estimator.RunConfig', 'tf.estimator.RunConfig', ([], {'model_dir': '(FLAGS.output_dir if master_process else None)', 'session_config': 'config', 'save_checkpoints_steps': '(FLAGS.save_checkpoints_steps if master_process else None)', 'save_summary_steps': '(FLAGS.save_checkpoints_steps if master_process else None)', 'log_step_count_steps': 'FLAGS.display_loss_steps', 'keep_checkpoint_max': '(1)'}), '(model_dir=FLAGS.output_dir if master_process else\n None, session_config=config, save_checkpoints_steps=FLAGS.\n save_checkpoints_steps if master_process else None, save_summary_steps=\n FLAGS.save_checkpoints_steps if master_process else None,\n log_step_count_steps=FLAGS.display_loss_steps, keep_checkpoint_max=1)\n', (19920, 20245), True, 'import tensorflow as tf\n'), ((22110, 22170), 'tensorflow.estimator.Estimator', 'tf.estimator.Estimator', ([], {'model_fn': 'model_fn', 'config': 'run_config'}), '(model_fn=model_fn, config=run_config)\n', (22132, 22170), True, 'import tensorflow as tf\n'), ((31757, 31779), 'tensorflow.compat.v1.app.run', 'tf.compat.v1.app.run', ([], {}), '()\n', (31777, 31779), True, 'import tensorflow as tf\n'), ((4847, 4892), 'tensorflow.io.FixedLenFeature', 'tf.io.FixedLenFeature', (['[seq_length]', 'tf.int64'], {}), '([seq_length], tf.int64)\n', (4868, 4892), True, 'import tensorflow as tf\n'), ((4914, 4959), 'tensorflow.io.FixedLenFeature', 'tf.io.FixedLenFeature', (['[seq_length]', 'tf.int64'], {}), '([seq_length], tf.int64)\n', (4935, 4959), True, 'import tensorflow as tf\n'), ((4982, 5027), 'tensorflow.io.FixedLenFeature', 'tf.io.FixedLenFeature', (['[seq_length]', 'tf.int64'], {}), '([seq_length], tf.int64)\n', (5003, 5027), True, 'import tensorflow as tf\n'), ((5048, 5083), 'tensorflow.io.FixedLenFeature', 'tf.io.FixedLenFeature', (['[]', 'tf.int64'], {}), '([], tf.int64)\n', (5069, 5083), True, 'import tensorflow as tf\n'), ((5204, 5253), 'tensorflow.parse_single_example', 'tf.parse_single_example', (['record', 'name_to_features'], {}), '(record, name_to_features)\n', (5227, 5253), True, 'import tensorflow as tf\n'), ((5737, 5772), 'tensorflow.data.TFRecordDataset', 'tf.data.TFRecordDataset', (['input_file'], {}), '(input_file)\n', (5760, 5772), True, 'import tensorflow as tf\n'), ((7132, 7157), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""loss"""'], {}), "('loss')\n", (7149, 7157), True, 'import tensorflow as tf\n'), ((7283, 7340), 'tensorflow.matmul', 'tf.matmul', (['output_layer', 'output_weights'], {'transpose_b': '(True)'}), '(output_layer, output_weights, transpose_b=True)\n', (7292, 7340), True, 'import tensorflow as tf\n'), ((7354, 7408), 'tensorflow.nn.bias_add', 'tf.nn.bias_add', (['logits', 'output_bias'], {'name': '"""cls_logits"""'}), "(logits, output_bias, name='cls_logits')\n", (7368, 7408), True, 'import tensorflow as tf\n'), ((7429, 7485), 'tensorflow.nn.softmax', 'tf.nn.softmax', (['logits'], {'axis': '(-1)', 'name': '"""cls_probabilities"""'}), "(logits, axis=-1, name='cls_probabilities')\n", (7442, 7485), True, 'import tensorflow as tf\n'), ((7502, 7536), 'tensorflow.nn.log_softmax', 'tf.nn.log_softmax', (['logits'], {'axis': '(-1)'}), '(logits, axis=-1)\n', (7519, 7536), True, 'import tensorflow as tf\n'), ((7559, 7613), 'tensorflow.one_hot', 'tf.one_hot', (['labels'], {'depth': 'num_labels', 'dtype': 'tf.float32'}), '(labels, depth=num_labels, dtype=tf.float32)\n', (7569, 7613), True, 'import tensorflow as tf\n'), ((7730, 7779), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['per_example_loss'], {'name': '"""cls_loss"""'}), "(per_example_loss, name='cls_loss')\n", (7744, 7779), True, 'import tensorflow as tf\n'), ((8149, 8177), 'tensorflow.Session', 'tf.Session', ([], {'config': 'tf_config'}), '(config=tf_config)\n', (8159, 8177), True, 'import tensorflow as tf\n'), ((8206, 8250), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int32', 'shape', '"""input_ids"""'], {}), "(tf.int32, shape, 'input_ids')\n", (8220, 8250), True, 'import tensorflow as tf\n'), ((8268, 8313), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int32', 'shape', '"""input_mask"""'], {}), "(tf.int32, shape, 'input_mask')\n", (8282, 8313), True, 'import tensorflow as tf\n'), ((8332, 8378), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int32', 'shape', '"""segment_ids"""'], {}), "(tf.int32, shape, 'segment_ids')\n", (8346, 8378), True, 'import tensorflow as tf\n'), ((8395, 8438), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int32', 'None', '"""label_ids"""'], {}), "(tf.int32, None, 'label_ids')\n", (8409, 8438), True, 'import tensorflow as tf\n'), ((8587, 8611), 'tensorflow.trainable_variables', 'tf.trainable_variables', ([], {}), '()\n', (8609, 8611), True, 'import tensorflow as tf\n'), ((8663, 8730), 'modeling.get_assignment_map_from_checkpoint', 'modeling.get_assignment_map_from_checkpoint', (['tvars', 'init_checkpoint'], {}), '(tvars, init_checkpoint)\n', (8706, 8730), False, 'import modeling\n'), ((8735, 8797), 'tensorflow.train.init_from_checkpoint', 'tf.train.init_from_checkpoint', (['init_checkpoint', 'assignment_map'], {}), '(init_checkpoint, assignment_map)\n', (8764, 8797), True, 'import tensorflow as tf\n'), ((8874, 8932), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['"""**** Trainable Variables ****"""'], {}), "('**** Trainable Variables ****')\n", (8899, 8932), True, 'import tensorflow as tf\n'), ((9552, 9818), 'tensorflow.python.compiler.tensorrt.trt_convert.TrtGraphConverter', 'trt.TrtGraphConverter', ([], {'input_graph_def': 'frozen_graph', 'nodes_blacklist': 'output_node_names', 'max_workspace_size_bytes': '((4096 << 20) - 1000)', 'precision_mode': "('FP16' if FLAGS.amp else 'FP32')", 'minimum_segment_size': '(4)', 'is_dynamic_op': '(True)', 'maximum_cached_engines': '(1000)'}), "(input_graph_def=frozen_graph, nodes_blacklist=\n output_node_names, max_workspace_size_bytes=(4096 << 20) - 1000,\n precision_mode='FP16' if FLAGS.amp else 'FP32', minimum_segment_size=4,\n is_dynamic_op=True, maximum_cached_engines=1000)\n", (9573, 9818), True, 'from tensorflow.python.compiler.tensorrt import trt_convert as trt\n'), ((12163, 12208), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['"""*** Features ***"""'], {}), "('*** Features ***')\n", (12188, 12208), True, 'import tensorflow as tf\n'), ((12213, 12258), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['"""*** Features ***"""'], {}), "('*** Features ***')\n", (12238, 12258), True, 'import tensorflow as tf\n'), ((13898, 13922), 'tensorflow.trainable_variables', 'tf.trainable_variables', ([], {}), '()\n', (13920, 13922), True, 'import tensorflow as tf\n'), ((17951, 17961), 'horovod.tensorflow.init', 'hvd.init', ([], {}), '()\n', (17959, 17961), True, 'import horovod.tensorflow as hvd\n'), ((19193, 19256), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['"""Multi-GPU training with TF Horovod"""'], {}), "('Multi-GPU training with TF Horovod')\n", (19218, 19256), True, 'import tensorflow as tf\n'), ((19499, 19509), 'horovod.tensorflow.rank', 'hvd.rank', ([], {}), '()\n', (19507, 19509), True, 'import horovod.tensorflow as hvd\n'), ((20293, 20348), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['"""***** Configuaration *****"""'], {}), "('***** Configuaration *****')\n", (20318, 20348), True, 'import tensorflow as tf\n'), ((20475, 20530), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['"""**************************"""'], {}), "('**************************')\n", (20500, 20530), True, 'import tensorflow as tf\n'), ((20631, 20734), 'utils.utils.LogTrainRunHook', 'LogTrainRunHook', (['global_batch_size', 'hvd_rank', 'FLAGS.save_checkpoints_steps'], {'num_steps_ignore_xla': '(25)'}), '(global_batch_size, hvd_rank, FLAGS.save_checkpoints_steps,\n num_steps_ignore_xla=25)\n', (20646, 20734), False, 'from utils.utils import LogEvalRunHook, LogTrainRunHook, setup_xla_flags\n'), ((22374, 22431), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['"""***** Running training *****"""'], {}), "('***** Running training *****')\n", (22399, 22431), True, 'import tensorflow as tf\n'), ((22510, 22580), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['""" Batch size = %d"""', 'FLAGS.train_batch_size'], {}), "(' Batch size = %d', FLAGS.train_batch_size)\n", (22535, 22580), True, 'import tensorflow as tf\n'), ((22585, 22647), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['""" Num steps = %d"""', 'num_train_steps'], {}), "(' Num steps = %d', num_train_steps)\n", (22610, 22647), True, 'import tensorflow as tf\n'), ((22943, 22954), 'time.time', 'time.time', ([], {}), '()\n', (22952, 22954), False, 'import time\n'), ((24284, 24332), 'os.path.join', 'os.path.join', (['FLAGS.output_dir', '"""eval.tf_record"""'], {}), "(FLAGS.output_dir, 'eval.tf_record')\n", (24296, 24332), False, 'import os\n'), ((24462, 24521), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['"""***** Running evaluation *****"""'], {}), "('***** Running evaluation *****')\n", (24487, 24521), True, 'import tensorflow as tf\n'), ((24599, 24668), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['""" Batch size = %d"""', 'FLAGS.eval_batch_size'], {}), "(' Batch size = %d', FLAGS.eval_batch_size)\n", (24624, 24668), True, 'import tensorflow as tf\n'), ((25015, 25026), 'time.time', 'time.time', ([], {}), '()\n', (25024, 25026), False, 'import time\n'), ((25438, 25456), 'numpy.mean', 'np.mean', (['time_list'], {}), '(time_list)\n', (25445, 25456), True, 'import numpy as np\n'), ((25814, 25872), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['"""-----------------------------"""'], {}), "('-----------------------------')\n", (25839, 25872), True, 'import tensorflow as tf\n'), ((25877, 26022), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['"""Total Inference Time = %0.2f for Sentences = %d"""', 'eval_time_elapsed', '(eval_hooks[-1].count * FLAGS.eval_batch_size)'], {}), "('Total Inference Time = %0.2f for Sentences = %d',\n eval_time_elapsed, eval_hooks[-1].count * FLAGS.eval_batch_size)\n", (25902, 26022), True, 'import tensorflow as tf\n'), ((26043, 26179), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['"""Total Inference Time W/O Overhead = %0.2f for Sentences = %d"""', 'eval_time_wo_overhead', 'num_sentences'], {}), "(\n 'Total Inference Time W/O Overhead = %0.2f for Sentences = %d',\n eval_time_wo_overhead, num_sentences)\n", (26068, 26179), True, 'import tensorflow as tf\n'), ((26195, 26264), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['"""Summary Inference Statistics on EVAL set"""'], {}), "('Summary Inference Statistics on EVAL set')\n", (26220, 26264), True, 'import tensorflow as tf\n'), ((26269, 26336), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['"""Batch size = %d"""', 'FLAGS.eval_batch_size'], {}), "('Batch size = %d', FLAGS.eval_batch_size)\n", (26294, 26336), True, 'import tensorflow as tf\n'), ((26341, 26412), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['"""Sequence Length = %d"""', 'FLAGS.max_seq_length'], {}), "('Sequence Length = %d', FLAGS.max_seq_length)\n", (26366, 26412), True, 'import tensorflow as tf\n'), ((26417, 26493), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['"""Precision = %s"""', "('fp16' if FLAGS.amp else 'fp32')"], {}), "('Precision = %s', 'fp16' if FLAGS.amp else 'fp32')\n", (26442, 26493), True, 'import tensorflow as tf\n'), ((26498, 26585), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['"""Latency Confidence Level 50 (ms) = %0.2f"""', '(cf_50 * 1000)'], {}), "('Latency Confidence Level 50 (ms) = %0.2f', cf_50 *\n 1000)\n", (26523, 26585), True, 'import tensorflow as tf\n'), ((26586, 26673), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['"""Latency Confidence Level 90 (ms) = %0.2f"""', '(cf_90 * 1000)'], {}), "('Latency Confidence Level 90 (ms) = %0.2f', cf_90 *\n 1000)\n", (26611, 26673), True, 'import tensorflow as tf\n'), ((26674, 26761), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['"""Latency Confidence Level 95 (ms) = %0.2f"""', '(cf_95 * 1000)'], {}), "('Latency Confidence Level 95 (ms) = %0.2f', cf_95 *\n 1000)\n", (26699, 26761), True, 'import tensorflow as tf\n'), ((26762, 26849), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['"""Latency Confidence Level 99 (ms) = %0.2f"""', '(cf_99 * 1000)'], {}), "('Latency Confidence Level 99 (ms) = %0.2f', cf_99 *\n 1000)\n", (26787, 26849), True, 'import tensorflow as tf\n'), ((26850, 26940), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['"""Latency Confidence Level 100 (ms) = %0.2f"""', '(cf_100 * 1000)'], {}), "('Latency Confidence Level 100 (ms) = %0.2f', \n cf_100 * 1000)\n", (26875, 26940), True, 'import tensorflow as tf\n'), ((26940, 27009), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['"""Latency Average (ms) = %0.2f"""', '(avg * 1000)'], {}), "('Latency Average (ms) = %0.2f', avg * 1000)\n", (26965, 27009), True, 'import tensorflow as tf\n'), ((27014, 27114), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['"""Throughput Average (sentences/sec) = %0.2f"""', 'ss_sentences_per_second'], {}), "('Throughput Average (sentences/sec) = %0.2f',\n ss_sentences_per_second)\n", (27039, 27114), True, 'import tensorflow as tf\n'), ((27228, 27286), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['"""-----------------------------"""'], {}), "('-----------------------------')\n", (27253, 27286), True, 'import tensorflow as tf\n'), ((27312, 27362), 'os.path.join', 'os.path.join', (['FLAGS.output_dir', '"""eval_results.txt"""'], {}), "(FLAGS.output_dir, 'eval_results.txt')\n", (27324, 27362), False, 'import os\n'), ((27882, 27933), 'os.path.join', 'os.path.join', (['FLAGS.output_dir', '"""predict.tf_record"""'], {}), "(FLAGS.output_dir, 'predict.tf_record')\n", (27894, 27933), False, 'import os\n'), ((28148, 28206), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['"""***** Running prediction*****"""'], {}), "('***** Running prediction*****')\n", (28173, 28206), True, 'import tensorflow as tf\n'), ((28287, 28359), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['""" Batch size = %d"""', 'FLAGS.predict_batch_size'], {}), "(' Batch size = %d', FLAGS.predict_batch_size)\n", (28312, 28359), True, 'import tensorflow as tf\n'), ((28730, 28741), 'time.time', 'time.time', ([], {}), '()\n', (28739, 28741), False, 'import time\n'), ((28769, 28819), 'os.path.join', 'os.path.join', (['FLAGS.output_dir', '"""test_results.tsv"""'], {}), "(FLAGS.output_dir, 'test_results.tsv')\n", (28781, 28819), False, 'import os\n'), ((29626, 29644), 'numpy.mean', 'np.mean', (['time_list'], {}), '(time_list)\n', (29633, 29644), True, 'import numpy as np\n'), ((30005, 30063), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['"""-----------------------------"""'], {}), "('-----------------------------')\n", (30030, 30063), True, 'import tensorflow as tf\n'), ((30068, 30222), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['"""Total Inference Time = %0.2f for Sentences = %d"""', 'predict_time_elapsed', '(predict_hooks[-1].count * FLAGS.predict_batch_size)'], {}), "('Total Inference Time = %0.2f for Sentences = %d',\n predict_time_elapsed, predict_hooks[-1].count * FLAGS.predict_batch_size)\n", (30093, 30222), True, 'import tensorflow as tf\n'), ((30243, 30382), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['"""Total Inference Time W/O Overhead = %0.2f for Sentences = %d"""', 'predict_time_wo_overhead', 'num_sentences'], {}), "(\n 'Total Inference Time W/O Overhead = %0.2f for Sentences = %d',\n predict_time_wo_overhead, num_sentences)\n", (30268, 30382), True, 'import tensorflow as tf\n'), ((30408, 30477), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['"""Summary Inference Statistics on TEST SET"""'], {}), "('Summary Inference Statistics on TEST SET')\n", (30433, 30477), True, 'import tensorflow as tf\n'), ((30482, 30552), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['"""Batch size = %d"""', 'FLAGS.predict_batch_size'], {}), "('Batch size = %d', FLAGS.predict_batch_size)\n", (30507, 30552), True, 'import tensorflow as tf\n'), ((30557, 30628), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['"""Sequence Length = %d"""', 'FLAGS.max_seq_length'], {}), "('Sequence Length = %d', FLAGS.max_seq_length)\n", (30582, 30628), True, 'import tensorflow as tf\n'), ((30633, 30709), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['"""Precision = %s"""', "('fp16' if FLAGS.amp else 'fp32')"], {}), "('Precision = %s', 'fp16' if FLAGS.amp else 'fp32')\n", (30658, 30709), True, 'import tensorflow as tf\n'), ((30714, 30801), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['"""Latency Confidence Level 50 (ms) = %0.2f"""', '(cf_50 * 1000)'], {}), "('Latency Confidence Level 50 (ms) = %0.2f', cf_50 *\n 1000)\n", (30739, 30801), True, 'import tensorflow as tf\n'), ((30802, 30889), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['"""Latency Confidence Level 90 (ms) = %0.2f"""', '(cf_90 * 1000)'], {}), "('Latency Confidence Level 90 (ms) = %0.2f', cf_90 *\n 1000)\n", (30827, 30889), True, 'import tensorflow as tf\n'), ((30890, 30977), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['"""Latency Confidence Level 95 (ms) = %0.2f"""', '(cf_95 * 1000)'], {}), "('Latency Confidence Level 95 (ms) = %0.2f', cf_95 *\n 1000)\n", (30915, 30977), True, 'import tensorflow as tf\n'), ((30978, 31065), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['"""Latency Confidence Level 99 (ms) = %0.2f"""', '(cf_99 * 1000)'], {}), "('Latency Confidence Level 99 (ms) = %0.2f', cf_99 *\n 1000)\n", (31003, 31065), True, 'import tensorflow as tf\n'), ((31066, 31156), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['"""Latency Confidence Level 100 (ms) = %0.2f"""', '(cf_100 * 1000)'], {}), "('Latency Confidence Level 100 (ms) = %0.2f', \n cf_100 * 1000)\n", (31091, 31156), True, 'import tensorflow as tf\n'), ((31156, 31225), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['"""Latency Average (ms) = %0.2f"""', '(avg * 1000)'], {}), "('Latency Average (ms) = %0.2f', avg * 1000)\n", (31181, 31225), True, 'import tensorflow as tf\n'), ((31230, 31330), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['"""Throughput Average (sentences/sec) = %0.2f"""', 'ss_sentences_per_second'], {}), "('Throughput Average (sentences/sec) = %0.2f',\n ss_sentences_per_second)\n", (31255, 31330), True, 'import tensorflow as tf\n'), ((31444, 31502), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['"""-----------------------------"""'], {}), "('-----------------------------')\n", (31469, 31502), True, 'import tensorflow as tf\n'), ((6973, 7017), 'tensorflow.truncated_normal_initializer', 'tf.truncated_normal_initializer', ([], {'stddev': '(0.02)'}), '(stddev=0.02)\n', (7004, 7017), True, 'import tensorflow as tf\n'), ((7100, 7122), 'tensorflow.zeros_initializer', 'tf.zeros_initializer', ([], {}), '()\n', (7120, 7122), True, 'import tensorflow as tf\n'), ((7226, 7268), 'tensorflow.nn.dropout', 'tf.nn.dropout', (['output_layer'], {'keep_prob': '(0.9)'}), '(output_layer, keep_prob=0.9)\n', (7239, 7268), True, 'import tensorflow as tf\n'), ((7639, 7718), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(one_hot_labels * log_probs)'], {'axis': '(-1)', 'name': '"""cls_per_example_loss"""'}), "(one_hot_labels * log_probs, axis=-1, name='cls_per_example_loss')\n", (7652, 7718), True, 'import tensorflow as tf\n'), ((8814, 8847), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (8845, 8847), True, 'import tensorflow as tf\n'), ((10147, 10192), 'tensorflow.io.gfile.GFile', 'tf.io.gfile.GFile', (['"""frozen_modelTRT.pb"""', '"""wb"""'], {}), "('frozen_modelTRT.pb', 'wb')\n", (10164, 10192), True, 'import tensorflow as tf\n'), ((10741, 10789), 'tensorflow.argmax', 'tf.argmax', (['logits'], {'axis': '(-1)', 'output_type': 'tf.int32'}), '(logits, axis=-1, output_type=tf.int32)\n', (10750, 10789), True, 'import tensorflow as tf\n'), ((12306, 12394), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (["(' name = %s, shape = %s' % (name, features[name].shape))"], {}), "(' name = %s, shape = %s' % (name, features[name]\n .shape))\n", (12331, 12394), True, 'import tensorflow as tf\n'), ((12840, 13126), 'tensorflow.import_graph_def', 'tf.import_graph_def', (['trt_graph'], {'input_map': "{'input_ids': input_ids, 'input_mask': input_mask, 'segment_ids':\n segment_ids, 'label_ids': label_ids}", 'return_elements': "['loss/cls_loss:0', 'loss/cls_per_example_loss:0', 'loss/cls_logits:0',\n 'loss/cls_probabilities:0']", 'name': '""""""'}), "(trt_graph, input_map={'input_ids': input_ids,\n 'input_mask': input_mask, 'segment_ids': segment_ids, 'label_ids':\n label_ids}, return_elements=['loss/cls_loss:0',\n 'loss/cls_per_example_loss:0', 'loss/cls_logits:0',\n 'loss/cls_probabilities:0'], name='')\n", (12859, 13126), True, 'import tensorflow as tf\n'), ((14080, 14147), 'modeling.get_assignment_map_from_checkpoint', 'modeling.get_assignment_map_from_checkpoint', (['tvars', 'init_checkpoint'], {}), '(tvars, init_checkpoint)\n', (14123, 14147), False, 'import modeling\n'), ((14154, 14216), 'tensorflow.train.init_from_checkpoint', 'tf.train.init_from_checkpoint', (['init_checkpoint', 'assignment_map'], {}), '(init_checkpoint, assignment_map)\n', (14183, 14216), True, 'import tensorflow as tf\n'), ((14256, 14314), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['"""**** Trainable Variables ****"""'], {}), "('**** Trainable Variables ****')\n", (14281, 14314), True, 'import tensorflow as tf\n'), ((14679, 14853), 'optimization.create_optimizer', 'optimization.create_optimizer', (['total_loss', 'learning_rate', 'num_train_steps', 'num_warmup_steps', 'hvd', '(False)', 'FLAGS.amp', 'FLAGS.num_accumulation_steps', 'FLAGS.optimizer_type'], {}), '(total_loss, learning_rate, num_train_steps,\n num_warmup_steps, hvd, False, FLAGS.amp, FLAGS.num_accumulation_steps,\n FLAGS.optimizer_type)\n', (14708, 14853), False, 'import optimization\n'), ((14887, 14960), 'tensorflow.estimator.EstimatorSpec', 'tf.estimator.EstimatorSpec', ([], {'mode': 'mode', 'loss': 'total_loss', 'train_op': 'train_op'}), '(mode=mode, loss=total_loss, train_op=train_op)\n', (14913, 14960), True, 'import tensorflow as tf\n'), ((19324, 19334), 'horovod.tensorflow.size', 'hvd.size', ([], {}), '()\n', (19332, 19334), True, 'import horovod.tensorflow as hvd\n'), ((19336, 19346), 'horovod.tensorflow.rank', 'hvd.rank', ([], {}), '()\n', (19344, 19346), True, 'import horovod.tensorflow as hvd\n'), ((19430, 19440), 'horovod.tensorflow.size', 'hvd.size', ([], {}), '()\n', (19438, 19440), True, 'import horovod.tensorflow as hvd\n'), ((19465, 19475), 'horovod.tensorflow.rank', 'hvd.rank', ([], {}), '()\n', (19473, 19475), True, 'import horovod.tensorflow as hvd\n'), ((19561, 19577), 'horovod.tensorflow.local_rank', 'hvd.local_rank', ([], {}), '()\n', (19575, 19577), True, 'import horovod.tensorflow as hvd\n'), ((19598, 19614), 'horovod.tensorflow.local_rank', 'hvd.local_rank', ([], {}), '()\n', (19612, 19614), True, 'import horovod.tensorflow as hvd\n'), ((19625, 19635), 'horovod.tensorflow.size', 'hvd.size', ([], {}), '()\n', (19633, 19635), True, 'import horovod.tensorflow as hvd\n'), ((19851, 19881), 'tensorflow.enable_resource_variables', 'tf.enable_resource_variables', ([], {}), '()\n', (19879, 19881), True, 'import tensorflow as tf\n'), ((21069, 21118), 'os.path.join', 'os.path.join', (['FLAGS.output_dir', '"""train.tf_record"""'], {}), "(FLAGS.output_dir, 'train.tf_record')\n", (21081, 21118), False, 'import os\n'), ((23074, 23085), 'time.time', 'time.time', ([], {}), '()\n', (23083, 23085), False, 'import time\n'), ((23427, 23485), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['"""-----------------------------"""'], {}), "('-----------------------------')\n", (23452, 23485), True, 'import tensorflow as tf\n'), ((23494, 23630), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['"""Total Training Time = %0.2f for Sentences = %d"""', 'train_time_elapsed', '(num_train_steps * global_batch_size)'], {}), "('Total Training Time = %0.2f for Sentences = %d',\n train_time_elapsed, num_train_steps * global_batch_size)\n", (23519, 23630), True, 'import tensorflow as tf\n'), ((23659, 23862), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['"""Total Training Time W/O Overhead = %0.2f for Sentences = %d"""', 'train_time_wo_overhead', '((training_hooks[-1].count - training_hooks[-1].skipped) * global_batch_size)'], {}), "(\n 'Total Training Time W/O Overhead = %0.2f for Sentences = %d',\n train_time_wo_overhead, (training_hooks[-1].count - training_hooks[-1].\n skipped) * global_batch_size)\n", (23684, 23862), True, 'import tensorflow as tf\n'), ((23881, 24001), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['"""Throughput Average (sentences/sec) with overhead = %0.2f"""', 'avg_sentences_per_second'], {}), "(\n 'Throughput Average (sentences/sec) with overhead = %0.2f',\n avg_sentences_per_second)\n", (23906, 24001), True, 'import tensorflow as tf\n'), ((24001, 24101), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['"""Throughput Average (sentences/sec) = %0.2f"""', 'ss_sentences_per_second'], {}), "('Throughput Average (sentences/sec) = %0.2f',\n ss_sentences_per_second)\n", (24026, 24101), True, 'import tensorflow as tf\n'), ((24106, 24164), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['"""-----------------------------"""'], {}), "('-----------------------------')\n", (24131, 24164), True, 'import tensorflow as tf\n'), ((24954, 24991), 'utils.utils.LogEvalRunHook', 'LogEvalRunHook', (['FLAGS.eval_batch_size'], {}), '(FLAGS.eval_batch_size)\n', (24968, 24991), False, 'from utils.utils import LogEvalRunHook, LogTrainRunHook, setup_xla_flags\n'), ((25126, 25137), 'time.time', 'time.time', ([], {}), '()\n', (25135, 25137), False, 'import time\n'), ((27372, 27412), 'tensorflow.io.gfile.GFile', 'tf.io.gfile.GFile', (['output_eval_file', '"""w"""'], {}), "(output_eval_file, 'w')\n", (27389, 27412), True, 'import tensorflow as tf\n'), ((27430, 27483), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['"""***** Eval results *****"""'], {}), "('***** Eval results *****')\n", (27455, 27483), True, 'import tensorflow as tf\n'), ((28663, 28703), 'utils.utils.LogEvalRunHook', 'LogEvalRunHook', (['FLAGS.predict_batch_size'], {}), '(FLAGS.predict_batch_size)\n', (28677, 28703), False, 'from utils.utils import LogEvalRunHook, LogTrainRunHook, setup_xla_flags\n'), ((28829, 28872), 'tensorflow.io.gfile.GFile', 'tf.io.gfile.GFile', (['output_predict_file', '"""w"""'], {}), "(output_predict_file, 'w')\n", (28846, 28872), True, 'import tensorflow as tf\n'), ((28892, 28948), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['"""***** Predict results *****"""'], {}), "('***** Predict results *****')\n", (28917, 28948), True, 'import tensorflow as tf\n'), ((29302, 29313), 'time.time', 'time.time', ([], {}), '()\n', (29311, 29313), False, 'import time\n'), ((5470, 5484), 'tensorflow.to_int32', 'tf.to_int32', (['t'], {}), '(t)\n', (5481, 5484), True, 'import tensorflow as tf\n'), ((9141, 9233), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['""" name = %s, shape = %s%s"""', 'var.name', 'var.shape', 'init_string'], {}), "(' name = %s, shape = %s%s', var.name, var.shape,\n init_string)\n", (9166, 9233), True, 'import tensorflow as tf\n'), ((10846, 10915), 'tensorflow.metrics.false_negatives', 'tf.metrics.false_negatives', ([], {'labels': 'label_ids', 'predictions': 'predictions'}), '(labels=label_ids, predictions=predictions)\n', (10872, 10915), True, 'import tensorflow as tf\n'), ((10940, 11009), 'tensorflow.metrics.false_positives', 'tf.metrics.false_positives', ([], {'labels': 'label_ids', 'predictions': 'predictions'}), '(labels=label_ids, predictions=predictions)\n', (10966, 11009), True, 'import tensorflow as tf\n'), ((11034, 11102), 'tensorflow.metrics.true_positives', 'tf.metrics.true_positives', ([], {'labels': 'label_ids', 'predictions': 'predictions'}), '(labels=label_ids, predictions=predictions)\n', (11059, 11102), True, 'import tensorflow as tf\n'), ((11127, 11195), 'tensorflow.metrics.true_negatives', 'tf.metrics.true_negatives', ([], {'labels': 'label_ids', 'predictions': 'predictions'}), '(labels=label_ids, predictions=predictions)\n', (11152, 11195), True, 'import tensorflow as tf\n'), ((13290, 13352), 'tensorflow.estimator.EstimatorSpec', 'tf.estimator.EstimatorSpec', ([], {'mode': 'mode', 'predictions': 'predictions'}), '(mode=mode, predictions=predictions)\n', (13316, 13352), True, 'import tensorflow as tf\n'), ((14478, 14570), 'tensorflow.compat.v1.logging.info', 'tf.compat.v1.logging.info', (['""" name = %s, shape = %s%s"""', 'var.name', 'var.shape', 'init_string'], {}), "(' name = %s, shape = %s%s', var.name, var.shape,\n init_string)\n", (14503, 14570), True, 'import tensorflow as tf\n'), ((15054, 15064), 'tensorflow.no_op', 'tf.no_op', ([], {}), '()\n', (15062, 15064), True, 'import tensorflow as tf\n'), ((15472, 15564), 'tensorflow.estimator.EstimatorSpec', 'tf.estimator.EstimatorSpec', ([], {'mode': 'mode', 'loss': 'total_loss', 'eval_metric_ops': 'eval_metric_ops'}), '(mode=mode, loss=total_loss, eval_metric_ops=\n eval_metric_ops)\n', (15498, 15564), True, 'import tensorflow as tf\n'), ((15618, 15628), 'tensorflow.no_op', 'tf.no_op', ([], {}), '()\n', (15626, 15628), True, 'import tensorflow as tf\n'), ((15890, 15954), 'tensorflow.estimator.EstimatorSpec', 'tf.estimator.EstimatorSpec', ([], {'mode': 'mode', 'predictions': 'probabilities'}), '(mode=mode, predictions=probabilities)\n', (15916, 15954), True, 'import tensorflow as tf\n'), ((16970, 17046), 'tensorflow.constant', 'tf.constant', (['all_input_ids'], {'shape': '[num_examples, seq_length]', 'dtype': 'tf.int32'}), '(all_input_ids, shape=[num_examples, seq_length], dtype=tf.int32)\n', (16981, 17046), True, 'import tensorflow as tf\n'), ((17115, 17192), 'tensorflow.constant', 'tf.constant', (['all_input_mask'], {'shape': '[num_examples, seq_length]', 'dtype': 'tf.int32'}), '(all_input_mask, shape=[num_examples, seq_length], dtype=tf.int32)\n', (17126, 17192), True, 'import tensorflow as tf\n'), ((17278, 17356), 'tensorflow.constant', 'tf.constant', (['all_segment_ids'], {'shape': '[num_examples, seq_length]', 'dtype': 'tf.int32'}), '(all_segment_ids, shape=[num_examples, seq_length], dtype=tf.int32)\n', (17289, 17356), True, 'import tensorflow as tf\n'), ((17440, 17504), 'tensorflow.constant', 'tf.constant', (['all_label_ids'], {'shape': '[num_examples]', 'dtype': 'tf.int32'}), '(all_label_ids, shape=[num_examples], dtype=tf.int32)\n', (17451, 17504), True, 'import tensorflow as tf\n'), ((19673, 19708), 'horovod.tensorflow.BroadcastGlobalVariablesHook', 'hvd.BroadcastGlobalVariablesHook', (['(0)'], {}), '(0)\n', (19705, 19708), True, 'import horovod.tensorflow as hvd\n'), ((21309, 21319), 'horovod.tensorflow.size', 'hvd.size', ([], {}), '()\n', (21317, 21319), True, 'import horovod.tensorflow as hvd\n'), ((21360, 21370), 'horovod.tensorflow.size', 'hvd.size', ([], {}), '()\n', (21368, 21370), True, 'import horovod.tensorflow as hvd\n'), ((21380, 21390), 'horovod.tensorflow.rank', 'hvd.rank', ([], {}), '()\n', (21388, 21390), True, 'import horovod.tensorflow as hvd\n'), ((5831, 5841), 'horovod.tensorflow.size', 'hvd.size', ([], {}), '()\n', (5839, 5841), True, 'import horovod.tensorflow as hvd\n'), ((5843, 5853), 'horovod.tensorflow.rank', 'hvd.rank', ([], {}), '()\n', (5851, 5853), True, 'import horovod.tensorflow as hvd\n'), ((11350, 11378), 'tensorflow.identity', 'tf.identity', (['MCC'], {'name': '"""MCC"""'}), "(MCC, name='MCC')\n", (11361, 11378), True, 'import tensorflow as tf\n'), ((11479, 11541), 'tensorflow.metrics.accuracy', 'tf.metrics.accuracy', ([], {'labels': 'label_ids', 'predictions': 'predictions'}), '(labels=label_ids, predictions=predictions)\n', (11498, 11541), True, 'import tensorflow as tf\n'), ((11578, 11618), 'tensorflow.metrics.mean', 'tf.metrics.mean', ([], {'values': 'per_example_loss'}), '(values=per_example_loss)\n', (11593, 11618), True, 'import tensorflow as tf\n'), ((11636, 11728), 'tf_metrics.f1', 'tf_metrics.f1', ([], {'labels': 'label_ids', 'predictions': 'predictions', 'num_classes': '(2)', 'pos_indices': '[1]'}), '(labels=label_ids, predictions=predictions, num_classes=2,\n pos_indices=[1])\n', (11649, 11728), False, 'import tf_metrics\n'), ((11906, 11968), 'tensorflow.metrics.accuracy', 'tf.metrics.accuracy', ([], {'labels': 'label_ids', 'predictions': 'predictions'}), '(labels=label_ids, predictions=predictions)\n', (11925, 11968), True, 'import tensorflow as tf\n'), ((12005, 12045), 'tensorflow.metrics.mean', 'tf.metrics.mean', ([], {'values': 'per_example_loss'}), '(values=per_example_loss)\n', (12020, 12045), True, 'import tensorflow as tf\n'), ((13522, 13614), 'tensorflow.estimator.EstimatorSpec', 'tf.estimator.EstimatorSpec', ([], {'mode': 'mode', 'loss': 'total_loss', 'eval_metric_ops': 'eval_metric_ops'}), '(mode=mode, loss=total_loss, eval_metric_ops=\n eval_metric_ops)\n', (13548, 13614), True, 'import tensorflow as tf\n'), ((14002, 14012), 'horovod.tensorflow.rank', 'hvd.rank', ([], {}), '()\n', (14010, 14012), True, 'import horovod.tensorflow as hvd\n'), ((15190, 15229), 'tensorflow.train.experimental.FixedLossScale', 'tf.train.experimental.FixedLossScale', (['(1)'], {}), '(1)\n', (15226, 15229), True, 'import tensorflow as tf\n'), ((17572, 17582), 'horovod.tensorflow.size', 'hvd.size', ([], {}), '()\n', (17580, 17582), True, 'import horovod.tensorflow as hvd\n'), ((17584, 17594), 'horovod.tensorflow.rank', 'hvd.rank', ([], {}), '()\n', (17592, 17594), True, 'import horovod.tensorflow as hvd\n'), ((21426, 21436), 'horovod.tensorflow.rank', 'hvd.rank', ([], {}), '()\n', (21434, 21436), True, 'import horovod.tensorflow as hvd\n'), ((21921, 21931), 'horovod.tensorflow.size', 'hvd.size', ([], {}), '()\n', (21929, 21931), True, 'import horovod.tensorflow as hvd\n'), ((15321, 15366), 'optimization.LAMBOptimizer', 'optimization.LAMBOptimizer', ([], {'learning_rate': '(0.0)'}), '(learning_rate=0.0)\n', (15347, 15366), False, 'import optimization\n'), ((15823, 15868), 'optimization.LAMBOptimizer', 'optimization.LAMBOptimizer', ([], {'learning_rate': '(0.0)'}), '(learning_rate=0.0)\n', (15849, 15868), False, 'import optimization\n'), ((21243, 21253), 'horovod.tensorflow.size', 'hvd.size', ([], {}), '()\n', (21251, 21253), True, 'import horovod.tensorflow as hvd\n'), ((21559, 21569), 'horovod.tensorflow.rank', 'hvd.rank', ([], {}), '()\n', (21567, 21569), True, 'import horovod.tensorflow as hvd\n')]
29rj/Fusion
FusionIIIT/applications/academic_information/views.py
bc2941a67532e183adeb0bc4042df0b182b9e3aa
import datetime import json import os import xlrd import logging from io import BytesIO from xlsxwriter.workbook import Workbook from xhtml2pdf import pisa from itertools import chain from django.contrib.auth.models import User from django.http import HttpResponse, HttpResponseRedirect, JsonResponse from django.shortcuts import get_object_or_404, render from django.template.loader import get_template from django.views.decorators.csrf import csrf_exempt from django.template.loader import render_to_string from django.contrib.auth.decorators import login_required from applications.academic_procedures.models import MinimumCredits, Register, InitialRegistration, course_registration, AssistantshipClaim,Assistantship_status from applications.globals.models import (Designation, ExtraInfo, HoldsDesignation, DepartmentInfo) from .forms import AcademicTimetableForm, ExamTimetableForm, MinuteForm from .models import (Calendar, Course, Exam_timetable, Grades, Curriculum_Instructor,Constants, Meeting, Student, Student_attendance, Timetable,Curriculum) from applications.programme_curriculum.models import (CourseSlot, Course as Courses, Batch, Semester, Programme, Discipline) from applications.academic_procedures.views import acad_proced_global_context from applications.programme_curriculum.models import Batch @login_required def user_check(request): """ This function is used to check the type of user. It checkes the authentication of the user. @param: request - contains metadata about the requested page @variables: current_user - get user from request user_details - extract details of user from database desig_id - check for designation acadadmin - designation for Acadadmin final_user - final designation of request user """ try: current_user = get_object_or_404(User, username=request.user.username) user_details = ExtraInfo.objects.all().select_related('user','department').filter(user=current_user).first() desig_id = Designation.objects.all().filter(name='Upper Division Clerk') temp = HoldsDesignation.objects.all().select_related().filter(designation = desig_id).first() acadadmin = temp.working k = str(user_details).split() final_user = k[2] except Exception as e: acadadmin="" final_user="" pass if (str(acadadmin) != str(final_user)): return True else: return False def get_context(request): """ This function gets basic gata from database to send to template @param: request - contains metadata about the requested page @variables: acadTtForm - the form to add academic calender examTtForm - the form required to add exam timetable exam_t - all the exam timetable objects timetable - all the academic timetable objects calendar - all the academic calender objects context - the datas to be displayed in the webpage this_sem_course - tha data of thsi semester courses next_sem_courses - the data of next semester courses courses - all the courses in curriculum course_type - list the type of courses """ if user_check(request): return HttpResponseRedirect('/academic-procedures/') course_list = sem_for_generate_sheet() if(course_list[0]==1): course_list_2 = [2, 4, 6, 8] else: course_list_2 = [1, 3, 5, 7] # examTtForm = ExamTimetableForm() # acadTtForm = AcademicTimetableForm() # calendar = Calendar.objects.all() # this_sem_courses = Curriculum.objects.all().filter(sem__in=course_list).filter(floated=True) # next_sem_courses = Curriculum.objects.all().filter(sem__in=course_list).filter(floated=True) # courses = Course.objects.all() # course_type = Constants.COURSE_TYPE # timetable = Timetable.objects.all() # exam_t = Exam_timetable.objects.all() procedures_context = acad_proced_global_context() try: examTtForm = ExamTimetableForm() acadTtForm = AcademicTimetableForm() calendar = Calendar.objects.all() this_sem_courses = Curriculum.objects.all().select_related().filter(sem__in=course_list).filter(floated=True) next_sem_courses = Curriculum.objects.all().select_related().filter(sem__in=course_list_2).filter(floated=True) courses = Course.objects.all() courses_list = Courses.objects.all() course_type = Constants.COURSE_TYPE timetable = Timetable.objects.all() exam_t = Exam_timetable.objects.all() pgstudent = Student.objects.filter(programme = "M.Tech") | Student.objects.filter(programme = "PhD") assistant_list = AssistantshipClaim.objects.filter(ta_supervisor_remark = True).filter(thesis_supervisor_remark = True).filter(hod_approval =True).filter(acad_approval = False) assistant_approve_list = AssistantshipClaim.objects.filter(ta_supervisor_remark = True).filter(thesis_supervisor_remark = True).filter(hod_approval =True).filter(hod_approval = True) assistant_list_length = len(assistant_list.filter(acad_approval = False)) assis_stat = Assistantship_status.objects.all() for obj in assis_stat: assistant_flag = obj.student_status hod_flag = obj.hod_status account_flag = obj.account_status except Exception as e: examTtForm = "" acadTtForm = "" calendar = "" this_sem_courses = "" next_sem_courses = "" courses = "" course_type = "" timetable = "" exam_t = "" pass context = { 'acadTtForm': acadTtForm, 'examTtForm': examTtForm, 'courses': courses, 'courses_list': courses_list, 'course_type': course_type, 'exam': exam_t, 'timetable': timetable, 'academic_calendar': calendar, 'next_sem_course': next_sem_courses, 'this_sem_course': this_sem_courses, 'curriculum': curriculum, 'pgstudent' : pgstudent, 'assistant_list' : assistant_list, 'assistant_approve_list' : assistant_approve_list, 'assistant_list_length' : assistant_list_length, 'tab_id': ['1','1'], 'context': procedures_context['context'], 'lists': procedures_context['lists'], 'date': procedures_context['date'], 'query_option1': procedures_context['query_option1'], 'query_option2': procedures_context['query_option2'], 'course_verification_date' : procedures_context['course_verification_date'], 'submitted_course_list' : procedures_context['submitted_course_list'], 'result_year' : procedures_context['result_year'], 'batch_grade_data' : procedures_context['batch_grade_data'], 'batch_branch_data' : procedures_context['batch_branch_data'], 'assistant_flag' : assistant_flag, 'hod_flag' : hod_flag, 'account_flag' : account_flag } return context @login_required def homepage(request): """ This function is used to set up the homepage of the application. It checkes the authentication of the user and also fetches the available data from the databases to display it on the page. @param: request - contains metadata about the requested page @variables: senates - the extraInfo objects that holds the designation as a senator students - all the objects in the Student class Convenor - the extraInfo objects that holds the designation as a convenor CoConvenor - the extraInfo objects that holds the designation as a coconvenor meetings - the all meeting objects held in senator meetings minuteForm - the form to add a senate meeting minutes acadTtForm - the form to add academic calender examTtForm - the form required to add exam timetable Dean - the extraInfo objects that holds the designation as a dean student - the students as a senator extra - all the extraInfor objects exam_t - all the exam timetable objects timetable - all the academic timetable objects calendar - all the academic calender objects department - all the departments in the college attendance - all the attendance objects of the students context - the datas to be displayed in the webpage """ if user_check(request): return HttpResponseRedirect('/academic-procedures/') context = get_context(request) return render(request, "ais/ais.html", context) # #################################### # # curriculum # # #################################### @login_required def curriculum(request): """ This function is used to see curriculum and edit entries in a curriculum. It checkes the authentication of the user and also fetches the available data from the databases to display it on the page. @param: request - contains metadata about the requested page @variables: request_batch - Batch from form request_branch - Branch from form request_programme - Programme from form request_sem - Semester from form curriculum - Get data about curriculum from database courses - get courses from database courses_type - get course types from database """ if user_check(request): return HttpResponseRedirect('/academic-procedures/') context = get_context(request) context['tab_id'][0]='6' if request.method == 'POST': try: request_batch = request.POST['batch'] request_branch = request.POST['branch'] request_programme = request.POST['programme'] request_sem = request.POST['sem'] except Exception as e: request_batch = "" request_branch = "" request_programme = "" request_sem = "" #for checking if the user has searched for any particular curriculum if request_batch == "" and request_branch == "" and request_programme=="" and request_sem=="": curriculum = None #Curriculum.objects.all() else: if int(request_sem) == 0: curriculum = Curriculum.objects.select_related().filter(branch = request_branch).filter(batch = request_batch).filter(programme= request_programme).order_by('sem') else: curriculum = Curriculum.objects.select_related().filter(branch = request_branch).filter(batch = request_batch).filter(programme= request_programme).filter(sem= request_sem) # context={ # 'courses' : courses, # 'course_type' : course_type, # 'curriculum' : curriculum, # 'tab_id' :['3','1'] # } courses = Course.objects.all() course_type = Constants.COURSE_TYPE html = render_to_string('ais/curr_list.html',{'curriculum':curriculum,'courses':courses,'course_type':course_type},request) obj = json.dumps({'html':html}) #return render(request, "ais/ais.html", context) return HttpResponse(obj,content_type='application/json') else: return render(request, "ais/ais.html", context) return render(request, "ais/ais.html", context) @login_required def add_curriculum(request): """ This function is used to add new curriculum in database It checkes the authentication of the user and also fetches the available data from the databases to display it on the page. @param: request - contains metadata about the requested page @variables: programme - programme from form.REQUEST batch - batch from form.REQUEST branch - branch from form.REQUEST sem - semester from form.REQUEST course_code - course_code from form.REQUEST course_name - course-name from form.REQUEST course_id - course_id from database credits - credits from form.REQUEST optional - optional from form.REQUEST course_type - course_type from form.REQUEST ins - data is stored in database """ if user_check(request): return HttpResponseRedirect('/academic-procedures/') context={ 'tab_id' :['3','2'] } if request.method == 'POST': i=0 new_curr=[] while True: if "semester_"+str(i) in request.POST: try: programme=request.POST['AddProgramme'] batch=request.POST['AddBatch'] branch=request.POST['AddBranch'] sem=request.POST["semester_"+str(i)] course_code=request.POST["course_code_"+str(i)] course_name=request.POST["course_name_"+str(i)] course_id=Course.objects.get(course_name=course_name) credits=request.POST["credits_"+str(i)] if "optional_"+str(i) in request.POST: optional=True else: optional=False course_type=request.POST["course_type_"+str(i)] except Exception as e: programme="" batch="" branch="" sem="" course_code="" course_name="" course_id="" credits="" optional="" course_type="" pass ins=Curriculum( programme=programme, batch=batch, branch=branch, sem=sem, course_code=course_code, course_id=course_id, credits=credits, optional=optional, course_type=course_type, ) new_curr.append(ins) else: break i+=1 Curriculum.objects.bulk_create(new_curr) curriculum = Curriculum.objects.select_related().filter(branch = branch).filter(batch = batch).filter(programme= programme) courses = Course.objects.all() course_type = Constants.COURSE_TYPE context= { 'courses': courses, 'course_type': course_type, 'curriculum': curriculum, 'tab_id' :['3','2'] } return render(request, "ais/ais.html", context) else: return render(request, "ais/ais.html", context) return render(request, "ais/ais.html", context) @login_required def edit_curriculum(request): """ This function is used to edit curriculum in database It checkes the authentication of the user and also fetches the available data from the databases to display it on the page. @param: request - contains metadata about the requested page @variables: programme - programme from form.REQUEST batch - batch from form.REQUEST branch - branch from form.REQUEST sem - semester from form.REQUEST course_code - course_code from form.REQUEST course_name - course-name from form.REQUEST course_id - course_id from database credits - credits from form.REQUEST optional - optional from form.REQUEST course_type - course_type from form.REQUEST ins - data is stored in database """ if user_check(request): return HttpResponseRedirect('/academic-procedures/') context={ 'tab_id' :['3','1'] } if request.method == 'POST': try: id=request.POST['id'] programme=request.POST['programme'] batch=request.POST['batch'] branch=request.POST['branch'] sem=request.POST["sem"] course_code=request.POST["course_code"] course_name=request.POST["course_id"] course_id=Course.objects.get(course_name=course_name) credits=request.POST["credits"] if request.POST['optional'] == "on": optional=True else: optional=False course_type=request.POST["course_type"] except Exception as e: id="" programme="" batch="" branch="" sem="" course_code="" course_name="" course_id="" credits="" optional="" course_type="" pass entry=Curriculum.objects.all().select_related().filter(curriculum_id=id).first() entry.programme=programme entry.batch=batch entry.branch=branch entry.sem=sem entry.course_code=course_code entry.course_id=course_id entry.credits=credits entry.optional=optional entry.course_type=course_type entry.save() curriculum = Curriculum.objects.select_related().filter(branch = branch).filter(batch = batch).filter(programme= programme) courses = Course.objects.all() course_type = Constants.COURSE_TYPE context= { 'courses': courses, 'course_type': course_type, 'curriculum': curriculum, 'tab_id' :['3','1'] } return render(request, "ais/ais.html", context) else: return render(request, "ais/ais.html", context) return render(request, "ais/ais.html", context) @login_required def delete_curriculum(request): """ This function is used to delete curriculum entry in database It checkes the authentication of the user and also fetches the available data from the databases to display it on the page. @param: request - contains metadata about the requested page @variables: dele - data being deleted from database """ if user_check(request): return HttpResponseRedirect('/academic-procedures/') context={ 'tab_id' :['3','1'] } if request.method == "POST": dele = Curriculum.objects.select_related().filter(curriculum_id=request.POST['id']) dele.delete() curriculum = Curriculum.objects.select_related().filter(branch = request.POST['branch']).filter(batch = request.POST['batch']).filter(programme= request.POST['programme']) courses = Course.objects.all() course_type = Constants.COURSE_TYPE context= { 'courses': courses, 'course_type': course_type, 'curriculum': curriculum, 'tab_id' :['3','1'] } return render(request, "ais/ais.html", context) return render(request, 'ais/ais.html', context) @login_required def next_curriculum(request): """ This function is used to decide curriculum for new batch. It checkes the authentication of the user and also fetches the available data from the databases to display it on the page. @param: request - contains metadata about the requested page @variables: programme - programme from form.REQUEST now - current date from system year - current year batch - batch form form curriculum - curriculum details form database ins - Inster data in database """ if user_check(request): return HttpResponseRedirect('/academic-procedures/') if request.method == 'POST': programme = request.POST['programme'] now = datetime.datetime.now() year = int(now.year) batch = year-1 curriculum = Curriculum.objects.all().select_related().filter(batch = batch).filter(programme = programme) if request.POST['option'] == '1': new_curriculum=[] for i in curriculum: ins=Curriculum( programme=i.programme, batch=i.batch+1, branch=i.branch, sem=i.sem, course_code=i.course_code, course_id=i.course_id, credits=i.credits, optional=i.optional, course_type=i.course_type, ) new_curriculum.append(ins) Curriculum.objects.bulk_create(new_curriculum) elif request.POST['option'] == '2': new_curriculum=[] for i in curriculum: ins=Curriculum( programme=i.programme, batch=i.batch+1, branch=i.branch, sem=i.sem, course_code=i.course_code, course_id=i.course_id, credits=i.credits, optional=i.optional, course_type=i.course_type, ) new_curriculum.append(ins) Curriculum.objects.bulk_create(new_curriculum) batch=batch+1 curriculum = Curriculum.objects.all().select_related().filter(batch = batch).filter(programme = programme) context= { 'curriculumm' :curriculum, 'tab_id' :['3','3'] } return render(request, "ais/ais.html", context) else: context= { 'tab_id' :['3','2'] } return render(request, "ais/ais.html", context) context= { 'tab_id' :['3','1'] } return render(request, "ais/ais.html", context) @login_required def add_timetable(request): """ acad-admin can upload the time table(any type of) of the semester. @param: request - contains metadata about the requested page. @variables: acadTtForm - data of delete dictionary in post request timetable - all timetable from database exam_t - all exam timetable from database """ if user_check(request): return HttpResponseRedirect('/academic-procedures/') timetable = Timetable.objects.all() exam_t = Exam_timetable.objects.all() context= { 'exam': exam_t, 'timetable': timetable, 'tab_id' :['10','1'] } acadTtForm = AcademicTimetableForm() if request.method == 'POST' and request.FILES: acadTtForm = AcademicTimetableForm(request.POST, request.FILES) if acadTtForm.is_valid(): acadTtForm.save() return render(request, "ais/ais.html", context) else: return render(request, "ais/ais.html", context) return render(request, "ais/ais.html", context) @login_required def add_exam_timetable(request): """ acad-admin can upload the exam timtable of the ongoing semester. @param: request - contains metadata about the requested page. @variables: examTtForm - data of delete dictionary in post request timetable - all timetable from database exam_t - all exam timetable from database """ if user_check(request): return HttpResponseRedirect('/academic-procedures/') timetable = Timetable.objects.all() exam_t = Exam_timetable.objects.all() context= { 'exam': exam_t, 'timetable': timetable, 'tab_id' :['10','2'] } examTtForm = ExamTimetableForm() if request.method == 'POST' and request.FILES: examTtForm = ExamTimetableForm(request.POST, request.FILES) if examTtForm.is_valid(): examTtForm.save() return render(request, "ais/ais.html", context) else: return render(request, "ais/ais.html", context) return render(request, "ais/ais.html", context) @login_required def delete_timetable(request): """ acad-admin can delete the outdated timetable from the server. @param: request - contains metadata about the requested page. @variables: data - data of delete dictionary in post request t - Object of time table to be deleted """ if user_check(request): return HttpResponseRedirect('/academic-procedures/') if request.method == "POST": data = request.POST['delete'] t = Timetable.objects.get(time_table=data) t.delete() return HttpResponse("TimeTable Deleted") @login_required def delete_exam_timetable(request): """ acad-admin can delete the outdated exam timetable. @param: request - contains metadata about the requested page. @variables: data - data of delete dictionary in post request t - Object of Exam time table to be deleted """ if user_check(request): return HttpResponseRedirect('/academic-procedures/') if request.method == "POST": data = request.POST['delete'] t = Exam_timetable.objects.get(exam_time_table=data) t.delete() return HttpResponse("TimeTable Deleted") @login_required def add_calendar(request): """ to add an entry to the academic calendar to be uploaded @param: request - contains metadata about the requested page. @variables: from_date - The starting date for the academic calendar event. to_date - The ending date for the academic caldendar event. desc - Description for the academic calendar event. c = object to save new event to the academic calendar. """ if user_check(request): return HttpResponseRedirect('/academic-procedures/') calendar = Calendar.objects.all() context= { 'academic_calendar' :calendar, 'tab_id' :['4','1'] } if request.method == "POST": try: from_date = request.POST.getlist('from_date') to_date = request.POST.getlist('to_date') desc = request.POST.getlist('description')[0] from_date = from_date[0].split('-') from_date = [int(i) for i in from_date] from_date = datetime.datetime(*from_date).date() to_date = to_date[0].split('-') to_date = [int(i) for i in to_date] to_date = datetime.datetime(*to_date).date() except Exception as e: from_date="" to_date="" desc="" pass c = Calendar( from_date=from_date, to_date=to_date, description=desc) c.save() HttpResponse("Calendar Added") return render(request, "ais/ais.html", context) @login_required def update_calendar(request): """ to update an entry to the academic calendar to be updated. @param: request - contains metadata about the requested page. @variables: from_date - The starting date for the academic calendar event. to_date - The ending date for the academic caldendar event. desc - Description for the academic calendar event. prev_desc - Description for the previous event which is to be updated. get_calendar_details = Get the object of the calendar instance from the database for the previous Description. """ if user_check(request): return HttpResponseRedirect('/academic-procedures/') calendar = Calendar.objects.all() context= { 'academic_calendar' :calendar, 'tab_id' :['4','1'] } if request.method == "POST": try: from_date = request.POST.getlist('from_date') to_date = request.POST.getlist('to_date') desc = request.POST.getlist('description')[0] prev_desc = request.POST.getlist('prev_desc')[0] from_date = from_date[0].split('-') from_date = [int(i) for i in from_date] from_date = datetime.datetime(*from_date).date() to_date = to_date[0].split('-') to_date = [int(i) for i in to_date] to_date = datetime.datetime(*to_date).date() get_calendar_details = Calendar.objects.all().filter(description=prev_desc).first() get_calendar_details.description = desc get_calendar_details.from_date = from_date get_calendar_details.to_date = to_date get_calendar_details.save() except Exception as e: from_date="" to_date="" desc="" return render(request, "ais/ais.html", context) return render(request, "ais/ais.html", context) #Generate Attendance Sheet def sem_for_generate_sheet(): """ This function generates semester grade sheet @variables: now - current datetime month - current month """ now = datetime.datetime.now() month = int(now.month) if month >= 7 and month <= 12: return [1, 3, 5, 7] else: return [2, 4, 6, 8] @login_required def generatexlsheet(request): """ to generate Course List of Registered Students @param: request - contains metadata about the requested page @variables: batch - gets the batch course - gets the course curr_key - gets the curriculum from database obj - get stdents data from database ans - Formatted Array to be converted to xlsx k -temporary array to add data to formatted array/variable output - io Bytes object to write to xlsx file book - workbook of xlsx file title - formatting variable of title the workbook subtitle - formatting variable of subtitle the workbook normaltext - formatting variable for normal text sheet - xlsx sheet to be rendered titletext - formatting variable of title text dep - temporary variables z - temporary variables for final output b - temporary variables for final output c - temporary variables for final output st - temporary variables for final output """ if user_check(request): return HttpResponseRedirect('/academic-procedures/') try: batch = request.POST['batch'] course = Courses.objects.get(id = request.POST['course']) obj = course_registration.objects.all().filter(course_id = course) except Exception as e: batch="" course="" curr_key="" obj="" registered_courses = [] for i in obj: if i.student_id.batch_id.year == int(batch): registered_courses.append(i) ans = [] for i in registered_courses: k = [] k.append(i.student_id.id.id) k.append(i.student_id.id.user.first_name) k.append(i.student_id.id.user.last_name) k.append(i.student_id.id.department) ans.append(k) ans.sort() output = BytesIO() book = Workbook(output,{'in_memory':True}) title = book.add_format({'bold': True, 'font_size': 22, 'align': 'center', 'valign': 'vcenter'}) subtitle = book.add_format({'bold': True, 'font_size': 15, 'align': 'center', 'valign': 'vcenter'}) normaltext = book.add_format({'bold': False, 'font_size': 15, 'align': 'center', 'valign': 'vcenter'}) sheet = book.add_worksheet() title_text = ((str(course.name)+" : "+str(str(batch)))) sheet.set_default_row(25) sheet.merge_range('A2:E2', title_text, title) sheet.write_string('A3',"Sl. No",subtitle) sheet.write_string('B3',"Roll No",subtitle) sheet.write_string('C3',"Name",subtitle) sheet.write_string('D3',"Discipline",subtitle) sheet.write_string('E3','Signature',subtitle) sheet.set_column('A:A',20) sheet.set_column('B:B',20) sheet.set_column('C:C',60) sheet.set_column('D:D',15) sheet.set_column('E:E',30) k = 4 num = 1 for i in ans: sheet.write_number('A'+str(k),num,normaltext) num+=1 z,b,c = str(i[0]),i[1],i[2] name = str(b)+" "+str(c) temp = str(i[3]).split() dep = str(temp[len(temp)-1]) sheet.write_string('B'+str(k),z,normaltext) sheet.write_string('C'+str(k),name,normaltext) sheet.write_string('D'+str(k),dep,normaltext) k+=1 book.close() output.seek(0) response = HttpResponse(output.read(),content_type = 'application/vnd.ms-excel') st = 'attachment; filename = ' + course.code + '.xlsx' response['Content-Disposition'] = st return response @login_required def generate_preregistration_report(request): """ to generate preresgistration report after pre-registration @param: request - contains metadata about the requested page @variables: sem - get current semester from current time now - get current time year - getcurrent year batch - gets the batch from form sem - stores the next semester obj - All the registration details appended into one data - Formated data for context m - counter for Sl. No (in formated data) z - temporary array to add data to variable data k -temporary array to add data to formatted array/variable output - io Bytes object to write to xlsx file book - workbook of xlsx file title - formatting variable of title the workbook subtitle - formatting variable of subtitle the workbook normaltext - formatting variable for normal text sheet - xlsx sheet to be rendered titletext - formatting variable of title text dep - temporary variables z - temporary variables for final output b - temporary variables for final output c - temporary variables for final output st - temporary variables for final output """ if user_check(request): return HttpResponseRedirect('/academic-procedures/') if request.method == "POST": sem = request.POST.get('semester_no') batch_id=request.POST.get('batch_branch') batch = Batch.objects.filter(id = batch_id).first() obj = InitialRegistration.objects.filter(student_id__batch_id=batch_id, semester_id__semester_no=sem) registered_students = set() unregistered_students = set() for stu in obj: registered_students.add(stu.student_id) students = Student.objects.filter(batch_id = batch_id) for stu in students: if stu not in registered_students: unregistered_students.add(stu) data = [] m = 1 for i in unregistered_students: z = [] z.append(m) m += 1 z.append(i.id.user.username) z.append(str(i.id.user.first_name)+" "+str(i.id.user.last_name)) z.append(i.id.department.name) z.append('not registered') data.append(z) for i in registered_students: z = [] z.append(m) m += 1 z.append(i.id.user.username) z.append(str(i.id.user.first_name)+" "+str(i.id.user.last_name)) z.append(i.id.department.name) z.append('registered') data.append(z) output = BytesIO() book = Workbook(output,{'in_memory':True}) title = book.add_format({'bold': True, 'font_size': 22, 'align': 'center', 'valign': 'vcenter'}) subtitle = book.add_format({'bold': True, 'font_size': 15, 'align': 'center', 'valign': 'vcenter'}) normaltext = book.add_format({'bold': False, 'font_size': 15, 'align': 'center', 'valign': 'vcenter'}) sheet = book.add_worksheet() title_text = ("Pre-registeration : "+ batch.name + str(" ") + batch.discipline.acronym + str(" ") + str(batch.year)) sheet.set_default_row(25) sheet.merge_range('A2:E2', title_text, title) sheet.write_string('A3',"Sl. No",subtitle) sheet.write_string('B3',"Roll No",subtitle) sheet.write_string('C3',"Name",subtitle) sheet.write_string('D3',"Discipline",subtitle) sheet.write_string('E3','Status',subtitle) sheet.set_column('A:A',20) sheet.set_column('B:B',20) sheet.set_column('C:C',50) sheet.set_column('D:D',15) sheet.set_column('E:E',15) k = 4 num = 1 for i in data: sheet.write_number('A'+str(k),num,normaltext) num+=1 z,b,c = str(i[0]),i[1],i[2] a,b,c,d,e = str(i[0]),str(i[1]),str(i[2]),str(i[3]),str(i[4]) temp = str(i[3]).split() sheet.write_string('B'+str(k),b,normaltext) sheet.write_string('C'+str(k),c,normaltext) sheet.write_string('D'+str(k),d,normaltext) sheet.write_string('E'+str(k),e,normaltext) k+=1 book.close() output.seek(0) response = HttpResponse(output.read(),content_type = 'application/vnd.ms-excel') st = 'attachment; filename = ' + batch.name + batch.discipline.acronym + str(batch.year) + '-preresgistration.xlsx' response['Content-Disposition'] = st return response @login_required def add_new_profile (request): """ To add details of new upcoming students in the database.User must be logged in and must be acadadmin @param: request - contains metadata about the requested page. @variables: profiles - gets the excel file having data excel - excel file sheet - sheet no in excel file roll_no - details of student from file first_name - details of student from file last_name - details of student from file email - details of student from file sex - details of student from file title - details of student from file dob - details of student from file fathers_name - details of student from file mothers_name - details of student from file category - details of student from file phone_no - details of student from file address - details of student from file department - details of student from file specialization - details of student from file hall_no - details of student from file programme - details of student from file batch - details of student from file user - new user created in database einfo - new extrainfo object created in database stud_data - new student object created in database desig - get designation object of student holds_desig - get hold_desig object of student currs - get curriculum details reg - create registeration object in registeration table """ if user_check(request): return HttpResponseRedirect('/academic-procedures/') context= { 'tab_id' :['2','1'] } if request.method == 'POST' and request.FILES: profiles=request.FILES['profiles'] excel = xlrd.open_workbook(file_contents=profiles.read()) sheet=excel.sheet_by_index(0) for i in range(sheet.nrows): roll_no=int(sheet.cell(i,0).value) first_name=str(sheet.cell(i,1).value) last_name=str(sheet.cell(i,2).value) email=str(sheet.cell(i,3).value) sex=str(sheet.cell(i,4).value) if sex == 'F': title='Ms.' else: title='Mr.' dob_tmp=sheet.cell(i,5).value dob_tmp=sheet.cell_value(rowx=i,colx=5) dob=datetime.datetime(*xlrd.xldate_as_tuple(dob_tmp,excel.datemode)) fathers_name=str(sheet.cell(i,6).value) mothers_name=str(sheet.cell(i,7).value) category=str(sheet.cell(i,8).value) phone_no=int(sheet.cell(i,9).value) address=str(sheet.cell(i,10).value) dept=str(sheet.cell(i,11).value) specialization=str(sheet.cell(i,12).value) hall_no=sheet.cell(i,13 ).value department=DepartmentInfo.objects.all().filter(name=dept).first() if specialization == "": specialization="None" if hall_no == None: hall_no=3 else: hall_no=int(hall_no) programme_name=request.POST['Programme'] batch_year=request.POST['Batch'] batch = Batch.objects.all().filter(name = programme_name, discipline__acronym = dept, year = batch_year).first() user = User.objects.create_user( username=roll_no, password='hello123', first_name=first_name, last_name=last_name, email=email, ) einfo = ExtraInfo.objects.create( id=roll_no, user=user, title=title, sex=sex, date_of_birth=dob, address=address, phone_no=phone_no, user_type='student', department=department, ) sem=1 stud_data = Student.objects.create( id=einfo, programme = programme_name, batch=batch_year, batch_id = batch, father_name = fathers_name, mother_name = mothers_name, cpi = 0, category = category, hall_no = hall_no, specialization = specialization, curr_semester_no=sem, ) desig = Designation.objects.get(name='student') hold_des = HoldsDesignation.objects.create( user=user, working=user, designation=desig, ) sem_id = Semester.objects.get(curriculum = batch.curriculum, semester_no = sem) course_slots = CourseSlot.objects.all().filter(semester = sem_id) courses = [] for course_slot in course_slots: courses += course_slot.courses.all() new_reg=[] for c in courses: reg=course_registration( course_id = c, semester_id=sem_id, student_id=stud_data ) new_reg.append(reg) course_registration.objects.bulk_create(new_reg) else: return render(request, "ais/ais.html", context) return render(request, "ais/ais.html", context) def get_faculty_list(): """ to get faculty list from database @param: request - contains metadata about the requested page. @variables: f1,f2,f3 - temporary varibles faculty - details of faculty of data faculty_list - list of faculty """ try: f1 = HoldsDesignation.objects.select_related().filter(designation=Designation.objects.get(name = "Assistant Professor")) f2 = HoldsDesignation.objects.select_related().filter(designation=Designation.objects.get(name = "Professor")) f3 = HoldsDesignation.objects.select_related().filter(designation=Designation.objects.get(name = "Associate Professor")) except Exception as e: f1=f2=f3="" pass faculty = list(chain(f1,f2,f3)) faculty_list = [] for i in faculty: faculty_list.append(i) return faculty_list @login_required def float_course(request): """ to float courses for the next sem and store data in databsae. User must be logged in and must be acadadmin @param: request - contains metadata about the requested page. @variables: request_batch - Batch from form request_branch - Branch from form request_programme - Programme from form request_sem - Semester from form """ if user_check(request): return HttpResponseRedirect('/academic-procedures/') context= { 'tab_id' :['5','1'] } if request.method == 'POST': try: request_batch = request.POST['batch'] request_branch = request.POST['branch'] request_programme = request.POST['programme'] except Exception as e: request_batch = "" request_branch = "" request_programme = "" if request_batch == "" and request_branch == "" and request_programme=="": curriculum = None #Curriculum.objects.all() else: sem = sem_for_generate_sheet() now = datetime.datetime.now() year = int(now.year) if sem[0] == 2: sem = sem[year-int(request_batch)-1] else: sem = sem[year-int(request_batch)] sem+=1 curriculum = Curriculum.objects.select_related().filter(branch = request_branch).filter(batch = request_batch).filter(programme= request_programme).filter(sem=sem).order_by('course_code') faculty_list = get_faculty_list() courses = Course.objects.all() course_type = Constants.COURSE_TYPE context= { 'courses': courses, 'course_type': course_type, 'curriculum': curriculum, 'faculty_list': faculty_list, 'tab_id' :['5','1'] } return render(request, "ais/ais.html", context) else: return render(request, "ais/ais.html", context) return render(request, "ais/ais.html", context) @login_required def float_course_submit(request): """ to float courses for the next sem and store data in databsae. User must be logged in and must be acadadmin @param: request - contains metadata about the requested page. @variables: request_batch - Batch from form request_branch - Branch from form request_programme - Programme from form request_sem - Semester from form """ if user_check(request): return HttpResponseRedirect('/academic-procedures/') context= { 'tab_id' :['5','1'] } if request.method == "POST": i=1 while True: if str(i)+"_ccode" in request.POST: if str(i)+"_fac" in request.POST: if request.POST[str(i)+"_fac"] == "" : logging.warning("No faculty") else: flot = Curriculum.objects.select_related().get(curriculum_id=request.POST[str(i)+"_ccode"]) flot.floated = True flot.save() new_curr_inst=[] for c,i in enumerate(request.POST.getlist(str(i)+'_fac')): inst = get_object_or_404(User, username = i) inst = ExtraInfo.objects.select_related('user','department').get(user=inst) if c==0: ins=Curriculum_Instructor( curriculum_id=flot, instructor_id=inst, chief_inst=True, ) new_curr_inst.append(ins) else: ins=Curriculum_Instructor( curriculum_id=flot, instructor_id=inst, chief_inst=False, ) new_curr_inst.append(ins) Curriculum_Instructor.objects.bulk_create(new_curr_inst) else: break i+=1 return render(request, "ais/ais.html", context) # # ---------------------senator------------------ # @csrf_exempt def senator(request): # """ # to add a new student senator # @param: # request - contains metadata about the requested page # @variables: # current_user - gets the data of current user. # user_details - gets the details of the required user. # desig_id - used to check the designation ID. # extraInfo - extraInfo object of the student with that rollno # s - designation object of senator # hDes - holdsDesignation object to store that the particualr student is holding the senator designation # student - the student object of the new senator # data - data of the student to be displayed in teh webpage # """ # current_user = get_object_or_404(User, username=request.user.username) # user_details = ExtraInfo.objects.all().filter(user=current_user).first() # desig_id = Designation.objects.all().filter(name='Upper Division Clerk') temp = HoldsDesignation.objects.all().select_related().filter(designation = desig_id).first() #print (temp) # print (current_user) # acadadmin = temp.working # k = str(user_details).split() # print(k) # final_user = k[2] # if (str(acadadmin) != str(final_user)): # return HttpResponseRedirect('/academic-procedures/') # if request.method == 'POST': # print(request.POST, ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>") # rollno = request.POST.getlist('Roll Number')[0] # # print(request.POST.get('rollno')) # extraInfo = ExtraInfo.objects.get(id=rollno) # s = Designation.objects.get(name='Senator') # hDes = HoldsDesignation() # hDes.user = extraInfo.user # hDes.working = extraInfo.user # hDes.designation = s # hDes.save() # student = Student.objects.get(id=extraInfo) # data = { # 'name': extraInfo.user.username, # 'rollno': extraInfo.id, # 'programme': student.programme, # 'branch': extraInfo.department.name # } # return HttpResponseRedirect('/aims/') # # return JsonResponse(data) # else: # return HttpResponseRedirect('/aims/') # @csrf_exempt def deleteSenator(request, pk): # """ # to remove a senator from the position # @param: # request - contains metadata about the requested page # @variables: # s - the designation object that contains senator # student - the list students that is a senator # hDes - the holdDesignation object that stores the # information that the particular student is a senator # """ pass # if request.POST: # s = get_object_or_404(Designation, name="Senator") # student = get_object_or_404(ExtraInfo, id=request.POST.getlist("senate_id")[0]) # hDes = get_object_or_404( HoldsDesignation, user = student.user) # hDes.delete() # return HttpResponseRedirect('/aims/') # else: # return HttpResponseRedirect('/aims/')# #################################################### # # ##########covenors and coconvenors################## # @csrf_exempt def add_convenor(request): # """ # to add a new student convenor/coconvenor # @param: # request - contains metadata about the requested page # @variables: # rollno - rollno of the student to become the convenor/coconvenor # extraInfo - extraInfo object of the student with that rollno # s - designation object of Convenor # p - designation object of Co Convenor # result - the data that contains where the student will become # convenor or coconvenor # hDes - holdsDesignation object to store that the particualr student is # holding the convenor/coconvenor designation # student - the student object of the new convenor/coconvenor # data - data of the student to be displayed in the webpage # """ s = Designation.objects.get(name='Convenor') # p = Designation.objects.get(name='Co Convenor') # if request.method == 'POST': # rollno = request.POST.get('rollno_convenor') # extraInfo = ExtraInfo.objects.get(id=rollno) # s = Designation.objects.get(name='Convenor') # p = Designation.objects.get(name='Co Convenor') # result = request.POST.get('designation') # hDes = HoldsDesignation() # hDes.user = extraInfo.user # hDes.working = extraInfo.user # if result == "Convenor": # hDes.designation = s # else: # hDes.designation = p # hDes.save() # data = { # 'name': extraInfo.user.username, # 'rollno_convenor': extraInfo.id, # 'designation': hDes.designation.name, # } # return JsonResponse(data) # else: # data = {} # return JsonResponse(data) # @csrf_exempt def deleteConvenor(request, pk): # """ # to remove a convenor/coconvenor from the position # @param: # request - contains metadata about the requested page # pk - the primary key of that particular student field # @variables: # s - the designation object that contains convenor # c - the designation object that contains co convenor # student - the student object with the given pk # hDes - the holdDesignation object that stores the # information that the particular student is a convenor/coconvenor to be deleted # data - data of the student to be hidden in the webpage # """ # s = get_object_or_404(Designation, name="Convenor") c = get_object_or_404(Designation, name="Co Convenor") # student = get_object_or_404(ExtraInfo, id=pk) # hDes = HoldsDesignation.objects.filter(user = student.user) # designation = [] # for des in hDes: # if des.designation == s or des.designation == c: # designation = des.designation.name # des.delete() # data = { # 'id': pk, # 'designation': designation, # } # return JsonResponse(data)# ###################################################### # # ##########Senate meeting Minute################## # @csrf_exempt def addMinute(request): # """ # to add a new senate meeting minute object to the database. # @param: # request - contains metadata about the requested page # @variables: # current_user - details of the current user. # desig_id - to check the designation of the user. # user_details - to get the details of the required user. # """ # current_user = get_object_or_404(User, username=request.user.username) # user_details = ExtraInfo.objects.all().filter(user=current_user).first() # desig_id = Designation.objects.all().filter(name='Upper Division Clerk') temp = HoldsDesignation.objects.all().select_related().filter(designation = desig_id).first() # print (temp) # print (current_user) # acadadmin = temp.working # k = str(user_details).split() # print(k) # final_user = k[2] # if (str(acadadmin) != str(final_user)): # return HttpResponseRedirect('/academic-procedures/') # if request.method == 'POST' and request.FILES: # form = MinuteForm(request.POST, request.FILES) # if form.is_valid(): # form.save() # return HttpResponse('sucess') # else: # return HttpResponse('not uploaded') # return render(request, "ais/ais.html", {}) def deleteMinute(request): # """ # to delete an existing senate meeting minute object from the database. # @param: # request - contains metadata about the requested page # @variables: # data - the id of the minute object to be deleted # t - the minute object received from id to be deleted # """ # if request.method == "POST": # data = request.POST['delete'] # t = Meeting.objects.get(id=data) # t.delete() return HttpResponseRedirect('/aims/') # # ###################################################### # # ##########Student basic profile################## # @csrf_exempt def add_basic_profile(request): # """ # It adds the basic profile information like username,password, name, # rollno, etc of a student # @param: # request - contains metadata about the requested page # @variables: # name - the name of the student # roll - the rollno of the student # batch - the current batch of the student # programme - the programme the student is enrolled in # ph - the phone number of the student # """ if request.method == "POST": name = request.POST.get('name') # roll = ExtraInfo.objects.get(id=request.POST.get('rollno')) # programme = request.POST.get('programme') # batch = request.POST.get('batch') # ph = request.POST.get('phoneno') # if not Student.objects.filter(id=roll).exists(): # db = Student() # st = ExtraInfo.objects.get(id=roll.id) # db.name = name.upper() # db.id = roll # db.batch = batch # db.programme = programme # st.phone_no = ph # db.save() # st.save() # data = { # 'name': name, # 'rollno': roll.id, # 'programme': programme, # 'phoneno': ph, # 'batch': batch # } # print(data) # return JsonResponse(data) # else: # data = {} # return JsonResponse(data) # else: # data = {} # return JsonResponse(data) # @csrf_exempt def delete_basic_profile(request, pk): # """ # Deletes the student from the database # @param: # request - contains metadata about the requested page # pk - the primary key of the student's record in the database table # @variables: # e - the extraInfo objects of the student # user - the User object of the student # s - the student object of the student # """ e = get_object_or_404(ExtraInfo, id=pk) # user = get_object_or_404(User, username = e.user.username) # s = get_object_or_404(Student, id=e) # data = { # 'rollno': pk, # } # s.delete() # e.delete() # u.delete() # return JsonResponse(data)# ######################################################### # ''' # # view to add attendance data to database # def curriculum(request): # ''' def delete_advanced_profile(request): # """ # to delete the advance information of the student # @param: # request - contains metadata about the requested page # @variables: # current_user - the username of the logged in user # user_details - the details of the current user # desig_id - checking the designation of the current user # acadadmin - deatils of the acad admin # s - the student object from the requested rollno # """ current_user = get_object_or_404(User, username=request.user.username) # user_details = ExtraInfo.objects.all().filter(user=current_user).first() # desig_id = Designation.objects.all().filter(name='Upper Division Clerk') # temp = HoldsDesignation.objects.all().filter(designation = desig_id).first() # print (temp) # print (current_user) # acadadmin = temp.working # k = str(user_details).split() # print(k) # final_user = k[2] # if (str(acadadmin) != str(final_user)): # return HttpResponseRedirect('/academic-procedures/') # if request.method == "POST": # st = request.POST['delete'] # arr = st.split("-") # stu = arr[0] # if Student.objects.get(id=stu): # s = Student.objects.get(id=stu) # s.father_name = "" # s.mother_name = "" # s.hall_no = 1 # s.room_no = "" # s.save() # else: # return HttpResponse("Data Does Not Exist") # return HttpResponse("Data Deleted Successfully") def add_advanced_profile(request): # """ # It adds the advance profile information like hall no, room no, # profile picture, about me etc of a student # @param: # request - contains metadata about the requested page # @variables: # current_user - the username of the logged in user # user_details - the details of the current user # desig_id - checking the designation of the current user # acadadmin - deatils of the acad admin # father - father's name of the student # rollno - the rollno of the student required to check if the student is available # mother - mother's name of the student # add - student's address # cpi - student's cpi # hall - hall no of where the student stays # room no - hostel room no # """ current_user = get_object_or_404(User, username=request.user.username) # user_details = ExtraInfo.objects.all().filter(user=current_user).first() # desig_id = Designation.objects.all().filter(name='Upper Division Clerk') # temp = HoldsDesignation.objects.all().filter(designation = desig_id).first() # print (temp) # print (current_user) # acadadmin = temp.working # k = str(user_details).split() # print(k) # final_user = k[2] # if (str(acadadmin) != str(final_user)): # return HttpResponseRedirect('/academic-procedures/') # if request.method == "POST": # print(request.POST) # rollno=request.POST.get('roll') # print(rollno) # student = ExtraInfo.objects.get(id=rollno) # print(student.address) # if not student: # data = {} # return JsonResponse(data) # else: # father = request.POST.get('father') # mother = request.POST.get('mother') # add = request.POST.get('address') # hall = request.POST.get('hall') # room = request.POST.get('room') # cpi = request.POST.get('cpi') # student.address = str(hall) + " " + str(room) # student.save() # s = Student.objects.get(id=student) # s.father_name=father # s.mother_name=mother # s.hall_no = hall # s.room_no = room # s.save() # return HttpResponseRedirect('/academic-procedures/') # return HttpResponseRedirect('/academic-procedures/') def add_optional(request): # """ # acadmic admin to update the additional courses # @param: # request - contains metadata about the requested page. # @variables: # choices - selected addtional courses by the academic person. # course - Course details which is selected by the academic admin. # """ if request.method == "POST": pass # print(request.POST) # choices = request.POST.getlist('choice') # for i in choices: # course = Course.objects.all().filter(course_id=i).first() # course.acad_selection = True # course.save() # courses = Course.objects.all() # for i in courses: # if i.course_id not in choices: # i.acad_selection = False # i.save() # return HttpResponseRedirect('/academic-procedures/') def min_cred(request): # """ # to set minimum credit for a current semester that a student must take # @param: # request - contains metadata about the requested page. # @variables: # sem_cred = Get credit details from forms and the append it to an array. # sem - Get the object for the minimum credits from the database and the update it. # """ if request.method=="POST": sem_cred = [] # sem_cred.append(0) # for i in range(1, 10): # sem = "sem_"+"1" # sem_cred.append(request.POST.getlist(sem)[0]) # for i in range(1, 9): # sem = MinimumCredits.objects.all().filter(semester=i).first() # sem.credits = sem_cred[i+1] # sem.save() # return HttpResponse("Worked") def view_course(request): # if request.method == "POST": # programme=request.POST['programme'] # batch=request.POST['batch'] # branch=request.POST['branch'] # sem=request.POST['sem'] # curriculum_courses = Curriculum.objects.filter(branch = branch).filter(batch = batch).filter(programme= programme).filter(sem = sem) # print(curriculum_courses) # courses = Course.objects.all() # course_type = Constants.COURSE_TYPE # context= { # 'courses': courses, # 'course_type': course_type, # 'curriculum_course': curriculum_courses, # } # return render(request, "ais/ais.html", context) # else: # return render(request, "ais/ais.html") return render(request, "ais/ais.html") def delete_grade(request): # """ # It deletes the grade of the student # @param: # request - contains metadata about the requested page # @variables: # current_user - father's name of the student # user_details - the rollno of the student required to check if the student is available # desig_id - mother 's name of the student # acadadmin - student's address # final_user - details of the user # sem - current semester of the student # data - tag whether to delete it or not # course - get the course details # """ # current_user = get_object_or_404(User, username=request.user.username) # user_details = ExtraInfo.objects.all().filter(user=current_user).first() # desig_id = Designation.objects.all().filter(name='Upper Division Clerk') # temp = HoldsDesignation.objects.all().filter(designation = desig_id).first() # print (temp) # print (current_user) # acadadmin = temp.working # k = str(user_details).split() # print(k) # final_user = k[2] # if (str(acadadmin) != str(final_user)): # return HttpResponseRedirect('/academic-procedures/') # print(request.POST['delete']) # data = request.POST['delete'] # d = data.split("-") # id = d[0] # course = d[2] # sem = int(d[3]) # if request.method == "POST": # if(Grades.objects.filter(student_id=id, sem=sem)): # s = Grades.objects.filter(student_id=id, sem=sem) # for p in s: # if (str(p.course_id) == course): # print(p.course_id) # p.delete() # else: # return HttpResponse("Unable to delete data") return HttpResponse("Data Deleted SuccessFully") @login_required def verify_grade(request): """ It verify the grades of the student @param: request - contains metadata about the requested page @variables: current_user - father's name of the student user_details - the rollno of the student required to check if the student is available desig_id - mother's name of the student acadadmin - student's address subject - subject of which the grade has to be added sem - semester of the student grade - grade to be added in the student course - course ofwhich the grade is added """ # if user_check(request): # return HttpResponseRedirect('/academic-procedures/') # if request.method == "POST": # curr_id=request.POST['course'] # print(curr_id) # curr_course = Curriculum.objects.filter(curriculum_id=curr_id) # grades = Grades.objects.filter(curriculum_id=curr_course) # context= { # 'grades': grades, # 'tab_id' :"2" # } # return render(request,"ais/ais.html", context) # else: # return HttpResponseRedirect('/aims/') return HttpResponseRedirect('/aims/') def confirm_grades(request): # if user_check(request): # return HttpResponseRedirect('/academic-procedures/') # if request.method == "POST": # print("confirm hone wala hai") # print(request.POST) return HttpResponseRedirect('/aims/')
[((4082, 4110), 'applications.academic_procedures.views.acad_proced_global_context', 'acad_proced_global_context', ([], {}), '()\n', (4108, 4110), False, 'from applications.academic_procedures.views import acad_proced_global_context\n'), ((8697, 8737), 'django.shortcuts.render', 'render', (['request', '"""ais/ais.html"""', 'context'], {}), "(request, 'ais/ais.html', context)\n", (8703, 8737), False, 'from django.shortcuts import get_object_or_404, render\n'), ((11436, 11476), 'django.shortcuts.render', 'render', (['request', '"""ais/ais.html"""', 'context'], {}), "(request, 'ais/ais.html', context)\n", (11442, 11476), False, 'from django.shortcuts import get_object_or_404, render\n'), ((14791, 14831), 'django.shortcuts.render', 'render', (['request', '"""ais/ais.html"""', 'context'], {}), "(request, 'ais/ais.html', context)\n", (14797, 14831), False, 'from django.shortcuts import get_object_or_404, render\n'), ((17689, 17729), 'django.shortcuts.render', 'render', (['request', '"""ais/ais.html"""', 'context'], {}), "(request, 'ais/ais.html', context)\n", (17695, 17729), False, 'from django.shortcuts import get_object_or_404, render\n'), ((18935, 18975), 'django.shortcuts.render', 'render', (['request', '"""ais/ais.html"""', 'context'], {}), "(request, 'ais/ais.html', context)\n", (18941, 18975), False, 'from django.shortcuts import get_object_or_404, render\n'), ((21727, 21767), 'django.shortcuts.render', 'render', (['request', '"""ais/ais.html"""', 'context'], {}), "(request, 'ais/ais.html', context)\n", (21733, 21767), False, 'from django.shortcuts import get_object_or_404, render\n'), ((22793, 22833), 'django.shortcuts.render', 'render', (['request', '"""ais/ais.html"""', 'context'], {}), "(request, 'ais/ais.html', context)\n", (22799, 22833), False, 'from django.shortcuts import get_object_or_404, render\n'), ((23862, 23902), 'django.shortcuts.render', 'render', (['request', '"""ais/ais.html"""', 'context'], {}), "(request, 'ais/ais.html', context)\n", (23868, 23902), False, 'from django.shortcuts import get_object_or_404, render\n'), ((26665, 26705), 'django.shortcuts.render', 'render', (['request', '"""ais/ais.html"""', 'context'], {}), "(request, 'ais/ais.html', context)\n", (26671, 26705), False, 'from django.shortcuts import get_object_or_404, render\n'), ((28594, 28634), 'django.shortcuts.render', 'render', (['request', '"""ais/ais.html"""', 'context'], {}), "(request, 'ais/ais.html', context)\n", (28600, 28634), False, 'from django.shortcuts import get_object_or_404, render\n'), ((28847, 28870), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (28868, 28870), False, 'import datetime\n'), ((30898, 30907), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (30905, 30907), False, 'from io import BytesIO\n'), ((30920, 30957), 'xlsxwriter.workbook.Workbook', 'Workbook', (['output', "{'in_memory': True}"], {}), "(output, {'in_memory': True})\n", (30928, 30957), False, 'from xlsxwriter.workbook import Workbook\n'), ((43127, 43167), 'django.shortcuts.render', 'render', (['request', '"""ais/ais.html"""', 'context'], {}), "(request, 'ais/ais.html', context)\n", (43133, 43167), False, 'from django.shortcuts import get_object_or_404, render\n'), ((46080, 46120), 'django.shortcuts.render', 'render', (['request', '"""ais/ais.html"""', 'context'], {}), "(request, 'ais/ais.html', context)\n", (46086, 46120), False, 'from django.shortcuts import get_object_or_404, render\n'), ((48376, 48416), 'django.shortcuts.render', 'render', (['request', '"""ais/ais.html"""', 'context'], {}), "(request, 'ais/ais.html', context)\n", (48382, 48416), False, 'from django.shortcuts import get_object_or_404, render\n'), ((52517, 52557), 'applications.globals.models.Designation.objects.get', 'Designation.objects.get', ([], {'name': '"""Convenor"""'}), "(name='Convenor')\n", (52540, 52557), False, 'from applications.globals.models import Designation, ExtraInfo, HoldsDesignation, DepartmentInfo\n'), ((54212, 54262), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['Designation'], {'name': '"""Co Convenor"""'}), "(Designation, name='Co Convenor')\n", (54229, 54262), False, 'from django.shortcuts import get_object_or_404, render\n'), ((56608, 56638), 'django.http.HttpResponseRedirect', 'HttpResponseRedirect', (['"""/aims/"""'], {}), "('/aims/')\n", (56628, 56638), False, 'from django.http import HttpResponse, HttpResponseRedirect, JsonResponse\n'), ((58785, 58820), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['ExtraInfo'], {'id': 'pk'}), '(ExtraInfo, id=pk)\n', (58802, 58820), False, 'from django.shortcuts import get_object_or_404, render\n'), ((59724, 59779), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['User'], {'username': 'request.user.username'}), '(User, username=request.user.username)\n', (59741, 59779), False, 'from django.shortcuts import get_object_or_404, render\n'), ((61633, 61688), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['User'], {'username': 'request.user.username'}), '(User, username=request.user.username)\n', (61650, 61688), False, 'from django.shortcuts import get_object_or_404, render\n'), ((65709, 65740), 'django.shortcuts.render', 'render', (['request', '"""ais/ais.html"""'], {}), "(request, 'ais/ais.html')\n", (65715, 65740), False, 'from django.shortcuts import get_object_or_404, render\n'), ((67491, 67532), 'django.http.HttpResponse', 'HttpResponse', (['"""Data Deleted SuccessFully"""'], {}), "('Data Deleted SuccessFully')\n", (67503, 67532), False, 'from django.http import HttpResponse, HttpResponseRedirect, JsonResponse\n'), ((68724, 68754), 'django.http.HttpResponseRedirect', 'HttpResponseRedirect', (['"""/aims/"""'], {}), "('/aims/')\n", (68744, 68754), False, 'from django.http import HttpResponse, HttpResponseRedirect, JsonResponse\n'), ((69005, 69035), 'django.http.HttpResponseRedirect', 'HttpResponseRedirect', (['"""/aims/"""'], {}), "('/aims/')\n", (69025, 69035), False, 'from django.http import HttpResponse, HttpResponseRedirect, JsonResponse\n'), ((1939, 1994), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['User'], {'username': 'request.user.username'}), '(User, username=request.user.username)\n', (1956, 1994), False, 'from django.shortcuts import get_object_or_404, render\n'), ((3365, 3410), 'django.http.HttpResponseRedirect', 'HttpResponseRedirect', (['"""/academic-procedures/"""'], {}), "('/academic-procedures/')\n", (3385, 3410), False, 'from django.http import HttpResponse, HttpResponseRedirect, JsonResponse\n'), ((4558, 4579), 'applications.programme_curriculum.models.Course.objects.all', 'Courses.objects.all', ([], {}), '()\n', (4577, 4579), True, 'from applications.programme_curriculum.models import CourseSlot, Course as Courses, Batch, Semester, Programme, Discipline\n'), ((5302, 5336), 'applications.academic_procedures.models.Assistantship_status.objects.all', 'Assistantship_status.objects.all', ([], {}), '()\n', (5334, 5336), False, 'from applications.academic_procedures.models import MinimumCredits, Register, InitialRegistration, course_registration, AssistantshipClaim, Assistantship_status\n'), ((8603, 8648), 'django.http.HttpResponseRedirect', 'HttpResponseRedirect', (['"""/academic-procedures/"""'], {}), "('/academic-procedures/')\n", (8623, 8648), False, 'from django.http import HttpResponse, HttpResponseRedirect, JsonResponse\n'), ((9594, 9639), 'django.http.HttpResponseRedirect', 'HttpResponseRedirect', (['"""/academic-procedures/"""'], {}), "('/academic-procedures/')\n", (9614, 9639), False, 'from django.http import HttpResponse, HttpResponseRedirect, JsonResponse\n'), ((11080, 11207), 'django.template.loader.render_to_string', 'render_to_string', (['"""ais/curr_list.html"""', "{'curriculum': curriculum, 'courses': courses, 'course_type': course_type}", 'request'], {}), "('ais/curr_list.html', {'curriculum': curriculum, 'courses':\n courses, 'course_type': course_type}, request)\n", (11096, 11207), False, 'from django.template.loader import render_to_string\n'), ((11211, 11237), 'json.dumps', 'json.dumps', (["{'html': html}"], {}), "({'html': html})\n", (11221, 11237), False, 'import json\n'), ((11309, 11359), 'django.http.HttpResponse', 'HttpResponse', (['obj'], {'content_type': '"""application/json"""'}), "(obj, content_type='application/json')\n", (11321, 11359), False, 'from django.http import HttpResponse, HttpResponseRedirect, JsonResponse\n'), ((11384, 11424), 'django.shortcuts.render', 'render', (['request', '"""ais/ais.html"""', 'context'], {}), "(request, 'ais/ais.html', context)\n", (11390, 11424), False, 'from django.shortcuts import get_object_or_404, render\n'), ((12370, 12415), 'django.http.HttpResponseRedirect', 'HttpResponseRedirect', (['"""/academic-procedures/"""'], {}), "('/academic-procedures/')\n", (12390, 12415), False, 'from django.http import HttpResponse, HttpResponseRedirect, JsonResponse\n'), ((14673, 14713), 'django.shortcuts.render', 'render', (['request', '"""ais/ais.html"""', 'context'], {}), "(request, 'ais/ais.html', context)\n", (14679, 14713), False, 'from django.shortcuts import get_object_or_404, render\n'), ((14739, 14779), 'django.shortcuts.render', 'render', (['request', '"""ais/ais.html"""', 'context'], {}), "(request, 'ais/ais.html', context)\n", (14745, 14779), False, 'from django.shortcuts import get_object_or_404, render\n'), ((15722, 15767), 'django.http.HttpResponseRedirect', 'HttpResponseRedirect', (['"""/academic-procedures/"""'], {}), "('/academic-procedures/')\n", (15742, 15767), False, 'from django.http import HttpResponse, HttpResponseRedirect, JsonResponse\n'), ((17571, 17611), 'django.shortcuts.render', 'render', (['request', '"""ais/ais.html"""', 'context'], {}), "(request, 'ais/ais.html', context)\n", (17577, 17611), False, 'from django.shortcuts import get_object_or_404, render\n'), ((17637, 17677), 'django.shortcuts.render', 'render', (['request', '"""ais/ais.html"""', 'context'], {}), "(request, 'ais/ais.html', context)\n", (17643, 17677), False, 'from django.shortcuts import get_object_or_404, render\n'), ((18176, 18221), 'django.http.HttpResponseRedirect', 'HttpResponseRedirect', (['"""/academic-procedures/"""'], {}), "('/academic-procedures/')\n", (18196, 18221), False, 'from django.http import HttpResponse, HttpResponseRedirect, JsonResponse\n'), ((18883, 18923), 'django.shortcuts.render', 'render', (['request', '"""ais/ais.html"""', 'context'], {}), "(request, 'ais/ais.html', context)\n", (18889, 18923), False, 'from django.shortcuts import get_object_or_404, render\n'), ((19608, 19653), 'django.http.HttpResponseRedirect', 'HttpResponseRedirect', (['"""/academic-procedures/"""'], {}), "('/academic-procedures/')\n", (19628, 19653), False, 'from django.http import HttpResponse, HttpResponseRedirect, JsonResponse\n'), ((19756, 19779), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (19777, 19779), False, 'import datetime\n'), ((22197, 22242), 'django.http.HttpResponseRedirect', 'HttpResponseRedirect', (['"""/academic-procedures/"""'], {}), "('/academic-procedures/')\n", (22217, 22242), False, 'from django.http import HttpResponse, HttpResponseRedirect, JsonResponse\n'), ((22675, 22715), 'django.shortcuts.render', 'render', (['request', '"""ais/ais.html"""', 'context'], {}), "(request, 'ais/ais.html', context)\n", (22681, 22715), False, 'from django.shortcuts import get_object_or_404, render\n'), ((22741, 22781), 'django.shortcuts.render', 'render', (['request', '"""ais/ais.html"""', 'context'], {}), "(request, 'ais/ais.html', context)\n", (22747, 22781), False, 'from django.shortcuts import get_object_or_404, render\n'), ((23266, 23311), 'django.http.HttpResponseRedirect', 'HttpResponseRedirect', (['"""/academic-procedures/"""'], {}), "('/academic-procedures/')\n", (23286, 23311), False, 'from django.http import HttpResponse, HttpResponseRedirect, JsonResponse\n'), ((23744, 23784), 'django.shortcuts.render', 'render', (['request', '"""ais/ais.html"""', 'context'], {}), "(request, 'ais/ais.html', context)\n", (23750, 23784), False, 'from django.shortcuts import get_object_or_404, render\n'), ((23810, 23850), 'django.shortcuts.render', 'render', (['request', '"""ais/ais.html"""', 'context'], {}), "(request, 'ais/ais.html', context)\n", (23816, 23850), False, 'from django.shortcuts import get_object_or_404, render\n'), ((24273, 24318), 'django.http.HttpResponseRedirect', 'HttpResponseRedirect', (['"""/academic-procedures/"""'], {}), "('/academic-procedures/')\n", (24293, 24318), False, 'from django.http import HttpResponse, HttpResponseRedirect, JsonResponse\n'), ((24484, 24517), 'django.http.HttpResponse', 'HttpResponse', (['"""TimeTable Deleted"""'], {}), "('TimeTable Deleted')\n", (24496, 24517), False, 'from django.http import HttpResponse, HttpResponseRedirect, JsonResponse\n'), ((24887, 24932), 'django.http.HttpResponseRedirect', 'HttpResponseRedirect', (['"""/academic-procedures/"""'], {}), "('/academic-procedures/')\n", (24907, 24932), False, 'from django.http import HttpResponse, HttpResponseRedirect, JsonResponse\n'), ((25108, 25141), 'django.http.HttpResponse', 'HttpResponse', (['"""TimeTable Deleted"""'], {}), "('TimeTable Deleted')\n", (25120, 25141), False, 'from django.http import HttpResponse, HttpResponseRedirect, JsonResponse\n'), ((25660, 25705), 'django.http.HttpResponseRedirect', 'HttpResponseRedirect', (['"""/academic-procedures/"""'], {}), "('/academic-procedures/')\n", (25680, 25705), False, 'from django.http import HttpResponse, HttpResponseRedirect, JsonResponse\n'), ((26622, 26652), 'django.http.HttpResponse', 'HttpResponse', (['"""Calendar Added"""'], {}), "('Calendar Added')\n", (26634, 26652), False, 'from django.http import HttpResponse, HttpResponseRedirect, JsonResponse\n'), ((27366, 27411), 'django.http.HttpResponseRedirect', 'HttpResponseRedirect', (['"""/academic-procedures/"""'], {}), "('/academic-procedures/')\n", (27386, 27411), False, 'from django.http import HttpResponse, HttpResponseRedirect, JsonResponse\n'), ((28542, 28582), 'django.shortcuts.render', 'render', (['request', '"""ais/ais.html"""', 'context'], {}), "(request, 'ais/ais.html', context)\n", (28548, 28582), False, 'from django.shortcuts import get_object_or_404, render\n'), ((30129, 30174), 'django.http.HttpResponseRedirect', 'HttpResponseRedirect', (['"""/academic-procedures/"""'], {}), "('/academic-procedures/')\n", (30149, 30174), False, 'from django.http import HttpResponse, HttpResponseRedirect, JsonResponse\n'), ((30244, 30290), 'applications.programme_curriculum.models.Course.objects.get', 'Courses.objects.get', ([], {'id': "request.POST['course']"}), "(id=request.POST['course'])\n", (30263, 30290), True, 'from applications.programme_curriculum.models import CourseSlot, Course as Courses, Batch, Semester, Programme, Discipline\n'), ((34137, 34182), 'django.http.HttpResponseRedirect', 'HttpResponseRedirect', (['"""/academic-procedures/"""'], {}), "('/academic-procedures/')\n", (34157, 34182), False, 'from django.http import HttpResponse, HttpResponseRedirect, JsonResponse\n'), ((34395, 34494), 'applications.academic_procedures.models.InitialRegistration.objects.filter', 'InitialRegistration.objects.filter', ([], {'student_id__batch_id': 'batch_id', 'semester_id__semester_no': 'sem'}), '(student_id__batch_id=batch_id,\n semester_id__semester_no=sem)\n', (34429, 34494), False, 'from applications.academic_procedures.models import MinimumCredits, Register, InitialRegistration, course_registration, AssistantshipClaim, Assistantship_status\n'), ((35529, 35538), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (35536, 35538), False, 'from io import BytesIO\n'), ((35555, 35592), 'xlsxwriter.workbook.Workbook', 'Workbook', (['output', "{'in_memory': True}"], {}), "(output, {'in_memory': True})\n", (35563, 35592), False, 'from xlsxwriter.workbook import Workbook\n'), ((39378, 39423), 'django.http.HttpResponseRedirect', 'HttpResponseRedirect', (['"""/academic-procedures/"""'], {}), "('/academic-procedures/')\n", (39398, 39423), False, 'from django.http import HttpResponse, HttpResponseRedirect, JsonResponse\n'), ((43075, 43115), 'django.shortcuts.render', 'render', (['request', '"""ais/ais.html"""', 'context'], {}), "(request, 'ais/ais.html', context)\n", (43081, 43115), False, 'from django.shortcuts import get_object_or_404, render\n'), ((43928, 43945), 'itertools.chain', 'chain', (['f1', 'f2', 'f3'], {}), '(f1, f2, f3)\n', (43933, 43945), False, 'from itertools import chain\n'), ((44527, 44572), 'django.http.HttpResponseRedirect', 'HttpResponseRedirect', (['"""/academic-procedures/"""'], {}), "('/academic-procedures/')\n", (44547, 44572), False, 'from django.http import HttpResponse, HttpResponseRedirect, JsonResponse\n'), ((45962, 46002), 'django.shortcuts.render', 'render', (['request', '"""ais/ais.html"""', 'context'], {}), "(request, 'ais/ais.html', context)\n", (45968, 46002), False, 'from django.shortcuts import get_object_or_404, render\n'), ((46028, 46068), 'django.shortcuts.render', 'render', (['request', '"""ais/ais.html"""', 'context'], {}), "(request, 'ais/ais.html', context)\n", (46034, 46068), False, 'from django.shortcuts import get_object_or_404, render\n'), ((46620, 46665), 'django.http.HttpResponseRedirect', 'HttpResponseRedirect', (['"""/academic-procedures/"""'], {}), "('/academic-procedures/')\n", (46640, 46665), False, 'from django.http import HttpResponse, HttpResponseRedirect, JsonResponse\n'), ((41133, 41258), 'django.contrib.auth.models.User.objects.create_user', 'User.objects.create_user', ([], {'username': 'roll_no', 'password': '"""hello123"""', 'first_name': 'first_name', 'last_name': 'last_name', 'email': 'email'}), "(username=roll_no, password='hello123', first_name=\n first_name, last_name=last_name, email=email)\n", (41157, 41258), False, 'from django.contrib.auth.models import User\n'), ((41370, 41547), 'applications.globals.models.ExtraInfo.objects.create', 'ExtraInfo.objects.create', ([], {'id': 'roll_no', 'user': 'user', 'title': 'title', 'sex': 'sex', 'date_of_birth': 'dob', 'address': 'address', 'phone_no': 'phone_no', 'user_type': '"""student"""', 'department': 'department'}), "(id=roll_no, user=user, title=title, sex=sex,\n date_of_birth=dob, address=address, phone_no=phone_no, user_type=\n 'student', department=department)\n", (41394, 41547), False, 'from applications.globals.models import Designation, ExtraInfo, HoldsDesignation, DepartmentInfo\n'), ((42228, 42267), 'applications.globals.models.Designation.objects.get', 'Designation.objects.get', ([], {'name': '"""student"""'}), "(name='student')\n", (42251, 42267), False, 'from applications.globals.models import Designation, ExtraInfo, HoldsDesignation, DepartmentInfo\n'), ((42291, 42366), 'applications.globals.models.HoldsDesignation.objects.create', 'HoldsDesignation.objects.create', ([], {'user': 'user', 'working': 'user', 'designation': 'desig'}), '(user=user, working=user, designation=desig)\n', (42322, 42366), False, 'from applications.globals.models import Designation, ExtraInfo, HoldsDesignation, DepartmentInfo\n'), ((42452, 42518), 'applications.programme_curriculum.models.Semester.objects.get', 'Semester.objects.get', ([], {'curriculum': 'batch.curriculum', 'semester_no': 'sem'}), '(curriculum=batch.curriculum, semester_no=sem)\n', (42472, 42518), False, 'from applications.programme_curriculum.models import CourseSlot, Course as Courses, Batch, Semester, Programme, Discipline\n'), ((43000, 43048), 'applications.academic_procedures.models.course_registration.objects.bulk_create', 'course_registration.objects.bulk_create', (['new_reg'], {}), '(new_reg)\n', (43039, 43048), False, 'from applications.academic_procedures.models import MinimumCredits, Register, InitialRegistration, course_registration, AssistantshipClaim, Assistantship_status\n'), ((45183, 45206), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (45204, 45206), False, 'import datetime\n'), ((2131, 2156), 'applications.globals.models.Designation.objects.all', 'Designation.objects.all', ([], {}), '()\n', (2154, 2156), False, 'from applications.globals.models import Designation, ExtraInfo, HoldsDesignation, DepartmentInfo\n'), ((21487, 21527), 'django.shortcuts.render', 'render', (['request', '"""ais/ais.html"""', 'context'], {}), "(request, 'ais/ais.html', context)\n", (21493, 21527), False, 'from django.shortcuts import get_object_or_404, render\n'), ((21630, 21670), 'django.shortcuts.render', 'render', (['request', '"""ais/ais.html"""', 'context'], {}), "(request, 'ais/ais.html', context)\n", (21636, 21670), False, 'from django.shortcuts import get_object_or_404, render\n'), ((30307, 30340), 'applications.academic_procedures.models.course_registration.objects.all', 'course_registration.objects.all', ([], {}), '()\n', (30338, 30340), False, 'from applications.academic_procedures.models import MinimumCredits, Register, InitialRegistration, course_registration, AssistantshipClaim, Assistantship_status\n'), ((34337, 34370), 'applications.programme_curriculum.models.Batch.objects.filter', 'Batch.objects.filter', ([], {'id': 'batch_id'}), '(id=batch_id)\n', (34357, 34370), False, 'from applications.programme_curriculum.models import Batch\n'), ((42797, 42871), 'applications.academic_procedures.models.course_registration', 'course_registration', ([], {'course_id': 'c', 'semester_id': 'sem_id', 'student_id': 'stud_data'}), '(course_id=c, semester_id=sem_id, student_id=stud_data)\n', (42816, 42871), False, 'from applications.academic_procedures.models import MinimumCredits, Register, InitialRegistration, course_registration, AssistantshipClaim, Assistantship_status\n'), ((43485, 43526), 'applications.globals.models.HoldsDesignation.objects.select_related', 'HoldsDesignation.objects.select_related', ([], {}), '()\n', (43524, 43526), False, 'from applications.globals.models import Designation, ExtraInfo, HoldsDesignation, DepartmentInfo\n'), ((43546, 43597), 'applications.globals.models.Designation.objects.get', 'Designation.objects.get', ([], {'name': '"""Assistant Professor"""'}), "(name='Assistant Professor')\n", (43569, 43597), False, 'from applications.globals.models import Designation, ExtraInfo, HoldsDesignation, DepartmentInfo\n'), ((43614, 43655), 'applications.globals.models.HoldsDesignation.objects.select_related', 'HoldsDesignation.objects.select_related', ([], {}), '()\n', (43653, 43655), False, 'from applications.globals.models import Designation, ExtraInfo, HoldsDesignation, DepartmentInfo\n'), ((43675, 43716), 'applications.globals.models.Designation.objects.get', 'Designation.objects.get', ([], {'name': '"""Professor"""'}), "(name='Professor')\n", (43698, 43716), False, 'from applications.globals.models import Designation, ExtraInfo, HoldsDesignation, DepartmentInfo\n'), ((43733, 43774), 'applications.globals.models.HoldsDesignation.objects.select_related', 'HoldsDesignation.objects.select_related', ([], {}), '()\n', (43772, 43774), False, 'from applications.globals.models import Designation, ExtraInfo, HoldsDesignation, DepartmentInfo\n'), ((43794, 43845), 'applications.globals.models.Designation.objects.get', 'Designation.objects.get', ([], {'name': '"""Associate Professor"""'}), "(name='Associate Professor')\n", (43817, 43845), False, 'from applications.globals.models import Designation, ExtraInfo, HoldsDesignation, DepartmentInfo\n'), ((26181, 26210), 'datetime.datetime', 'datetime.datetime', (['*from_date'], {}), '(*from_date)\n', (26198, 26210), False, 'import datetime\n'), ((26332, 26359), 'datetime.datetime', 'datetime.datetime', (['*to_date'], {}), '(*to_date)\n', (26349, 26359), False, 'import datetime\n'), ((27948, 27977), 'datetime.datetime', 'datetime.datetime', (['*from_date'], {}), '(*from_date)\n', (27965, 27977), False, 'import datetime\n'), ((28099, 28126), 'datetime.datetime', 'datetime.datetime', (['*to_date'], {}), '(*to_date)\n', (28116, 28126), False, 'import datetime\n'), ((40181, 40226), 'xlrd.xldate_as_tuple', 'xlrd.xldate_as_tuple', (['dob_tmp', 'excel.datemode'], {}), '(dob_tmp, excel.datemode)\n', (40201, 40226), False, 'import xlrd\n'), ((42550, 42574), 'applications.programme_curriculum.models.CourseSlot.objects.all', 'CourseSlot.objects.all', ([], {}), '()\n', (42572, 42574), False, 'from applications.programme_curriculum.models import CourseSlot, Course as Courses, Batch, Semester, Programme, Discipline\n'), ((46970, 46999), 'logging.warning', 'logging.warning', (['"""No faculty"""'], {}), "('No faculty')\n", (46985, 46999), False, 'import logging\n'), ((40643, 40671), 'applications.globals.models.DepartmentInfo.objects.all', 'DepartmentInfo.objects.all', ([], {}), '()\n', (40669, 40671), False, 'from applications.globals.models import Designation, ExtraInfo, HoldsDesignation, DepartmentInfo\n'), ((41008, 41027), 'applications.programme_curriculum.models.Batch.objects.all', 'Batch.objects.all', ([], {}), '()\n', (41025, 41027), False, 'from applications.programme_curriculum.models import Batch\n'), ((47381, 47416), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['User'], {'username': 'i'}), '(User, username=i)\n', (47398, 47416), False, 'from django.shortcuts import get_object_or_404, render\n'), ((49445, 49475), 'applications.globals.models.HoldsDesignation.objects.all', 'HoldsDesignation.objects.all', ([], {}), '()\n', (49473, 49475), False, 'from applications.globals.models import Designation, ExtraInfo, HoldsDesignation, DepartmentInfo\n'), ((55434, 55464), 'applications.globals.models.HoldsDesignation.objects.all', 'HoldsDesignation.objects.all', ([], {}), '()\n', (55462, 55464), False, 'from applications.globals.models import Designation, ExtraInfo, HoldsDesignation, DepartmentInfo\n'), ((2018, 2041), 'applications.globals.models.ExtraInfo.objects.all', 'ExtraInfo.objects.all', ([], {}), '()\n', (2039, 2041), False, 'from applications.globals.models import Designation, ExtraInfo, HoldsDesignation, DepartmentInfo\n'), ((2208, 2238), 'applications.globals.models.HoldsDesignation.objects.all', 'HoldsDesignation.objects.all', ([], {}), '()\n', (2236, 2238), False, 'from applications.globals.models import Designation, ExtraInfo, HoldsDesignation, DepartmentInfo\n'), ((4848, 4908), 'applications.academic_procedures.models.AssistantshipClaim.objects.filter', 'AssistantshipClaim.objects.filter', ([], {'ta_supervisor_remark': '(True)'}), '(ta_supervisor_remark=True)\n', (4881, 4908), False, 'from applications.academic_procedures.models import MinimumCredits, Register, InitialRegistration, course_registration, AssistantshipClaim, Assistantship_status\n'), ((5041, 5101), 'applications.academic_procedures.models.AssistantshipClaim.objects.filter', 'AssistantshipClaim.objects.filter', ([], {'ta_supervisor_remark': '(True)'}), '(ta_supervisor_remark=True)\n', (5074, 5101), False, 'from applications.academic_procedures.models import MinimumCredits, Register, InitialRegistration, course_registration, AssistantshipClaim, Assistantship_status\n'), ((47454, 47508), 'applications.globals.models.ExtraInfo.objects.select_related', 'ExtraInfo.objects.select_related', (['"""user"""', '"""department"""'], {}), "('user', 'department')\n", (47486, 47508), False, 'from applications.globals.models import Designation, ExtraInfo, HoldsDesignation, DepartmentInfo\n')]
laoyigrace/subject
subject/tests/functional/test_glance_replicator.py
e6ed989fdc250917a19788112b22322b73b3550f
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Functional test cases for subject-replicator""" import sys from subject.tests import functional from subject.tests.utils import execute class TestGlanceReplicator(functional.FunctionalTest): """Functional tests for subject-replicator""" def test_compare(self): # Test for issue: https://bugs.launchpad.net/glance/+bug/1598928 cmd = ('%s -m subject.cmd.replicator ' 'compare az1:9292 az2:9292 --debug' % (sys.executable,)) exitcode, out, err = execute(cmd, raise_error=False) self.assertIn( 'Request: GET http://az1:9292/v1/subjects/detail?is_public=None', err )
[((1086, 1117), 'subject.tests.utils.execute', 'execute', (['cmd'], {'raise_error': '(False)'}), '(cmd, raise_error=False)\n', (1093, 1117), False, 'from subject.tests.utils import execute\n')]
OmoMicheal/marketanalysis
test/countries/test_united_states.py
ddc2476ec918a28658e64574e89d8944cee75617
# -*- coding: utf-8 -*- # marketanalysis # ---------------- # A fast, efficient Python library for generating country, province and state # specific sets of marketmarketholidayss on the fly. It aims to make determining whether a # specific date is a holiday as fast and flexible as possible. # # Author: MichealOmojola <momojola@aust.edu.ng> # Website: https://github.com/OmoMicheal/trading_days # License: MIT (see LICENSE file) # Version: 0.1 (April 7, 2021) import unittest from datetime import date from dateutil.relativedelta import relativedelta # import sys # sys.path.insert(0, 'C:/Users/momojola/projects/marketanalysis/marketanalysis/') from marketanalysis import marketholidays from marketanalysis import markettradingdays class TestUS(unittest.TestCase): def setUp(self): self.marketholidayss = marketholidays.USA(observed=False) self.markettradingdayss = markettradingdays.USA() def test_new_years(self): self.assertNotIn(date(2010, 12, 31), self.marketholidayss) self.assertNotIn(date(2017, 1, 2), self.marketholidayss) self.marketholidayss.observed = True self.assertIn(date(2010, 12, 31), self.marketholidayss) self.assertIn(date(2017, 1, 2), self.marketholidayss) self.marketholidayss.observed = False for year in range(1900, 2100): dt = date(year, 1, 1) self.assertIn(dt, self.marketholidayss) self.assertNotIn(dt + relativedelta(days=-1), self.marketholidayss) self.assertNotIn(dt + relativedelta(days=+1), self.marketholidayss) def test_martin_luther(self): for dt in [ date(1986, 1, 20), date(1999, 1, 18), date(2000, 1, 17), date(2012, 1, 16), date(2013, 1, 21), date(2014, 1, 20), date(2015, 1, 19), date(2016, 1, 18), date(2020, 1, 20), ]: self.assertIn(dt, self.marketholidayss) self.assertNotIn(dt + relativedelta(days=-1), self.marketholidayss) self.assertNotIn(dt + relativedelta(days=+1), self.marketholidayss) def test_washingtons_birthday(self): de_marketholidayss = marketholidays.US() for dt in [ date(1969, 2, 22), date(1970, 2, 22), date(1971, 2, 15), date(1997, 2, 17), date(1999, 2, 15), date(2000, 2, 21), date(2012, 2, 20), date(2013, 2, 18), date(2014, 2, 17), date(2015, 2, 16), date(2016, 2, 15), date(2020, 2, 17), ]: self.assertIn(dt, self.marketholidayss) self.assertNotIn(dt + relativedelta(days=-1), self.marketholidayss) self.assertNotIn(dt + relativedelta(days=+1), self.marketholidayss) self.assertIn(dt, de_marketholidayss) self.assertEqual(marketholidays.US().get("2015-02-16"), "Presidents' Day") def test_good_friday(self): marketholidayss_US = marketholidays.US() for dt in [ date(1900, 4, 13), date(1901, 4, 5), date(1902, 3, 28), date(1999, 4, 2), date(2000, 4, 21), date(2010, 4, 2), date(2018, 3, 30), date(2019, 4, 19), date(2020, 4, 10), ]: self.assertIn(dt, self.marketholidayss) self.assertIn(dt, marketholidayss_US) def test_memorial_day(self): for dt in [ date(1969, 5, 30), date(1970, 5, 30), date(1971, 5, 31), date(1997, 5, 26), date(1999, 5, 31), date(2000, 5, 29), date(2012, 5, 28), date(2013, 5, 27), date(2014, 5, 26), date(2015, 5, 25), date(2016, 5, 30), date(2020, 5, 25), ]: self.assertIn(dt, self.marketholidayss) self.assertNotIn(dt + relativedelta(days=-1), self.marketholidayss) self.assertNotIn(dt + relativedelta(days=+1), self.marketholidayss) def test_independence_day(self): for year in range(1900, 2100): dt = date(year, 7, 4) self.assertIn(dt, self.marketholidayss) self.assertNotIn(dt + relativedelta(days=-1), self.marketholidayss) self.assertNotIn(dt + relativedelta(days=+1), self.marketholidayss) self.assertNotIn(date(2010, 7, 5), self.marketholidayss) self.assertNotIn(date(2020, 7, 3), self.marketholidayss) self.marketholidayss.observed = True self.assertIn(date(2010, 7, 5), self.marketholidayss) self.assertIn(date(2020, 7, 3), self.marketholidayss) def test_labor_day(self): for dt in [ date(1997, 9, 1), date(1999, 9, 6), date(2000, 9, 4), date(2012, 9, 3), date(2013, 9, 2), date(2014, 9, 1), date(2015, 9, 7), date(2016, 9, 5), date(2020, 9, 7), ]: self.assertIn(dt, self.marketholidayss) self.assertNotIn(dt + relativedelta(days=-1), self.marketholidayss) self.assertNotIn(dt + relativedelta(days=+1), self.marketholidayss) def test_thanksgiving_day(self): for dt in [ date(1997, 11, 27), date(1999, 11, 25), date(2000, 11, 23), date(2012, 11, 22), date(2013, 11, 28), date(2014, 11, 27), date(2015, 11, 26), date(2016, 11, 24), date(2020, 11, 26), ]: self.assertNotIn(dt, self.marketholidayss) self.assertNotIn(dt + relativedelta(days=-1), self.marketholidayss) self.assertNotIn(dt + relativedelta(days=+1), self.marketholidayss) def test_christmas_eve(self): as_marketholidayss = marketholidays.US() self.marketholidayss.observed = False for year in range(1900, 2050): self.assertNotIn(date(year, 12, 24), self.marketholidayss) # self.assertIn(date(year, 12, 24), as_marketholidayss) self.assertNotIn(date(2016, 12, 23), as_marketholidayss) self.assertNotIn( "Christmas Eve (Observed)", as_marketholidayss.get_list(date(2017, 12, 22)), ) def test_christmas_day(self): for year in range(1900, 2100): dt = date(year, 12, 25) self.assertIn(dt, self.marketholidayss) self.assertNotIn(dt + relativedelta(days=-1), self.marketholidayss) self.assertNotIn(dt + relativedelta(days=+1), self.marketholidayss) self.assertNotIn(date(2010, 12, 24), self.marketholidayss) self.assertNotIn(date(2016, 12, 26), self.marketholidayss) self.marketholidayss.observed = True self.assertIn(date(2010, 12, 24), self.marketholidayss) self.assertIn(date(2016, 12, 26), self.marketholidayss) def test_day_after_christmas(self): nc_marketholidayss = marketholidays.US(observed=False) self.assertNotIn(date(2015, 12, 28), nc_marketholidayss) self.assertNotIn(date(2016, 12, 27), nc_marketholidayss) nc_marketholidayss.observed = True def test_new_years_eve(self): ky_marketholidayss = marketholidays.US() self.assertNotIn(date(2012, 12, 31), ky_marketholidayss) for dt in [date(2013, 12, 31), date(2016, 12, 30)]: self.assertNotIn(dt, self.marketholidayss) self.assertNotIn(dt, ky_marketholidayss) def test_future_list(self): current_date = '2021-04-13' lookup_step = 10 self.assertIn(date(2021, 4, 16), self.markettradingdayss.future_list(current_date, lookup_step)) self.assertNotIn(date(2021, 4, 18), self.markettradingdayss.future_list(current_date, lookup_step)) def test_prevDays(self): current_date = '2021-04-13' lookback_step = 4 self.assertIn(date(2021, 4, 9), self.markettradingdayss.prevDays(current_date, lookback_step)) self.assertNotIn(date(2021, 4, 11), self.markettradingdayss.prevDays(current_date, lookback_step)) def test_BtwDates(self): current_date = '2021-04-13' future_date = '2021-04-20' self.assertIn(date(2021, 4, 15), self.markettradingdayss.BtwDates(current_date, future_date)) self.assertNotIn(date(2021, 4, 18), self.markettradingdayss.BtwDates(current_date, future_date)) # if __name__ == "__main__": # unittest.main()
[((836, 870), 'marketanalysis.marketholidays.USA', 'marketholidays.USA', ([], {'observed': '(False)'}), '(observed=False)\n', (854, 870), False, 'from marketanalysis import marketholidays\n'), ((905, 928), 'marketanalysis.markettradingdays.USA', 'markettradingdays.USA', ([], {}), '()\n', (926, 928), False, 'from marketanalysis import markettradingdays\n'), ((2228, 2247), 'marketanalysis.marketholidays.US', 'marketholidays.US', ([], {}), '()\n', (2245, 2247), False, 'from marketanalysis import marketholidays\n'), ((3070, 3089), 'marketanalysis.marketholidays.US', 'marketholidays.US', ([], {}), '()\n', (3087, 3089), False, 'from marketanalysis import marketholidays\n'), ((5956, 5975), 'marketanalysis.marketholidays.US', 'marketholidays.US', ([], {}), '()\n', (5973, 5975), False, 'from marketanalysis import marketholidays\n'), ((7109, 7142), 'marketanalysis.marketholidays.US', 'marketholidays.US', ([], {'observed': '(False)'}), '(observed=False)\n', (7126, 7142), False, 'from marketanalysis import marketholidays\n'), ((7398, 7417), 'marketanalysis.marketholidays.US', 'marketholidays.US', ([], {}), '()\n', (7415, 7417), False, 'from marketanalysis import marketholidays\n'), ((985, 1003), 'datetime.date', 'date', (['(2010)', '(12)', '(31)'], {}), '(2010, 12, 31)\n', (989, 1003), False, 'from datetime import date\n'), ((1052, 1068), 'datetime.date', 'date', (['(2017)', '(1)', '(2)'], {}), '(2017, 1, 2)\n', (1056, 1068), False, 'from datetime import date\n'), ((1159, 1177), 'datetime.date', 'date', (['(2010)', '(12)', '(31)'], {}), '(2010, 12, 31)\n', (1163, 1177), False, 'from datetime import date\n'), ((1223, 1239), 'datetime.date', 'date', (['(2017)', '(1)', '(2)'], {}), '(2017, 1, 2)\n', (1227, 1239), False, 'from datetime import date\n'), ((1365, 1381), 'datetime.date', 'date', (['year', '(1)', '(1)'], {}), '(year, 1, 1)\n', (1369, 1381), False, 'from datetime import date\n'), ((1662, 1679), 'datetime.date', 'date', (['(1986)', '(1)', '(20)'], {}), '(1986, 1, 20)\n', (1666, 1679), False, 'from datetime import date\n'), ((1693, 1710), 'datetime.date', 'date', (['(1999)', '(1)', '(18)'], {}), '(1999, 1, 18)\n', (1697, 1710), False, 'from datetime import date\n'), ((1724, 1741), 'datetime.date', 'date', (['(2000)', '(1)', '(17)'], {}), '(2000, 1, 17)\n', (1728, 1741), False, 'from datetime import date\n'), ((1755, 1772), 'datetime.date', 'date', (['(2012)', '(1)', '(16)'], {}), '(2012, 1, 16)\n', (1759, 1772), False, 'from datetime import date\n'), ((1786, 1803), 'datetime.date', 'date', (['(2013)', '(1)', '(21)'], {}), '(2013, 1, 21)\n', (1790, 1803), False, 'from datetime import date\n'), ((1817, 1834), 'datetime.date', 'date', (['(2014)', '(1)', '(20)'], {}), '(2014, 1, 20)\n', (1821, 1834), False, 'from datetime import date\n'), ((1848, 1865), 'datetime.date', 'date', (['(2015)', '(1)', '(19)'], {}), '(2015, 1, 19)\n', (1852, 1865), False, 'from datetime import date\n'), ((1879, 1896), 'datetime.date', 'date', (['(2016)', '(1)', '(18)'], {}), '(2016, 1, 18)\n', (1883, 1896), False, 'from datetime import date\n'), ((1910, 1927), 'datetime.date', 'date', (['(2020)', '(1)', '(20)'], {}), '(2020, 1, 20)\n', (1914, 1927), False, 'from datetime import date\n'), ((2280, 2297), 'datetime.date', 'date', (['(1969)', '(2)', '(22)'], {}), '(1969, 2, 22)\n', (2284, 2297), False, 'from datetime import date\n'), ((2311, 2328), 'datetime.date', 'date', (['(1970)', '(2)', '(22)'], {}), '(1970, 2, 22)\n', (2315, 2328), False, 'from datetime import date\n'), ((2342, 2359), 'datetime.date', 'date', (['(1971)', '(2)', '(15)'], {}), '(1971, 2, 15)\n', (2346, 2359), False, 'from datetime import date\n'), ((2373, 2390), 'datetime.date', 'date', (['(1997)', '(2)', '(17)'], {}), '(1997, 2, 17)\n', (2377, 2390), False, 'from datetime import date\n'), ((2404, 2421), 'datetime.date', 'date', (['(1999)', '(2)', '(15)'], {}), '(1999, 2, 15)\n', (2408, 2421), False, 'from datetime import date\n'), ((2435, 2452), 'datetime.date', 'date', (['(2000)', '(2)', '(21)'], {}), '(2000, 2, 21)\n', (2439, 2452), False, 'from datetime import date\n'), ((2466, 2483), 'datetime.date', 'date', (['(2012)', '(2)', '(20)'], {}), '(2012, 2, 20)\n', (2470, 2483), False, 'from datetime import date\n'), ((2497, 2514), 'datetime.date', 'date', (['(2013)', '(2)', '(18)'], {}), '(2013, 2, 18)\n', (2501, 2514), False, 'from datetime import date\n'), ((2528, 2545), 'datetime.date', 'date', (['(2014)', '(2)', '(17)'], {}), '(2014, 2, 17)\n', (2532, 2545), False, 'from datetime import date\n'), ((2559, 2576), 'datetime.date', 'date', (['(2015)', '(2)', '(16)'], {}), '(2015, 2, 16)\n', (2563, 2576), False, 'from datetime import date\n'), ((2590, 2607), 'datetime.date', 'date', (['(2016)', '(2)', '(15)'], {}), '(2016, 2, 15)\n', (2594, 2607), False, 'from datetime import date\n'), ((2621, 2638), 'datetime.date', 'date', (['(2020)', '(2)', '(17)'], {}), '(2020, 2, 17)\n', (2625, 2638), False, 'from datetime import date\n'), ((3122, 3139), 'datetime.date', 'date', (['(1900)', '(4)', '(13)'], {}), '(1900, 4, 13)\n', (3126, 3139), False, 'from datetime import date\n'), ((3153, 3169), 'datetime.date', 'date', (['(1901)', '(4)', '(5)'], {}), '(1901, 4, 5)\n', (3157, 3169), False, 'from datetime import date\n'), ((3183, 3200), 'datetime.date', 'date', (['(1902)', '(3)', '(28)'], {}), '(1902, 3, 28)\n', (3187, 3200), False, 'from datetime import date\n'), ((3214, 3230), 'datetime.date', 'date', (['(1999)', '(4)', '(2)'], {}), '(1999, 4, 2)\n', (3218, 3230), False, 'from datetime import date\n'), ((3244, 3261), 'datetime.date', 'date', (['(2000)', '(4)', '(21)'], {}), '(2000, 4, 21)\n', (3248, 3261), False, 'from datetime import date\n'), ((3275, 3291), 'datetime.date', 'date', (['(2010)', '(4)', '(2)'], {}), '(2010, 4, 2)\n', (3279, 3291), False, 'from datetime import date\n'), ((3305, 3322), 'datetime.date', 'date', (['(2018)', '(3)', '(30)'], {}), '(2018, 3, 30)\n', (3309, 3322), False, 'from datetime import date\n'), ((3336, 3353), 'datetime.date', 'date', (['(2019)', '(4)', '(19)'], {}), '(2019, 4, 19)\n', (3340, 3353), False, 'from datetime import date\n'), ((3367, 3384), 'datetime.date', 'date', (['(2020)', '(4)', '(10)'], {}), '(2020, 4, 10)\n', (3371, 3384), False, 'from datetime import date\n'), ((3566, 3583), 'datetime.date', 'date', (['(1969)', '(5)', '(30)'], {}), '(1969, 5, 30)\n', (3570, 3583), False, 'from datetime import date\n'), ((3597, 3614), 'datetime.date', 'date', (['(1970)', '(5)', '(30)'], {}), '(1970, 5, 30)\n', (3601, 3614), False, 'from datetime import date\n'), ((3628, 3645), 'datetime.date', 'date', (['(1971)', '(5)', '(31)'], {}), '(1971, 5, 31)\n', (3632, 3645), False, 'from datetime import date\n'), ((3659, 3676), 'datetime.date', 'date', (['(1997)', '(5)', '(26)'], {}), '(1997, 5, 26)\n', (3663, 3676), False, 'from datetime import date\n'), ((3690, 3707), 'datetime.date', 'date', (['(1999)', '(5)', '(31)'], {}), '(1999, 5, 31)\n', (3694, 3707), False, 'from datetime import date\n'), ((3721, 3738), 'datetime.date', 'date', (['(2000)', '(5)', '(29)'], {}), '(2000, 5, 29)\n', (3725, 3738), False, 'from datetime import date\n'), ((3752, 3769), 'datetime.date', 'date', (['(2012)', '(5)', '(28)'], {}), '(2012, 5, 28)\n', (3756, 3769), False, 'from datetime import date\n'), ((3783, 3800), 'datetime.date', 'date', (['(2013)', '(5)', '(27)'], {}), '(2013, 5, 27)\n', (3787, 3800), False, 'from datetime import date\n'), ((3814, 3831), 'datetime.date', 'date', (['(2014)', '(5)', '(26)'], {}), '(2014, 5, 26)\n', (3818, 3831), False, 'from datetime import date\n'), ((3845, 3862), 'datetime.date', 'date', (['(2015)', '(5)', '(25)'], {}), '(2015, 5, 25)\n', (3849, 3862), False, 'from datetime import date\n'), ((3876, 3893), 'datetime.date', 'date', (['(2016)', '(5)', '(30)'], {}), '(2016, 5, 30)\n', (3880, 3893), False, 'from datetime import date\n'), ((3907, 3924), 'datetime.date', 'date', (['(2020)', '(5)', '(25)'], {}), '(2020, 5, 25)\n', (3911, 3924), False, 'from datetime import date\n'), ((4247, 4263), 'datetime.date', 'date', (['year', '(7)', '(4)'], {}), '(year, 7, 4)\n', (4251, 4263), False, 'from datetime import date\n'), ((4501, 4517), 'datetime.date', 'date', (['(2010)', '(7)', '(5)'], {}), '(2010, 7, 5)\n', (4505, 4517), False, 'from datetime import date\n'), ((4566, 4582), 'datetime.date', 'date', (['(2020)', '(7)', '(3)'], {}), '(2020, 7, 3)\n', (4570, 4582), False, 'from datetime import date\n'), ((4673, 4689), 'datetime.date', 'date', (['(2010)', '(7)', '(5)'], {}), '(2010, 7, 5)\n', (4677, 4689), False, 'from datetime import date\n'), ((4735, 4751), 'datetime.date', 'date', (['(2020)', '(7)', '(3)'], {}), '(2020, 7, 3)\n', (4739, 4751), False, 'from datetime import date\n'), ((4838, 4854), 'datetime.date', 'date', (['(1997)', '(9)', '(1)'], {}), '(1997, 9, 1)\n', (4842, 4854), False, 'from datetime import date\n'), ((4868, 4884), 'datetime.date', 'date', (['(1999)', '(9)', '(6)'], {}), '(1999, 9, 6)\n', (4872, 4884), False, 'from datetime import date\n'), ((4898, 4914), 'datetime.date', 'date', (['(2000)', '(9)', '(4)'], {}), '(2000, 9, 4)\n', (4902, 4914), False, 'from datetime import date\n'), ((4928, 4944), 'datetime.date', 'date', (['(2012)', '(9)', '(3)'], {}), '(2012, 9, 3)\n', (4932, 4944), False, 'from datetime import date\n'), ((4958, 4974), 'datetime.date', 'date', (['(2013)', '(9)', '(2)'], {}), '(2013, 9, 2)\n', (4962, 4974), False, 'from datetime import date\n'), ((4988, 5004), 'datetime.date', 'date', (['(2014)', '(9)', '(1)'], {}), '(2014, 9, 1)\n', (4992, 5004), False, 'from datetime import date\n'), ((5018, 5034), 'datetime.date', 'date', (['(2015)', '(9)', '(7)'], {}), '(2015, 9, 7)\n', (5022, 5034), False, 'from datetime import date\n'), ((5048, 5064), 'datetime.date', 'date', (['(2016)', '(9)', '(5)'], {}), '(2016, 9, 5)\n', (5052, 5064), False, 'from datetime import date\n'), ((5078, 5094), 'datetime.date', 'date', (['(2020)', '(9)', '(7)'], {}), '(2020, 9, 7)\n', (5082, 5094), False, 'from datetime import date\n'), ((5389, 5407), 'datetime.date', 'date', (['(1997)', '(11)', '(27)'], {}), '(1997, 11, 27)\n', (5393, 5407), False, 'from datetime import date\n'), ((5421, 5439), 'datetime.date', 'date', (['(1999)', '(11)', '(25)'], {}), '(1999, 11, 25)\n', (5425, 5439), False, 'from datetime import date\n'), ((5453, 5471), 'datetime.date', 'date', (['(2000)', '(11)', '(23)'], {}), '(2000, 11, 23)\n', (5457, 5471), False, 'from datetime import date\n'), ((5485, 5503), 'datetime.date', 'date', (['(2012)', '(11)', '(22)'], {}), '(2012, 11, 22)\n', (5489, 5503), False, 'from datetime import date\n'), ((5517, 5535), 'datetime.date', 'date', (['(2013)', '(11)', '(28)'], {}), '(2013, 11, 28)\n', (5521, 5535), False, 'from datetime import date\n'), ((5549, 5567), 'datetime.date', 'date', (['(2014)', '(11)', '(27)'], {}), '(2014, 11, 27)\n', (5553, 5567), False, 'from datetime import date\n'), ((5581, 5599), 'datetime.date', 'date', (['(2015)', '(11)', '(26)'], {}), '(2015, 11, 26)\n', (5585, 5599), False, 'from datetime import date\n'), ((5613, 5631), 'datetime.date', 'date', (['(2016)', '(11)', '(24)'], {}), '(2016, 11, 24)\n', (5617, 5631), False, 'from datetime import date\n'), ((5645, 5663), 'datetime.date', 'date', (['(2020)', '(11)', '(26)'], {}), '(2020, 11, 26)\n', (5649, 5663), False, 'from datetime import date\n'), ((6225, 6243), 'datetime.date', 'date', (['(2016)', '(12)', '(23)'], {}), '(2016, 12, 23)\n', (6229, 6243), False, 'from datetime import date\n'), ((6501, 6519), 'datetime.date', 'date', (['year', '(12)', '(25)'], {}), '(year, 12, 25)\n', (6505, 6519), False, 'from datetime import date\n'), ((6757, 6775), 'datetime.date', 'date', (['(2010)', '(12)', '(24)'], {}), '(2010, 12, 24)\n', (6761, 6775), False, 'from datetime import date\n'), ((6824, 6842), 'datetime.date', 'date', (['(2016)', '(12)', '(26)'], {}), '(2016, 12, 26)\n', (6828, 6842), False, 'from datetime import date\n'), ((6933, 6951), 'datetime.date', 'date', (['(2010)', '(12)', '(24)'], {}), '(2010, 12, 24)\n', (6937, 6951), False, 'from datetime import date\n'), ((6997, 7015), 'datetime.date', 'date', (['(2016)', '(12)', '(26)'], {}), '(2016, 12, 26)\n', (7001, 7015), False, 'from datetime import date\n'), ((7168, 7186), 'datetime.date', 'date', (['(2015)', '(12)', '(28)'], {}), '(2015, 12, 28)\n', (7172, 7186), False, 'from datetime import date\n'), ((7233, 7251), 'datetime.date', 'date', (['(2016)', '(12)', '(27)'], {}), '(2016, 12, 27)\n', (7237, 7251), False, 'from datetime import date\n'), ((7443, 7461), 'datetime.date', 'date', (['(2012)', '(12)', '(31)'], {}), '(2012, 12, 31)\n', (7447, 7461), False, 'from datetime import date\n'), ((7502, 7520), 'datetime.date', 'date', (['(2013)', '(12)', '(31)'], {}), '(2013, 12, 31)\n', (7506, 7520), False, 'from datetime import date\n'), ((7522, 7540), 'datetime.date', 'date', (['(2016)', '(12)', '(30)'], {}), '(2016, 12, 30)\n', (7526, 7540), False, 'from datetime import date\n'), ((7779, 7796), 'datetime.date', 'date', (['(2021)', '(4)', '(16)'], {}), '(2021, 4, 16)\n', (7783, 7796), False, 'from datetime import date\n'), ((7887, 7904), 'datetime.date', 'date', (['(2021)', '(4)', '(18)'], {}), '(2021, 4, 18)\n', (7891, 7904), False, 'from datetime import date\n'), ((8092, 8108), 'datetime.date', 'date', (['(2021)', '(4)', '(9)'], {}), '(2021, 4, 9)\n', (8096, 8108), False, 'from datetime import date\n'), ((8198, 8215), 'datetime.date', 'date', (['(2021)', '(4)', '(11)'], {}), '(2021, 4, 11)\n', (8202, 8215), False, 'from datetime import date\n'), ((8403, 8420), 'datetime.date', 'date', (['(2021)', '(4)', '(15)'], {}), '(2021, 4, 15)\n', (8407, 8420), False, 'from datetime import date\n'), ((8508, 8525), 'datetime.date', 'date', (['(2021)', '(4)', '(18)'], {}), '(2021, 4, 18)\n', (8512, 8525), False, 'from datetime import date\n'), ((6090, 6108), 'datetime.date', 'date', (['year', '(12)', '(24)'], {}), '(year, 12, 24)\n', (6094, 6108), False, 'from datetime import date\n'), ((6371, 6389), 'datetime.date', 'date', (['(2017)', '(12)', '(22)'], {}), '(2017, 12, 22)\n', (6375, 6389), False, 'from datetime import date\n'), ((1468, 1490), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': '(-1)'}), '(days=-1)\n', (1481, 1490), False, 'from dateutil.relativedelta import relativedelta\n'), ((1548, 1570), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': '(+1)'}), '(days=+1)\n', (1561, 1570), False, 'from dateutil.relativedelta import relativedelta\n'), ((2026, 2048), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': '(-1)'}), '(days=-1)\n', (2039, 2048), False, 'from dateutil.relativedelta import relativedelta\n'), ((2106, 2128), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': '(+1)'}), '(days=+1)\n', (2119, 2128), False, 'from dateutil.relativedelta import relativedelta\n'), ((2737, 2759), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': '(-1)'}), '(days=-1)\n', (2750, 2759), False, 'from dateutil.relativedelta import relativedelta\n'), ((2817, 2839), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': '(+1)'}), '(days=+1)\n', (2830, 2839), False, 'from dateutil.relativedelta import relativedelta\n'), ((2942, 2961), 'marketanalysis.marketholidays.US', 'marketholidays.US', ([], {}), '()\n', (2959, 2961), False, 'from marketanalysis import marketholidays\n'), ((4023, 4045), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': '(-1)'}), '(days=-1)\n', (4036, 4045), False, 'from dateutil.relativedelta import relativedelta\n'), ((4103, 4125), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': '(+1)'}), '(days=+1)\n', (4116, 4125), False, 'from dateutil.relativedelta import relativedelta\n'), ((4350, 4372), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': '(-1)'}), '(days=-1)\n', (4363, 4372), False, 'from dateutil.relativedelta import relativedelta\n'), ((4430, 4452), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': '(+1)'}), '(days=+1)\n', (4443, 4452), False, 'from dateutil.relativedelta import relativedelta\n'), ((5193, 5215), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': '(-1)'}), '(days=-1)\n', (5206, 5215), False, 'from dateutil.relativedelta import relativedelta\n'), ((5273, 5295), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': '(+1)'}), '(days=+1)\n', (5286, 5295), False, 'from dateutil.relativedelta import relativedelta\n'), ((5765, 5787), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': '(-1)'}), '(days=-1)\n', (5778, 5787), False, 'from dateutil.relativedelta import relativedelta\n'), ((5845, 5867), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': '(+1)'}), '(days=+1)\n', (5858, 5867), False, 'from dateutil.relativedelta import relativedelta\n'), ((6606, 6628), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': '(-1)'}), '(days=-1)\n', (6619, 6628), False, 'from dateutil.relativedelta import relativedelta\n'), ((6686, 6708), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': '(+1)'}), '(days=+1)\n', (6699, 6708), False, 'from dateutil.relativedelta import relativedelta\n')]
jungleni/ros_code_reading
src/ros_comm/rosmsg/setup.py
499e98c0b0d309da78060b19b55c420c22110d65
#!/usr/bin/env python from distutils.core import setup from catkin_pkg.python_setup import generate_distutils_setup d = generate_distutils_setup( packages=['rosmsg'], package_dir={'': 'src'}, scripts=['scripts/rosmsg', 'scripts/rosmsg-proto', 'scripts/rossrv'], requires=['genmsg', 'rosbag', 'roslib', 'rospkg'] ) setup(**d)
[((122, 321), 'catkin_pkg.python_setup.generate_distutils_setup', 'generate_distutils_setup', ([], {'packages': "['rosmsg']", 'package_dir': "{'': 'src'}", 'scripts': "['scripts/rosmsg', 'scripts/rosmsg-proto', 'scripts/rossrv']", 'requires': "['genmsg', 'rosbag', 'roslib', 'rospkg']"}), "(packages=['rosmsg'], package_dir={'': 'src'},\n scripts=['scripts/rosmsg', 'scripts/rosmsg-proto', 'scripts/rossrv'],\n requires=['genmsg', 'rosbag', 'roslib', 'rospkg'])\n", (146, 321), False, 'from catkin_pkg.python_setup import generate_distutils_setup\n'), ((333, 343), 'distutils.core.setup', 'setup', ([], {}), '(**d)\n', (338, 343), False, 'from distutils.core import setup\n')]
AlgoArt/algoart
unsorted/linked_list.py
7a7a28f099351a6b6c1b360c794f697881c7e429
#!/usr/bin/env python # linked_list.py - Linked list implementation in Python by Sergey 2015 """ Linked list implementation in Python """ # Standard modules import unittest import sys import os import argparse import re import random import subprocess import getpass import shutil # Additional modules ############################################################################### # Linked_list Class ############################################################################### class Node: def __init__(self, value, tail): self.value = value self.next = tail class Linked_list: """ Linked_list representation """ def __init__(self): """ Default constructor """ self.list = None def insert(self, value): self.list = Node(value, self.list) def start_iter(self): return self.list def next_iter(self, iter): if iter is not None: return iter.next else: return iter def tolist(self): result = [] iter = self.start_iter() while True: result.append(iter.value) iter = self.next_iter(iter) if not iter: break return result def run(self, test=False): """ Main execution function """ if test: return ############################################################################### # Executable code ############################################################################### def main(): # Sandbox sb = Linked_list(" ".join(sys.argv[1:])) sb.run() ############################################################################### # Unit Tests ############################################################################### class unitTests(unittest.TestCase): def test_Linked_list_class__basic_functionality(self): """ Linked_list class basic testing """ d = Linked_list() self.assertEqual(d.list, None) d.insert(1) self.assertEqual(d.list.value, 1) d.insert(2) self.assertEqual(d.list.next.value, 1) iter = d.start_iter() self.assertEqual(iter.value, 2) iter = d.next_iter(iter) self.assertEqual(iter.value, 1) self.assertEqual(d.tolist(), [2, 1]) if __name__ == "__main__": if sys.argv[-1] == "-ut": unittest.main(argv=[" "]) main()
[((2377, 2402), 'unittest.main', 'unittest.main', ([], {'argv': "[' ']"}), "(argv=[' '])\n", (2390, 2402), False, 'import unittest\n')]
speglich/devito
examples/seismic/viscoacoustic/wavesolver.py
b636f7694eb6a1e19b0f2c48f44ff63613029a7b
from devito import VectorTimeFunction, TimeFunction, NODE from devito.tools import memoized_meth from examples.seismic import PointSource from examples.seismic.viscoacoustic.operators import (ForwardOperator, AdjointOperator) class ViscoacousticWaveSolver(object): """ Solver object that provides operators for seismic inversion problems and encapsulates the time and space discretization for a given problem setup. Parameters ---------- model : Model Physical model with domain parameters. geometry : AcquisitionGeometry Geometry object that contains the source (SparseTimeFunction) and receivers (SparseTimeFunction) and their position. space_order : int, optional Order of the spatial stencil discretisation. Defaults to 4. kernel : selects a visco-acoustic equation from the options below: 'sls' (Standard Linear Solid) : 1st order - Blanch and Symes (1995) / Dutta and Schuster (2014) viscoacoustic equation 2nd order - Bai et al. (2014) viscoacoustic equation 'ren' - Ren et al. (2014) viscoacoustic equation 'deng_mcmechan' - Deng and McMechan (2007) viscoacoustic equation Defaults to 'sls' 2nd order. """ def __init__(self, model, geometry, space_order=4, kernel='sls', time_order=2, **kwargs): self.model = model self.model._initialize_bcs(bcs="mask") self.geometry = geometry self.space_order = space_order self.kernel = kernel self.time_order = time_order self._kwargs = kwargs @property def dt(self): return self.model.critical_dt @memoized_meth def op_fwd(self, save=None): """Cached operator for forward runs with buffered wavefield""" return ForwardOperator(self.model, save=save, geometry=self.geometry, space_order=self.space_order, kernel=self.kernel, time_order=self.time_order, **self._kwargs) @memoized_meth def op_adj(self): """Cached operator for adjoint runs""" return AdjointOperator(self.model, save=None, geometry=self.geometry, space_order=self.space_order, kernel=self.kernel, time_order=self.time_order, **self._kwargs) def forward(self, src=None, rec=None, v=None, r=None, p=None, qp=None, b=None, vp=None, save=None, **kwargs): """ Forward modelling function that creates the necessary data objects for running a forward modelling operator. Parameters ---------- src : SparseTimeFunction or array_like, optional Time series data for the injected source term. rec : SparseTimeFunction or array_like, optional The interpolated receiver data. v : VectorTimeFunction, optional The computed particle velocity. r : TimeFunction, optional The computed memory variable. p : TimeFunction, optional Stores the computed wavefield. qp : Function, optional The P-wave quality factor. b : Function, optional The time-constant inverse density. vp : Function or float, optional The time-constant velocity. save : bool, optional Whether or not to save the entire (unrolled) wavefield. Returns ------- Receiver, wavefield and performance summary """ # Source term is read-only, so re-use the default src = src or self.geometry.src # Create a new receiver object to store the result rec = rec or self.geometry.rec # Create all the fields v, p, r save_t = src.nt if save else None if self.time_order == 1: v = v or VectorTimeFunction(name="v", grid=self.model.grid, save=save_t, time_order=self.time_order, space_order=self.space_order) kwargs.update({k.name: k for k in v}) # Create the forward wavefield if not provided p = p or TimeFunction(name="p", grid=self.model.grid, save=save_t, time_order=self.time_order, space_order=self.space_order, staggered=NODE) # Memory variable: r = r or TimeFunction(name="r", grid=self.model.grid, save=save_t, time_order=self.time_order, space_order=self.space_order, staggered=NODE) # Pick physical parameters from model unless explicitly provided b = b or self.model.b qp = qp or self.model.qp # Pick vp from model unless explicitly provided vp = vp or self.model.vp if self.kernel == 'sls': # Execute operator and return wavefield and receiver data # With Memory variable summary = self.op_fwd(save).apply(src=src, rec=rec, qp=qp, r=r, p=p, b=b, vp=vp, dt=kwargs.pop('dt', self.dt), **kwargs) else: # Execute operator and return wavefield and receiver data # Without Memory variable summary = self.op_fwd(save).apply(src=src, rec=rec, qp=qp, p=p, b=b, vp=vp, dt=kwargs.pop('dt', self.dt), **kwargs) return rec, p, v, summary def adjoint(self, rec, srca=None, va=None, pa=None, vp=None, qp=None, b=None, r=None, **kwargs): """ Adjoint modelling function that creates the necessary data objects for running an adjoint modelling operator. Parameters ---------- rec : SparseTimeFunction or array-like The receiver data. Please note that these act as the source term in the adjoint run. srca : SparseTimeFunction or array-like The resulting data for the interpolated at the original source location. va : VectorTimeFunction, optional The computed particle velocity. pa : TimeFunction, optional Stores the computed wavefield. vp : Function or float, optional The time-constant velocity. qp : Function, optional The P-wave quality factor. b : Function, optional The time-constant inverse density. r : TimeFunction, optional The computed memory variable. Returns ------- Adjoint source, wavefield and performance summary. """ # Create a new adjoint source and receiver symbol srca = srca or PointSource(name='srca', grid=self.model.grid, time_range=self.geometry.time_axis, coordinates=self.geometry.src_positions) if self.time_order == 1: va = va or VectorTimeFunction(name="va", grid=self.model.grid, time_order=self.time_order, space_order=self.space_order) kwargs.update({k.name: k for k in va}) pa = pa or TimeFunction(name="pa", grid=self.model.grid, time_order=self.time_order, space_order=self.space_order, staggered=NODE) # Memory variable: r = r or TimeFunction(name="r", grid=self.model.grid, time_order=self.time_order, space_order=self.space_order, staggered=NODE) b = b or self.model.b qp = qp or self.model.qp # Pick vp from model unless explicitly provided vp = vp or self.model.vp # Execute operator and return wavefield and receiver data if self.kernel == 'sls': # Execute operator and return wavefield and receiver data # With Memory variable summary = self.op_adj().apply(src=srca, rec=rec, pa=pa, r=r, b=b, vp=vp, qp=qp, dt=kwargs.pop('dt', self.dt), **kwargs) else: summary = self.op_adj().apply(src=srca, rec=rec, pa=pa, vp=vp, b=b, qp=qp, dt=kwargs.pop('dt', self.dt), **kwargs) return srca, pa, va, summary
[((1869, 2035), 'examples.seismic.viscoacoustic.operators.ForwardOperator', 'ForwardOperator', (['self.model'], {'save': 'save', 'geometry': 'self.geometry', 'space_order': 'self.space_order', 'kernel': 'self.kernel', 'time_order': 'self.time_order'}), '(self.model, save=save, geometry=self.geometry, space_order=\n self.space_order, kernel=self.kernel, time_order=self.time_order, **\n self._kwargs)\n', (1884, 2035), False, 'from examples.seismic.viscoacoustic.operators import ForwardOperator, AdjointOperator\n'), ((2192, 2358), 'examples.seismic.viscoacoustic.operators.AdjointOperator', 'AdjointOperator', (['self.model'], {'save': 'None', 'geometry': 'self.geometry', 'space_order': 'self.space_order', 'kernel': 'self.kernel', 'time_order': 'self.time_order'}), '(self.model, save=None, geometry=self.geometry, space_order=\n self.space_order, kernel=self.kernel, time_order=self.time_order, **\n self._kwargs)\n', (2207, 2358), False, 'from examples.seismic.viscoacoustic.operators import ForwardOperator, AdjointOperator\n'), ((4259, 4395), 'devito.TimeFunction', 'TimeFunction', ([], {'name': '"""p"""', 'grid': 'self.model.grid', 'save': 'save_t', 'time_order': 'self.time_order', 'space_order': 'self.space_order', 'staggered': 'NODE'}), "(name='p', grid=self.model.grid, save=save_t, time_order=self.\n time_order, space_order=self.space_order, staggered=NODE)\n", (4271, 4395), False, 'from devito import VectorTimeFunction, TimeFunction, NODE\n'), ((4496, 4632), 'devito.TimeFunction', 'TimeFunction', ([], {'name': '"""r"""', 'grid': 'self.model.grid', 'save': 'save_t', 'time_order': 'self.time_order', 'space_order': 'self.space_order', 'staggered': 'NODE'}), "(name='r', grid=self.model.grid, save=save_t, time_order=self.\n time_order, space_order=self.space_order, staggered=NODE)\n", (4508, 4632), False, 'from devito import VectorTimeFunction, TimeFunction, NODE\n'), ((6908, 7036), 'examples.seismic.PointSource', 'PointSource', ([], {'name': '"""srca"""', 'grid': 'self.model.grid', 'time_range': 'self.geometry.time_axis', 'coordinates': 'self.geometry.src_positions'}), "(name='srca', grid=self.model.grid, time_range=self.geometry.\n time_axis, coordinates=self.geometry.src_positions)\n", (6919, 7036), False, 'from examples.seismic import PointSource\n'), ((7424, 7547), 'devito.TimeFunction', 'TimeFunction', ([], {'name': '"""pa"""', 'grid': 'self.model.grid', 'time_order': 'self.time_order', 'space_order': 'self.space_order', 'staggered': 'NODE'}), "(name='pa', grid=self.model.grid, time_order=self.time_order,\n space_order=self.space_order, staggered=NODE)\n", (7436, 7547), False, 'from devito import VectorTimeFunction, TimeFunction, NODE\n'), ((7653, 7775), 'devito.TimeFunction', 'TimeFunction', ([], {'name': '"""r"""', 'grid': 'self.model.grid', 'time_order': 'self.time_order', 'space_order': 'self.space_order', 'staggered': 'NODE'}), "(name='r', grid=self.model.grid, time_order=self.time_order,\n space_order=self.space_order, staggered=NODE)\n", (7665, 7775), False, 'from devito import VectorTimeFunction, TimeFunction, NODE\n'), ((3934, 4060), 'devito.VectorTimeFunction', 'VectorTimeFunction', ([], {'name': '"""v"""', 'grid': 'self.model.grid', 'save': 'save_t', 'time_order': 'self.time_order', 'space_order': 'self.space_order'}), "(name='v', grid=self.model.grid, save=save_t, time_order=\n self.time_order, space_order=self.space_order)\n", (3952, 4060), False, 'from devito import VectorTimeFunction, TimeFunction, NODE\n'), ((7159, 7273), 'devito.VectorTimeFunction', 'VectorTimeFunction', ([], {'name': '"""va"""', 'grid': 'self.model.grid', 'time_order': 'self.time_order', 'space_order': 'self.space_order'}), "(name='va', grid=self.model.grid, time_order=self.\n time_order, space_order=self.space_order)\n", (7177, 7273), False, 'from devito import VectorTimeFunction, TimeFunction, NODE\n')]
NIL-zhuang/NJU-Data-Integration
StaticProcess/apriori.py
78315d33cda6b69dd16a4704fa8e0dfc6fc359b6
import pandas as pd import os from tqdm import tqdm from collections import defaultdict from mlxtend.preprocessing import TransactionEncoder from mlxtend.frequent_patterns import apriori dataPath = "data/static" itemSetList = [] def loadDataSet(): with open(os.path.join(dataPath, "aprioriData.csv"), 'r') as f: for line in f.readlines(): line = line.replace('\n', '') cates = line.split(' ') itemSetList.append(list(map(int, cates))) def myApriori(): te = TransactionEncoder() te_ary = te.fit(itemSetList).transform(itemSetList) df = pd.DataFrame(te_ary, columns=te.columns_) return df def dataInit(): if os.path.exists(os.path.join(dataPath, "aprioriData.csv")): return df = pd.read_csv("data/static/static.csv") user_category = defaultdict(set) for idx, row in tqdm(df.iterrows(), total=df.shape[0], desc="category data generate"): user_category[row['USER_ID']].add(row['CATEGORY_ID']) with open(os.path.join(dataPath, "aprioriData.csv"), 'w+') as f: for k, v in tqdm(user_category.items()): f.write(' '.join(sorted(list(map(str, v))))+'\n') if __name__ == '__main__': dataInit() loadDataSet() df = myApriori() frequent_itemsets = apriori(df, min_support=0.0035, use_colnames=True) frequent_itemsets['length'] = frequent_itemsets['itemsets'].apply(lambda x: len(x)) print(frequent_itemsets[(frequent_itemsets['length'] >= 2)])
[((514, 534), 'mlxtend.preprocessing.TransactionEncoder', 'TransactionEncoder', ([], {}), '()\n', (532, 534), False, 'from mlxtend.preprocessing import TransactionEncoder\n'), ((600, 641), 'pandas.DataFrame', 'pd.DataFrame', (['te_ary'], {'columns': 'te.columns_'}), '(te_ary, columns=te.columns_)\n', (612, 641), True, 'import pandas as pd\n'), ((764, 801), 'pandas.read_csv', 'pd.read_csv', (['"""data/static/static.csv"""'], {}), "('data/static/static.csv')\n", (775, 801), True, 'import pandas as pd\n'), ((822, 838), 'collections.defaultdict', 'defaultdict', (['set'], {}), '(set)\n', (833, 838), False, 'from collections import defaultdict\n'), ((1279, 1329), 'mlxtend.frequent_patterns.apriori', 'apriori', (['df'], {'min_support': '(0.0035)', 'use_colnames': '(True)'}), '(df, min_support=0.0035, use_colnames=True)\n', (1286, 1329), False, 'from mlxtend.frequent_patterns import apriori\n'), ((696, 737), 'os.path.join', 'os.path.join', (['dataPath', '"""aprioriData.csv"""'], {}), "(dataPath, 'aprioriData.csv')\n", (708, 737), False, 'import os\n'), ((265, 306), 'os.path.join', 'os.path.join', (['dataPath', '"""aprioriData.csv"""'], {}), "(dataPath, 'aprioriData.csv')\n", (277, 306), False, 'import os\n'), ((1006, 1047), 'os.path.join', 'os.path.join', (['dataPath', '"""aprioriData.csv"""'], {}), "(dataPath, 'aprioriData.csv')\n", (1018, 1047), False, 'import os\n')]
FuriKuri/faas-playground
gcp-python-fn/main.py
52618e21064e327d2874d2b73cfe5fb247d3dd6e
def hello_world(request): request_json = request.get_json() name = 'World' if request_json and 'name' in request_json: name = request_json['name'] headers = { 'Access-Control-Allow-Origin': 'https://furikuri.net', 'Access-Control-Allow-Methods': 'GET, POST', 'Access-Control-Allow-Headers': 'Content-Type' } return ('Hello ' + name + '! From GCP + Python', 200, headers)
[]
move-ton/ton-client-py
tonclient/test/helpers.py
a9393a0e03b5da9bf5369a44c6873a3e720af229
import os from tonclient.client import TonClient from tonclient.types import Abi, CallSet, Signer, ClientConfig, \ ParamsOfEncodeMessage, ParamsOfProcessMessage BASE_DIR = os.path.dirname(__file__) SAMPLES_DIR = os.path.join(BASE_DIR, 'samples') GIVER_ADDRESS = '0:f5c2510bfe407363cb1db6b9d7bc1184a05f8b343aeaa828189c580e8569ee23' client_config = ClientConfig() client_config.network.endpoints = ['https://tonos.freeton.surf'] async_core_client = TonClient(config=client_config) sync_core_client = TonClient(config=client_config, is_core_async=False) def send_grams(address: str): giver_abi = Abi.from_path( path=os.path.join(SAMPLES_DIR, 'Giver.abi.json')) call_set = CallSet( function_name='grant', input={'dest': address}) encode_params = ParamsOfEncodeMessage( abi=giver_abi, signer=Signer.NoSigner(), address=GIVER_ADDRESS, call_set=call_set) process_params = ParamsOfProcessMessage( message_encode_params=encode_params, send_events=False) async_core_client.processing.process_message(params=process_params) def tonos_punch(): send_grams( address='0:b5e9240fc2d2f1ff8cbb1d1dee7fb7cae155e5f6320e585fcc685698994a19a5')
[((178, 203), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (193, 203), False, 'import os\n'), ((218, 251), 'os.path.join', 'os.path.join', (['BASE_DIR', '"""samples"""'], {}), "(BASE_DIR, 'samples')\n", (230, 251), False, 'import os\n'), ((354, 368), 'tonclient.types.ClientConfig', 'ClientConfig', ([], {}), '()\n', (366, 368), False, 'from tonclient.types import Abi, CallSet, Signer, ClientConfig, ParamsOfEncodeMessage, ParamsOfProcessMessage\n'), ((454, 485), 'tonclient.client.TonClient', 'TonClient', ([], {'config': 'client_config'}), '(config=client_config)\n', (463, 485), False, 'from tonclient.client import TonClient\n'), ((505, 557), 'tonclient.client.TonClient', 'TonClient', ([], {'config': 'client_config', 'is_core_async': '(False)'}), '(config=client_config, is_core_async=False)\n', (514, 557), False, 'from tonclient.client import TonClient\n'), ((694, 749), 'tonclient.types.CallSet', 'CallSet', ([], {'function_name': '"""grant"""', 'input': "{'dest': address}"}), "(function_name='grant', input={'dest': address})\n", (701, 749), False, 'from tonclient.types import Abi, CallSet, Signer, ClientConfig, ParamsOfEncodeMessage, ParamsOfProcessMessage\n'), ((922, 1000), 'tonclient.types.ParamsOfProcessMessage', 'ParamsOfProcessMessage', ([], {'message_encode_params': 'encode_params', 'send_events': '(False)'}), '(message_encode_params=encode_params, send_events=False)\n', (944, 1000), False, 'from tonclient.types import Abi, CallSet, Signer, ClientConfig, ParamsOfEncodeMessage, ParamsOfProcessMessage\n'), ((634, 677), 'os.path.join', 'os.path.join', (['SAMPLES_DIR', '"""Giver.abi.json"""'], {}), "(SAMPLES_DIR, 'Giver.abi.json')\n", (646, 677), False, 'import os\n'), ((832, 849), 'tonclient.types.Signer.NoSigner', 'Signer.NoSigner', ([], {}), '()\n', (847, 849), False, 'from tonclient.types import Abi, CallSet, Signer, ClientConfig, ParamsOfEncodeMessage, ParamsOfProcessMessage\n')]
vthriller/flask-kajiki
tests/test_i18n.py
eadaa0aa45d23507066758b9e74091bddbc943c4
from kajiki import i18n from flask import request from flask_kajiki import render_template # N. B. settting i18n.gettext would affect tests from all modules, # so we test for request path that only functions from this module could set def gettext(s): if request.path == '/test_i18n': return s.upper() return s i18n.gettext = gettext def test_does_translations(app): """Callback interface is able to inject Translator filter""" with app.test_request_context(path='/test_i18n'): rendered = render_template('i18n.html') # TODO DOCTYPE; see also render_args expected = '<p>HELLO!</p>' assert rendered == expected
[((525, 553), 'flask_kajiki.render_template', 'render_template', (['"""i18n.html"""'], {}), "('i18n.html')\n", (540, 553), False, 'from flask_kajiki import render_template\n')]
jstzwjr/mmdetection
mmdet/models/roi_heads/mask_heads/fcn_mask_head.py
1c2878eb4f4da2978dcd9a05f9d0247726680213
import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from mmcv.cnn import ConvModule, build_upsample_layer from mmcv.ops import Conv2d from mmcv.ops.carafe import CARAFEPack from mmcv.runner import auto_fp16, force_fp32 from torch.nn.modules.utils import _pair from mmdet.core import mask_target from mmdet.models.builder import HEADS, build_loss BYTES_PER_FLOAT = 4 # TODO: This memory limit may be too much or too little. It would be better to # determine it based on available resources. GPU_MEM_LIMIT = 1024**3 # 1 GB memory limit @HEADS.register_module() class FCNMaskHead(nn.Module): def __init__(self, num_convs=4, roi_feat_size=14, in_channels=256, conv_kernel_size=3, conv_out_channels=256, num_classes=80, class_agnostic=False, upsample_cfg=dict(type='deconv', scale_factor=2), conv_cfg=None, norm_cfg=None, loss_mask=dict( type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)): super(FCNMaskHead, self).__init__() self.upsample_cfg = upsample_cfg.copy() if self.upsample_cfg['type'] not in [ None, 'deconv', 'nearest', 'bilinear', 'carafe' ]: raise ValueError( f'Invalid upsample method {self.upsample_cfg["type"]}, ' 'accepted methods are "deconv", "nearest", "bilinear", ' '"carafe"') self.num_convs = num_convs # WARN: roi_feat_size is reserved and not used self.roi_feat_size = _pair(roi_feat_size) self.in_channels = in_channels self.conv_kernel_size = conv_kernel_size self.conv_out_channels = conv_out_channels self.upsample_method = self.upsample_cfg.get('type') self.scale_factor = self.upsample_cfg.pop('scale_factor', None) self.num_classes = num_classes self.class_agnostic = class_agnostic self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.fp16_enabled = False self.loss_mask = build_loss(loss_mask) self.convs = nn.ModuleList() for i in range(self.num_convs): in_channels = ( self.in_channels if i == 0 else self.conv_out_channels) padding = (self.conv_kernel_size - 1) // 2 self.convs.append( ConvModule( in_channels, self.conv_out_channels, self.conv_kernel_size, padding=padding, conv_cfg=conv_cfg, norm_cfg=norm_cfg)) upsample_in_channels = ( self.conv_out_channels if self.num_convs > 0 else in_channels) upsample_cfg_ = self.upsample_cfg.copy() if self.upsample_method is None: self.upsample = None elif self.upsample_method == 'deconv': upsample_cfg_.update( in_channels=upsample_in_channels, out_channels=self.conv_out_channels, kernel_size=self.scale_factor, stride=self.scale_factor) self.upsample = build_upsample_layer(upsample_cfg_) elif self.upsample_method == 'carafe': upsample_cfg_.update( channels=upsample_in_channels, scale_factor=self.scale_factor) self.upsample = build_upsample_layer(upsample_cfg_) else: # suppress warnings align_corners = (None if self.upsample_method == 'nearest' else False) upsample_cfg_.update( scale_factor=self.scale_factor, mode=self.upsample_method, align_corners=align_corners) self.upsample = build_upsample_layer(upsample_cfg_) out_channels = 1 if self.class_agnostic else self.num_classes logits_in_channel = ( self.conv_out_channels if self.upsample_method == 'deconv' else upsample_in_channels) self.conv_logits = Conv2d(logits_in_channel, out_channels, 1) self.relu = nn.ReLU(inplace=True) self.debug_imgs = None def init_weights(self): for m in [self.upsample, self.conv_logits]: if m is None: continue elif isinstance(m, CARAFEPack): m.init_weights() else: nn.init.kaiming_normal_( m.weight, mode='fan_out', nonlinearity='relu') nn.init.constant_(m.bias, 0) @auto_fp16() def forward(self, x): for conv in self.convs: x = conv(x) if self.upsample is not None: x = self.upsample(x) if self.upsample_method == 'deconv': x = self.relu(x) mask_pred = self.conv_logits(x) return mask_pred def get_targets(self, sampling_results, gt_masks, rcnn_train_cfg): pos_proposals = [res.pos_bboxes for res in sampling_results] pos_assigned_gt_inds = [ res.pos_assigned_gt_inds for res in sampling_results ] mask_targets = mask_target(pos_proposals, pos_assigned_gt_inds, gt_masks, rcnn_train_cfg) return mask_targets @force_fp32(apply_to=('mask_pred', )) def loss(self, mask_pred, mask_targets, labels): loss = dict() if mask_pred.size(0) == 0: loss_mask = mask_pred.sum() * 0 else: if self.class_agnostic: loss_mask = self.loss_mask(mask_pred, mask_targets, torch.zeros_like(labels)) else: loss_mask = self.loss_mask(mask_pred, mask_targets, labels) loss['loss_mask'] = loss_mask return loss def get_seg_masks(self, mask_pred, det_bboxes, det_labels, rcnn_test_cfg, ori_shape, scale_factor, rescale): """Get segmentation masks from mask_pred and bboxes. Args: mask_pred (Tensor or ndarray): shape (n, #class, h, w). For single-scale testing, mask_pred is the direct output of model, whose type is Tensor, while for multi-scale testing, it will be converted to numpy array outside of this method. det_bboxes (Tensor): shape (n, 4/5) det_labels (Tensor): shape (n, ) img_shape (Tensor): shape (3, ) rcnn_test_cfg (dict): rcnn testing config ori_shape: original image size Returns: list[list]: encoded masks """ if isinstance(mask_pred, torch.Tensor): mask_pred = mask_pred.sigmoid() else: mask_pred = det_bboxes.new_tensor(mask_pred) device = mask_pred.device cls_segms = [[] for _ in range(self.num_classes) ] # BG is not included in num_classes bboxes = det_bboxes[:, :4] labels = det_labels if rescale: img_h, img_w = ori_shape[:2] else: if isinstance(scale_factor, float): img_h = np.round(ori_shape[0] * scale_factor).astype(np.int32) img_w = np.round(ori_shape[1] * scale_factor).astype(np.int32) else: w_scale, h_scale = scale_factor[0], scale_factor[1] img_h = np.round(ori_shape[0] * h_scale.item()).astype( np.int32) img_w = np.round(ori_shape[1] * w_scale.item()).astype( np.int32) scale_factor = 1.0 if not isinstance(scale_factor, (float, torch.Tensor)): scale_factor = bboxes.new_tensor(scale_factor) bboxes = bboxes / scale_factor N = len(mask_pred) # The actual implementation split the input into chunks, # and paste them chunk by chunk. if device.type == 'cpu': # CPU is most efficient when they are pasted one by one with # skip_empty=True, so that it performs minimal number of # operations. num_chunks = N else: # GPU benefits from parallelism for larger chunks, # but may have memory issue num_chunks = int( np.ceil(N * img_h * img_w * BYTES_PER_FLOAT / GPU_MEM_LIMIT)) assert (num_chunks <= N), 'Default GPU_MEM_LIMIT is too small; try increasing it' chunks = torch.chunk(torch.arange(N, device=device), num_chunks) threshold = rcnn_test_cfg.mask_thr_binary im_mask = torch.zeros( N, img_h, img_w, device=device, dtype=torch.bool if threshold >= 0 else torch.uint8) if not self.class_agnostic: mask_pred = mask_pred[range(N), labels][:, None] for inds in chunks: masks_chunk, spatial_inds = _do_paste_mask( mask_pred[inds], bboxes[inds], img_h, img_w, skip_empty=device.type == 'cpu') if threshold >= 0: masks_chunk = (masks_chunk >= threshold).to(dtype=torch.bool) else: # for visualization and debugging masks_chunk = (masks_chunk * 255).to(dtype=torch.uint8) im_mask[(inds, ) + spatial_inds] = masks_chunk for i in range(N): cls_segms[labels[i]].append(im_mask[i].cpu().numpy()) return cls_segms def _do_paste_mask(masks, boxes, img_h, img_w, skip_empty=True): """Paste instance masks acoording to boxes. This implementation is modified from https://github.com/facebookresearch/detectron2/ Args: masks (Tensor): N, 1, H, W boxes (Tensor): N, 4 img_h (int): Height of the image to be pasted. img_w (int): Width of the image to be pasted. skip_empty (bool): Only paste masks within the region that tightly bound all boxes, and returns the results this region only. An important optimization for CPU. Returns: tuple: (Tensor, tuple). The first item is mask tensor, the second one is the slice object. If skip_empty == False, the whole image will be pasted. It will return a mask of shape (N, img_h, img_w) and an empty tuple. If skip_empty == True, only area around the mask will be pasted. A mask of shape (N, h', w') and its start and end coordinates in the original image will be returned. """ # On GPU, paste all masks together (up to chunk size) # by using the entire image to sample the masks # Compared to pasting them one by one, # this has more operations but is faster on COCO-scale dataset. device = masks.device if skip_empty: x0_int, y0_int = torch.clamp( boxes.min(dim=0).values.floor()[:2] - 1, min=0).to(dtype=torch.int32) x1_int = torch.clamp( boxes[:, 2].max().ceil() + 1, max=img_w).to(dtype=torch.int32) y1_int = torch.clamp( boxes[:, 3].max().ceil() + 1, max=img_h).to(dtype=torch.int32) else: x0_int, y0_int = 0, 0 x1_int, y1_int = img_w, img_h x0, y0, x1, y1 = torch.split(boxes, 1, dim=1) # each is Nx1 N = masks.shape[0] img_y = torch.arange( y0_int, y1_int, device=device, dtype=torch.float32) + 0.5 img_x = torch.arange( x0_int, x1_int, device=device, dtype=torch.float32) + 0.5 img_y = (img_y - y0) / (y1 - y0) * 2 - 1 img_x = (img_x - x0) / (x1 - x0) * 2 - 1 # img_x, img_y have shapes (N, w), (N, h) if torch.isinf(img_x).any(): inds = torch.where(torch.isinf(img_x)) img_x[inds] = 0 if torch.isinf(img_y).any(): inds = torch.where(torch.isinf(img_y)) img_y[inds] = 0 gx = img_x[:, None, :].expand(N, img_y.size(1), img_x.size(1)) gy = img_y[:, :, None].expand(N, img_y.size(1), img_x.size(1)) grid = torch.stack([gx, gy], dim=3) img_masks = F.grid_sample( masks.to(dtype=torch.float32), grid, align_corners=False) if skip_empty: return img_masks[:, 0], (slice(y0_int, y1_int), slice(x0_int, x1_int)) else: return img_masks[:, 0], ()
[((574, 597), 'mmdet.models.builder.HEADS.register_module', 'HEADS.register_module', ([], {}), '()\n', (595, 597), False, 'from mmdet.models.builder import HEADS, build_loss\n'), ((4656, 4667), 'mmcv.runner.auto_fp16', 'auto_fp16', ([], {}), '()\n', (4665, 4667), False, 'from mmcv.runner import auto_fp16, force_fp32\n'), ((5384, 5419), 'mmcv.runner.force_fp32', 'force_fp32', ([], {'apply_to': "('mask_pred',)"}), "(apply_to=('mask_pred',))\n", (5394, 5419), False, 'from mmcv.runner import auto_fp16, force_fp32\n'), ((11409, 11437), 'torch.split', 'torch.split', (['boxes', '(1)'], {'dim': '(1)'}), '(boxes, 1, dim=1)\n', (11420, 11437), False, 'import torch\n'), ((12152, 12180), 'torch.stack', 'torch.stack', (['[gx, gy]'], {'dim': '(3)'}), '([gx, gy], dim=3)\n', (12163, 12180), False, 'import torch\n'), ((1680, 1700), 'torch.nn.modules.utils._pair', '_pair', (['roi_feat_size'], {}), '(roi_feat_size)\n', (1685, 1700), False, 'from torch.nn.modules.utils import _pair\n'), ((2182, 2203), 'mmdet.models.builder.build_loss', 'build_loss', (['loss_mask'], {}), '(loss_mask)\n', (2192, 2203), False, 'from mmdet.models.builder import HEADS, build_loss\n'), ((2226, 2241), 'torch.nn.ModuleList', 'nn.ModuleList', ([], {}), '()\n', (2239, 2241), True, 'import torch.nn as nn\n'), ((4154, 4196), 'mmcv.ops.Conv2d', 'Conv2d', (['logits_in_channel', 'out_channels', '(1)'], {}), '(logits_in_channel, out_channels, 1)\n', (4160, 4196), False, 'from mmcv.ops import Conv2d\n'), ((4217, 4238), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (4224, 4238), True, 'import torch.nn as nn\n'), ((5240, 5314), 'mmdet.core.mask_target', 'mask_target', (['pos_proposals', 'pos_assigned_gt_inds', 'gt_masks', 'rcnn_train_cfg'], {}), '(pos_proposals, pos_assigned_gt_inds, gt_masks, rcnn_train_cfg)\n', (5251, 5314), False, 'from mmdet.core import mask_target\n'), ((8711, 8811), 'torch.zeros', 'torch.zeros', (['N', 'img_h', 'img_w'], {'device': 'device', 'dtype': '(torch.bool if threshold >= 0 else torch.uint8)'}), '(N, img_h, img_w, device=device, dtype=torch.bool if threshold >=\n 0 else torch.uint8)\n', (8722, 8811), False, 'import torch\n'), ((11490, 11554), 'torch.arange', 'torch.arange', (['y0_int', 'y1_int'], {'device': 'device', 'dtype': 'torch.float32'}), '(y0_int, y1_int, device=device, dtype=torch.float32)\n', (11502, 11554), False, 'import torch\n'), ((11582, 11646), 'torch.arange', 'torch.arange', (['x0_int', 'x1_int'], {'device': 'device', 'dtype': 'torch.float32'}), '(x0_int, x1_int, device=device, dtype=torch.float32)\n', (11594, 11646), False, 'import torch\n'), ((8598, 8628), 'torch.arange', 'torch.arange', (['N'], {'device': 'device'}), '(N, device=device)\n', (8610, 8628), False, 'import torch\n'), ((11805, 11823), 'torch.isinf', 'torch.isinf', (['img_x'], {}), '(img_x)\n', (11816, 11823), False, 'import torch\n'), ((11858, 11876), 'torch.isinf', 'torch.isinf', (['img_x'], {}), '(img_x)\n', (11869, 11876), False, 'import torch\n'), ((11909, 11927), 'torch.isinf', 'torch.isinf', (['img_y'], {}), '(img_y)\n', (11920, 11927), False, 'import torch\n'), ((11962, 11980), 'torch.isinf', 'torch.isinf', (['img_y'], {}), '(img_y)\n', (11973, 11980), False, 'import torch\n'), ((2484, 2613), 'mmcv.cnn.ConvModule', 'ConvModule', (['in_channels', 'self.conv_out_channels', 'self.conv_kernel_size'], {'padding': 'padding', 'conv_cfg': 'conv_cfg', 'norm_cfg': 'norm_cfg'}), '(in_channels, self.conv_out_channels, self.conv_kernel_size,\n padding=padding, conv_cfg=conv_cfg, norm_cfg=norm_cfg)\n', (2494, 2613), False, 'from mmcv.cnn import ConvModule, build_upsample_layer\n'), ((3264, 3299), 'mmcv.cnn.build_upsample_layer', 'build_upsample_layer', (['upsample_cfg_'], {}), '(upsample_cfg_)\n', (3284, 3299), False, 'from mmcv.cnn import ConvModule, build_upsample_layer\n'), ((8393, 8453), 'numpy.ceil', 'np.ceil', (['(N * img_h * img_w * BYTES_PER_FLOAT / GPU_MEM_LIMIT)'], {}), '(N * img_h * img_w * BYTES_PER_FLOAT / GPU_MEM_LIMIT)\n', (8400, 8453), True, 'import numpy as np\n'), ((3488, 3523), 'mmcv.cnn.build_upsample_layer', 'build_upsample_layer', (['upsample_cfg_'], {}), '(upsample_cfg_)\n', (3508, 3523), False, 'from mmcv.cnn import ConvModule, build_upsample_layer\n'), ((3880, 3915), 'mmcv.cnn.build_upsample_layer', 'build_upsample_layer', (['upsample_cfg_'], {}), '(upsample_cfg_)\n', (3900, 3915), False, 'from mmcv.cnn import ConvModule, build_upsample_layer\n'), ((4513, 4583), 'torch.nn.init.kaiming_normal_', 'nn.init.kaiming_normal_', (['m.weight'], {'mode': '"""fan_out"""', 'nonlinearity': '"""relu"""'}), "(m.weight, mode='fan_out', nonlinearity='relu')\n", (4536, 4583), True, 'import torch.nn as nn\n'), ((4621, 4649), 'torch.nn.init.constant_', 'nn.init.constant_', (['m.bias', '(0)'], {}), '(m.bias, 0)\n', (4638, 4649), True, 'import torch.nn as nn\n'), ((5736, 5760), 'torch.zeros_like', 'torch.zeros_like', (['labels'], {}), '(labels)\n', (5752, 5760), False, 'import torch\n'), ((7250, 7287), 'numpy.round', 'np.round', (['(ori_shape[0] * scale_factor)'], {}), '(ori_shape[0] * scale_factor)\n', (7258, 7287), True, 'import numpy as np\n'), ((7329, 7366), 'numpy.round', 'np.round', (['(ori_shape[1] * scale_factor)'], {}), '(ori_shape[1] * scale_factor)\n', (7337, 7366), True, 'import numpy as np\n')]
TangJiamin/Ultra_light_OCR_No.23
PaddleOCR/deploy/hubserving/ocr_det/params.py
594aa286dc2f88614141838ce45c164647226cdb
# -*- coding:utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function class Config(object): pass def read_params(): cfg = Config() #params for text detector cfg.det_algorithm = "DB" cfg.det_model_dir = "./inference/ch_ppocr_mobile_v2.0_det_infer/" cfg.det_limit_side_len = 960 cfg.det_limit_type = 'max' #DB parmas cfg.det_db_thresh = 0.3 cfg.det_db_box_thresh = 0.5 cfg.det_db_unclip_ratio = 1.6 cfg.use_dilation = False # #EAST parmas # cfg.det_east_score_thresh = 0.8 # cfg.det_east_cover_thresh = 0.1 # cfg.det_east_nms_thresh = 0.2 cfg.use_pdserving = False cfg.use_tensorrt = False return cfg
[]
LArbys/ublarcvserver
networks/larflow/models/larflow_uresnet.py
02381c937f49a2eab2f754017ab431c3f6fa70d7
import torch.nn as nn import torch as torch import math import torch.utils.model_zoo as model_zoo ########################################################### # # U-ResNet # U-net witih ResNet modules # # Semantic segmentation network used by MicroBooNE # to label track/shower pixels # # resnet implementation from pytorch.torchvision module # U-net from (cite) # # meant to be copy of caffe version # ########################################################### def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,padding=1, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.relu1 = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.stride = stride self.bypass = None if inplanes!=planes or stride>1: self.bypass = nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, padding=0, bias=False) self.relu = nn.ReLU(inplace=True) def forward(self, x): out = self.conv1(x) out = self.bn1(out) out = self.relu1(out) out = self.conv2(out) out = self.bn2(out) if self.bypass is not None: outbp = self.bypass(x) out += outbp else: out += x out = self.relu(out) return out class Bottleneck(nn.Module): def __init__(self, inplanes, planes, stride=1 ): super(Bottleneck, self).__init__() # residual path self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.stride = stride # if stride >1, then we need to subsamble the input if stride>1: self.shortcut = nn.Conv2d(inplanes,planes,kernel_size=1,stride=stride,bias=False) else: self.shortcut = None def forward(self, x): if self.shortcut is None: bypass = x else: bypass = self.shortcut(x) residual = self.conv1(x) residual = self.bn1(residual) residual = self.relu(residual) residual = self.conv2(residual) residual = self.bn2(residual) residual = self.relu(residual) residual = self.conv3(residual) residual = self.bn3(residual) out = bypass+residual out = self.relu(out) return out class PreactivationBlock(nn.Module): def __init__(self, inplanes, planes, stride=1 ): super(Preactivation, self).__init__() # residual path self.bn1 = nn.BatchNorm2d(inplanes) self.relu1 = nn.ReLU(inplace=True) self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.relu2 = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) # if stride >1, then we need to subsamble the input if stride>1: self.shortcut = nn.Conv2d(inplanes,planes,kernel_size=1,stride=stride,bias=False) else: self.shortcut = None def forward(self, x): if self.shortcut is None: bypass = x else: bypass = self.shortcut(x) class DoubleResNet(nn.Module): def __init__(self,Block,inplanes,planes,stride=1): super(DoubleResNet,self).__init__() self.res1 = Block(inplanes,planes,stride) self.res2 = Block( planes,planes, 1) def forward(self, x): out = self.res1(x) out = self.res2(out) return out class ConvTransposeLayer(nn.Module): def __init__(self,deconv_inplanes,skip_inplanes,deconv_outplanes,res_outplanes): super(ConvTransposeLayer,self).__init__() self.deconv = nn.ConvTranspose2d( deconv_inplanes, deconv_outplanes, kernel_size=4, stride=2, padding=1, bias=False ) self.res = DoubleResNet(BasicBlock,deconv_outplanes+skip_inplanes,res_outplanes,stride=1) def forward(self,x,skip_x): out = self.deconv(x,output_size=skip_x.size()) # concat skip connections out = torch.cat( [out,skip_x], 1 ) out = self.res(out) return out class LArFlowUResNet(nn.Module): def __init__(self, num_classes=3, input_channels=3, inplanes=16, showsizes=False, use_visi=True): self.inplanes =inplanes super(LArFlowUResNet, self).__init__() self._showsizes = showsizes # print size at each layer self.use_visi = use_visi # Encoder # stem # one big stem self.conv1 = nn.Conv2d(input_channels, self.inplanes, kernel_size=7, stride=1, padding=3, bias=True) # initial conv layer self.bn1 = nn.BatchNorm2d(self.inplanes) self.relu1 = nn.ReLU(inplace=True) self.pool1 = nn.MaxPool2d( 3, stride=2, padding=1 ) self.enc_layer1 = self._make_encoding_layer( self.inplanes*1, self.inplanes*2, stride=1) # 16->32 self.enc_layer2 = self._make_encoding_layer( self.inplanes*2, self.inplanes*4, stride=2) # 32->64 self.enc_layer3 = self._make_encoding_layer( self.inplanes*4, self.inplanes*8, stride=2) # 64->128 self.enc_layer4 = self._make_encoding_layer( self.inplanes*8, self.inplanes*16, stride=2) # 128->256 self.enc_layer5 = self._make_encoding_layer( self.inplanes*16, self.inplanes*32, stride=2) # 256->512 # decoding flow #self.num_final_flow_features = self.inplanes self.num_final_flow_features = self.inplanes self.flow_dec_layer5 = self._make_decoding_layer( self.inplanes*32*2, self.inplanes*16, self.inplanes*16, self.inplanes*16 ) # 512->256 self.flow_dec_layer4 = self._make_decoding_layer( self.inplanes*16, self.inplanes*8, self.inplanes*8, self.inplanes*8 ) # 256->128 self.flow_dec_layer3 = self._make_decoding_layer( self.inplanes*8, self.inplanes*4, self.inplanes*4, self.inplanes*4 ) # 128->64 self.flow_dec_layer2 = self._make_decoding_layer( self.inplanes*4, self.inplanes*2, self.inplanes*2, self.inplanes*2 ) # 64->32 #self.flow_dec_layer1 = self._make_decoding_layer( self.inplanes*2, self.inplanes, self.inplanes ) # 32->16 self.flow_dec_layer1 = self._make_decoding_layer( self.inplanes*2, self.inplanes, self.inplanes, self.num_final_flow_features ) # 32->200 # decoding matchability if self.use_visi: self.visi_dec_layer5 = self._make_decoding_layer( self.inplanes*32*2, self.inplanes*16, self.inplanes*16, self.inplanes*16 ) # 512->256 self.visi_dec_layer4 = self._make_decoding_layer( self.inplanes*16, self.inplanes*8, self.inplanes*8, self.inplanes*8 ) # 256->128 self.visi_dec_layer3 = self._make_decoding_layer( self.inplanes*8, self.inplanes*4, self.inplanes*4, self.inplanes*4 ) # 128->64 self.visi_dec_layer2 = self._make_decoding_layer( self.inplanes*4, self.inplanes*2, self.inplanes*2, self.inplanes*2 ) # 64->32 self.visi_dec_layer1 = self._make_decoding_layer( self.inplanes*2, self.inplanes, self.inplanes, self.inplanes ) # 32->16 # 1x1 conv for flow self.flow_conv = nn.Conv2d( self.num_final_flow_features, 1, kernel_size=1, stride=1, padding=0, bias=True ) # 1x1 conv for mathability if self.use_visi: self.visi_conv = nn.Conv2d( self.inplanes, 2, kernel_size=1, stride=1, padding=0, bias=True ) # 2 classes, 0=not vis, 1=vis self.visi_softmax = nn.LogSoftmax(dim=1) # initialization for m in self.modules(): if isinstance(m, nn.Conv2d) or isinstance(m,nn.ConvTranspose2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def _make_encoding_layer(self, inplanes, planes, stride=2): return DoubleResNet(BasicBlock,inplanes,planes,stride=stride) def _make_decoding_layer(self, inplanes, skipplanes, deconvplanes, resnetplanes ): return ConvTransposeLayer( inplanes, skipplanes, deconvplanes, resnetplanes ) def encode(self,x): # stem x = self.conv1(x) x = self.bn1(x) x0 = self.relu1(x) x = self.pool1(x0) x1 = self.enc_layer1(x) x2 = self.enc_layer2(x1) x3 = self.enc_layer3(x2) x4 = self.enc_layer4(x3) x5 = self.enc_layer5(x4) if self._showsizes: print "after encoding: " print " x1: ",x1.size() print " x2: ",x2.size() print " x3: ",x3.size() print " x4: ",x4.size() print " x5: ",x5.size() return x5,x0,x1,x2,x3,x4 def flow(self,merged_encode,x0,x1,x2,x3,x4): """ decoding to flow prediction """ x = self.flow_dec_layer5(merged_encode,x4) if self._showsizes: print "after decoding:" print " dec5: ",x.size()," iscuda=",x.is_cuda x = self.flow_dec_layer4(x,x3) if self._showsizes: print " dec4: ",x.size()," iscuda=",x.is_cuda x = self.flow_dec_layer3(x,x2) if self._showsizes: print " dec3: ",x.size()," iscuda=",x.is_cuda x = self.flow_dec_layer2(x,x1) if self._showsizes: print " dec2: ",x.size()," iscuda=",x.is_cuda x = self.flow_dec_layer1(x,x0) if self._showsizes: print " dec1: ",x.size()," iscuda=",x.is_cuda return x def visibility(self,merged_encode,x0,x1,x2,x3,x4): """ decoding to flow prediction """ x = self.visi_dec_layer5(merged_encode,x4) if self._showsizes: print "after decoding:" print " dec5: ",x.size()," iscuda=",x.is_cuda x = self.visi_dec_layer4(x,x3) if self._showsizes: print " dec4: ",x.size()," iscuda=",x.is_cuda x = self.visi_dec_layer3(x,x2) if self._showsizes: print " dec3: ",x.size()," iscuda=",x.is_cuda x = self.visi_dec_layer2(x,x1) if self._showsizes: print " dec2: ",x.size()," iscuda=",x.is_cuda x = self.visi_dec_layer1(x,x0) if self._showsizes: print " dec1: ",x.size()," iscuda=",x.is_cuda return x def forward(self, src, target): if self._showsizes: print "input: ",x.size()," is_cuda=",x.is_cuda src_encode, s0, s1, s2, s3, s4 = self.encode(src) target_encode, t0, t1, t2, t3, t4 = self.encode(target) merged_encode = torch.cat( [target_encode,src_encode], 1 ) flowout = self.flow( merged_encode, s0, s1, s2, s3, s4 ) if self.use_visi: visiout = self.visibility( merged_encode, t0, t1, t2, t3, t4 ) flow_predict = self.flow_conv( flowout ) if self.use_visi: visi_predict = self.visi_conv( visiout ) visi_predict = self.visi_softmax(visi_predict) else: visi_predict = None if self._showsizes: print " softmax: ",x.size() return flow_predict,visi_predict
[]
wzzju/PaddleNLP
examples/machine_reading_comprehension/DuReader-robust/run_du.py
1757a4fc2a3cd5a45f75c6482746777752b414d8
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # Copyright 2018 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import random import time import json import math from functools import partial import numpy as np import paddle from paddle.io import DataLoader from args import parse_args import paddlenlp as ppnlp from paddlenlp.data import Pad, Stack, Tuple, Dict from paddlenlp.transformers import BertForQuestionAnswering, BertTokenizer from paddlenlp.transformers import ErnieForQuestionAnswering, ErnieTokenizer from paddlenlp.transformers import ErnieGramForQuestionAnswering, ErnieGramTokenizer from paddlenlp.transformers import RobertaForQuestionAnswering, RobertaTokenizer from paddlenlp.transformers import LinearDecayWithWarmup from paddlenlp.metrics.squad import squad_evaluate, compute_prediction from paddlenlp.datasets import load_dataset MODEL_CLASSES = { "bert": (BertForQuestionAnswering, BertTokenizer), "ernie": (ErnieForQuestionAnswering, ErnieTokenizer), "ernie_gram": (ErnieGramForQuestionAnswering, ErnieGramTokenizer), "roberta": (RobertaForQuestionAnswering, RobertaTokenizer) } def set_seed(args): random.seed(args.seed) np.random.seed(args.seed) paddle.seed(args.seed) @paddle.no_grad() def evaluate(model, data_loader, args): model.eval() all_start_logits = [] all_end_logits = [] tic_eval = time.time() for batch in data_loader: input_ids, token_type_ids = batch start_logits_tensor, end_logits_tensor = model(input_ids, token_type_ids) for idx in range(start_logits_tensor.shape[0]): if len(all_start_logits) % 1000 == 0 and len(all_start_logits): print("Processing example: %d" % len(all_start_logits)) print('time per 1000:', time.time() - tic_eval) tic_eval = time.time() all_start_logits.append(start_logits_tensor.numpy()[idx]) all_end_logits.append(end_logits_tensor.numpy()[idx]) all_predictions, _, _ = compute_prediction( data_loader.dataset.data, data_loader.dataset.new_data, (all_start_logits, all_end_logits), False, args.n_best_size, args.max_answer_length) # Can also write all_nbest_json and scores_diff_json files if needed with open('prediction.json', "w", encoding='utf-8') as writer: writer.write( json.dumps( all_predictions, ensure_ascii=False, indent=4) + "\n") squad_evaluate( examples=data_loader.dataset.data, preds=all_predictions, is_whitespace_splited=False) model.train() class CrossEntropyLossForSQuAD(paddle.nn.Layer): def __init__(self): super(CrossEntropyLossForSQuAD, self).__init__() def forward(self, y, label): start_logits, end_logits = y start_position, end_position = label start_position = paddle.unsqueeze(start_position, axis=-1) end_position = paddle.unsqueeze(end_position, axis=-1) start_loss = paddle.nn.functional.cross_entropy( input=start_logits, label=start_position) end_loss = paddle.nn.functional.cross_entropy( input=end_logits, label=end_position) loss = (start_loss + end_loss) / 2 return loss def run(args): paddle.set_device(args.device) if paddle.distributed.get_world_size() > 1: paddle.distributed.init_parallel_env() rank = paddle.distributed.get_rank() task_name = args.task_name.lower() args.model_type = args.model_type.lower() model_class, tokenizer_class = MODEL_CLASSES[args.model_type] tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path) set_seed(args) if rank == 0: if os.path.exists(args.model_name_or_path): print("init checkpoint from %s" % args.model_name_or_path) model = model_class.from_pretrained(args.model_name_or_path) if paddle.distributed.get_world_size() > 1: model = paddle.DataParallel(model) def prepare_train_features(examples): # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. # NOTE: Almost the same functionality as HuggingFace's prepare_train_features function. The main difference is # that HugggingFace uses ArrowTable as basic data structure, while we use list of dictionary instead. contexts = [examples[i]['context'] for i in range(len(examples))] questions = [examples[i]['question'] for i in range(len(examples))] tokenized_examples = tokenizer( questions, contexts, stride=args.doc_stride, max_seq_len=args.max_seq_length) # Let's label those examples! for i, tokenized_example in enumerate(tokenized_examples): # We will label impossible answers with the index of the CLS token. input_ids = tokenized_example["input_ids"] cls_index = input_ids.index(tokenizer.cls_token_id) # The offset mappings will give us a map from token to character position in the original context. This will # help us compute the start_positions and end_positions. offsets = tokenized_example['offset_mapping'] # Grab the sequence corresponding to that example (to know what is the context and what is the question). sequence_ids = tokenized_example['token_type_ids'] # One example can give several spans, this is the index of the example containing this span of text. sample_index = tokenized_example['overflow_to_sample'] answers = examples[sample_index]['answers'] answer_starts = examples[sample_index]['answer_starts'] # Start/end character index of the answer in the text. start_char = answer_starts[0] end_char = start_char + len(answers[0]) # Start token index of the current span in the text. token_start_index = 0 while sequence_ids[token_start_index] != 1: token_start_index += 1 # End token index of the current span in the text. token_end_index = len(input_ids) - 1 while sequence_ids[token_end_index] != 1: token_end_index -= 1 # Minus one more to reach actual text token_end_index -= 1 # Detect if the answer is out of the span (in which case this feature is labeled with the CLS index). if not (offsets[token_start_index][0] <= start_char and offsets[token_end_index][1] >= end_char): tokenized_examples[i]["start_positions"] = cls_index tokenized_examples[i]["end_positions"] = cls_index else: # Otherwise move the token_start_index and token_end_index to the two ends of the answer. # Note: we could go after the last offset if the answer is the last word (edge case). while token_start_index < len(offsets) and offsets[ token_start_index][0] <= start_char: token_start_index += 1 tokenized_examples[i]["start_positions"] = token_start_index - 1 while offsets[token_end_index][1] >= end_char: token_end_index -= 1 tokenized_examples[i]["end_positions"] = token_end_index + 1 return tokenized_examples if args.do_train: if args.train_file: train_ds = load_dataset(task_name, data_files=args.train_file) else: train_ds = load_dataset(task_name, splits='train') train_ds.map(prepare_train_features, batched=True) train_batch_sampler = paddle.io.DistributedBatchSampler( train_ds, batch_size=args.batch_size, shuffle=True) train_batchify_fn = lambda samples, fn=Dict({ "input_ids": Pad(axis=0, pad_val=tokenizer.pad_token_id), "token_type_ids": Pad(axis=0, pad_val=tokenizer.pad_token_type_id), "start_positions": Stack(dtype="int64"), "end_positions": Stack(dtype="int64") }): fn(samples) train_data_loader = DataLoader( dataset=train_ds, batch_sampler=train_batch_sampler, collate_fn=train_batchify_fn, return_list=True) num_training_steps = args.max_steps if args.max_steps > 0 else len( train_data_loader) * args.num_train_epochs num_train_epochs = math.ceil(num_training_steps / len(train_data_loader)) lr_scheduler = LinearDecayWithWarmup( args.learning_rate, num_training_steps, args.warmup_proportion) # Generate parameter names needed to perform weight decay. # All bias and LayerNorm parameters are excluded. decay_params = [ p.name for n, p in model.named_parameters() if not any(nd in n for nd in ["bias", "norm"]) ] optimizer = paddle.optimizer.AdamW( learning_rate=lr_scheduler, epsilon=args.adam_epsilon, parameters=model.parameters(), weight_decay=args.weight_decay, apply_decay_param_fun=lambda x: x in decay_params) criterion = CrossEntropyLossForSQuAD() global_step = 0 tic_train = time.time() for epoch in range(num_train_epochs): for step, batch in enumerate(train_data_loader): global_step += 1 input_ids, token_type_ids, start_positions, end_positions = batch logits = model( input_ids=input_ids, token_type_ids=token_type_ids) loss = criterion(logits, (start_positions, end_positions)) if global_step % args.logging_steps == 0: print( "global step %d, epoch: %d, batch: %d, loss: %f, speed: %.2f step/s" % (global_step, epoch + 1, step + 1, loss, args.logging_steps / (time.time() - tic_train))) tic_train = time.time() loss.backward() optimizer.step() lr_scheduler.step() optimizer.clear_grad() if global_step % args.save_steps == 0 or global_step == num_training_steps: if rank == 0: output_dir = os.path.join(args.output_dir, "model_%d" % global_step) if not os.path.exists(output_dir): os.makedirs(output_dir) # need better way to get inner model of DataParallel model_to_save = model._layers if isinstance( model, paddle.DataParallel) else model model_to_save.save_pretrained(output_dir) tokenizer.save_pretrained(output_dir) print('Saving checkpoint to:', output_dir) if global_step == num_training_steps: break def prepare_validation_features(examples): # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. # NOTE: Almost the same functionality as HuggingFace's prepare_train_features function. The main difference is # that HugggingFace uses ArrowTable as basic data structure, while we use list of dictionary instead. contexts = [examples[i]['context'] for i in range(len(examples))] questions = [examples[i]['question'] for i in range(len(examples))] tokenized_examples = tokenizer( questions, contexts, stride=args.doc_stride, max_seq_len=args.max_seq_length) # For validation, there is no need to compute start and end positions for i, tokenized_example in enumerate(tokenized_examples): # Grab the sequence corresponding to that example (to know what is the context and what is the question). sequence_ids = tokenized_example['token_type_ids'] # One example can give several spans, this is the index of the example containing this span of text. sample_index = tokenized_example['overflow_to_sample'] tokenized_examples[i]["example_id"] = examples[sample_index]['id'] # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. tokenized_examples[i]["offset_mapping"] = [ (o if sequence_ids[k] == 1 else None) for k, o in enumerate(tokenized_example["offset_mapping"]) ] return tokenized_examples if args.do_predict and rank == 0: if args.predict_file: dev_ds = load_dataset(task_name, data_files=args.predict_file) else: dev_ds = load_dataset(task_name, splits='dev') dev_ds.map(prepare_validation_features, batched=True) dev_batch_sampler = paddle.io.BatchSampler( dev_ds, batch_size=args.batch_size, shuffle=False) dev_batchify_fn = lambda samples, fn=Dict({ "input_ids": Pad(axis=0, pad_val=tokenizer.pad_token_id), "token_type_ids": Pad(axis=0, pad_val=tokenizer.pad_token_type_id) }): fn(samples) dev_data_loader = DataLoader( dataset=dev_ds, batch_sampler=dev_batch_sampler, collate_fn=dev_batchify_fn, return_list=True) evaluate(model, dev_data_loader, args) if __name__ == "__main__": args = parse_args() run(args)
[((1787, 1803), 'paddle.no_grad', 'paddle.no_grad', ([], {}), '()\n', (1801, 1803), False, 'import paddle\n'), ((1704, 1726), 'random.seed', 'random.seed', (['args.seed'], {}), '(args.seed)\n', (1715, 1726), False, 'import random\n'), ((1731, 1756), 'numpy.random.seed', 'np.random.seed', (['args.seed'], {}), '(args.seed)\n', (1745, 1756), True, 'import numpy as np\n'), ((1761, 1783), 'paddle.seed', 'paddle.seed', (['args.seed'], {}), '(args.seed)\n', (1772, 1783), False, 'import paddle\n'), ((1927, 1938), 'time.time', 'time.time', ([], {}), '()\n', (1936, 1938), False, 'import time\n'), ((2623, 2791), 'paddlenlp.metrics.squad.compute_prediction', 'compute_prediction', (['data_loader.dataset.data', 'data_loader.dataset.new_data', '(all_start_logits, all_end_logits)', '(False)', 'args.n_best_size', 'args.max_answer_length'], {}), '(data_loader.dataset.data, data_loader.dataset.new_data,\n (all_start_logits, all_end_logits), False, args.n_best_size, args.\n max_answer_length)\n', (2641, 2791), False, 'from paddlenlp.metrics.squad import squad_evaluate, compute_prediction\n'), ((3071, 3176), 'paddlenlp.metrics.squad.squad_evaluate', 'squad_evaluate', ([], {'examples': 'data_loader.dataset.data', 'preds': 'all_predictions', 'is_whitespace_splited': '(False)'}), '(examples=data_loader.dataset.data, preds=all_predictions,\n is_whitespace_splited=False)\n', (3085, 3176), False, 'from paddlenlp.metrics.squad import squad_evaluate, compute_prediction\n'), ((3895, 3925), 'paddle.set_device', 'paddle.set_device', (['args.device'], {}), '(args.device)\n', (3912, 3925), False, 'import paddle\n'), ((4032, 4061), 'paddle.distributed.get_rank', 'paddle.distributed.get_rank', ([], {}), '()\n', (4059, 4061), False, 'import paddle\n'), ((14771, 14783), 'args.parse_args', 'parse_args', ([], {}), '()\n', (14781, 14783), False, 'from args import parse_args\n'), ((3490, 3531), 'paddle.unsqueeze', 'paddle.unsqueeze', (['start_position'], {'axis': '(-1)'}), '(start_position, axis=-1)\n', (3506, 3531), False, 'import paddle\n'), ((3555, 3594), 'paddle.unsqueeze', 'paddle.unsqueeze', (['end_position'], {'axis': '(-1)'}), '(end_position, axis=-1)\n', (3571, 3594), False, 'import paddle\n'), ((3616, 3692), 'paddle.nn.functional.cross_entropy', 'paddle.nn.functional.cross_entropy', ([], {'input': 'start_logits', 'label': 'start_position'}), '(input=start_logits, label=start_position)\n', (3650, 3692), False, 'import paddle\n'), ((3725, 3797), 'paddle.nn.functional.cross_entropy', 'paddle.nn.functional.cross_entropy', ([], {'input': 'end_logits', 'label': 'end_position'}), '(input=end_logits, label=end_position)\n', (3759, 3797), False, 'import paddle\n'), ((3933, 3968), 'paddle.distributed.get_world_size', 'paddle.distributed.get_world_size', ([], {}), '()\n', (3966, 3968), False, 'import paddle\n'), ((3982, 4020), 'paddle.distributed.init_parallel_env', 'paddle.distributed.init_parallel_env', ([], {}), '()\n', (4018, 4020), False, 'import paddle\n'), ((4335, 4374), 'os.path.exists', 'os.path.exists', (['args.model_name_or_path'], {}), '(args.model_name_or_path)\n', (4349, 4374), False, 'import os\n'), ((4521, 4556), 'paddle.distributed.get_world_size', 'paddle.distributed.get_world_size', ([], {}), '()\n', (4554, 4556), False, 'import paddle\n'), ((4578, 4604), 'paddle.DataParallel', 'paddle.DataParallel', (['model'], {}), '(model)\n', (4597, 4604), False, 'import paddle\n'), ((8555, 8644), 'paddle.io.DistributedBatchSampler', 'paddle.io.DistributedBatchSampler', (['train_ds'], {'batch_size': 'args.batch_size', 'shuffle': '(True)'}), '(train_ds, batch_size=args.batch_size,\n shuffle=True)\n', (8588, 8644), False, 'import paddle\n'), ((9014, 9130), 'paddle.io.DataLoader', 'DataLoader', ([], {'dataset': 'train_ds', 'batch_sampler': 'train_batch_sampler', 'collate_fn': 'train_batchify_fn', 'return_list': '(True)'}), '(dataset=train_ds, batch_sampler=train_batch_sampler, collate_fn=\n train_batchify_fn, return_list=True)\n', (9024, 9130), False, 'from paddle.io import DataLoader\n'), ((9450, 9540), 'paddlenlp.transformers.LinearDecayWithWarmup', 'LinearDecayWithWarmup', (['args.learning_rate', 'num_training_steps', 'args.warmup_proportion'], {}), '(args.learning_rate, num_training_steps, args.\n warmup_proportion)\n', (9471, 9540), False, 'from paddlenlp.transformers import LinearDecayWithWarmup\n'), ((10190, 10201), 'time.time', 'time.time', ([], {}), '()\n', (10199, 10201), False, 'import time\n'), ((14188, 14261), 'paddle.io.BatchSampler', 'paddle.io.BatchSampler', (['dev_ds'], {'batch_size': 'args.batch_size', 'shuffle': '(False)'}), '(dev_ds, batch_size=args.batch_size, shuffle=False)\n', (14210, 14261), False, 'import paddle\n'), ((14528, 14638), 'paddle.io.DataLoader', 'DataLoader', ([], {'dataset': 'dev_ds', 'batch_sampler': 'dev_batch_sampler', 'collate_fn': 'dev_batchify_fn', 'return_list': '(True)'}), '(dataset=dev_ds, batch_sampler=dev_batch_sampler, collate_fn=\n dev_batchify_fn, return_list=True)\n', (14538, 14638), False, 'from paddle.io import DataLoader\n'), ((8337, 8388), 'paddlenlp.datasets.load_dataset', 'load_dataset', (['task_name'], {'data_files': 'args.train_file'}), '(task_name, data_files=args.train_file)\n', (8349, 8388), False, 'from paddlenlp.datasets import load_dataset\n'), ((8426, 8465), 'paddlenlp.datasets.load_dataset', 'load_dataset', (['task_name'], {'splits': '"""train"""'}), "(task_name, splits='train')\n", (8438, 8465), False, 'from paddlenlp.datasets import load_dataset\n'), ((13970, 14023), 'paddlenlp.datasets.load_dataset', 'load_dataset', (['task_name'], {'data_files': 'args.predict_file'}), '(task_name, data_files=args.predict_file)\n', (13982, 14023), False, 'from paddlenlp.datasets import load_dataset\n'), ((14059, 14096), 'paddlenlp.datasets.load_dataset', 'load_dataset', (['task_name'], {'splits': '"""dev"""'}), "(task_name, splits='dev')\n", (14071, 14096), False, 'from paddlenlp.datasets import load_dataset\n'), ((2445, 2456), 'time.time', 'time.time', ([], {}), '()\n', (2454, 2456), False, 'import time\n'), ((2983, 3040), 'json.dumps', 'json.dumps', (['all_predictions'], {'ensure_ascii': '(False)', 'indent': '(4)'}), '(all_predictions, ensure_ascii=False, indent=4)\n', (2993, 3040), False, 'import json\n'), ((10957, 10968), 'time.time', 'time.time', ([], {}), '()\n', (10966, 10968), False, 'import time\n'), ((2394, 2405), 'time.time', 'time.time', ([], {}), '()\n', (2403, 2405), False, 'import time\n'), ((8733, 8776), 'paddlenlp.data.Pad', 'Pad', ([], {'axis': '(0)', 'pad_val': 'tokenizer.pad_token_id'}), '(axis=0, pad_val=tokenizer.pad_token_id)\n', (8736, 8776), False, 'from paddlenlp.data import Pad, Stack, Tuple, Dict\n'), ((8808, 8856), 'paddlenlp.data.Pad', 'Pad', ([], {'axis': '(0)', 'pad_val': 'tokenizer.pad_token_type_id'}), '(axis=0, pad_val=tokenizer.pad_token_type_id)\n', (8811, 8856), False, 'from paddlenlp.data import Pad, Stack, Tuple, Dict\n'), ((8889, 8909), 'paddlenlp.data.Stack', 'Stack', ([], {'dtype': '"""int64"""'}), "(dtype='int64')\n", (8894, 8909), False, 'from paddlenlp.data import Pad, Stack, Tuple, Dict\n'), ((8940, 8960), 'paddlenlp.data.Stack', 'Stack', ([], {'dtype': '"""int64"""'}), "(dtype='int64')\n", (8945, 8960), False, 'from paddlenlp.data import Pad, Stack, Tuple, Dict\n'), ((11273, 11328), 'os.path.join', 'os.path.join', (['args.output_dir', "('model_%d' % global_step)"], {}), "(args.output_dir, 'model_%d' % global_step)\n", (11285, 11328), False, 'import os\n'), ((14353, 14396), 'paddlenlp.data.Pad', 'Pad', ([], {'axis': '(0)', 'pad_val': 'tokenizer.pad_token_id'}), '(axis=0, pad_val=tokenizer.pad_token_id)\n', (14356, 14396), False, 'from paddlenlp.data import Pad, Stack, Tuple, Dict\n'), ((14428, 14476), 'paddlenlp.data.Pad', 'Pad', ([], {'axis': '(0)', 'pad_val': 'tokenizer.pad_token_type_id'}), '(axis=0, pad_val=tokenizer.pad_token_type_id)\n', (14431, 14476), False, 'from paddlenlp.data import Pad, Stack, Tuple, Dict\n'), ((11410, 11436), 'os.path.exists', 'os.path.exists', (['output_dir'], {}), '(output_dir)\n', (11424, 11436), False, 'import os\n'), ((11466, 11489), 'os.makedirs', 'os.makedirs', (['output_dir'], {}), '(output_dir)\n', (11477, 11489), False, 'import os\n'), ((10898, 10909), 'time.time', 'time.time', ([], {}), '()\n', (10907, 10909), False, 'import time\n')]
quangnguyendang/Reinforcement_Learning
Deep_Q_Network/DQN_for_FrozenLake_Discrete_Domain.py
2551ce95068561c553500838ee6b976f001ba667
# Credit to https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-0-q-learning-with-tables-and-neural-networks-d195264329d0 import gym import tensorflow as tf import numpy as np import matplotlib.pyplot as plt env = gym.make('FrozenLake-v0') # NEURAL NETWORK IMPLEMENTATION tf.reset_default_graph() # Feature vector for current state representation input1 = tf.placeholder(shape=[1, env.observation_space.n], dtype=tf.float32) # tf.Variable(<initial-value>, name=<optional-name>) # tf.random_uniform(shape, minval=0, maxval=None, dtype=tf.float32, seed=None, name=None) # Weighting W vector in range 0 - 0.01 (like the way Andrew Ng did with *0.01 W = tf.Variable(tf.random_uniform([env.observation_space.n, env.action_space.n], 0, 0.01)) # Qout with shape [1, env.action_space.n] - Action state value for Q[s, a] with every a available at a state Qout = tf.matmul(input1, W) # Greedy action at a state predict = tf.argmax(Qout, axis=1) # Feature vector for next state representation nextQ = tf.placeholder(shape=[1, env.action_space.n], dtype=tf.float32) # Entropy loss loss = tf.reduce_sum(tf.square(Qout - nextQ)) trainer = tf.train.GradientDescentOptimizer(learning_rate=0.1) updateModel = trainer.minimize(loss) # TRAIN THE NETWORK init = tf.global_variables_initializer() # Set learning parameters y = 0.99 e = 0.1 number_episodes = 2000 # List to store total rewards and steps per episode jList = [] rList = [] with tf.Session() as sess: sess.run(init) for i in range(number_episodes): print("Episode #{} is running!".format(i)) # First state s = env.reset() rAll = 0 d = False j = 0 # Q network while j < 200: # or While not d: j += 1 # Choose action by epsilon (e) greedy # print("s = ", s," --> Identity s:s+1: ", np.identity(env.observation_space.n)[s:s+1]) # s = 0 --> Identity s: s + 1: [[1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]] # s = 1 --> Identity s: s + 1: [[0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]] # Identity [s:s+1] is a one-hot vector # Therefore W is the actual Q value a, allQ = sess.run([predict, Qout], feed_dict={input1: np.identity(env.observation_space.n)[s:s+1]}) if np.random.rand(1) < e: a[0] = env.action_space.sample() s1, r, d, _ = env.step(a[0]) # Obtain next state Q value by feeding the new state throughout the network Q1 = sess.run(Qout, feed_dict={input1: np.identity(env.observation_space.n)[s1:s1+1]}) maxQ1 = np.max(Q1) targetQ = allQ targetQ[0, a[0]] = r + y * maxQ1 # Train our network using target and predicted Q values _, W1 = sess.run([updateModel, W], feed_dict={input1: np.identity(env.observation_space.n)[s:s+1], nextQ: targetQ}) rAll += r s = s1 if d: e = 1./((i/50) + 10) break jList.append(j) rList.append(rAll) env.close() plt.figure() plt.plot(rList, label="Return - Q Learning") plt.show() plt.figure() plt.plot(jList, label="Steps - Q Learning") plt.show() # ------------------------------------------------------------------------- # TABULAR IMPLEMENTATION # # # Set learning parameters # lr = 0.8 # y = 0.95 # number_episodes = 20000 # # # Initial table with all zeros # Q = np.zeros([env.observation_space.n, env.action_space.n]) # # # List of reward and steps per episode # rList = [] # for i in range (number_episodes): # print("Episode #{} is running!".format(i)) # s = env.reset() # rAll = 0 # d = False # j = 0 # while j < 99: # j += 1 # # Choose an action by greedily (with noise) picking from Q table # # Because of the noise, it is epsilon-greedy with epsilon decreasing over time # a = np.argmax(Q[s, :] + np.random.rand(1, env.action_space.n)*(1./(i + 1))) # s1, r, d, _ = env.step(a) # # env.render() # # # Update Q table with new knowledge # Q[s, a] = Q[s, a] + lr * (r + y * np.max(Q[s1, :]) - Q[s, a]) # rAll += r # s = s1 # if d: # break # rList.append(rAll)
[((251, 276), 'gym.make', 'gym.make', (['"""FrozenLake-v0"""'], {}), "('FrozenLake-v0')\n", (259, 276), False, 'import gym\n'), ((310, 334), 'tensorflow.reset_default_graph', 'tf.reset_default_graph', ([], {}), '()\n', (332, 334), True, 'import tensorflow as tf\n'), ((395, 463), 'tensorflow.placeholder', 'tf.placeholder', ([], {'shape': '[1, env.observation_space.n]', 'dtype': 'tf.float32'}), '(shape=[1, env.observation_space.n], dtype=tf.float32)\n', (409, 463), True, 'import tensorflow as tf\n'), ((895, 915), 'tensorflow.matmul', 'tf.matmul', (['input1', 'W'], {}), '(input1, W)\n', (904, 915), True, 'import tensorflow as tf\n'), ((954, 977), 'tensorflow.argmax', 'tf.argmax', (['Qout'], {'axis': '(1)'}), '(Qout, axis=1)\n', (963, 977), True, 'import tensorflow as tf\n'), ((1034, 1097), 'tensorflow.placeholder', 'tf.placeholder', ([], {'shape': '[1, env.action_space.n]', 'dtype': 'tf.float32'}), '(shape=[1, env.action_space.n], dtype=tf.float32)\n', (1048, 1097), True, 'import tensorflow as tf\n'), ((1170, 1222), 'tensorflow.train.GradientDescentOptimizer', 'tf.train.GradientDescentOptimizer', ([], {'learning_rate': '(0.1)'}), '(learning_rate=0.1)\n', (1203, 1222), True, 'import tensorflow as tf\n'), ((1288, 1321), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (1319, 1321), True, 'import tensorflow as tf\n'), ((3132, 3144), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (3142, 3144), True, 'import matplotlib.pyplot as plt\n'), ((3145, 3189), 'matplotlib.pyplot.plot', 'plt.plot', (['rList'], {'label': '"""Return - Q Learning"""'}), "(rList, label='Return - Q Learning')\n", (3153, 3189), True, 'import matplotlib.pyplot as plt\n'), ((3190, 3200), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3198, 3200), True, 'import matplotlib.pyplot as plt\n'), ((3202, 3214), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (3212, 3214), True, 'import matplotlib.pyplot as plt\n'), ((3215, 3258), 'matplotlib.pyplot.plot', 'plt.plot', (['jList'], {'label': '"""Steps - Q Learning"""'}), "(jList, label='Steps - Q Learning')\n", (3223, 3258), True, 'import matplotlib.pyplot as plt\n'), ((3259, 3269), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3267, 3269), True, 'import matplotlib.pyplot as plt\n'), ((703, 776), 'tensorflow.random_uniform', 'tf.random_uniform', (['[env.observation_space.n, env.action_space.n]', '(0)', '(0.01)'], {}), '([env.observation_space.n, env.action_space.n], 0, 0.01)\n', (720, 776), True, 'import tensorflow as tf\n'), ((1135, 1158), 'tensorflow.square', 'tf.square', (['(Qout - nextQ)'], {}), '(Qout - nextQ)\n', (1144, 1158), True, 'import tensorflow as tf\n'), ((1469, 1481), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (1479, 1481), True, 'import tensorflow as tf\n'), ((2668, 2678), 'numpy.max', 'np.max', (['Q1'], {}), '(Q1)\n', (2674, 2678), True, 'import numpy as np\n'), ((2347, 2364), 'numpy.random.rand', 'np.random.rand', (['(1)'], {}), '(1)\n', (2361, 2364), True, 'import numpy as np\n'), ((2285, 2321), 'numpy.identity', 'np.identity', (['env.observation_space.n'], {}), '(env.observation_space.n)\n', (2296, 2321), True, 'import numpy as np\n'), ((2600, 2636), 'numpy.identity', 'np.identity', (['env.observation_space.n'], {}), '(env.observation_space.n)\n', (2611, 2636), True, 'import numpy as np\n'), ((2886, 2922), 'numpy.identity', 'np.identity', (['env.observation_space.n'], {}), '(env.observation_space.n)\n', (2897, 2922), True, 'import numpy as np\n')]
chanced/tink
testing/cross_language/util/supported_key_types.py
9cc3a01ac0165b033ed51dc9d0812a98b4b6e305
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """All KeyTypes and which languages support them.""" # Placeholder for import for type annotations from tink import aead from tink import daead from tink import hybrid from tink import mac from tink import prf from tink import signature from tink import streaming_aead from tink.proto import tink_pb2 # All languages supported by cross-language tests. ALL_LANGUAGES = ['cc', 'java', 'go', 'python'] # All KeyTypes (without the prefix 'type.googleapis.com/google.crypto.tink.') AEAD_KEY_TYPES = [ 'AesEaxKey', 'AesGcmKey', 'AesGcmSivKey', 'AesCtrHmacAeadKey', 'ChaCha20Poly1305Key', 'XChaCha20Poly1305Key', ] DAEAD_KEY_TYPES = ['AesSivKey'] STREAMING_AEAD_KEY_TYPES = [ 'AesCtrHmacStreamingKey', 'AesGcmHkdfStreamingKey', ] HYBRID_PRIVATE_KEY_TYPES = ['EciesAeadHkdfPrivateKey'] MAC_KEY_TYPES = [ 'AesCmacKey', 'HmacKey', ] SIGNATURE_KEY_TYPES = [ 'EcdsaPrivateKey', 'Ed25519PrivateKey', 'RsaSsaPkcs1PrivateKey', 'RsaSsaPssPrivateKey', ] PRF_KEY_TYPES = [ 'AesCmacPrfKey', 'HmacPrfKey', 'HkdfPrfKey', ] ALL_KEY_TYPES = ( AEAD_KEY_TYPES + DAEAD_KEY_TYPES + STREAMING_AEAD_KEY_TYPES + HYBRID_PRIVATE_KEY_TYPES + MAC_KEY_TYPES + SIGNATURE_KEY_TYPES + PRF_KEY_TYPES) # All languages that are supported by a KeyType SUPPORTED_LANGUAGES = { 'AesEaxKey': ['cc', 'java', 'python'], 'AesGcmKey': ['cc', 'java', 'go', 'python'], 'AesGcmSivKey': ['cc', 'python'], 'AesCtrHmacAeadKey': ['cc', 'java', 'go', 'python'], 'ChaCha20Poly1305Key': ['java', 'go'], 'XChaCha20Poly1305Key': ['cc', 'java', 'go', 'python'], 'AesSivKey': ['cc', 'java', 'go', 'python'], 'AesCtrHmacStreamingKey': ['cc', 'java', 'go', 'python'], 'AesGcmHkdfStreamingKey': ['cc', 'java', 'go', 'python'], 'EciesAeadHkdfPrivateKey': ['cc', 'java', 'go', 'python'], 'AesCmacKey': ['cc', 'java', 'go', 'python'], 'HmacKey': ['cc', 'java', 'go', 'python'], 'EcdsaPrivateKey': ['cc', 'java', 'go', 'python'], 'Ed25519PrivateKey': ['cc', 'java', 'go', 'python'], 'RsaSsaPkcs1PrivateKey': ['cc', 'java', 'python'], 'RsaSsaPssPrivateKey': ['cc', 'java', 'python'], 'AesCmacPrfKey': ['cc', 'java', 'go', 'python'], 'HmacPrfKey': ['cc', 'java', 'go', 'python'], 'HkdfPrfKey': ['cc', 'java', 'go', 'python'], } KEY_TYPE_FROM_URL = { 'type.googleapis.com/google.crypto.tink.' + key_type: key_type for key_type in ALL_KEY_TYPES} # For each KeyType, a list of all KeyTemplate Names that must be supported. KEY_TEMPLATE_NAMES = { 'AesEaxKey': ['AES128_EAX', 'AES256_EAX'], 'AesGcmKey': ['AES128_GCM', 'AES256_GCM'], 'AesGcmSivKey': ['AES128_GCM_SIV', 'AES256_GCM_SIV'], 'AesCtrHmacAeadKey': ['AES128_CTR_HMAC_SHA256', 'AES256_CTR_HMAC_SHA256'], 'ChaCha20Poly1305Key': ['CHACHA20_POLY1305'], 'XChaCha20Poly1305Key': ['XCHACHA20_POLY1305'], 'AesSivKey': ['AES256_SIV'], 'AesCtrHmacStreamingKey': [ 'AES128_CTR_HMAC_SHA256_4KB', 'AES256_CTR_HMAC_SHA256_4KB', ], 'AesGcmHkdfStreamingKey': [ 'AES128_GCM_HKDF_4KB', 'AES256_GCM_HKDF_4KB', 'AES256_GCM_HKDF_1MB', ], 'EciesAeadHkdfPrivateKey': [ 'ECIES_P256_HKDF_HMAC_SHA256_AES128_GCM', 'ECIES_P256_HKDF_HMAC_SHA256_AES128_CTR_HMAC_SHA256' ], 'AesCmacKey': ['AES_CMAC'], 'HmacKey': [ 'HMAC_SHA256_128BITTAG', 'HMAC_SHA256_256BITTAG', 'HMAC_SHA512_256BITTAG', 'HMAC_SHA512_512BITTAG' ], 'EcdsaPrivateKey': [ 'ECDSA_P256', 'ECDSA_P384', 'ECDSA_P384_SHA384', 'ECDSA_P521', 'ECDSA_P256_IEEE_P1363', 'ECDSA_P384_IEEE_P1363', 'ECDSA_P384_SHA384_IEEE_P1363', 'ECDSA_P521_IEEE_P1363' ], 'Ed25519PrivateKey': ['ED25519'], 'RsaSsaPkcs1PrivateKey': [ 'RSA_SSA_PKCS1_3072_SHA256_F4', 'RSA_SSA_PKCS1_4096_SHA512_F4' ], 'RsaSsaPssPrivateKey': [ 'RSA_SSA_PSS_3072_SHA256_SHA256_32_F4', 'RSA_SSA_PSS_4096_SHA512_SHA512_64_F4' ], 'AesCmacPrfKey': ['AES_CMAC_PRF'], 'HmacPrfKey': ['HMAC_PRF_SHA256', 'HMAC_PRF_SHA512'], 'HkdfPrfKey': ['HKDF_PRF_SHA256'], } # KeyTemplate (as Protobuf) for each KeyTemplate name. KEY_TEMPLATE = { 'AES128_EAX': aead.aead_key_templates.AES128_EAX, 'AES256_EAX': aead.aead_key_templates.AES256_EAX, 'AES128_GCM': aead.aead_key_templates.AES128_GCM, 'AES256_GCM': aead.aead_key_templates.AES256_GCM, 'AES128_GCM_SIV': aead.aead_key_templates.AES128_GCM_SIV, 'AES256_GCM_SIV': aead.aead_key_templates.AES256_GCM_SIV, 'AES128_CTR_HMAC_SHA256': aead.aead_key_templates.AES128_CTR_HMAC_SHA256, 'AES256_CTR_HMAC_SHA256': aead.aead_key_templates.AES256_CTR_HMAC_SHA256, 'CHACHA20_POLY1305': tink_pb2.KeyTemplate( type_url=('type.googleapis.com/google.crypto.tink.' + 'ChaCha20Poly1305Key'), output_prefix_type=tink_pb2.TINK), 'XCHACHA20_POLY1305': aead.aead_key_templates.XCHACHA20_POLY1305, 'AES256_SIV': daead.deterministic_aead_key_templates.AES256_SIV, 'AES128_CTR_HMAC_SHA256_4KB': streaming_aead.streaming_aead_key_templates.AES128_CTR_HMAC_SHA256_4KB, 'AES256_CTR_HMAC_SHA256_4KB': streaming_aead.streaming_aead_key_templates.AES256_CTR_HMAC_SHA256_4KB, 'AES128_GCM_HKDF_4KB': streaming_aead.streaming_aead_key_templates.AES128_GCM_HKDF_4KB, 'AES256_GCM_HKDF_4KB': streaming_aead.streaming_aead_key_templates.AES256_GCM_HKDF_4KB, 'AES256_GCM_HKDF_1MB': streaming_aead.streaming_aead_key_templates.AES256_GCM_HKDF_1MB, 'ECIES_P256_HKDF_HMAC_SHA256_AES128_GCM': hybrid.hybrid_key_templates.ECIES_P256_HKDF_HMAC_SHA256_AES128_GCM, 'ECIES_P256_HKDF_HMAC_SHA256_AES128_CTR_HMAC_SHA256': hybrid.hybrid_key_templates .ECIES_P256_HKDF_HMAC_SHA256_AES128_CTR_HMAC_SHA256, 'AES_CMAC': mac.mac_key_templates.AES_CMAC, 'HMAC_SHA256_128BITTAG': mac.mac_key_templates.HMAC_SHA256_128BITTAG, 'HMAC_SHA256_256BITTAG': mac.mac_key_templates.HMAC_SHA256_256BITTAG, 'HMAC_SHA512_256BITTAG': mac.mac_key_templates.HMAC_SHA512_256BITTAG, 'HMAC_SHA512_512BITTAG': mac.mac_key_templates.HMAC_SHA512_512BITTAG, 'ECDSA_P256': signature.signature_key_templates.ECDSA_P256, 'ECDSA_P384': signature.signature_key_templates.ECDSA_P384, 'ECDSA_P384_SHA384': signature.signature_key_templates.ECDSA_P384_SHA384, 'ECDSA_P521': signature.signature_key_templates.ECDSA_P521, 'ECDSA_P256_IEEE_P1363': signature.signature_key_templates.ECDSA_P256_IEEE_P1363, 'ECDSA_P384_IEEE_P1363': signature.signature_key_templates.ECDSA_P384_IEEE_P1363, 'ECDSA_P384_SHA384_IEEE_P1363': signature.signature_key_templates.ECDSA_P384_SHA384_IEEE_P1363, 'ECDSA_P521_IEEE_P1363': signature.signature_key_templates.ECDSA_P521_IEEE_P1363, 'ED25519': signature.signature_key_templates.ED25519, 'RSA_SSA_PKCS1_3072_SHA256_F4': signature.signature_key_templates.RSA_SSA_PKCS1_3072_SHA256_F4, 'RSA_SSA_PKCS1_4096_SHA512_F4': signature.signature_key_templates.RSA_SSA_PKCS1_4096_SHA512_F4, 'RSA_SSA_PSS_3072_SHA256_SHA256_32_F4': signature.signature_key_templates.RSA_SSA_PSS_3072_SHA256_SHA256_32_F4, 'RSA_SSA_PSS_4096_SHA512_SHA512_64_F4': signature.signature_key_templates.RSA_SSA_PSS_4096_SHA512_SHA512_64_F4, 'AES_CMAC_PRF': prf.prf_key_templates.AES_CMAC, 'HMAC_PRF_SHA256': prf.prf_key_templates.HMAC_SHA256, 'HMAC_PRF_SHA512': prf.prf_key_templates.HMAC_SHA512, 'HKDF_PRF_SHA256': prf.prf_key_templates.HKDF_SHA256, } SUPPORTED_LANGUAGES_BY_TEMPLATE_NAME = { name: SUPPORTED_LANGUAGES[KEY_TYPE_FROM_URL[template.type_url]] for name, template in KEY_TEMPLATE.items() }
[((5330, 5464), 'tink.proto.tink_pb2.KeyTemplate', 'tink_pb2.KeyTemplate', ([], {'type_url': "('type.googleapis.com/google.crypto.tink.' + 'ChaCha20Poly1305Key')", 'output_prefix_type': 'tink_pb2.TINK'}), "(type_url='type.googleapis.com/google.crypto.tink.' +\n 'ChaCha20Poly1305Key', output_prefix_type=tink_pb2.TINK)\n", (5350, 5464), False, 'from tink.proto import tink_pb2\n')]
chapeltech/remote-signer
signer.py
83d083ed7e8c7123187ba70ee3132b898e8ef02e
#!/usr/bin/env python3 ######################################################### # Written by Carl Youngblood, carl@blockscale.net # Copyright (c) 2018 Blockscale LLC # released under the MIT license ######################################################### from flask import Flask, request, Response, json, jsonify from src.remote_signer import RemoteSigner from os import path import logging logging.basicConfig(filename='./remote-signer.log', format='%(asctime)s %(message)s', level=logging.INFO) app = Flask(__name__) # sample config used for testing config = { 'hsm_username': 'resigner', 'hsm_slot': 1, 'hsm_lib': '/opt/cloudhsm/lib/libcloudhsm_pkcs11.so', 'node_addr': 'http://node.internal:8732', 'keys': { 'tz3aTaJ3d7Rh4yXpereo4yBm21xrs4bnzQvW': { 'public_key': 'p2pk67jx4rEadFpbHdiPhsKxZ4KCoczLWqsEpNarWZ7WQ1SqKMf7JsS', 'private_handle': 7, 'public_handle': 9 } } } logging.info('Opening keys.json') if path.isfile('keys.json'): logging.info('Found keys.json') with open('keys.json', 'r') as myfile: json_blob = myfile.read().replace('\n', '') logging.info('Parsed keys.json successfully as JSON') config = json.loads(json_blob) logging.info('Config contains: {}'.format(json.dumps(config, indent=2))) @app.route('/keys/<key_hash>', methods=['POST']) def sign(key_hash): response = None try: data = request.get_json(force=True) if key_hash in config['keys']: logging.info('Found key_hash {} in config'.format(key_hash)) key = config['keys'][key_hash] logging.info('Attempting to sign {}'.format(data)) rs = RemoteSigner(config, data) response = jsonify({ 'signature': rs.sign(key['private_handle']) }) logging.info('Response is {}'.format(response)) else: logging.warning("Couldn't find key {}".format(key_hash)) response = Response('Key not found', status=404) except Exception as e: data = {'error': str(e)} logging.error('Exception thrown during request: {}'.format(str(e))) response = app.response_class( response=json.dumps(data), status=500, mimetype='application/json' ) logging.info('Returning flask response {}'.format(response)) return response @app.route('/keys/<key_hash>', methods=['GET']) def get_public_key(key_hash): response = None try: if key_hash in config['keys']: key = config['keys'][key_hash] response = jsonify({ 'public_key': key['public_key'] }) logging.info('Found public key {} for key hash {}'.format(key['public_key'], key_hash)) else: logging.warning("Couldn't public key for key hash {}".format(key_hash)) response = Response('Key not found', status=404) except Exception as e: data = {'error': str(e)} logging.error('Exception thrown during request: {}'.format(str(e))) response = app.response_class( response=json.dumps(data), status=500, mimetype='application/json' ) logging.info('Returning flask response {}'.format(response)) return response @app.route('/authorized_keys', methods=['GET']) def authorized_keys(): return app.response_class( response=json.dumps({}), status=200, mimetype='application/json' ) if __name__ == '__main__': app.run(host='127.0.0.1', port=5000, debug=True)
[((397, 507), 'logging.basicConfig', 'logging.basicConfig', ([], {'filename': '"""./remote-signer.log"""', 'format': '"""%(asctime)s %(message)s"""', 'level': 'logging.INFO'}), "(filename='./remote-signer.log', format=\n '%(asctime)s %(message)s', level=logging.INFO)\n", (416, 507), False, 'import logging\n'), ((510, 525), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (515, 525), False, 'from flask import Flask, request, Response, json, jsonify\n'), ((958, 991), 'logging.info', 'logging.info', (['"""Opening keys.json"""'], {}), "('Opening keys.json')\n", (970, 991), False, 'import logging\n'), ((995, 1019), 'os.path.isfile', 'path.isfile', (['"""keys.json"""'], {}), "('keys.json')\n", (1006, 1019), False, 'from os import path\n'), ((1025, 1056), 'logging.info', 'logging.info', (['"""Found keys.json"""'], {}), "('Found keys.json')\n", (1037, 1056), False, 'import logging\n'), ((1160, 1213), 'logging.info', 'logging.info', (['"""Parsed keys.json successfully as JSON"""'], {}), "('Parsed keys.json successfully as JSON')\n", (1172, 1213), False, 'import logging\n'), ((1231, 1252), 'flask.json.loads', 'json.loads', (['json_blob'], {}), '(json_blob)\n', (1241, 1252), False, 'from flask import Flask, request, Response, json, jsonify\n'), ((1449, 1477), 'flask.request.get_json', 'request.get_json', ([], {'force': '(True)'}), '(force=True)\n', (1465, 1477), False, 'from flask import Flask, request, Response, json, jsonify\n'), ((1713, 1739), 'src.remote_signer.RemoteSigner', 'RemoteSigner', (['config', 'data'], {}), '(config, data)\n', (1725, 1739), False, 'from src.remote_signer import RemoteSigner\n'), ((2014, 2051), 'flask.Response', 'Response', (['"""Key not found"""'], {'status': '(404)'}), "('Key not found', status=404)\n", (2022, 2051), False, 'from flask import Flask, request, Response, json, jsonify\n'), ((2639, 2681), 'flask.jsonify', 'jsonify', (["{'public_key': key['public_key']}"], {}), "({'public_key': key['public_key']})\n", (2646, 2681), False, 'from flask import Flask, request, Response, json, jsonify\n'), ((2933, 2970), 'flask.Response', 'Response', (['"""Key not found"""'], {'status': '(404)'}), "('Key not found', status=404)\n", (2941, 2970), False, 'from flask import Flask, request, Response, json, jsonify\n'), ((3465, 3479), 'flask.json.dumps', 'json.dumps', (['{}'], {}), '({})\n', (3475, 3479), False, 'from flask import Flask, request, Response, json, jsonify\n'), ((1303, 1331), 'flask.json.dumps', 'json.dumps', (['config'], {'indent': '(2)'}), '(config, indent=2)\n', (1313, 1331), False, 'from flask import Flask, request, Response, json, jsonify\n'), ((2248, 2264), 'flask.json.dumps', 'json.dumps', (['data'], {}), '(data)\n', (2258, 2264), False, 'from flask import Flask, request, Response, json, jsonify\n'), ((3167, 3183), 'flask.json.dumps', 'json.dumps', (['data'], {}), '(data)\n', (3177, 3183), False, 'from flask import Flask, request, Response, json, jsonify\n')]
0x1F9F1/binja-msvc
unwind.py
be2577c22c8d37fd1e2e211f80b1c9a920705bd2
from binaryninja import log from .utils import BinjaStruct, read_pe_header, split_bits, update_percentage # https://msdn.microsoft.com/en-us/library/ft9x1kdx.aspx RUNTIME_FUNCTION_t = BinjaStruct('<III', names = ('BeginAddress', 'EndAddress', 'UnwindData')) def read_runtime_function(view, address): runtime_function, address = RUNTIME_FUNCTION_t.read(view, address, 4) if runtime_function is not None: runtime_function['BeginAddress'] += view.start runtime_function['EndAddress'] += view.start runtime_function['UnwindData'] += view.start return runtime_function, address UNWIND_INFO_t = BinjaStruct('<BBBB', names = ('VersionAndFlags', 'SizeOfProlog', 'CountOfCodes', 'FrameRegisterAndOffset')) UNW_FLAG_NHANDLER = 0x0 UNW_FLAG_EHANDLER = 0x1 UNW_FLAG_UHANDLER = 0x2 UNW_FLAG_FHANDLER = 0x3 UNW_FLAG_CHAININFO = 0x4 def read_unwind_info(view, address): unwind_info, address = UNWIND_INFO_t.read(view, address) if unwind_info is not None: split_bits(unwind_info, 'VersionAndFlags', [ ('Version', 0, 3), ('Flags', 3, 5) ]) split_bits(unwind_info, 'FrameRegisterAndOffset', [ ('FrameRegister', 0, 4), ('FrameOffset', 4, 4) ]) if unwind_info['Version'] == 1: unwind_codes = [ ] for i in range(unwind_info['CountOfCodes']): unwind_code, address = read_unwind_code(view, address) unwind_codes.append(unwind_code) unwind_info['UnwindCodes'] = unwind_codes if unwind_info['Flags'] & UNW_FLAG_CHAININFO: unwind_info['FunctionEntry'], address = read_runtime_function(view, address) return unwind_info, address UNWIND_CODE_t = BinjaStruct('<BB', names = ('CodeOffset', 'UnwindOpAndInfo')) def read_unwind_code(view, address): unwind_code, address = UNWIND_CODE_t.read(view, address) if unwind_code is not None: split_bits(unwind_code, 'UnwindOpAndInfo', [ ('UnwindOp', 0, 4), ('OpInfo', 4, 4) ]) return unwind_code, address def parse_unwind_info(thread, view): base_address = view.start pe = read_pe_header(view) unwind_directory = pe.OPTIONAL_HEADER.DATA_DIRECTORY[3] unwind_entrys = base_address + unwind_directory.VirtualAddress unwind_entrys_end = unwind_entrys + unwind_directory.Size funcs = set() log.log_info('Exception Data @ 0x{0:X} => 0x{1:X}'.format(unwind_entrys, unwind_entrys_end)) for runtime_address in range(unwind_entrys, unwind_entrys_end, 12): if thread.cancelled: break update_percentage(thread, unwind_entrys, unwind_entrys_end, runtime_address, 'Parsing Unwind Info - Found {0} functions'.format(len(funcs))) runtime_function, _ = read_runtime_function(view, runtime_address) if runtime_function is None: continue start_address = runtime_function['BeginAddress'] if not view.is_offset_executable(start_address): continue if view.get_functions_containing(start_address): continue info_address = runtime_function['UnwindData'] unwind_info, _ = read_unwind_info(view, info_address) if unwind_info is None: continue if 'FunctionEntry' in unwind_info: continue funcs.add(start_address) if not thread.cancelled: thread.progress = 'Creating {0} Function'.format(len(funcs)) log.log_info('Found {0} functions'.format(len(funcs))) for func in funcs: view.create_user_function(func)
[]
jmorlana/pixloc
pixloc/visualization/viz_3d.py
90f7e968398252e8557b284803ee774cb8d80cd0
""" 3D visualization primitives based on Plotly. We might want to instead use a more powerful library like Open3D. Plotly however supports animations, buttons and sliders. 1) Initialize a figure with `fig = init_figure()` 2) Plot points, cameras, lines, or create a slider animation. 3) Call `fig.show()` to render the figure. """ import plotly.graph_objects as go import numpy as np from ..pixlib.geometry.utils import to_homogeneous def init_figure(height=800): """Initialize a 3D figure.""" fig = go.Figure() fig.update_layout( height=height, scene_camera=dict( eye=dict(x=0., y=-.1, z=-2), up=dict(x=0, y=-1., z=0)), scene=dict( xaxis=dict(showbackground=False), yaxis=dict(showbackground=False), aspectmode='data', dragmode='orbit'), margin=dict(l=0, r=0, b=0, t=0, pad=0)) # noqa E741 return fig def plot_points(fig, pts, color='rgba(255, 0, 0, 1)', ps=2): """Plot a set of 3D points.""" x, y, z = pts.T tr = go.Scatter3d( x=x, y=y, z=z, mode='markers', marker_size=ps, marker_color=color, marker_line_width=.2) fig.add_trace(tr) def plot_camera(fig, R, t, K, color='rgb(0, 0, 255)'): """Plot a camera as a cone with camera frustum.""" x, y, z = t u, v, w = R @ -np.array([0, 0, 1]) tr = go.Cone( x=[x], y=[y], z=[z], u=[u], v=[v], w=[w], anchor='tip', showscale=False, colorscale=[[0, color], [1, color]], sizemode='absolute') fig.add_trace(tr) W, H = K[0, 2]*2, K[1, 2]*2 corners = np.array([[0, 0], [W, 0], [W, H], [0, H], [0, 0]]) corners = to_homogeneous(corners) @ np.linalg.inv(K).T corners = (corners/2) @ R.T + t x, y, z = corners.T tr = go.Scatter3d( x=x, y=y, z=z, line=dict(color='rgba(0, 0, 0, .5)'), marker=dict(size=0.0001), showlegend=False) fig.add_trace(tr) def create_slider_animation(fig, traces): """Create a slider that animates a list of traces (e.g. 3D points).""" slider = {'steps': []} frames = [] fig.add_trace(traces[0]) idx = len(fig.data) - 1 for i, tr in enumerate(traces): frames.append(go.Frame(name=str(i), traces=[idx], data=[tr])) step = {"args": [ [str(i)], {"frame": {"redraw": True}, "mode": "immediate"}], "label": i, "method": "animate"} slider['steps'].append(step) fig.frames = tuple(frames) fig.layout.sliders = (slider,)
[((513, 524), 'plotly.graph_objects.Figure', 'go.Figure', ([], {}), '()\n', (522, 524), True, 'import plotly.graph_objects as go\n'), ((1031, 1138), 'plotly.graph_objects.Scatter3d', 'go.Scatter3d', ([], {'x': 'x', 'y': 'y', 'z': 'z', 'mode': '"""markers"""', 'marker_size': 'ps', 'marker_color': 'color', 'marker_line_width': '(0.2)'}), "(x=x, y=y, z=z, mode='markers', marker_size=ps, marker_color=\n color, marker_line_width=0.2)\n", (1043, 1138), True, 'import plotly.graph_objects as go\n'), ((1348, 1491), 'plotly.graph_objects.Cone', 'go.Cone', ([], {'x': '[x]', 'y': '[y]', 'z': '[z]', 'u': '[u]', 'v': '[v]', 'w': '[w]', 'anchor': '"""tip"""', 'showscale': '(False)', 'colorscale': '[[0, color], [1, color]]', 'sizemode': '"""absolute"""'}), "(x=[x], y=[y], z=[z], u=[u], v=[v], w=[w], anchor='tip', showscale=\n False, colorscale=[[0, color], [1, color]], sizemode='absolute')\n", (1355, 1491), True, 'import plotly.graph_objects as go\n'), ((1581, 1631), 'numpy.array', 'np.array', (['[[0, 0], [W, 0], [W, H], [0, H], [0, 0]]'], {}), '([[0, 0], [W, 0], [W, H], [0, H], [0, 0]])\n', (1589, 1631), True, 'import numpy as np\n'), ((1319, 1338), 'numpy.array', 'np.array', (['[0, 0, 1]'], {}), '([0, 0, 1])\n', (1327, 1338), True, 'import numpy as np\n'), ((1672, 1688), 'numpy.linalg.inv', 'np.linalg.inv', (['K'], {}), '(K)\n', (1685, 1688), True, 'import numpy as np\n')]
Net-Mist/advent_of_code2021
day04/c.py
124d773356bee2794294800de7673d5fac24db0a
import numpy as np GRID_SIZE = 5 def read_bingo_grid(lines: list[str]) -> list[list[int]]: return [[int(n) for n in line.split()] for line in lines] def bingo_step(grids: np.ndarray, checked_grids: np.ndarray, number: int) -> None: checked_grids[np.where(grids == number)] = True def check_victory(check_grids: np.ndarray) -> set[int]: """return empty set if no victory, else set of id of the wining grids""" return set(np.where(check_grids.sum(axis=1).max(axis=1) == 5)[0]).union( np.where(check_grids.sum(axis=2).max(axis=1) == 5)[0] ) def sum_grid(grid: np.ndarray, checked_grid: np.ndarray) -> int: grid[checked_grid] = 0 return grid.sum() def main() -> None: with open("input.txt") as f: lines = f.readlines() random_numbers = [int(n) for n in lines[0].split(",")] grids = np.array([read_bingo_grid(lines[i : i + GRID_SIZE]) for i in range(2, len(lines), 1 + GRID_SIZE)]) checked_grids = np.array([[[False for _ in range(GRID_SIZE)] for _ in range(GRID_SIZE)] for _ in range(len(grids))]) win = False i = 0 q1_done = False while not win: bingo_step(grids, checked_grids, random_numbers[i]) winning_set = check_victory(checked_grids) if len(winning_set) == 1 and not q1_done: index = list(winning_set)[0] s = sum_grid(grids[index], checked_grids[index]) print("part1:", s * random_numbers[i]) q1_done = True if len(grids) == len(winning_set) + 1: index_last_to_win = list(set(range(len(grids))).difference(winning_set))[0] if len(grids) == len(winning_set): s = sum_grid(grids[index_last_to_win], checked_grids[index_last_to_win]) print("part2:", random_numbers[i], s, random_numbers[i] * s) return i += 1 if __name__ == "__main__": main()
[((259, 284), 'numpy.where', 'np.where', (['(grids == number)'], {}), '(grids == number)\n', (267, 284), True, 'import numpy as np\n')]
hugovk/altair
altair/vegalite/v2/examples/us_population_pyramid_over_time.py
a3c9f06790f7a8c5c7e2c98278d0f69e4630b5be
''' US Population Pyramid Over Time =============================== A population pyramid shows the distribution of age groups within a population. It uses a slider widget that is bound to the year to visualize the age distribution over time. ''' # category: case studies import altair as alt from altair.expr import datum, if_ from vega_datasets import data pop = data.population.url slider = alt.binding_range(min=1850, max=2000, step=10) select_year = alt.selection_single(name='year', fields=['year'], bind=slider) base = alt.Chart(pop).add_selection( select_year ).transform_filter( select_year ).transform_calculate( gender=if_(datum.sex == 1, 'Male', 'Female') ) title = alt.Axis(title='population') color_scale = alt.Scale(domain=['Male', 'Female'], range=['#1f77b4', '#e377c2']) left = base.transform_filter( datum.gender == 'Female' ).encode( y=alt.X('age:O', axis=None), x=alt.X('sum(people):Q', axis=title, sort=alt.SortOrder('descending')), color=alt.Color('gender:N', scale=color_scale, legend=None) ).mark_bar().properties(title='Female') middle = base.encode( y=alt.X('age:O', axis=None), text=alt.Text('age:Q'), ).mark_text().properties(width=20) right = base.transform_filter( datum.gender == 'Male' ).encode( y=alt.X('age:O', axis=None), x=alt.X('sum(people):Q', axis=title), color=alt.Color('gender:N', scale=color_scale, legend=None) ).mark_bar().properties(title='Male') left | middle | right
[((395, 441), 'altair.binding_range', 'alt.binding_range', ([], {'min': '(1850)', 'max': '(2000)', 'step': '(10)'}), '(min=1850, max=2000, step=10)\n', (412, 441), True, 'import altair as alt\n'), ((456, 519), 'altair.selection_single', 'alt.selection_single', ([], {'name': '"""year"""', 'fields': "['year']", 'bind': 'slider'}), "(name='year', fields=['year'], bind=slider)\n", (476, 519), True, 'import altair as alt\n'), ((693, 721), 'altair.Axis', 'alt.Axis', ([], {'title': '"""population"""'}), "(title='population')\n", (701, 721), True, 'import altair as alt\n'), ((736, 802), 'altair.Scale', 'alt.Scale', ([], {'domain': "['Male', 'Female']", 'range': "['#1f77b4', '#e377c2']"}), "(domain=['Male', 'Female'], range=['#1f77b4', '#e377c2'])\n", (745, 802), True, 'import altair as alt\n'), ((644, 681), 'altair.expr.if_', 'if_', (['(datum.sex == 1)', '"""Male"""', '"""Female"""'], {}), "(datum.sex == 1, 'Male', 'Female')\n", (647, 681), False, 'from altair.expr import datum, if_\n'), ((528, 542), 'altair.Chart', 'alt.Chart', (['pop'], {}), '(pop)\n', (537, 542), True, 'import altair as alt\n'), ((903, 928), 'altair.X', 'alt.X', (['"""age:O"""'], {'axis': 'None'}), "('age:O', axis=None)\n", (908, 928), True, 'import altair as alt\n'), ((1016, 1069), 'altair.Color', 'alt.Color', (['"""gender:N"""'], {'scale': 'color_scale', 'legend': 'None'}), "('gender:N', scale=color_scale, legend=None)\n", (1025, 1069), True, 'import altair as alt\n'), ((1139, 1164), 'altair.X', 'alt.X', (['"""age:O"""'], {'axis': 'None'}), "('age:O', axis=None)\n", (1144, 1164), True, 'import altair as alt\n'), ((1175, 1192), 'altair.Text', 'alt.Text', (['"""age:Q"""'], {}), "('age:Q')\n", (1183, 1192), True, 'import altair as alt\n'), ((1304, 1329), 'altair.X', 'alt.X', (['"""age:O"""'], {'axis': 'None'}), "('age:O', axis=None)\n", (1309, 1329), True, 'import altair as alt\n'), ((1337, 1371), 'altair.X', 'alt.X', (['"""sum(people):Q"""'], {'axis': 'title'}), "('sum(people):Q', axis=title)\n", (1342, 1371), True, 'import altair as alt\n'), ((1383, 1436), 'altair.Color', 'alt.Color', (['"""gender:N"""'], {'scale': 'color_scale', 'legend': 'None'}), "('gender:N', scale=color_scale, legend=None)\n", (1392, 1436), True, 'import altair as alt\n'), ((976, 1003), 'altair.SortOrder', 'alt.SortOrder', (['"""descending"""'], {}), "('descending')\n", (989, 1003), True, 'import altair as alt\n')]
ministryofjustice/mtp-api
mtp_api/apps/core/migrations/0004_token.py
b1c34c29e4aa9f48598cb060abe1368ae7686e0b
from django.db import migrations, models import django.utils.timezone import model_utils.fields class Migration(migrations.Migration): dependencies = [ ('core', '0003_auto_20180404_1515'), ] operations = [ migrations.CreateModel( name='Token', fields=[ ('created', model_utils.fields.AutoCreatedField(default=django.utils.timezone.now, editable=False, verbose_name='created')), ('modified', model_utils.fields.AutoLastModifiedField(default=django.utils.timezone.now, editable=False, verbose_name='modified')), ('name', models.CharField(max_length=20, primary_key=True, serialize=False)), ('token', models.TextField()), ('expires', models.DateTimeField(blank=True, null=True)), ], options={ 'ordering': ('name',), 'permissions': (('view_token', 'Can view token'),), }, ), ]
[((621, 687), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(20)', 'primary_key': '(True)', 'serialize': '(False)'}), '(max_length=20, primary_key=True, serialize=False)\n', (637, 687), False, 'from django.db import migrations, models\n'), ((716, 734), 'django.db.models.TextField', 'models.TextField', ([], {}), '()\n', (732, 734), False, 'from django.db import migrations, models\n'), ((765, 808), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (785, 808), False, 'from django.db import migrations, models\n')]
m-hintz-42/a-palm-tree
palm_tree/coconut_1/models.py
57656874335f4dfae13cf720668f2c5391621618
from palm_tree import db class Data(db.Model): id = db.Column(db.Integer, primary_key=True) uuid = db.Column(db.Integer) response = db.Column(db.Text) datetime = db.Column(db.DateTime) def __init__(self, uuid, response, datetime): self.uuid = uuid self.response = response self.datetime = datetime def __repr__(self): return '<Data %r>' % self.response # # class Logs(db.Model): # id = db.Column(db.Integer, primary_key=True) # uuid = db.Column(db.Integer) # payload = db.Column(db.Text) # datetime = db.Column(db.DateTime) # # def __init__(self, uuid, payload, datetime): # self.uuid = uuid # self.payload = payload # self.datetime = datetime # # def __repr__(self): # return '<Data %r>' % self.payload
[((58, 97), 'palm_tree.db.Column', 'db.Column', (['db.Integer'], {'primary_key': '(True)'}), '(db.Integer, primary_key=True)\n', (67, 97), False, 'from palm_tree import db\n'), ((109, 130), 'palm_tree.db.Column', 'db.Column', (['db.Integer'], {}), '(db.Integer)\n', (118, 130), False, 'from palm_tree import db\n'), ((146, 164), 'palm_tree.db.Column', 'db.Column', (['db.Text'], {}), '(db.Text)\n', (155, 164), False, 'from palm_tree import db\n'), ((180, 202), 'palm_tree.db.Column', 'db.Column', (['db.DateTime'], {}), '(db.DateTime)\n', (189, 202), False, 'from palm_tree import db\n')]
Zipfer/fuel-web
network_checker/dhcp_checker/utils.py
c6c4032eb6e29474e2be0318349265bdb566454c
# Copyright 2013 Mirantis, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import functools import re import subprocess import sys from scapy import all as scapy DHCP_OFFER_COLUMNS = ('iface', 'mac', 'server_ip', 'server_id', 'gateway', 'dport', 'message', 'yiaddr') def command_util(*command): """object with stderr and stdout """ return subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE) def _check_vconfig(): """Check vconfig installed or not """ return not command_util('which', 'vconfig').stderr.read() def _iface_state(iface): """For a given iface return it's state returns UP, DOWN, UNKNOWN """ state = command_util('ip', 'link', 'show', iface).stdout.read() search_result = re.search(r'.*<(?P<state>.*)>.*', state) if search_result: state_list = search_result.groupdict().get('state', []) if 'UP' in state_list: return 'UP' else: return 'DOWN' return 'UNKNOWN' def check_network_up(iface): return _iface_state(iface) == 'UP' def check_iface_exist(iface): """Check provided interface exists """ return not command_util("ip", "link", "show", iface).stderr.read() def filtered_ifaces(ifaces): for iface in ifaces: if not check_iface_exist(iface): sys.stderr.write('Iface {0} does not exist.'.format(iface)) else: if not check_network_up(iface): sys.stderr.write('Network for iface {0} is down.'.format( iface)) else: yield iface def pick_ip(range_start, range_end): """Given start_range, end_range generate list of ips >>> next(pick_ip('192.168.1.10','192.168.1.13')) '192.168.1.10' """ split_address = lambda ip_address: \ [int(item) for item in ip_address.split('.')] range_start = split_address(range_start) range_end = split_address(range_end) i = 0 # ipv4 subnet cant be longer that 4 items while i < 4: # 255 - end of subnet if not range_start[i] == range_end[i] and range_start[i] < 255: yield '.'.join([str(item) for item in range_start]) range_start[i] += 1 else: i += 1 def get_item_properties(item, columns): """Get specified in columns properties, with preserved order. Required for correct cli table generation :param item: dict :param columns: list with arbitrary keys """ properties = [] for key in columns: properties.append(item.get(key, '')) return properties def format_options(options): """Util for serializing dhcp options @options = [1,2,3] >>> format_options([1, 2, 3]) '\x01\x02\x03' """ return "".join((chr(item) for item in options)) def _dhcp_options(dhcp_options): """Dhcp options returned by scapy is not in usable format [('message-type', 2), ('server_id', '192.168.0.5'), ('name_server', '192.168.0.1', '192.168.0.2'), 'end'] """ for option in dhcp_options: if isinstance(option, (tuple, list)): header = option[0] if len(option[1:]) > 1: yield (header, option) else: yield (header, option[1]) def format_answer(ans, iface): dhcp_options = dict(_dhcp_options(ans[scapy.DHCP].options)) results = ( iface, ans[scapy.Ether].src, ans[scapy.IP].src, dhcp_options['server_id'], ans[scapy.BOOTP].giaddr, ans[scapy.UDP].sport, scapy.DHCPTypes[dhcp_options['message-type']], ans[scapy.BOOTP].yiaddr) return dict(zip(DHCP_OFFER_COLUMNS, results)) def single_format(func): """Manage format of dhcp response """ @functools.wraps(func) def formatter(*args, **kwargs): iface = args[0] ans = func(*args, **kwargs) #scapy stores all sequence of requests #so ans[0][1] would be response to first request return [format_answer(response[1], iface) for response in ans] return formatter def multiproc_map(func): # multiproc map could not work with format *args @functools.wraps(func) def workaround(*args, **kwargs): args = args[0] if isinstance(args[0], (tuple, list)) else args return func(*args, **kwargs) return workaround def filter_duplicated_results(func): # due to network infra on broadcast multiple duplicated results # returned. This helper filter them out @functools.wraps(func) def wrapper(*args, **kwargs): resp = func(*args, **kwargs) return (dict(t) for t in set([tuple(d.items()) for d in resp])) return wrapper class VlansContext(object): """Contains all logic to manage vlans """ def __init__(self, config): """Initialize VlansContext @config - list or tuple of (iface, vlan) pairs """ self.config = config def __enter__(self): for iface, vlans in self.config.iteritems(): vifaces = [] for vlan in vlans: if vlan > 0: vifaces.append('{0}.{1}'.format(iface, vlan)) yield str(iface), vifaces def __exit__(self, type, value, trace): pass class IfaceState(object): """Context manager to control state of iface when dhcp checker is running """ def __init__(self, iface, rollback=True, retry=3): self.rollback = rollback self.retry = retry self.iface = iface self.pre_iface_state = _iface_state(iface) self.iface_state = self.pre_iface_state self.post_iface_state = '' def iface_up(self): while self.retry and self.iface_state != 'UP': command_util('ifconfig', self.iface, 'up') self.iface_state = _iface_state(self.iface) self.retry -= 1 if self.iface_state != 'UP': raise EnvironmentError( 'Tried my best to ifup iface {0}.'.format(self.iface)) def __enter__(self): self.iface_up() return self.iface def __exit__(self, exc_type, exc_val, exc_tb): if self.pre_iface_state != 'UP' and self.rollback: command_util('ifconfig', self.iface, 'down') self.post_iface_state = _iface_state(self.iface)
[((912, 985), 'subprocess.Popen', 'subprocess.Popen', (['command'], {'stdout': 'subprocess.PIPE', 'stderr': 'subprocess.PIPE'}), '(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)\n', (928, 985), False, 'import subprocess\n'), ((1342, 1381), 're.search', 're.search', (['""".*<(?P<state>.*)>.*"""', 'state'], {}), "('.*<(?P<state>.*)>.*', state)\n", (1351, 1381), False, 'import re\n'), ((4332, 4353), 'functools.wraps', 'functools.wraps', (['func'], {}), '(func)\n', (4347, 4353), False, 'import functools\n'), ((4731, 4752), 'functools.wraps', 'functools.wraps', (['func'], {}), '(func)\n', (4746, 4752), False, 'import functools\n'), ((5076, 5097), 'functools.wraps', 'functools.wraps', (['func'], {}), '(func)\n', (5091, 5097), False, 'import functools\n')]
clarencejlee/jdp
paneldata_dash/backend/schemas/johnson_scanner_data.py
d3d31db0138ff06f2f5ec592d85317941af4f280
from ma import ma from models.johnson_scanner_data import JohnsonScannerDataModel from schemas.brand import BrandSchema from schemas.category import CategorySchema from schemas.facts_in_data import FactsInDataSchema from schemas.market import MarketSchema from schemas.period import PeriodSchema class JohnsonScannerDataSchema(ma.SQLAlchemySchema): market = ma.Nested(MarketSchema) brand = ma.Nested(BrandSchema) category = ma.Nested(CategorySchema) period = ma.Nested(PeriodSchema) facts = ma.Nested(FactsInDataSchema, many=True) class Meta: model = JohnsonScannerDataModel dump_only = ("id",) # include_fk = False
[((364, 387), 'ma.ma.Nested', 'ma.Nested', (['MarketSchema'], {}), '(MarketSchema)\n', (373, 387), False, 'from ma import ma\n'), ((400, 422), 'ma.ma.Nested', 'ma.Nested', (['BrandSchema'], {}), '(BrandSchema)\n', (409, 422), False, 'from ma import ma\n'), ((438, 463), 'ma.ma.Nested', 'ma.Nested', (['CategorySchema'], {}), '(CategorySchema)\n', (447, 463), False, 'from ma import ma\n'), ((477, 500), 'ma.ma.Nested', 'ma.Nested', (['PeriodSchema'], {}), '(PeriodSchema)\n', (486, 500), False, 'from ma import ma\n'), ((513, 552), 'ma.ma.Nested', 'ma.Nested', (['FactsInDataSchema'], {'many': '(True)'}), '(FactsInDataSchema, many=True)\n', (522, 552), False, 'from ma import ma\n')]
farzanaaswin0708/CNN-for-Visual-recognition
Chest X-Ray Multilabel Image classification using CNN - Pytorch/Arch2.py
db65db0a0b60e1ed2a4a418069de61936aaa9e85
#!/usr/bin/env python # coding: utf-8 # In[ ]: ################################################################################ # CSE 253: Programming Assignment 3 # Winter 2019 # Code author: Jenny Hamer (+ modifications by Tejash Desai) # # Filename: baseline_cnn.py # # Description: # # This file contains the starter code for the baseline architecture you will use # to get a little practice with PyTorch and compare the results of with your # improved architecture. # # Be sure to fill in the code in the areas marked #TODO. ################################################################################ # PyTorch and neural network imports import torch from torch.autograd import Variable import torch.nn as nn import torch.nn.functional as func import torch.nn.init as torch_init import torch.optim as optim # Data utils and dataloader import torchvision from torchvision import transforms, utils from xray_dataloader_zscored import ChestXrayDataset, create_split_loaders import matplotlib.pyplot as plt import numpy as np import os class Arch2CNN(nn.Module): """ <<<<<<< HEAD conv1 -> maxpool -> conv2 -> maxpool -> conv3 -> conv4 ->maxpool -> conv5 -> conv6 -> maxpool -> conv7 -> conv8 -> maxpool -> fc1 -> fc2 -> fc3 (outputs) ======= conv1 -> conv2 -> maxpool -> conv3 -> conv4 -> conv5 -> maxpool -> fc1 -> fc2 -> fc3 (outputs) >>>>>>> 6652e3cfb72835ac4a7c802c9a703b59d5f63ae6 """ def __init__(self): super(Arch2CNN, self).__init__() # conv1: 1 input channel, 4 output channels, [3x3] kernel size self.conv1 = nn.Conv2d(in_channels=1, out_channels=4, kernel_size=3) # Add batch-normalization to the outputs of conv1 self.conv1_normed = nn.BatchNorm2d(4) # Initialized weights using the Xavier-Normal method torch_init.xavier_normal_(self.conv1.weight) self.pool1 = nn.MaxPool2d(kernel_size=3, stride=1) #TODO: Fill in the remaining initializations replacing each '_' with # the necessary value based on the provided specs for each layer #TODO: conv2: 4 input channels, 8 output channels, [3x3] kernel, initialization: xavier self.conv2 = nn.Conv2d(in_channels=4, out_channels=8, kernel_size=3) self.conv2_normed = nn.BatchNorm2d(8) torch_init.xavier_normal_(self.conv2.weight) #Maxpool self.pool2 = nn.MaxPool2d(kernel_size=3, stride=1) #TODO: conv3: X input channels, 12 output channels, [8x8] kernel, initialization: xavier self.conv3 = nn.Conv2d(in_channels=8, out_channels=16, kernel_size=3) self.conv3_normed = nn.BatchNorm2d(16) torch_init.xavier_normal_(self.conv3.weight) #TODO: conv4: X input channels, 10 output channels, [6x6] kernel, initialization: xavier self.conv4 = nn.Conv2d(in_channels=16, out_channels=16, kernel_size=3) self.conv4_normed = nn.BatchNorm2d(16) torch_init.xavier_normal_(self.conv4.weight) self.pool3 = nn.MaxPool2d(kernel_size=3, stride=1) #TODO: conv5: X input channels, 8 output channels, [5x5] kernel, initialization: xavier self.conv5 = nn.Conv2d(in_channels=16, out_channels=8, kernel_size=3) self.conv5_normed = nn.BatchNorm2d(8) torch_init.xavier_normal_(self.conv5.weight) self.conv6 = nn.Conv2d(in_channels=8, out_channels=8, kernel_size=3) self.conv6_normed = nn.BatchNorm2d(8) torch_init.xavier_normal_(self.conv6.weight) self.pool4 = nn.MaxPool2d(kernel_size=3, stride=1) #TODO: Apply max-pooling with a [3x3] kernel using tiling (*NO SLIDING WINDOW*) self.conv7 = nn.Conv2d(in_channels=8, out_channels=8, kernel_size=3) self.conv7_normed = nn.BatchNorm2d(8) torch_init.xavier_normal_(self.conv7.weight) self.conv8 = nn.Conv2d(in_channels=8, out_channels=8, kernel_size=3) self.conv8_normed = nn.BatchNorm2d(8) torch_init.xavier_normal_(self.conv8.weight) self.pool5 = nn.MaxPool2d(kernel_size=4, stride=4) # Define 2 fully connected layers: #TODO: fc1 self.fc1 = nn.Linear(in_features=122*122*8, out_features=512) self.fc1_normed = nn.BatchNorm1d(512) torch_init.xavier_normal_(self.fc1.weight) #TODO: fc2 self.fc2 = nn.Linear(in_features=512, out_features=128) self.fc2_normed = nn.BatchNorm1d(128) torch_init.xavier_normal_(self.fc2.weight) #TODO: fc3 self.fc3 = nn.Linear(in_features=128, out_features=14) torch_init.xavier_normal_(self.fc3.weight) #TODO: Output layer: what should out_features be? self.out_features = 14 def forward(self, batch): """Pass the batch of images through each layer of the network, applying non-linearities after each layer. Note that this function *needs* to be called "forward" for PyTorch to automagically perform the forward pass. Params: ------- - batch: (Tensor) An input batch of images Returns: -------- - logits: (Variable) The output of the network """ # Apply first convolution, followed by ReLU non-linearity; # use batch-normalization on its outputs batch = func.rrelu(self.conv1_normed(self.conv1(batch))) batch = self.pool1(batch) # Apply conv2 and conv3 similarly batch = func.rrelu(self.conv2_normed(self.conv2(batch))) batch = self.pool2(batch) batch = func.rrelu(self.conv3_normed(self.conv3(batch))) batch = func.rrelu(self.conv4_normed(self.conv4(batch))) batch = self.pool3(batch) batch = func.rrelu(self.conv5_normed(self.conv5(batch))) batch = func.rrelu(self.conv6_normed(self.conv6(batch))) # Pass the output of conv3 to the pooling layer batch = self.pool4(batch) batch = func.rrelu(self.conv7_normed(self.conv7(batch))) batch = func.rrelu(self.conv8_normed(self.conv8(batch))) # Pass the output of conv3 to the pooling layer batch = self.pool5(batch) # Reshape the output of the conv3 to pass to fully-connected layer batch = batch.view(-1, self.num_flat_features(batch)) # Connect the reshaped features of the pooled conv3 to fc1 batch = func.rrelu(self.fc1_normed(self.fc1(batch))) batch = func.rrelu(self.fc2_normed(self.fc2(batch))) # Connect fc1 to fc2 - this layer is slightly different than the rest (why?) batch = self.fc3(batch) # Return the class predictions #TODO: apply an activition function to 'batch' #batch = func.sigmoid(batch) return batch def num_flat_features(self, inputs): # Get the dimensions of the layers excluding the inputs size = inputs.size()[1:] # Track the number of features num_features = 1 for s in size: num_features *= s return num_features
[((1581, 1636), 'torch.nn.Conv2d', 'nn.Conv2d', ([], {'in_channels': '(1)', 'out_channels': '(4)', 'kernel_size': '(3)'}), '(in_channels=1, out_channels=4, kernel_size=3)\n', (1590, 1636), True, 'import torch.nn as nn\n'), ((1724, 1741), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['(4)'], {}), '(4)\n', (1738, 1741), True, 'import torch.nn as nn\n'), ((1812, 1856), 'torch.nn.init.xavier_normal_', 'torch_init.xavier_normal_', (['self.conv1.weight'], {}), '(self.conv1.weight)\n', (1837, 1856), True, 'import torch.nn.init as torch_init\n'), ((1878, 1915), 'torch.nn.MaxPool2d', 'nn.MaxPool2d', ([], {'kernel_size': '(3)', 'stride': '(1)'}), '(kernel_size=3, stride=1)\n', (1890, 1915), True, 'import torch.nn as nn\n'), ((2185, 2240), 'torch.nn.Conv2d', 'nn.Conv2d', ([], {'in_channels': '(4)', 'out_channels': '(8)', 'kernel_size': '(3)'}), '(in_channels=4, out_channels=8, kernel_size=3)\n', (2194, 2240), True, 'import torch.nn as nn\n'), ((2269, 2286), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['(8)'], {}), '(8)\n', (2283, 2286), True, 'import torch.nn as nn\n'), ((2295, 2339), 'torch.nn.init.xavier_normal_', 'torch_init.xavier_normal_', (['self.conv2.weight'], {}), '(self.conv2.weight)\n', (2320, 2339), True, 'import torch.nn.init as torch_init\n'), ((2378, 2415), 'torch.nn.MaxPool2d', 'nn.MaxPool2d', ([], {'kernel_size': '(3)', 'stride': '(1)'}), '(kernel_size=3, stride=1)\n', (2390, 2415), True, 'import torch.nn as nn\n'), ((2536, 2592), 'torch.nn.Conv2d', 'nn.Conv2d', ([], {'in_channels': '(8)', 'out_channels': '(16)', 'kernel_size': '(3)'}), '(in_channels=8, out_channels=16, kernel_size=3)\n', (2545, 2592), True, 'import torch.nn as nn\n'), ((2621, 2639), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['(16)'], {}), '(16)\n', (2635, 2639), True, 'import torch.nn as nn\n'), ((2648, 2692), 'torch.nn.init.xavier_normal_', 'torch_init.xavier_normal_', (['self.conv3.weight'], {}), '(self.conv3.weight)\n', (2673, 2692), True, 'import torch.nn.init as torch_init\n'), ((2811, 2868), 'torch.nn.Conv2d', 'nn.Conv2d', ([], {'in_channels': '(16)', 'out_channels': '(16)', 'kernel_size': '(3)'}), '(in_channels=16, out_channels=16, kernel_size=3)\n', (2820, 2868), True, 'import torch.nn as nn\n'), ((2897, 2915), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['(16)'], {}), '(16)\n', (2911, 2915), True, 'import torch.nn as nn\n'), ((2924, 2968), 'torch.nn.init.xavier_normal_', 'torch_init.xavier_normal_', (['self.conv4.weight'], {}), '(self.conv4.weight)\n', (2949, 2968), True, 'import torch.nn.init as torch_init\n'), ((2990, 3027), 'torch.nn.MaxPool2d', 'nn.MaxPool2d', ([], {'kernel_size': '(3)', 'stride': '(1)'}), '(kernel_size=3, stride=1)\n', (3002, 3027), True, 'import torch.nn as nn\n'), ((3145, 3201), 'torch.nn.Conv2d', 'nn.Conv2d', ([], {'in_channels': '(16)', 'out_channels': '(8)', 'kernel_size': '(3)'}), '(in_channels=16, out_channels=8, kernel_size=3)\n', (3154, 3201), True, 'import torch.nn as nn\n'), ((3230, 3247), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['(8)'], {}), '(8)\n', (3244, 3247), True, 'import torch.nn as nn\n'), ((3256, 3300), 'torch.nn.init.xavier_normal_', 'torch_init.xavier_normal_', (['self.conv5.weight'], {}), '(self.conv5.weight)\n', (3281, 3300), True, 'import torch.nn.init as torch_init\n'), ((3323, 3378), 'torch.nn.Conv2d', 'nn.Conv2d', ([], {'in_channels': '(8)', 'out_channels': '(8)', 'kernel_size': '(3)'}), '(in_channels=8, out_channels=8, kernel_size=3)\n', (3332, 3378), True, 'import torch.nn as nn\n'), ((3407, 3424), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['(8)'], {}), '(8)\n', (3421, 3424), True, 'import torch.nn as nn\n'), ((3433, 3477), 'torch.nn.init.xavier_normal_', 'torch_init.xavier_normal_', (['self.conv6.weight'], {}), '(self.conv6.weight)\n', (3458, 3477), True, 'import torch.nn.init as torch_init\n'), ((3499, 3536), 'torch.nn.MaxPool2d', 'nn.MaxPool2d', ([], {'kernel_size': '(3)', 'stride': '(1)'}), '(kernel_size=3, stride=1)\n', (3511, 3536), True, 'import torch.nn as nn\n'), ((3647, 3702), 'torch.nn.Conv2d', 'nn.Conv2d', ([], {'in_channels': '(8)', 'out_channels': '(8)', 'kernel_size': '(3)'}), '(in_channels=8, out_channels=8, kernel_size=3)\n', (3656, 3702), True, 'import torch.nn as nn\n'), ((3731, 3748), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['(8)'], {}), '(8)\n', (3745, 3748), True, 'import torch.nn as nn\n'), ((3757, 3801), 'torch.nn.init.xavier_normal_', 'torch_init.xavier_normal_', (['self.conv7.weight'], {}), '(self.conv7.weight)\n', (3782, 3801), True, 'import torch.nn.init as torch_init\n'), ((3824, 3879), 'torch.nn.Conv2d', 'nn.Conv2d', ([], {'in_channels': '(8)', 'out_channels': '(8)', 'kernel_size': '(3)'}), '(in_channels=8, out_channels=8, kernel_size=3)\n', (3833, 3879), True, 'import torch.nn as nn\n'), ((3908, 3925), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['(8)'], {}), '(8)\n', (3922, 3925), True, 'import torch.nn as nn\n'), ((3934, 3978), 'torch.nn.init.xavier_normal_', 'torch_init.xavier_normal_', (['self.conv8.weight'], {}), '(self.conv8.weight)\n', (3959, 3978), True, 'import torch.nn.init as torch_init\n'), ((4000, 4037), 'torch.nn.MaxPool2d', 'nn.MaxPool2d', ([], {'kernel_size': '(4)', 'stride': '(4)'}), '(kernel_size=4, stride=4)\n', (4012, 4037), True, 'import torch.nn as nn\n'), ((4121, 4175), 'torch.nn.Linear', 'nn.Linear', ([], {'in_features': '(122 * 122 * 8)', 'out_features': '(512)'}), '(in_features=122 * 122 * 8, out_features=512)\n', (4130, 4175), True, 'import torch.nn as nn\n'), ((4199, 4218), 'torch.nn.BatchNorm1d', 'nn.BatchNorm1d', (['(512)'], {}), '(512)\n', (4213, 4218), True, 'import torch.nn as nn\n'), ((4227, 4269), 'torch.nn.init.xavier_normal_', 'torch_init.xavier_normal_', (['self.fc1.weight'], {}), '(self.fc1.weight)\n', (4252, 4269), True, 'import torch.nn.init as torch_init\n'), ((4309, 4353), 'torch.nn.Linear', 'nn.Linear', ([], {'in_features': '(512)', 'out_features': '(128)'}), '(in_features=512, out_features=128)\n', (4318, 4353), True, 'import torch.nn as nn\n'), ((4380, 4399), 'torch.nn.BatchNorm1d', 'nn.BatchNorm1d', (['(128)'], {}), '(128)\n', (4394, 4399), True, 'import torch.nn as nn\n'), ((4408, 4450), 'torch.nn.init.xavier_normal_', 'torch_init.xavier_normal_', (['self.fc2.weight'], {}), '(self.fc2.weight)\n', (4433, 4450), True, 'import torch.nn.init as torch_init\n'), ((4490, 4533), 'torch.nn.Linear', 'nn.Linear', ([], {'in_features': '(128)', 'out_features': '(14)'}), '(in_features=128, out_features=14)\n', (4499, 4533), True, 'import torch.nn as nn\n'), ((4542, 4584), 'torch.nn.init.xavier_normal_', 'torch_init.xavier_normal_', (['self.fc3.weight'], {}), '(self.fc3.weight)\n', (4567, 4584), True, 'import torch.nn.init as torch_init\n')]
HydeJackal/TwitterWeeklyNewsBot
news_access.py
64fc6b9e7d74bafd26f4dcdfe28e835ece1cee9b
import json import urllib.request import credentials from datetime import datetime, timedelta class NewsAPI: def __init__(self, nyt_api): self.nyt_access = nyt_api def get_nyt_last_week_articles(self, topic, today): delta = timedelta(weeks = 1) last_week = today - delta begin_date = last_week.strftime('%Y%m%d') url = 'https://api.nytimes.com/svc/search/v2/articlesearch.json?q=' + topic + '&begin_date=' + begin_date + '&sort=best&type_of_material=Article&api-key=' + self.nyt_access try: json_url = urllib.request.urlopen(url) articles = json.loads(json_url.read()) except: raise RuntimeError('Failed to retrive New York Times data.') if articles['status'] != 'OK': num_of_articles = articles['response']['docs'].length() if num_of_articles > 5: return articles['response']['docs'][0:4], articles['response']['meta']['hits'] else: return articles['response']['docs'][0:num_of_articles - 1], articles['response']['meta']['hits'] else: raise RuntimeError('Failed to find any New York Times articles with query.') api = NewsAPI(credentials.NYT_API) date_time_obj = datetime.now() api.get_nyt_last_week_articles('election', date_time_obj)
[((1272, 1286), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1284, 1286), False, 'from datetime import datetime, timedelta\n'), ((251, 269), 'datetime.timedelta', 'timedelta', ([], {'weeks': '(1)'}), '(weeks=1)\n', (260, 269), False, 'from datetime import datetime, timedelta\n')]
owen-t/sagemaker-experiments-1
tests/unit/test_trial_component.py
ef2af4009c3a5c6a63db5cec6b9de6c614dfdd66
# Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. from smexperiments import trial_component, api_types import datetime import pytest import unittest.mock @pytest.fixture def sagemaker_boto_client(): return unittest.mock.Mock() def test_create(sagemaker_boto_client): sagemaker_boto_client.create_trial_component.return_value = { "TrialComponentArn": "bazz", } obj = trial_component.TrialComponent.create( trial_component_name="foo", display_name="bar", sagemaker_boto_client=sagemaker_boto_client ) sagemaker_boto_client.create_trial_component.assert_called_with(TrialComponentName="foo", DisplayName="bar") assert "foo" == obj.trial_component_name assert "bar" == obj.display_name assert "bazz" == obj.trial_component_arn def test_load(sagemaker_boto_client): now = datetime.datetime.now(datetime.timezone.utc) sagemaker_boto_client.describe_trial_component.return_value = { "TrialComponentArn": "A", "TrialComponentName": "B", "DisplayName": "C", "Status": {"PrimaryStatus": "InProgress", "Message": "D"}, "Parameters": {"E": {"NumberValue": 1.0}, "F": {"StringValue": "G"}}, "InputArtifacts": {"H": {"Value": "s3://foo/bar", "MediaType": "text/plain"}}, "OutputArtifacts": {"I": {"Value": "s3://whizz/bang", "MediaType": "text/plain"}}, "Metrics": [ { "MetricName": "J", "Count": 1, "Min": 1.0, "Max": 2.0, "Avg": 3.0, "StdDev": 4.0, "SourceArn": "K", "Timestamp": now, } ], } obj = trial_component.TrialComponent.load(trial_component_name="foo", sagemaker_boto_client=sagemaker_boto_client) sagemaker_boto_client.describe_trial_component.assert_called_with(TrialComponentName="foo") assert "A" == obj.trial_component_arn assert "B" == obj.trial_component_name assert "C" == obj.display_name assert api_types.TrialComponentStatus(primary_status="InProgress", message="D") == obj.status assert {"E": 1.0, "F": "G"} == obj.parameters assert {"H": api_types.TrialComponentArtifact(value="s3://foo/bar", media_type="text/plain")} assert {"I": api_types.TrialComponentArtifact(value="s3://whizz/bang", media_type="text/plain")} assert [ api_types.TrialComponentMetricSummary( metric_name="J", count=1, min=1.0, max=2.0, avg=3.0, std_dev=4.0, source_arn="K", timestamp=now ) ] def test_list(sagemaker_boto_client): start_time = datetime.datetime.now(datetime.timezone.utc) + datetime.timedelta(hours=1) end_time = datetime.datetime.now(datetime.timezone.utc) + datetime.timedelta(hours=2) creation_time = datetime.datetime.now(datetime.timezone.utc) + datetime.timedelta(hours=3) last_modified_time = datetime.datetime.now(datetime.timezone.utc) + datetime.timedelta(hours=4) sagemaker_boto_client.list_trial_components.side_effect = [ { "TrialComponentSummaries": [ { "TrialComponentName": "A" + str(i), "TrialComponentArn": "B" + str(i), "DisplayName": "C" + str(i), "SourceArn": "D" + str(i), "Status": {"PrimaryStatus": "InProgress", "Message": "E" + str(i)}, "StartTime": start_time + datetime.timedelta(hours=i), "EndTime": end_time + datetime.timedelta(hours=i), "CreationTime": creation_time + datetime.timedelta(hours=i), "LastModifiedTime": last_modified_time + datetime.timedelta(hours=i), "LastModifiedBy": {}, } for i in range(10) ], "NextToken": "100", }, { "TrialComponentSummaries": [ { "TrialComponentName": "A" + str(i), "TrialComponentArn": "B" + str(i), "DisplayName": "C" + str(i), "SourceArn": "D" + str(i), "Status": {"PrimaryStatus": "InProgress", "Message": "E" + str(i)}, "StartTime": start_time + datetime.timedelta(hours=i), "EndTime": end_time + datetime.timedelta(hours=i), "CreationTime": creation_time + datetime.timedelta(hours=i), "LastModifiedTime": last_modified_time + datetime.timedelta(hours=i), "LastModifiedBy": {}, } for i in range(10, 20) ] }, ] expected = [ api_types.TrialComponentSummary( trial_component_name="A" + str(i), trial_component_arn="B" + str(i), display_name="C" + str(i), source_arn="D" + str(i), status=api_types.TrialComponentStatus(primary_status="InProgress", message="E" + str(i)), start_time=start_time + datetime.timedelta(hours=i), end_time=end_time + datetime.timedelta(hours=i), creation_time=creation_time + datetime.timedelta(hours=i), last_modified_time=last_modified_time + datetime.timedelta(hours=i), last_modified_by={}, ) for i in range(20) ] result = list( trial_component.TrialComponent.list( sagemaker_boto_client=sagemaker_boto_client, source_arn="foo", sort_by="CreationTime", sort_order="Ascending", ) ) assert expected == result expected_calls = [ unittest.mock.call(SortBy="CreationTime", SortOrder="Ascending", SourceArn="foo"), unittest.mock.call(NextToken="100", SortBy="CreationTime", SortOrder="Ascending", SourceArn="foo"), ] assert expected_calls == sagemaker_boto_client.list_trial_components.mock_calls def test_list_empty(sagemaker_boto_client): sagemaker_boto_client.list_trial_components.return_value = {"TrialComponentSummaries": []} assert [] == list(trial_component.TrialComponent.list(sagemaker_boto_client=sagemaker_boto_client)) def test_list_trial_components_call_args(sagemaker_boto_client): created_before = datetime.datetime(1999, 10, 12, 0, 0, 0) created_after = datetime.datetime(1990, 10, 12, 0, 0, 0) trial_name = "foo-trial" experiment_name = "foo-experiment" next_token = "thetoken" max_results = 99 sagemaker_boto_client.list_trial_components.return_value = {} assert [] == list( trial_component.TrialComponent.list( sagemaker_boto_client=sagemaker_boto_client, trial_name=trial_name, experiment_name=experiment_name, created_before=created_before, created_after=created_after, next_token=next_token, max_results=max_results, sort_by="CreationTime", sort_order="Ascending", ) ) expected_calls = [ unittest.mock.call( TrialName="foo-trial", ExperimentName="foo-experiment", CreatedBefore=created_before, CreatedAfter=created_after, SortBy="CreationTime", SortOrder="Ascending", NextToken="thetoken", MaxResults=99, ) ] assert expected_calls == sagemaker_boto_client.list_trial_components.mock_calls def test_save(sagemaker_boto_client): obj = trial_component.TrialComponent(sagemaker_boto_client, trial_component_name="foo", display_name="bar") sagemaker_boto_client.update_trial_component.return_value = {} obj.save() sagemaker_boto_client.update_trial_component.assert_called_with(TrialComponentName="foo", DisplayName="bar") def test_delete(sagemaker_boto_client): obj = trial_component.TrialComponent(sagemaker_boto_client, trial_component_name="foo", display_name="bar") sagemaker_boto_client.delete_trial_component.return_value = {} obj.delete() sagemaker_boto_client.delete_trial_component.assert_called_with(TrialComponentName="foo") def test_boto_ignore(): obj = trial_component.TrialComponent(sagemaker_boto_client, trial_component_name="foo", display_name="bar") assert obj._boto_ignore() == ["ResponseMetadata", "CreatedBy"]
[((910, 1044), 'smexperiments.trial_component.TrialComponent.create', 'trial_component.TrialComponent.create', ([], {'trial_component_name': '"""foo"""', 'display_name': '"""bar"""', 'sagemaker_boto_client': 'sagemaker_boto_client'}), "(trial_component_name='foo',\n display_name='bar', sagemaker_boto_client=sagemaker_boto_client)\n", (947, 1044), False, 'from smexperiments import trial_component, api_types\n'), ((1345, 1389), 'datetime.datetime.now', 'datetime.datetime.now', (['datetime.timezone.utc'], {}), '(datetime.timezone.utc)\n', (1366, 1389), False, 'import datetime\n'), ((2201, 2313), 'smexperiments.trial_component.TrialComponent.load', 'trial_component.TrialComponent.load', ([], {'trial_component_name': '"""foo"""', 'sagemaker_boto_client': 'sagemaker_boto_client'}), "(trial_component_name='foo',\n sagemaker_boto_client=sagemaker_boto_client)\n", (2236, 2313), False, 'from smexperiments import trial_component, api_types\n'), ((6783, 6823), 'datetime.datetime', 'datetime.datetime', (['(1999)', '(10)', '(12)', '(0)', '(0)', '(0)'], {}), '(1999, 10, 12, 0, 0, 0)\n', (6800, 6823), False, 'import datetime\n'), ((6844, 6884), 'datetime.datetime', 'datetime.datetime', (['(1990)', '(10)', '(12)', '(0)', '(0)', '(0)'], {}), '(1990, 10, 12, 0, 0, 0)\n', (6861, 6884), False, 'import datetime\n'), ((8013, 8119), 'smexperiments.trial_component.TrialComponent', 'trial_component.TrialComponent', (['sagemaker_boto_client'], {'trial_component_name': '"""foo"""', 'display_name': '"""bar"""'}), "(sagemaker_boto_client, trial_component_name=\n 'foo', display_name='bar')\n", (8043, 8119), False, 'from smexperiments import trial_component, api_types\n'), ((8362, 8468), 'smexperiments.trial_component.TrialComponent', 'trial_component.TrialComponent', (['sagemaker_boto_client'], {'trial_component_name': '"""foo"""', 'display_name': '"""bar"""'}), "(sagemaker_boto_client, trial_component_name=\n 'foo', display_name='bar')\n", (8392, 8468), False, 'from smexperiments import trial_component, api_types\n'), ((8678, 8784), 'smexperiments.trial_component.TrialComponent', 'trial_component.TrialComponent', (['sagemaker_boto_client'], {'trial_component_name': '"""foo"""', 'display_name': '"""bar"""'}), "(sagemaker_boto_client, trial_component_name=\n 'foo', display_name='bar')\n", (8708, 8784), False, 'from smexperiments import trial_component, api_types\n'), ((2537, 2609), 'smexperiments.api_types.TrialComponentStatus', 'api_types.TrialComponentStatus', ([], {'primary_status': '"""InProgress"""', 'message': '"""D"""'}), "(primary_status='InProgress', message='D')\n", (2567, 2609), False, 'from smexperiments import trial_component, api_types\n'), ((2691, 2770), 'smexperiments.api_types.TrialComponentArtifact', 'api_types.TrialComponentArtifact', ([], {'value': '"""s3://foo/bar"""', 'media_type': '"""text/plain"""'}), "(value='s3://foo/bar', media_type='text/plain')\n", (2723, 2770), False, 'from smexperiments import trial_component, api_types\n'), ((2789, 2876), 'smexperiments.api_types.TrialComponentArtifact', 'api_types.TrialComponentArtifact', ([], {'value': '"""s3://whizz/bang"""', 'media_type': '"""text/plain"""'}), "(value='s3://whizz/bang', media_type=\n 'text/plain')\n", (2821, 2876), False, 'from smexperiments import trial_component, api_types\n'), ((2894, 3032), 'smexperiments.api_types.TrialComponentMetricSummary', 'api_types.TrialComponentMetricSummary', ([], {'metric_name': '"""J"""', 'count': '(1)', 'min': '(1.0)', 'max': '(2.0)', 'avg': '(3.0)', 'std_dev': '(4.0)', 'source_arn': '"""K"""', 'timestamp': 'now'}), "(metric_name='J', count=1, min=1.0,\n max=2.0, avg=3.0, std_dev=4.0, source_arn='K', timestamp=now)\n", (2931, 3032), False, 'from smexperiments import trial_component, api_types\n'), ((3114, 3158), 'datetime.datetime.now', 'datetime.datetime.now', (['datetime.timezone.utc'], {}), '(datetime.timezone.utc)\n', (3135, 3158), False, 'import datetime\n'), ((3161, 3188), 'datetime.timedelta', 'datetime.timedelta', ([], {'hours': '(1)'}), '(hours=1)\n', (3179, 3188), False, 'import datetime\n'), ((3204, 3248), 'datetime.datetime.now', 'datetime.datetime.now', (['datetime.timezone.utc'], {}), '(datetime.timezone.utc)\n', (3225, 3248), False, 'import datetime\n'), ((3251, 3278), 'datetime.timedelta', 'datetime.timedelta', ([], {'hours': '(2)'}), '(hours=2)\n', (3269, 3278), False, 'import datetime\n'), ((3299, 3343), 'datetime.datetime.now', 'datetime.datetime.now', (['datetime.timezone.utc'], {}), '(datetime.timezone.utc)\n', (3320, 3343), False, 'import datetime\n'), ((3346, 3373), 'datetime.timedelta', 'datetime.timedelta', ([], {'hours': '(3)'}), '(hours=3)\n', (3364, 3373), False, 'import datetime\n'), ((3399, 3443), 'datetime.datetime.now', 'datetime.datetime.now', (['datetime.timezone.utc'], {}), '(datetime.timezone.utc)\n', (3420, 3443), False, 'import datetime\n'), ((3446, 3473), 'datetime.timedelta', 'datetime.timedelta', ([], {'hours': '(4)'}), '(hours=4)\n', (3464, 3473), False, 'import datetime\n'), ((5895, 6050), 'smexperiments.trial_component.TrialComponent.list', 'trial_component.TrialComponent.list', ([], {'sagemaker_boto_client': 'sagemaker_boto_client', 'source_arn': '"""foo"""', 'sort_by': '"""CreationTime"""', 'sort_order': '"""Ascending"""'}), "(sagemaker_boto_client=\n sagemaker_boto_client, source_arn='foo', sort_by='CreationTime',\n sort_order='Ascending')\n", (5930, 6050), False, 'from smexperiments import trial_component, api_types\n'), ((6613, 6698), 'smexperiments.trial_component.TrialComponent.list', 'trial_component.TrialComponent.list', ([], {'sagemaker_boto_client': 'sagemaker_boto_client'}), '(sagemaker_boto_client=sagemaker_boto_client\n )\n', (6648, 6698), False, 'from smexperiments import trial_component, api_types\n'), ((7100, 7412), 'smexperiments.trial_component.TrialComponent.list', 'trial_component.TrialComponent.list', ([], {'sagemaker_boto_client': 'sagemaker_boto_client', 'trial_name': 'trial_name', 'experiment_name': 'experiment_name', 'created_before': 'created_before', 'created_after': 'created_after', 'next_token': 'next_token', 'max_results': 'max_results', 'sort_by': '"""CreationTime"""', 'sort_order': '"""Ascending"""'}), "(sagemaker_boto_client=\n sagemaker_boto_client, trial_name=trial_name, experiment_name=\n experiment_name, created_before=created_before, created_after=\n created_after, next_token=next_token, max_results=max_results, sort_by=\n 'CreationTime', sort_order='Ascending')\n", (7135, 7412), False, 'from smexperiments import trial_component, api_types\n'), ((5550, 5577), 'datetime.timedelta', 'datetime.timedelta', ([], {'hours': 'i'}), '(hours=i)\n', (5568, 5577), False, 'import datetime\n'), ((5611, 5638), 'datetime.timedelta', 'datetime.timedelta', ([], {'hours': 'i'}), '(hours=i)\n', (5629, 5638), False, 'import datetime\n'), ((5682, 5709), 'datetime.timedelta', 'datetime.timedelta', ([], {'hours': 'i'}), '(hours=i)\n', (5700, 5709), False, 'import datetime\n'), ((5763, 5790), 'datetime.timedelta', 'datetime.timedelta', ([], {'hours': 'i'}), '(hours=i)\n', (5781, 5790), False, 'import datetime\n'), ((3949, 3976), 'datetime.timedelta', 'datetime.timedelta', ([], {'hours': 'i'}), '(hours=i)\n', (3967, 3976), False, 'import datetime\n'), ((4020, 4047), 'datetime.timedelta', 'datetime.timedelta', ([], {'hours': 'i'}), '(hours=i)\n', (4038, 4047), False, 'import datetime\n'), ((4101, 4128), 'datetime.timedelta', 'datetime.timedelta', ([], {'hours': 'i'}), '(hours=i)\n', (4119, 4128), False, 'import datetime\n'), ((4191, 4218), 'datetime.timedelta', 'datetime.timedelta', ([], {'hours': 'i'}), '(hours=i)\n', (4209, 4218), False, 'import datetime\n'), ((4783, 4810), 'datetime.timedelta', 'datetime.timedelta', ([], {'hours': 'i'}), '(hours=i)\n', (4801, 4810), False, 'import datetime\n'), ((4854, 4881), 'datetime.timedelta', 'datetime.timedelta', ([], {'hours': 'i'}), '(hours=i)\n', (4872, 4881), False, 'import datetime\n'), ((4935, 4962), 'datetime.timedelta', 'datetime.timedelta', ([], {'hours': 'i'}), '(hours=i)\n', (4953, 4962), False, 'import datetime\n'), ((5025, 5052), 'datetime.timedelta', 'datetime.timedelta', ([], {'hours': 'i'}), '(hours=i)\n', (5043, 5052), False, 'import datetime\n')]
amylittleyang/OtraCAD
cadnano25/cadnano/part/xovercmds.py
126360719704caf6850d42565fe96be53b66a22d
from cadnano.cnproxy import UndoCommand from cadnano.strand import Strand from cadnano import getBatch import cadnano.preferences as prefs import random class CreateXoverCommand(UndoCommand): """ Creates a Xover from the 3' end of strand5p to the 5' end of strand3p this needs to 1. preserve the old oligo of strand3p 2. install the crossover 3. apply the strand5p oligo to the strand3p """ def __init__(self, part, strand5p, strand5p_idx, strand3p, strand3p_idx, update_oligo=True): super(CreateXoverCommand, self).__init__("create xover") self._part = part self._strand5p = strand5p self._strand5p_idx = strand5p_idx self._strand3p = strand3p self._strand3p_idx = strand3p_idx self._old_oligo3p = strand3p.oligo() self._update_oligo = update_oligo # end def def redo(self): part = self._part strand5p = self._strand5p strand5p_idx = self._strand5p_idx strand3p = self._strand3p strand3p_idx = self._strand3p_idx olg5p = strand5p.oligo() old_olg3p = self._old_oligo3p # 0. Deselect the involved strands doc = strand5p.document() doc.removeStrandFromSelection(strand5p) doc.removeStrandFromSelection(strand3p) if self._update_oligo: # Test for Loopiness if olg5p == strand3p.oligo(): olg5p.setLoop(True) else: # 1. update preserved oligo length olg5p.incrementLength(old_olg3p.length()) # 2. Remove the old oligo and apply the 5' oligo to the 3' strand old_olg3p.removeFromPart() for strand in strand3p.generator3pStrand(): # emits strandHasNewOligoSignal Strand.setOligo(strand, olg5p) # 3. install the Xover strand5p.setConnection3p(strand3p) strand3p.setConnection5p(strand5p) #print('strand5p = %s, connection3p = %s'%(strand5p._name, strand3p._name)) ss5 = strand5p.strandSet() vh5p = ss5.virtualHelix() st5p = ss5.strandType() ss3 = strand3p.strandSet() vh3p = ss3.virtualHelix() st3p = ss3.strandType() part.partActiveVirtualHelixChangedSignal.emit(part, vh5p) # strand5p.strandXover5pChangedSignal.emit(strand5p, strand3p) # if self._update_oligo and not getBatch(): if self._update_oligo: strand5p.strandUpdateSignal.emit(strand5p) strand3p.strandUpdateSignal.emit(strand3p) # end def def undo(self): part = self._part strand5p = self._strand5p strand5p_idx = self._strand5p_idx strand3p = self._strand3p strand3p_idx = self._strand3p_idx old_olg3p = self._old_oligo3p olg5p = strand5p.oligo() # 0. Deselect the involved strands doc = strand5p.document() doc.removeStrandFromSelection(strand5p) doc.removeStrandFromSelection(strand3p) # 1. uninstall the Xover strand5p.setConnection3p(None) strand3p.setConnection5p(None) if self._update_oligo: # Test Loopiness if old_olg3p.isLoop(): old_olg3p.setLoop(False) else: # 2. restore the modified oligo length olg5p.decrementLength(old_olg3p.length()) # 3. apply the old oligo to strand3p old_olg3p.addToPart(part) for strand in strand3p.generator3pStrand(): # emits strandHasNewOligoSignal Strand.setOligo(strand, old_olg3p) ss5 = strand5p.strandSet() vh5p = ss5.virtualHelix() st5p = ss5.strandType() ss3 = strand3p.strandSet() vh3p = ss3.virtualHelix() st3p = ss3.strandType() part.partActiveVirtualHelixChangedSignal.emit(part, vh5p) # strand5p.strandXover5pChangedSignal.emit(strand5p, strand3p) if self._update_oligo: strand5p.strandUpdateSignal.emit(strand5p) strand3p.strandUpdateSignal.emit(strand3p) # end def # end class class RemoveXoverCommand(UndoCommand): """ Removes a Xover from the 3' end of strand5p to the 5' end of strand3p this needs to 1. preserve the old oligo of strand3p 2. install the crossover 3. update the oligo length 4. apply the new strand3p oligo to the strand3p """ def __init__(self, part, strand5p, strand3p): super(RemoveXoverCommand, self).__init__("remove xover") self._part = part self._strand5p = strand5p self._strand5p_idx = strand5p.idx3Prime() self._strand3p = strand3p self._strand3p_idx = strand3p.idx5Prime() n_o3p = self._new_oligo3p = strand3p.oligo().shallowCopy() colorList = prefs.STAP_COLORS if strand5p.strandSet().isStaple() \ else prefs.SCAF_COLORS n_o3p.setColor(random.choice(colorList).name()) n_o3p.setLength(0) for strand in strand3p.generator3pStrand(): n_o3p.incrementLength(strand.totalLength()) # end def n_o3p.setStrand5p(strand3p) self._isLoop = strand3p.oligo().isLoop() # end def def redo(self): part = self._part strand5p = self._strand5p strand5p_idx = self._strand5p_idx strand3p = self._strand3p strand3p_idx = self._strand3p_idx new_olg3p = self._new_oligo3p olg5p = self._strand5p.oligo() # 0. Deselect the involved strands doc = strand5p.document() doc.removeStrandFromSelection(strand5p) doc.removeStrandFromSelection(strand3p) # 1. uninstall the Xover strand5p.setConnection3p(None) strand3p.setConnection5p(None) if self._isLoop: olg5p.setLoop(False) olg5p.setStrand5p(strand3p) else: # 2. restore the modified oligo length olg5p.decrementLength(new_olg3p.length()) # 3. apply the old oligo to strand3p new_olg3p.addToPart(part) for strand in strand3p.generator3pStrand(): # emits strandHasNewOligoSignal Strand.setOligo(strand, new_olg3p) ss5 = strand5p.strandSet() vh5p = ss5.virtualHelix() st5p = ss5.strandType() ss3 = strand3p.strandSet() vh3p = ss3.virtualHelix() st3p = ss3.strandType() part.partActiveVirtualHelixChangedSignal.emit(part, vh5p) # strand5p.strandXover5pChangedSignal.emit(strand5p, strand3p) strand5p.strandUpdateSignal.emit(strand5p) strand3p.strandUpdateSignal.emit(strand3p) # end def def undo(self): part = self._part strand5p = self._strand5p strand5p_idx = self._strand5p_idx strand3p = self._strand3p strand3p_idx = self._strand3p_idx olg5p = strand5p.oligo() new_olg3p = self._new_oligo3p # 0. Deselect the involved strands doc = strand5p.document() doc.removeStrandFromSelection(strand5p) doc.removeStrandFromSelection(strand3p) if self._isLoop: olg5p.setLoop(True) # No need to restore whatever the old Oligo._strand5p was else: # 1. update preserved oligo length olg5p.incrementLength(new_olg3p.length()) # 2. Remove the old oligo and apply the 5' oligo to the 3' strand new_olg3p.removeFromPart() for strand in strand3p.generator3pStrand(): # emits strandHasNewOligoSignal Strand.setOligo(strand, olg5p) # end else # 3. install the Xover strand5p.setConnection3p(strand3p) strand3p.setConnection5p(strand5p) ss5 = strand5p.strandSet() vh5p = ss5.virtualHelix() st5p = ss5.strandType() ss3 = strand3p.strandSet() vh3p = ss3.virtualHelix() st3p = ss3.strandType() part.partActiveVirtualHelixChangedSignal.emit(part, vh5p) # strand5p.strandXover5pChangedSignal.emit(strand5p, strand3p) strand5p.strandUpdateSignal.emit(strand5p) strand3p.strandUpdateSignal.emit(strand3p) # end def # end class
[((6327, 6361), 'cadnano.strand.Strand.setOligo', 'Strand.setOligo', (['strand', 'new_olg3p'], {}), '(strand, new_olg3p)\n', (6342, 6361), False, 'from cadnano.strand import Strand\n'), ((7743, 7773), 'cadnano.strand.Strand.setOligo', 'Strand.setOligo', (['strand', 'olg5p'], {}), '(strand, olg5p)\n', (7758, 7773), False, 'from cadnano.strand import Strand\n'), ((1832, 1862), 'cadnano.strand.Strand.setOligo', 'Strand.setOligo', (['strand', 'olg5p'], {}), '(strand, olg5p)\n', (1847, 1862), False, 'from cadnano.strand import Strand\n'), ((3664, 3698), 'cadnano.strand.Strand.setOligo', 'Strand.setOligo', (['strand', 'old_olg3p'], {}), '(strand, old_olg3p)\n', (3679, 3698), False, 'from cadnano.strand import Strand\n'), ((5046, 5070), 'random.choice', 'random.choice', (['colorList'], {}), '(colorList)\n', (5059, 5070), False, 'import random\n')]
FabBrolMons/frbayart
src/temp2.py
c2b9dde730cf6d21f1c1492d0da0351c12a4dce9
from w1thermsensor import W1ThermSensor sensor = W1ThermSensor() temperature_in_celsius = sensor.get_temperature() temperature_in_fahrenheit = sensor.get_temperature(W1ThermSensor.DEGREES_F) temperature_in_all_units = sensor.get_temperatures([W1ThermSensor.DEGREES_C, W1ThermSensor.DEGREES_F, W1ThermSensor.KELVIN]) print("Sensor id:" + sensor.id) print(temperature_in_celsius)
[((50, 65), 'w1thermsensor.W1ThermSensor', 'W1ThermSensor', ([], {}), '()\n', (63, 65), False, 'from w1thermsensor import W1ThermSensor\n')]
jarnoln/exposures
tables/migrations/0004_auto_20200901_2004.py
bbae3f79078048d25b77e178db6c0801ffe9f97e
# Generated by Django 3.1.1 on 2020-09-01 17:04 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('tables', '0003_exposure_category'), ] operations = [ migrations.AlterField( model_name='exposure', name='location', field=models.CharField(blank=True, default='', max_length=200), ), ]
[((338, 394), 'django.db.models.CharField', 'models.CharField', ([], {'blank': '(True)', 'default': '""""""', 'max_length': '(200)'}), "(blank=True, default='', max_length=200)\n", (354, 394), False, 'from django.db import migrations, models\n')]
kokinomura/reportlab
src/reportlab/graphics/charts/__init__.py
18e39b85d7277c2b5e9218b30a7b7b0a644a3c02
#Copyright ReportLab Europe Ltd. 2000-2016 #see license.txt for license details #history http://www.reportlab.co.uk/cgi-bin/viewcvs.cgi/public/reportlab/trunk/reportlab/graphics/charts/__init__.py __version__='3.3.0' __doc__='''Business charts'''
[]
AndrewLane/azure-cli
src/command_modules/azure-cli-vm/azure/cli/command_modules/vm/_validators.py
524491c580fc3c133f2d9859cef1c8251f4192e4
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- # pylint:disable=too-many-lines import os try: from urllib.parse import urlparse except ImportError: from urlparse import urlparse # pylint: disable=import-error from knack.log import get_logger from knack.util import CLIError from azure.cli.core.commands.validators import ( get_default_location_from_resource_group, validate_file_or_dict, validate_parameter_set, validate_tags) from azure.cli.core.util import hash_string from azure.cli.command_modules.vm._vm_utils import check_existence, get_target_network_api, get_storage_blob_uri from azure.cli.command_modules.vm._template_builder import StorageProfile import azure.cli.core.keys as keys from ._client_factory import _compute_client_factory from ._actions import _get_latest_image_version logger = get_logger(__name__) def validate_asg_names_or_ids(cmd, namespace): from msrestazure.tools import resource_id, is_valid_resource_id from azure.cli.core.profiles import ResourceType from azure.cli.core.commands.client_factory import get_subscription_id ApplicationSecurityGroup = cmd.get_models('ApplicationSecurityGroup', resource_type=ResourceType.MGMT_NETWORK) resource_group = namespace.resource_group_name subscription_id = get_subscription_id(cmd.cli_ctx) names_or_ids = getattr(namespace, 'application_security_groups') ids = [] if names_or_ids == [""] or not names_or_ids: return for val in names_or_ids: if not is_valid_resource_id(val): val = resource_id( subscription=subscription_id, resource_group=resource_group, namespace='Microsoft.Network', type='applicationSecurityGroups', name=val ) ids.append(ApplicationSecurityGroup(id=val)) setattr(namespace, 'application_security_groups', ids) def validate_nsg_name(cmd, namespace): from msrestazure.tools import resource_id from azure.cli.core.commands.client_factory import get_subscription_id vm_id = resource_id(name=namespace.vm_name, resource_group=namespace.resource_group_name, namespace='Microsoft.Compute', type='virtualMachines', subscription=get_subscription_id(cmd.cli_ctx)) namespace.network_security_group_name = namespace.network_security_group_name \ or '{}_NSG_{}'.format(namespace.vm_name, hash_string(vm_id, length=8)) def validate_keyvault(cmd, namespace): namespace.keyvault = _get_resource_id(cmd.cli_ctx, namespace.keyvault, namespace.resource_group_name, 'vaults', 'Microsoft.KeyVault') def process_vm_secret_format(cmd, namespace): from msrestazure.tools import is_valid_resource_id keyvault_usage = CLIError('usage error: [--keyvault NAME --resource-group NAME | --keyvault ID]') kv = namespace.keyvault rg = namespace.resource_group_name if rg: if not kv or is_valid_resource_id(kv): raise keyvault_usage validate_keyvault(cmd, namespace) else: if kv and not is_valid_resource_id(kv): raise keyvault_usage def _get_resource_group_from_vault_name(cli_ctx, vault_name): """ Fetch resource group from vault name :param str vault_name: name of the key vault :return: resource group name or None :rtype: str """ from azure.cli.core.profiles import ResourceType from azure.cli.core.commands.client_factory import get_mgmt_service_client from msrestazure.tools import parse_resource_id client = get_mgmt_service_client(cli_ctx, ResourceType.MGMT_KEYVAULT).vaults for vault in client.list(): id_comps = parse_resource_id(vault.id) if id_comps['name'] == vault_name: return id_comps['resource_group'] return None def _get_resource_id(cli_ctx, val, resource_group, resource_type, resource_namespace): from msrestazure.tools import resource_id, is_valid_resource_id from azure.cli.core.commands.client_factory import get_subscription_id if is_valid_resource_id(val): return val kwargs = { 'name': val, 'resource_group': resource_group, 'namespace': resource_namespace, 'type': resource_type, 'subscription': get_subscription_id(cli_ctx) } missing_kwargs = {k: v for k, v in kwargs.items() if not v} return resource_id(**kwargs) if not missing_kwargs else None def _get_nic_id(cli_ctx, val, resource_group): return _get_resource_id(cli_ctx, val, resource_group, 'networkInterfaces', 'Microsoft.Network') def validate_vm_nic(cmd, namespace): namespace.nic = _get_nic_id(cmd.cli_ctx, namespace.nic, namespace.resource_group_name) def validate_vm_nics(cmd, namespace): rg = namespace.resource_group_name nic_ids = [] for n in namespace.nics: nic_ids.append(_get_nic_id(cmd.cli_ctx, n, rg)) namespace.nics = nic_ids if hasattr(namespace, 'primary_nic') and namespace.primary_nic: namespace.primary_nic = _get_nic_id(cmd.cli_ctx, namespace.primary_nic, rg) def _validate_secrets(secrets, os_type): """ Validates a parsed JSON array containing secrets for use in VM Creation Secrets JSON structure [{ "sourceVault": { "id": "value" }, "vaultCertificates": [{ "certificateUrl": "value", "certificateStore": "cert store name (only on windows)" }] }] :param dict secrets: Dict fitting the JSON description above :param string os_type: the type of OS (linux or windows) :return: errors if any were found :rtype: list """ is_windows = os_type == 'windows' errors = [] try: loaded_secret = [validate_file_or_dict(secret) for secret in secrets] except Exception as err: raise CLIError('Error decoding secrets: {0}'.format(err)) for idx_arg, narg_secret in enumerate(loaded_secret): for idx, secret in enumerate(narg_secret): if 'sourceVault' not in secret: errors.append( 'Secret is missing sourceVault key at index {0} in arg {1}'.format( idx, idx_arg)) if 'sourceVault' in secret and 'id' not in secret['sourceVault']: errors.append( 'Secret is missing sourceVault.id key at index {0} in arg {1}'.format( idx, idx_arg)) if 'vaultCertificates' not in secret or not secret['vaultCertificates']: err = 'Secret is missing vaultCertificates array or it is empty at index {0} in ' \ 'arg {1} ' errors.append(err.format(idx, idx_arg)) else: for jdx, cert in enumerate(secret['vaultCertificates']): message = 'Secret is missing {0} within vaultCertificates array at secret ' \ 'index {1} and vaultCertificate index {2} in arg {3}' if 'certificateUrl' not in cert: errors.append(message.format('certificateUrl', idx, jdx, idx_arg)) if is_windows and 'certificateStore' not in cert: errors.append(message.format('certificateStore', idx, jdx, idx_arg)) if errors: raise CLIError('\n'.join(errors)) # region VM Create Validators def _parse_image_argument(cmd, namespace): """ Systematically determines what type is supplied for the --image parameter. Updates the namespace and returns the type for subsequent processing. """ from msrestazure.tools import is_valid_resource_id from msrestazure.azure_exceptions import CloudError import re # 1 - check if a fully-qualified ID (assumes it is an image ID) if is_valid_resource_id(namespace.image): return 'image_id' # 2 - attempt to match an URN pattern urn_match = re.match('([^:]*):([^:]*):([^:]*):([^:]*)', namespace.image) if urn_match: namespace.os_publisher = urn_match.group(1) namespace.os_offer = urn_match.group(2) namespace.os_sku = urn_match.group(3) namespace.os_version = urn_match.group(4) if not any([namespace.plan_name, namespace.plan_product, namespace.plan_publisher]): image_plan = _get_image_plan_info_if_exists(cmd, namespace) if image_plan: namespace.plan_name = image_plan.name namespace.plan_product = image_plan.product namespace.plan_publisher = image_plan.publisher return 'urn' # 3 - unmanaged vhd based images? if urlparse(namespace.image).scheme: return 'uri' # 4 - attempt to match an URN alias (most likely) from azure.cli.command_modules.vm._actions import load_images_from_aliases_doc images = load_images_from_aliases_doc(cmd.cli_ctx) matched = next((x for x in images if x['urnAlias'].lower() == namespace.image.lower()), None) if matched: namespace.os_publisher = matched['publisher'] namespace.os_offer = matched['offer'] namespace.os_sku = matched['sku'] namespace.os_version = matched['version'] return 'urn' # 5 - check if an existing managed disk image resource compute_client = _compute_client_factory(cmd.cli_ctx) try: compute_client.images.get(namespace.resource_group_name, namespace.image) namespace.image = _get_resource_id(cmd.cli_ctx, namespace.image, namespace.resource_group_name, 'images', 'Microsoft.Compute') return 'image_id' except CloudError: err = 'Invalid image "{}". Use a custom image name, id, or pick one from {}' raise CLIError(err.format(namespace.image, [x['urnAlias'] for x in images])) def _get_image_plan_info_if_exists(cmd, namespace): from msrestazure.azure_exceptions import CloudError try: compute_client = _compute_client_factory(cmd.cli_ctx) if namespace.os_version.lower() == 'latest': image_version = _get_latest_image_version(cmd.cli_ctx, namespace.location, namespace.os_publisher, namespace.os_offer, namespace.os_sku) else: image_version = namespace.os_version image = compute_client.virtual_machine_images.get(namespace.location, namespace.os_publisher, namespace.os_offer, namespace.os_sku, image_version) # pylint: disable=no-member return image.plan except CloudError as ex: logger.warning("Querying the image of '%s' failed for an error '%s'. Configuring plan settings " "will be skipped", namespace.image, ex.message) # pylint: disable=inconsistent-return-statements def _get_storage_profile_description(profile): if profile == StorageProfile.SACustomImage: return 'create unmanaged OS disk created from generalized VHD' elif profile == StorageProfile.SAPirImage: return 'create unmanaged OS disk from Azure Marketplace image' elif profile == StorageProfile.SASpecializedOSDisk: return 'attach to existing unmanaged OS disk' elif profile == StorageProfile.ManagedCustomImage: return 'create managed OS disk from custom image' elif profile == StorageProfile.ManagedPirImage: return 'create managed OS disk from Azure Marketplace image' elif profile == StorageProfile.ManagedSpecializedOSDisk: return 'attach existing managed OS disk' def _validate_managed_disk_sku(sku): allowed_skus = ['Premium_LRS', 'Standard_LRS', 'StandardSSD_LRS', 'UltraSSD_LRS'] if sku and sku.lower() not in [x.lower() for x in allowed_skus]: raise CLIError("invalid storage SKU '{}': allowed values: '{}'".format(sku, allowed_skus)) def _validate_location(cmd, namespace, zone_info, size_info): from ._vm_utils import list_sku_info if not namespace.location: get_default_location_from_resource_group(cmd, namespace) if zone_info: sku_infos = list_sku_info(cmd.cli_ctx, namespace.location) temp = next((x for x in sku_infos if x.name.lower() == size_info.lower()), None) # For Stack (compute - 2017-03-30), Resource_sku doesn't implement location_info property if not hasattr(temp, 'location_info'): return if not temp or not [x for x in (temp.location_info or []) if x.zones]: raise CLIError("{}'s location can't be used to create the VM/VMSS because availablity zone is not yet " "supported. Please use '--location' to specify a capable one. 'az vm list-skus' can be " "used to find such locations".format(namespace.resource_group_name)) # pylint: disable=too-many-branches, too-many-statements def _validate_vm_create_storage_profile(cmd, namespace, for_scale_set=False): from msrestazure.tools import parse_resource_id # use minimal parameters to resolve the expected storage profile if getattr(namespace, 'attach_os_disk', None) and not namespace.image: if namespace.use_unmanaged_disk: # STORAGE PROFILE #3 namespace.storage_profile = StorageProfile.SASpecializedOSDisk else: # STORAGE PROFILE #6 namespace.storage_profile = StorageProfile.ManagedSpecializedOSDisk elif namespace.image and not getattr(namespace, 'attach_os_disk', None): image_type = _parse_image_argument(cmd, namespace) if image_type == 'uri': # STORAGE PROFILE #2 namespace.storage_profile = StorageProfile.SACustomImage elif image_type == 'image_id': # STORAGE PROFILE #5 namespace.storage_profile = StorageProfile.ManagedCustomImage elif image_type == 'urn': if namespace.use_unmanaged_disk: # STORAGE PROFILE #1 namespace.storage_profile = StorageProfile.SAPirImage else: # STORAGE PROFILE #4 namespace.storage_profile = StorageProfile.ManagedPirImage else: raise CLIError('Unrecognized image type: {}'.format(image_type)) else: # did not specify image XOR attach-os-disk raise CLIError('incorrect usage: --image IMAGE | --attach-os-disk DISK') auth_params = ['admin_password', 'admin_username', 'authentication_type', 'generate_ssh_keys', 'ssh_dest_key_path', 'ssh_key_value'] # perform parameter validation for the specific storage profile # start with the required/forbidden parameters for VM if namespace.storage_profile == StorageProfile.ManagedPirImage: required = ['image'] forbidden = ['os_type', 'attach_os_disk', 'storage_account', 'storage_container_name', 'use_unmanaged_disk'] if for_scale_set: forbidden.append('os_disk_name') _validate_managed_disk_sku(namespace.storage_sku) elif namespace.storage_profile == StorageProfile.ManagedCustomImage: required = ['image'] forbidden = ['os_type', 'attach_os_disk', 'storage_account', 'storage_container_name', 'use_unmanaged_disk'] if for_scale_set: forbidden.append('os_disk_name') _validate_managed_disk_sku(namespace.storage_sku) elif namespace.storage_profile == StorageProfile.ManagedSpecializedOSDisk: required = ['os_type', 'attach_os_disk'] forbidden = ['os_disk_name', 'os_caching', 'storage_account', 'storage_container_name', 'use_unmanaged_disk', 'storage_sku'] + auth_params _validate_managed_disk_sku(namespace.storage_sku) elif namespace.storage_profile == StorageProfile.SAPirImage: required = ['image', 'use_unmanaged_disk'] forbidden = ['os_type', 'attach_os_disk', 'data_disk_sizes_gb'] elif namespace.storage_profile == StorageProfile.SACustomImage: required = ['image', 'os_type', 'use_unmanaged_disk'] forbidden = ['attach_os_disk', 'data_disk_sizes_gb'] elif namespace.storage_profile == StorageProfile.SASpecializedOSDisk: required = ['os_type', 'attach_os_disk', 'use_unmanaged_disk'] forbidden = ['os_disk_name', 'os_caching', 'image', 'storage_account', 'storage_container_name', 'data_disk_sizes_gb', 'storage_sku'] + auth_params else: raise CLIError('Unrecognized storage profile: {}'.format(namespace.storage_profile)) logger.debug("storage profile '%s'", namespace.storage_profile) if for_scale_set: # VMSS lacks some parameters, so scrub these out props_to_remove = ['attach_os_disk', 'storage_account'] for prop in props_to_remove: if prop in required: required.remove(prop) if prop in forbidden: forbidden.remove(prop) # set default storage SKU if not provided and using an image based OS if not namespace.storage_sku and namespace.storage_profile in [StorageProfile.SAPirImage, StorageProfile.SACustomImage]: # pylint: disable=line-too-long namespace.storage_sku = 'Standard_LRS' if for_scale_set else 'Premium_LRS' if namespace.storage_sku == 'UltraSSD_LRS' and namespace.ultra_ssd_enabled is None: namespace.ultra_ssd_enabled = True # Now verify that the status of required and forbidden parameters validate_parameter_set( namespace, required, forbidden, description='storage profile: {}:'.format(_get_storage_profile_description(namespace.storage_profile))) image_data_disks_num = 0 if namespace.storage_profile == StorageProfile.ManagedCustomImage: # extract additional information from a managed custom image res = parse_resource_id(namespace.image) compute_client = _compute_client_factory(cmd.cli_ctx, subscription_id=res['subscription']) if res['type'].lower() == 'images': image_info = compute_client.images.get(res['resource_group'], res['name']) namespace.os_type = image_info.storage_profile.os_disk.os_type.value image_data_disks_num = len(image_info.storage_profile.data_disks or []) elif res['type'].lower() == 'galleries': image_info = compute_client.gallery_images.get(resource_group_name=res['resource_group'], gallery_name=res['name'], gallery_image_name=res['child_name_1']) namespace.os_type = image_info.os_type.value gallery_image_version = res.get('child_name_2', '') if gallery_image_version.lower() in ['latest', '']: image_version_infos = compute_client.gallery_image_versions.list_by_gallery_image( resource_group_name=res['resource_group'], gallery_name=res['name'], gallery_image_name=res['child_name_1']) image_version_infos = [x for x in image_version_infos if not x.publishing_profile.exclude_from_latest] if not image_version_infos: raise CLIError('There is no latest image version exists for "{}"'.format(namespace.image)) image_version_info = sorted(image_version_infos, key=lambda x: x.publishing_profile.published_date)[-1] else: image_version_info = compute_client.gallery_image_versions.get( resource_group_name=res['resource_group'], gallery_name=res['name'], gallery_image_name=res['child_name_1'], gallery_image_version_name=res['child_name_2']) image_data_disks_num = len(image_version_info.storage_profile.data_disk_images or []) else: raise CLIError('usage error: unrecognized image informations "{}"'.format(namespace.image)) # pylint: disable=no-member elif namespace.storage_profile == StorageProfile.ManagedSpecializedOSDisk: # accept disk name or ID namespace.attach_os_disk = _get_resource_id( cmd.cli_ctx, namespace.attach_os_disk, namespace.resource_group_name, 'disks', 'Microsoft.Compute') if getattr(namespace, 'attach_data_disks', None): if not namespace.use_unmanaged_disk: namespace.attach_data_disks = [_get_resource_id(cmd.cli_ctx, d, namespace.resource_group_name, 'disks', 'Microsoft.Compute') for d in namespace.attach_data_disks] if not namespace.os_type: namespace.os_type = 'windows' if 'windows' in namespace.os_offer.lower() else 'linux' from ._vm_utils import normalize_disk_info # attach_data_disks are not exposed yet for VMSS, so use 'getattr' to avoid crash namespace.disk_info = normalize_disk_info(image_data_disks_num=image_data_disks_num, data_disk_sizes_gb=namespace.data_disk_sizes_gb, attach_data_disks=getattr(namespace, 'attach_data_disks', []), storage_sku=namespace.storage_sku, os_disk_caching=namespace.os_caching, data_disk_cachings=namespace.data_caching) def _validate_vm_create_storage_account(cmd, namespace): from msrestazure.tools import parse_resource_id if namespace.storage_account: storage_id = parse_resource_id(namespace.storage_account) rg = storage_id.get('resource_group', namespace.resource_group_name) if check_existence(cmd.cli_ctx, storage_id['name'], rg, 'Microsoft.Storage', 'storageAccounts'): # 1 - existing storage account specified namespace.storage_account_type = 'existing' logger.debug("using specified existing storage account '%s'", storage_id['name']) else: # 2 - params for new storage account specified namespace.storage_account_type = 'new' logger.debug("specified storage account '%s' not found and will be created", storage_id['name']) else: from azure.cli.core.profiles import ResourceType from azure.cli.core.commands.client_factory import get_mgmt_service_client storage_client = get_mgmt_service_client(cmd.cli_ctx, ResourceType.MGMT_STORAGE).storage_accounts # find storage account in target resource group that matches the VM's location sku_tier = 'Premium' if 'Premium' in namespace.storage_sku else 'Standard' account = next( (a for a in storage_client.list_by_resource_group(namespace.resource_group_name) if a.sku.tier.value == sku_tier and a.location == namespace.location), None) if account: # 3 - nothing specified - find viable storage account in target resource group namespace.storage_account = account.name namespace.storage_account_type = 'existing' logger.debug("suitable existing storage account '%s' will be used", account.name) else: # 4 - nothing specified - create a new storage account namespace.storage_account_type = 'new' logger.debug('no suitable storage account found. One will be created.') def _validate_vm_create_availability_set(cmd, namespace): from msrestazure.tools import parse_resource_id, resource_id from azure.cli.core.commands.client_factory import get_subscription_id if namespace.availability_set: as_id = parse_resource_id(namespace.availability_set) name = as_id['name'] rg = as_id.get('resource_group', namespace.resource_group_name) if not check_existence(cmd.cli_ctx, name, rg, 'Microsoft.Compute', 'availabilitySets'): raise CLIError("Availability set '{}' does not exist.".format(name)) namespace.availability_set = resource_id( subscription=get_subscription_id(cmd.cli_ctx), resource_group=rg, namespace='Microsoft.Compute', type='availabilitySets', name=name) logger.debug("adding to specified availability set '%s'", namespace.availability_set) def _validate_vm_vmss_create_vnet(cmd, namespace, for_scale_set=False): from msrestazure.tools import is_valid_resource_id vnet = namespace.vnet_name subnet = namespace.subnet rg = namespace.resource_group_name location = namespace.location nics = getattr(namespace, 'nics', None) if not vnet and not subnet and not nics: logger.debug('no subnet specified. Attempting to find an existing Vnet and subnet...') # if nothing specified, try to find an existing vnet and subnet in the target resource group client = get_network_client(cmd.cli_ctx).virtual_networks # find VNET in target resource group that matches the VM's location with a matching subnet for vnet_match in (v for v in client.list(rg) if v.location == location and v.subnets): # 1 - find a suitable existing vnet/subnet result = None if not for_scale_set: result = next((s for s in vnet_match.subnets if s.name.lower() != 'gatewaysubnet'), None) else: def _check_subnet(s): if s.name.lower() == 'gatewaysubnet': return False subnet_mask = s.address_prefix.split('/')[-1] return _subnet_capacity_check(subnet_mask, namespace.instance_count, not namespace.disable_overprovision) result = next((s for s in vnet_match.subnets if _check_subnet(s)), None) if not result: continue namespace.subnet = result.name namespace.vnet_name = vnet_match.name namespace.vnet_type = 'existing' logger.debug("existing vnet '%s' and subnet '%s' found", namespace.vnet_name, namespace.subnet) return if subnet: subnet_is_id = is_valid_resource_id(subnet) if (subnet_is_id and vnet) or (not subnet_is_id and not vnet): raise CLIError("incorrect '--subnet' usage: --subnet SUBNET_ID | " "--subnet SUBNET_NAME --vnet-name VNET_NAME") subnet_exists = \ check_existence(cmd.cli_ctx, subnet, rg, 'Microsoft.Network', 'subnets', vnet, 'virtualNetworks') if subnet_is_id and not subnet_exists: raise CLIError("Subnet '{}' does not exist.".format(subnet)) elif subnet_exists: # 2 - user specified existing vnet/subnet namespace.vnet_type = 'existing' logger.debug("using specified vnet '%s' and subnet '%s'", namespace.vnet_name, namespace.subnet) return # 3 - create a new vnet/subnet namespace.vnet_type = 'new' logger.debug('no suitable subnet found. One will be created.') def _subnet_capacity_check(subnet_mask, vmss_instance_count, over_provision): mask = int(subnet_mask) # '2' are the reserved broadcasting addresses # '*1.5' so we have enough leeway for over-provision factor = 1.5 if over_provision else 1 return ((1 << (32 - mask)) - 2) > int(vmss_instance_count * factor) def _validate_vm_vmss_accelerated_networking(cli_ctx, namespace): if namespace.accelerated_networking is None: size = getattr(namespace, 'size', None) or getattr(namespace, 'vm_sku', None) size = size.lower() # to refresh the list, run 'az vm create --accelerated-networking --size Standard_DS1_v2' and # get it from the error aval_sizes = ['Standard_D3_v2', 'Standard_D12_v2', 'Standard_D3_v2_Promo', 'Standard_D12_v2_Promo', 'Standard_DS3_v2', 'Standard_DS12_v2', 'Standard_DS13-4_v2', 'Standard_DS14-4_v2', 'Standard_DS3_v2_Promo', 'Standard_DS12_v2_Promo', 'Standard_DS13-4_v2_Promo', 'Standard_DS14-4_v2_Promo', 'Standard_F4', 'Standard_F4s', 'Standard_D8_v3', 'Standard_D8s_v3', 'Standard_D32-8s_v3', 'Standard_E8_v3', 'Standard_E8s_v3', 'Standard_D3_v2_ABC', 'Standard_D12_v2_ABC', 'Standard_F4_ABC', 'Standard_F8s_v2', 'Standard_D4_v2', 'Standard_D13_v2', 'Standard_D4_v2_Promo', 'Standard_D13_v2_Promo', 'Standard_DS4_v2', 'Standard_DS13_v2', 'Standard_DS14-8_v2', 'Standard_DS4_v2_Promo', 'Standard_DS13_v2_Promo', 'Standard_DS14-8_v2_Promo', 'Standard_F8', 'Standard_F8s', 'Standard_M64-16ms', 'Standard_D16_v3', 'Standard_D16s_v3', 'Standard_D32-16s_v3', 'Standard_D64-16s_v3', 'Standard_E16_v3', 'Standard_E16s_v3', 'Standard_E32-16s_v3', 'Standard_D4_v2_ABC', 'Standard_D13_v2_ABC', 'Standard_F8_ABC', 'Standard_F16s_v2', 'Standard_D5_v2', 'Standard_D14_v2', 'Standard_D5_v2_Promo', 'Standard_D14_v2_Promo', 'Standard_DS5_v2', 'Standard_DS14_v2', 'Standard_DS5_v2_Promo', 'Standard_DS14_v2_Promo', 'Standard_F16', 'Standard_F16s', 'Standard_M64-32ms', 'Standard_M128-32ms', 'Standard_D32_v3', 'Standard_D32s_v3', 'Standard_D64-32s_v3', 'Standard_E32_v3', 'Standard_E32s_v3', 'Standard_E32-8s_v3', 'Standard_E32-16_v3', 'Standard_D5_v2_ABC', 'Standard_D14_v2_ABC', 'Standard_F16_ABC', 'Standard_F32s_v2', 'Standard_D15_v2', 'Standard_D15_v2_Promo', 'Standard_D15_v2_Nested', 'Standard_DS15_v2', 'Standard_DS15_v2_Promo', 'Standard_DS15_v2_Nested', 'Standard_D40_v3', 'Standard_D40s_v3', 'Standard_D15_v2_ABC', 'Standard_M64ms', 'Standard_M64s', 'Standard_M128-64ms', 'Standard_D64_v3', 'Standard_D64s_v3', 'Standard_E64_v3', 'Standard_E64s_v3', 'Standard_E64-16s_v3', 'Standard_E64-32s_v3', 'Standard_F64s_v2', 'Standard_F72s_v2', 'Standard_M128s', 'Standard_M128ms', 'Standard_L8s_v2', 'Standard_L16s_v2', 'Standard_L32s_v2', 'Standard_L64s_v2', 'Standard_L96s_v2', 'SQLGL', 'SQLGLCore', 'Standard_D4_v3', 'Standard_D4s_v3', 'Standard_D2_v2', 'Standard_DS2_v2', 'Standard_E4_v3', 'Standard_E4s_v3', 'Standard_F2', 'Standard_F2s', 'Standard_F4s_v2', 'Standard_D11_v2', 'Standard_DS11_v2', 'AZAP_Performance_ComputeV17C'] aval_sizes = [x.lower() for x in aval_sizes] if size not in aval_sizes: return new_4core_sizes = ['Standard_D3_v2', 'Standard_D3_v2_Promo', 'Standard_D3_v2_ABC', 'Standard_DS3_v2', 'Standard_DS3_v2_Promo', 'Standard_D12_v2', 'Standard_D12_v2_Promo', 'Standard_D12_v2_ABC', 'Standard_DS12_v2', 'Standard_DS12_v2_Promo', 'Standard_F8s_v2', 'Standard_F4', 'Standard_F4_ABC', 'Standard_F4s', 'Standard_E8_v3', 'Standard_E8s_v3', 'Standard_D8_v3', 'Standard_D8s_v3'] new_4core_sizes = [x.lower() for x in new_4core_sizes] if size not in new_4core_sizes: compute_client = _compute_client_factory(cli_ctx) sizes = compute_client.virtual_machine_sizes.list(namespace.location) size_info = next((s for s in sizes if s.name.lower() == size), None) if size_info is None or size_info.number_of_cores < 8: return # VMs need to be a supported image in the marketplace # Ubuntu 16.04, SLES 12 SP3, RHEL 7.4, CentOS 7.4, CoreOS Linux, Debian "Stretch" with backports kernel # Oracle Linux 7.4, Windows Server 2016, Windows Server 2012R2 publisher, offer, sku = namespace.os_publisher, namespace.os_offer, namespace.os_sku if not publisher: return publisher, offer, sku = publisher.lower(), offer.lower(), sku.lower() distros = [('canonical', 'UbuntuServer', '^16.04'), ('suse', 'sles', '^12-sp3'), ('redhat', 'rhel', '^7.4'), ('openlogic', 'centos', '^7.4'), ('coreos', 'coreos', None), ('credativ', 'debian', '-backports'), ('oracle', 'oracle-linux', '^7.4'), ('MicrosoftWindowsServer', 'WindowsServer', '^2016'), ('MicrosoftWindowsServer', 'WindowsServer', '^2012-R2')] import re for p, o, s in distros: if p.lower() == publisher and (o is None or o.lower() == offer) and (s is None or re.match(s, sku, re.I)): namespace.accelerated_networking = True def _validate_vmss_create_subnet(namespace): if namespace.vnet_type == 'new': if namespace.subnet_address_prefix is None: cidr = namespace.vnet_address_prefix.split('/', 1)[0] i = 0 for i in range(24, 16, -1): if _subnet_capacity_check(i, namespace.instance_count, not namespace.disable_overprovision): break if i < 16: err = "instance count '{}' is out of range of 2^16 subnet size'" raise CLIError(err.format(namespace.instance_count)) namespace.subnet_address_prefix = '{}/{}'.format(cidr, i) if namespace.app_gateway_type and namespace.app_gateway_subnet_address_prefix is None: namespace.app_gateway_subnet_address_prefix = _get_next_subnet_addr_suffix( namespace.vnet_address_prefix, namespace.subnet_address_prefix, 24) def _get_next_subnet_addr_suffix(vnet_cidr, subnet_cidr, new_mask): def _convert_to_int(address, bit_mask_len): a, b, c, d = [int(x) for x in address.split('.')] result = '{0:08b}{1:08b}{2:08b}{3:08b}'.format(a, b, c, d) return int(result[:-bit_mask_len], 2) error_msg = "usage error: --subnet-address-prefix value should be a subrange of --vnet-address-prefix's" # extract vnet information needed to verify the defaults we are coming out vnet_ip_address, mask = vnet_cidr.split('/') vnet_bit_mask_len = 32 - int(mask) vnet_int = _convert_to_int(vnet_ip_address, vnet_bit_mask_len) subnet_ip_address, mask = subnet_cidr.split('/') subnet_bit_mask_len = 32 - int(mask) if vnet_bit_mask_len <= subnet_bit_mask_len: raise CLIError(error_msg) candidate_int = _convert_to_int(subnet_ip_address, subnet_bit_mask_len) + 1 if (candidate_int >> (vnet_bit_mask_len - subnet_bit_mask_len)) > vnet_int: # overflows? candidate_int = candidate_int - 2 # try the other way around if (candidate_int >> (vnet_bit_mask_len - subnet_bit_mask_len)) > vnet_int: raise CLIError(error_msg) # format back to the cidr candaidate_str = '{0:32b}'.format(candidate_int << subnet_bit_mask_len) return '{0}.{1}.{2}.{3}/{4}'.format(int(candaidate_str[0:8], 2), int(candaidate_str[8:16], 2), int(candaidate_str[16:24], 2), int(candaidate_str[24:32], 2), new_mask) def _validate_vm_create_nsg(cmd, namespace): if namespace.nsg: if check_existence(cmd.cli_ctx, namespace.nsg, namespace.resource_group_name, 'Microsoft.Network', 'networkSecurityGroups'): namespace.nsg_type = 'existing' logger.debug("using specified NSG '%s'", namespace.nsg) else: namespace.nsg_type = 'new' logger.debug("specified NSG '%s' not found. It will be created.", namespace.nsg) elif namespace.nsg == '': namespace.nsg_type = None logger.debug('no NSG will be used') elif namespace.nsg is None: namespace.nsg_type = 'new' logger.debug('new NSG will be created') def _validate_vmss_create_nsg(cmd, namespace): if namespace.nsg: namespace.nsg = _get_resource_id(cmd.cli_ctx, namespace.nsg, namespace.resource_group_name, 'networkSecurityGroups', 'Microsoft.Network') def _validate_vm_vmss_create_public_ip(cmd, namespace): if namespace.public_ip_address: if check_existence(cmd.cli_ctx, namespace.public_ip_address, namespace.resource_group_name, 'Microsoft.Network', 'publicIPAddresses'): namespace.public_ip_address_type = 'existing' logger.debug("using existing specified public IP '%s'", namespace.public_ip_address) else: namespace.public_ip_address_type = 'new' logger.debug("specified public IP '%s' not found. It will be created.", namespace.public_ip_address) elif namespace.public_ip_address == '': namespace.public_ip_address_type = None logger.debug('no public IP address will be used') elif namespace.public_ip_address is None: namespace.public_ip_address_type = 'new' logger.debug('new public IP address will be created') # Public-IP SKU is only exposed for VM. VMSS has no such needs so far if getattr(namespace, 'public_ip_sku', None): from azure.cli.core.profiles import ResourceType PublicIPAddressSkuName, IPAllocationMethod = cmd.get_models('PublicIPAddressSkuName', 'IPAllocationMethod', resource_type=ResourceType.MGMT_NETWORK) if namespace.public_ip_sku == PublicIPAddressSkuName.standard.value: if not namespace.public_ip_address_allocation: namespace.public_ip_address_allocation = IPAllocationMethod.static.value def _validate_vmss_create_public_ip(cmd, namespace): if namespace.load_balancer_type is None and namespace.app_gateway_type is None: if namespace.public_ip_address: raise CLIError('--public-ip-address can only be used when creating a new load ' 'balancer or application gateway frontend.') namespace.public_ip_address = '' _validate_vm_vmss_create_public_ip(cmd, namespace) def _validate_vm_create_nics(cmd, namespace): from msrestazure.tools import resource_id from azure.cli.core.commands.client_factory import get_subscription_id nics_value = namespace.nics nics = [] if not nics_value: namespace.nic_type = 'new' logger.debug('new NIC will be created') return if not isinstance(nics_value, list): nics_value = [nics_value] for n in nics_value: nics.append({ 'id': n if '/' in n else resource_id(name=n, resource_group=namespace.resource_group_name, namespace='Microsoft.Network', type='networkInterfaces', subscription=get_subscription_id(cmd.cli_ctx)), 'properties': { 'primary': nics_value[0] == n } }) namespace.nics = nics namespace.nic_type = 'existing' namespace.public_ip_address_type = None logger.debug('existing NIC(s) will be used') def _validate_vm_vmss_create_auth(namespace): if namespace.storage_profile in [StorageProfile.ManagedSpecializedOSDisk, StorageProfile.SASpecializedOSDisk]: return namespace.admin_username = _validate_admin_username(namespace.admin_username, namespace.os_type) if not namespace.os_type: raise CLIError("Unable to resolve OS type. Specify '--os-type' argument.") if not namespace.authentication_type: # apply default auth type (password for Windows, ssh for Linux) by examining the OS type namespace.authentication_type = 'password' \ if (namespace.os_type.lower() == 'windows' or namespace.admin_password) else 'ssh' if namespace.os_type.lower() == 'windows' and namespace.authentication_type == 'ssh': raise CLIError('SSH not supported for Windows VMs.') # validate proper arguments supplied based on the authentication type if namespace.authentication_type == 'password': if namespace.ssh_key_value or namespace.ssh_dest_key_path: raise ValueError( "incorrect usage for authentication-type 'password': " "[--admin-username USERNAME] --admin-password PASSWORD") from knack.prompting import prompt_pass, NoTTYException try: if not namespace.admin_password: namespace.admin_password = prompt_pass('Admin Password: ', confirm=True) except NoTTYException: raise CLIError('Please specify password in non-interactive mode.') # validate password _validate_admin_password(namespace.admin_password, namespace.os_type) elif namespace.authentication_type == 'ssh': if namespace.admin_password: raise ValueError('Admin password cannot be used with SSH authentication type') validate_ssh_key(namespace) if not namespace.ssh_dest_key_path: namespace.ssh_dest_key_path = \ '/home/{}/.ssh/authorized_keys'.format(namespace.admin_username) def _validate_admin_username(username, os_type): import re if not username: raise CLIError("admin user name can not be empty") is_linux = (os_type.lower() == 'linux') # pylint: disable=line-too-long pattern = (r'[\\\/"\[\]:|<>+=;,?*@#()!A-Z]+' if is_linux else r'[\\\/"\[\]:|<>+=;,?*@]+') linux_err = r'admin user name cannot contain upper case character A-Z, special characters \/"[]:|<>+=;,?*@#()! or start with $ or -' win_err = r'admin user name cannot contain special characters \/"[]:|<>+=;,?*@# or ends with .' if re.findall(pattern, username): raise CLIError(linux_err if is_linux else win_err) if is_linux and re.findall(r'^[$-]+', username): raise CLIError(linux_err) if not is_linux and username.endswith('.'): raise CLIError(win_err) disallowed_user_names = [ "administrator", "admin", "user", "user1", "test", "user2", "test1", "user3", "admin1", "1", "123", "a", "actuser", "adm", "admin2", "aspnet", "backup", "console", "guest", "owner", "root", "server", "sql", "support", "support_388945a0", "sys", "test2", "test3", "user4", "user5"] if username.lower() in disallowed_user_names: raise CLIError("This user name '{}' meets the general requirements, but is specifically disallowed for this image. Please try a different value.".format(username)) return username def _validate_admin_password(password, os_type): import re is_linux = (os_type.lower() == 'linux') max_length = 72 if is_linux else 123 min_length = 12 if len(password) not in range(min_length, max_length + 1): raise CLIError('The password length must be between {} and {}'.format(min_length, max_length)) contains_lower = re.findall('[a-z]+', password) contains_upper = re.findall('[A-Z]+', password) contains_digit = re.findall('[0-9]+', password) contains_special_char = re.findall(r'[ `~!@#$%^&*()=+_\[\]{}\|;:.\/\'\",<>?]+', password) count = len([x for x in [contains_lower, contains_upper, contains_digit, contains_special_char] if x]) # pylint: disable=line-too-long if count < 3: raise CLIError('Password must have the 3 of the following: 1 lower case character, 1 upper case character, 1 number and 1 special character') def validate_ssh_key(namespace): string_or_file = (namespace.ssh_key_value or os.path.join(os.path.expanduser('~'), '.ssh', 'id_rsa.pub')) content = string_or_file if os.path.exists(string_or_file): logger.info('Use existing SSH public key file: %s', string_or_file) with open(string_or_file, 'r') as f: content = f.read() elif not keys.is_valid_ssh_rsa_public_key(content): if namespace.generate_ssh_keys: # figure out appropriate file names: # 'base_name'(with private keys), and 'base_name.pub'(with public keys) public_key_filepath = string_or_file if public_key_filepath[-4:].lower() == '.pub': private_key_filepath = public_key_filepath[:-4] else: private_key_filepath = public_key_filepath + '.private' content = keys.generate_ssh_keys(private_key_filepath, public_key_filepath) logger.warning("SSH key files '%s' and '%s' have been generated under ~/.ssh to " "allow SSH access to the VM. If using machines without " "permanent storage, back up your keys to a safe location.", private_key_filepath, public_key_filepath) else: raise CLIError('An RSA key file or key value must be supplied to SSH Key Value. ' 'You can use --generate-ssh-keys to let CLI generate one for you') namespace.ssh_key_value = content def _validate_vm_vmss_msi(cmd, namespace, from_set_command=False): if from_set_command or namespace.assign_identity is not None: identities = namespace.assign_identity or [] from ._vm_utils import MSI_LOCAL_ID for i, _ in enumerate(identities): if identities[i] != MSI_LOCAL_ID: identities[i] = _get_resource_id(cmd.cli_ctx, identities[i], namespace.resource_group_name, 'userAssignedIdentities', 'Microsoft.ManagedIdentity') if not namespace.identity_scope and getattr(namespace.identity_role, 'is_default', None) is None: raise CLIError("usage error: '--role {}' is not applicable as the '--scope' is not provided".format( namespace.identity_role)) user_assigned_identities = [x for x in identities if x != MSI_LOCAL_ID] if user_assigned_identities and not cmd.supported_api_version(min_api='2017-12-01'): raise CLIError('usage error: user assigned identity is only available under profile ' 'with minimum Compute API version of 2017-12-01') if namespace.identity_scope: if identities and MSI_LOCAL_ID not in identities: raise CLIError("usage error: '--scope'/'--role' is only applicable when assign system identity") # keep 'identity_role' for output as logical name is more readable setattr(namespace, 'identity_role_id', _resolve_role_id(cmd.cli_ctx, namespace.identity_role, namespace.identity_scope)) elif namespace.identity_scope or getattr(namespace.identity_role, 'is_default', None) is None: raise CLIError('usage error: --assign-identity [--scope SCOPE] [--role ROLE]') def _resolve_role_id(cli_ctx, role, scope): import re import uuid from azure.cli.core.commands.client_factory import get_mgmt_service_client from azure.cli.core.profiles import ResourceType client = get_mgmt_service_client(cli_ctx, ResourceType.MGMT_AUTHORIZATION).role_definitions role_id = None if re.match(r'/subscriptions/.+/providers/Microsoft.Authorization/roleDefinitions/', role, re.I): role_id = role else: try: uuid.UUID(role) role_id = '/subscriptions/{}/providers/Microsoft.Authorization/roleDefinitions/{}'.format( client.config.subscription_id, role) except ValueError: pass if not role_id: # retrieve role id role_defs = list(client.list(scope, "roleName eq '{}'".format(role))) if not role_defs: raise CLIError("Role '{}' doesn't exist.".format(role)) elif len(role_defs) > 1: ids = [r.id for r in role_defs] err = "More than one role matches the given name '{}'. Please pick an id from '{}'" raise CLIError(err.format(role, ids)) role_id = role_defs[0].id return role_id def process_vm_create_namespace(cmd, namespace): validate_tags(namespace) _validate_location(cmd, namespace, namespace.zone, namespace.size) validate_asg_names_or_ids(cmd, namespace) _validate_vm_create_storage_profile(cmd, namespace) if namespace.storage_profile in [StorageProfile.SACustomImage, StorageProfile.SAPirImage]: _validate_vm_create_storage_account(cmd, namespace) _validate_vm_create_availability_set(cmd, namespace) _validate_vm_vmss_create_vnet(cmd, namespace) _validate_vm_create_nsg(cmd, namespace) _validate_vm_vmss_create_public_ip(cmd, namespace) _validate_vm_create_nics(cmd, namespace) _validate_vm_vmss_accelerated_networking(cmd.cli_ctx, namespace) _validate_vm_vmss_create_auth(namespace) if namespace.secrets: _validate_secrets(namespace.secrets, namespace.os_type) if namespace.license_type and namespace.os_type.lower() != 'windows': raise CLIError('usage error: --license-type is only applicable on Windows VM') _validate_vm_vmss_msi(cmd, namespace) if namespace.boot_diagnostics_storage: namespace.boot_diagnostics_storage = get_storage_blob_uri(cmd.cli_ctx, namespace.boot_diagnostics_storage) # endregion # region VMSS Create Validators def _get_default_address_pool(cli_ctx, resource_group, balancer_name, balancer_type): option_name = '--backend-pool-name' client = getattr(get_network_client(cli_ctx), balancer_type, None) if not client: raise CLIError('unrecognized balancer type: {}'.format(balancer_type)) balancer = client.get(resource_group, balancer_name) values = [x.name for x in balancer.backend_address_pools] if len(values) > 1: raise CLIError("Multiple possible values found for '{0}': {1}\nSpecify '{0}' " "explicitly.".format(option_name, ', '.join(values))) elif not values: raise CLIError("No existing values found for '{0}'. Create one first and try " "again.".format(option_name)) return values[0] def _validate_vmss_single_placement_group(namespace): if namespace.platform_fault_domain_count is not None and namespace.zones is None: raise CLIError('usage error: --platform-fault-domain-count COUNT --zones ZONES') if namespace.zones or namespace.instance_count > 100: if namespace.single_placement_group is None: namespace.single_placement_group = False elif namespace.single_placement_group: raise CLIError("usage error: '--single-placement-group' should be turned off for zonal scale-sets or with" " 100+ instances") def _validate_vmss_create_load_balancer_or_app_gateway(cmd, namespace): from msrestazure.azure_exceptions import CloudError from msrestazure.tools import parse_resource_id from azure.cli.core.profiles import ResourceType std_lb_is_available = cmd.supported_api_version(min_api='2017-08-01', resource_type=ResourceType.MGMT_NETWORK) if namespace.load_balancer and namespace.application_gateway: raise CLIError('incorrect usage: --load-balancer NAME_OR_ID | ' '--application-gateway NAME_OR_ID') # Resolve the type of balancer (if any) being used balancer_type = 'None' if namespace.load_balancer is None and namespace.application_gateway is None: if std_lb_is_available: balancer_type = 'loadBalancer' else: # needed for Stack profile 2017_03_09 balancer_type = 'loadBalancer' if namespace.single_placement_group is not False else 'applicationGateway' logger.debug("W/o STD LB, defaulting to '%s' under because single placement group is disabled", balancer_type) elif namespace.load_balancer: balancer_type = 'loadBalancer' elif namespace.application_gateway: balancer_type = 'applicationGateway' if balancer_type == 'applicationGateway': if namespace.application_gateway: client = get_network_client(cmd.cli_ctx).application_gateways try: rg = parse_resource_id(namespace.application_gateway).get( 'resource_group', namespace.resource_group_name) ag_name = parse_resource_id(namespace.application_gateway)['name'] client.get(rg, ag_name) namespace.app_gateway_type = 'existing' namespace.backend_pool_name = namespace.backend_pool_name or \ _get_default_address_pool(cmd.cli_ctx, rg, ag_name, 'application_gateways') logger.debug("using specified existing application gateway '%s'", namespace.application_gateway) except CloudError: namespace.app_gateway_type = 'new' logger.debug("application gateway '%s' not found. It will be created.", namespace.application_gateway) elif namespace.application_gateway == '': namespace.app_gateway_type = None logger.debug('no application gateway will be used') elif namespace.application_gateway is None: namespace.app_gateway_type = 'new' logger.debug('new application gateway will be created') # AppGateway frontend required = [] if namespace.app_gateway_type == 'new': required.append('app_gateway_sku') required.append('app_gateway_capacity') if namespace.vnet_type != 'new': required.append('app_gateway_subnet_address_prefix') elif namespace.app_gateway_type == 'existing': required.append('backend_pool_name') forbidden = ['nat_pool_name', 'load_balancer', 'health_probe'] validate_parameter_set(namespace, required, forbidden, description='network balancer: application gateway') elif balancer_type == 'loadBalancer': # LoadBalancer frontend required = [] forbidden = ['app_gateway_subnet_address_prefix', 'application_gateway', 'app_gateway_sku', 'app_gateway_capacity'] validate_parameter_set(namespace, required, forbidden, description='network balancer: load balancer') if namespace.load_balancer: rg = parse_resource_id(namespace.load_balancer).get('resource_group', namespace.resource_group_name) lb_name = parse_resource_id(namespace.load_balancer)['name'] lb = get_network_lb(cmd.cli_ctx, namespace.resource_group_name, lb_name) if lb: namespace.load_balancer_type = 'existing' namespace.backend_pool_name = namespace.backend_pool_name or \ _get_default_address_pool(cmd.cli_ctx, rg, lb_name, 'load_balancers') if not namespace.nat_pool_name: if len(lb.inbound_nat_pools) > 1: raise CLIError("Multiple possible values found for '{0}': {1}\nSpecify '{0}' explicitly.".format( # pylint: disable=line-too-long '--nat-pool-name', ', '.join([n.name for n in lb.inbound_nat_pools]))) elif not lb.inbound_nat_pools: # Associated scaleset will be missing ssh/rdp, so warn here. logger.warning("No inbound nat pool was configured on '%s'", namespace.load_balancer) else: namespace.nat_pool_name = lb.inbound_nat_pools[0].name logger.debug("using specified existing load balancer '%s'", namespace.load_balancer) else: namespace.load_balancer_type = 'new' logger.debug("load balancer '%s' not found. It will be created.", namespace.load_balancer) elif namespace.load_balancer == '': namespace.load_balancer_type = None logger.debug('no load balancer will be used') elif namespace.load_balancer is None: namespace.load_balancer_type = 'new' logger.debug('new load balancer will be created') if namespace.load_balancer_type == 'new' and namespace.single_placement_group is False and std_lb_is_available: LBSkuName = cmd.get_models('LoadBalancerSkuName', resource_type=ResourceType.MGMT_NETWORK) if namespace.load_balancer_sku is None: namespace.load_balancer_sku = LBSkuName.standard.value logger.debug("use Standard sku as single placement group is turned off") elif namespace.load_balancer_sku == LBSkuName.basic.value: if namespace.zones: err = "'Standard' load balancer is required for zonal scale-sets" elif namespace.instance_count > 100: err = "'Standard' load balancer is required for scale-sets with 100+ instances" else: err = "'Standard' load balancer is required because 'single placement group' is turned off" raise CLIError('usage error:{}'.format(err)) def get_network_client(cli_ctx): from azure.cli.core.profiles import ResourceType from azure.cli.core.commands.client_factory import get_mgmt_service_client return get_mgmt_service_client(cli_ctx, ResourceType.MGMT_NETWORK, api_version=get_target_network_api(cli_ctx)) def get_network_lb(cli_ctx, resource_group_name, lb_name): from msrestazure.azure_exceptions import CloudError network_client = get_network_client(cli_ctx) try: return network_client.load_balancers.get(resource_group_name, lb_name) except CloudError: return None def process_vmss_create_namespace(cmd, namespace): validate_tags(namespace) if namespace.vm_sku is None: from azure.cli.core.cloud import AZURE_US_GOV_CLOUD if cmd.cli_ctx.cloud.name != AZURE_US_GOV_CLOUD.name: namespace.vm_sku = 'Standard_DS1_v2' else: namespace.vm_sku = 'Standard_D1_v2' _validate_location(cmd, namespace, namespace.zones, namespace.vm_sku) validate_asg_names_or_ids(cmd, namespace) _validate_vm_create_storage_profile(cmd, namespace, for_scale_set=True) _validate_vm_vmss_create_vnet(cmd, namespace, for_scale_set=True) _validate_vmss_single_placement_group(namespace) _validate_vmss_create_load_balancer_or_app_gateway(cmd, namespace) _validate_vmss_create_subnet(namespace) _validate_vmss_create_public_ip(cmd, namespace) _validate_vmss_create_nsg(cmd, namespace) _validate_vm_vmss_accelerated_networking(cmd.cli_ctx, namespace) _validate_vm_vmss_create_auth(namespace) _validate_vm_vmss_msi(cmd, namespace) if namespace.license_type and namespace.os_type.lower() != 'windows': raise CLIError('usage error: --license-type is only applicable on Windows VM scaleset') if not namespace.public_ip_per_vm and namespace.vm_domain_name: raise CLIError('Usage error: --vm-domain-name can only be used when --public-ip-per-vm is enabled') if namespace.eviction_policy and not namespace.priority: raise CLIError('Usage error: --priority PRIORITY [--eviction-policy POLICY]') # endregion # region disk, snapshot, image validators def validate_vm_disk(cmd, namespace): namespace.disk = _get_resource_id(cmd.cli_ctx, namespace.disk, namespace.resource_group_name, 'disks', 'Microsoft.Compute') def validate_vmss_disk(cmd, namespace): if namespace.disk: namespace.disk = _get_resource_id(cmd.cli_ctx, namespace.disk, namespace.resource_group_name, 'disks', 'Microsoft.Compute') if bool(namespace.disk) == bool(namespace.size_gb): raise CLIError('usage error: --disk EXIST_DISK --instance-id ID | --size-gb GB') elif bool(namespace.disk) != bool(namespace.instance_id): raise CLIError('usage error: --disk EXIST_DISK --instance-id ID') def process_disk_or_snapshot_create_namespace(cmd, namespace): from msrestazure.azure_exceptions import CloudError validate_tags(namespace) if namespace.source: usage_error = 'usage error: --source {SNAPSHOT | DISK} | --source VHD_BLOB_URI [--source-storage-account-id ID]' try: namespace.source_blob_uri, namespace.source_disk, namespace.source_snapshot = _figure_out_storage_source( cmd.cli_ctx, namespace.resource_group_name, namespace.source) if not namespace.source_blob_uri and namespace.source_storage_account_id: raise CLIError(usage_error) except CloudError: raise CLIError(usage_error) def process_image_create_namespace(cmd, namespace): from msrestazure.tools import parse_resource_id from msrestazure.azure_exceptions import CloudError validate_tags(namespace) try: # try capturing from VM, a most common scenario res_id = _get_resource_id(cmd.cli_ctx, namespace.source, namespace.resource_group_name, 'virtualMachines', 'Microsoft.Compute') res = parse_resource_id(res_id) compute_client = _compute_client_factory(cmd.cli_ctx, subscription_id=res['subscription']) vm_info = compute_client.virtual_machines.get(res['resource_group'], res['name']) # pylint: disable=no-member namespace.os_type = vm_info.storage_profile.os_disk.os_type.value namespace.source_virtual_machine = res_id if namespace.data_disk_sources: raise CLIError("'--data-disk-sources' is not allowed when capturing " "images from virtual machines") except CloudError: namespace.os_blob_uri, namespace.os_disk, namespace.os_snapshot = _figure_out_storage_source(cmd.cli_ctx, namespace.resource_group_name, namespace.source) # pylint: disable=line-too-long namespace.data_blob_uris = [] namespace.data_disks = [] namespace.data_snapshots = [] if namespace.data_disk_sources: for data_disk_source in namespace.data_disk_sources: source_blob_uri, source_disk, source_snapshot = _figure_out_storage_source( cmd.cli_ctx, namespace.resource_group_name, data_disk_source) if source_blob_uri: namespace.data_blob_uris.append(source_blob_uri) if source_disk: namespace.data_disks.append(source_disk) if source_snapshot: namespace.data_snapshots.append(source_snapshot) if not namespace.os_type: raise CLIError("usage error: os type is required to create the image, " "please specify '--os-type OS_TYPE'") def _figure_out_storage_source(cli_ctx, resource_group_name, source): from msrestazure.azure_exceptions import CloudError source_blob_uri = None source_disk = None source_snapshot = None if urlparse(source).scheme: # a uri? source_blob_uri = source elif '/disks/' in source.lower(): source_disk = source elif '/snapshots/' in source.lower(): source_snapshot = source else: compute_client = _compute_client_factory(cli_ctx) # pylint: disable=no-member try: info = compute_client.snapshots.get(resource_group_name, source) source_snapshot = info.id except CloudError: info = compute_client.disks.get(resource_group_name, source) source_disk = info.id return (source_blob_uri, source_disk, source_snapshot) def process_disk_encryption_namespace(cmd, namespace): namespace.disk_encryption_keyvault = _get_resource_id(cmd.cli_ctx, namespace.disk_encryption_keyvault, namespace.resource_group_name, 'vaults', 'Microsoft.KeyVault') if namespace.key_encryption_keyvault: if not namespace.key_encryption_key: raise CLIError("Incorrect usage '--key-encryption-keyvault': " "'--key-encryption-key' is required") namespace.key_encryption_keyvault = _get_resource_id(cmd.cli_ctx, namespace.key_encryption_keyvault, namespace.resource_group_name, 'vaults', 'Microsoft.KeyVault') def process_assign_identity_namespace(cmd, namespace): _validate_vm_vmss_msi(cmd, namespace, from_set_command=True) def process_remove_identity_namespace(cmd, namespace): if namespace.identities: from ._vm_utils import MSI_LOCAL_ID for i in range(len(namespace.identities)): if namespace.identities[i] != MSI_LOCAL_ID: namespace.identities[i] = _get_resource_id(cmd.cli_ctx, namespace.identities[i], namespace.resource_group_name, 'userAssignedIdentities', 'Microsoft.ManagedIdentity') # TODO move to its own command module https://github.com/Azure/azure-cli/issues/5105 def process_msi_namespace(cmd, namespace): get_default_location_from_resource_group(cmd, namespace) validate_tags(namespace) def process_gallery_image_version_namespace(cmd, namespace): TargetRegion = cmd.get_models('TargetRegion') if namespace.target_regions: regions_info = [] for t in namespace.target_regions: parts = t.split('=', 1) if len(parts) == 1: regions_info.append(TargetRegion(name=parts[0])) else: try: replica_count = int(parts[1]) except ValueError: raise CLIError("usage error: {}'s replica count must be an integer".format(parts[0])) regions_info.append(TargetRegion(name=parts[0], regional_replica_count=replica_count)) namespace.target_regions = regions_info # endregion
[((1119, 1139), 'knack.log.get_logger', 'get_logger', (['__name__'], {}), '(__name__)\n', (1129, 1139), False, 'from knack.log import get_logger\n'), ((1620, 1652), 'azure.cli.core.commands.client_factory.get_subscription_id', 'get_subscription_id', (['cmd.cli_ctx'], {}), '(cmd.cli_ctx)\n', (1639, 1652), False, 'from azure.cli.core.commands.client_factory import get_subscription_id\n'), ((3143, 3228), 'knack.util.CLIError', 'CLIError', (['"""usage error: [--keyvault NAME --resource-group NAME | --keyvault ID]"""'], {}), "('usage error: [--keyvault NAME --resource-group NAME | --keyvault ID]'\n )\n", (3151, 3228), False, 'from knack.util import CLIError\n'), ((4431, 4456), 'msrestazure.tools.is_valid_resource_id', 'is_valid_resource_id', (['val'], {}), '(val)\n', (4451, 4456), False, 'from msrestazure.tools import is_valid_resource_id\n'), ((8181, 8218), 'msrestazure.tools.is_valid_resource_id', 'is_valid_resource_id', (['namespace.image'], {}), '(namespace.image)\n', (8201, 8218), False, 'from msrestazure.tools import is_valid_resource_id\n'), ((8305, 8365), 're.match', 're.match', (['"""([^:]*):([^:]*):([^:]*):([^:]*)"""', 'namespace.image'], {}), "('([^:]*):([^:]*):([^:]*):([^:]*)', namespace.image)\n", (8313, 8365), False, 'import re\n'), ((9225, 9266), 'azure.cli.command_modules.vm._actions.load_images_from_aliases_doc', 'load_images_from_aliases_doc', (['cmd.cli_ctx'], {}), '(cmd.cli_ctx)\n', (9253, 9266), False, 'from azure.cli.command_modules.vm._actions import load_images_from_aliases_doc\n'), ((42569, 42598), 're.findall', 're.findall', (['pattern', 'username'], {}), '(pattern, username)\n', (42579, 42598), False, 'import re\n'), ((43854, 43884), 're.findall', 're.findall', (['"""[a-z]+"""', 'password'], {}), "('[a-z]+', password)\n", (43864, 43884), False, 'import re\n'), ((43906, 43936), 're.findall', 're.findall', (['"""[A-Z]+"""', 'password'], {}), "('[A-Z]+', password)\n", (43916, 43936), False, 'import re\n'), ((43958, 43988), 're.findall', 're.findall', (['"""[0-9]+"""', 'password'], {}), "('[0-9]+', password)\n", (43968, 43988), False, 'import re\n'), ((44017, 44088), 're.findall', 're.findall', (['"""[ `~!@#$%^&*()=+_\\\\[\\\\]{}\\\\|;:.\\\\/\\\\\'\\\\",<>?]+"""', 'password'], {}), '(\'[ `~!@#$%^&*()=+_\\\\[\\\\]{}\\\\|;:.\\\\/\\\\\\\'\\\\",<>?]+\', password)\n', (44027, 44088), False, 'import re\n'), ((44626, 44656), 'os.path.exists', 'os.path.exists', (['string_or_file'], {}), '(string_or_file)\n', (44640, 44656), False, 'import os\n'), ((48115, 48212), 're.match', 're.match', (['"""/subscriptions/.+/providers/Microsoft.Authorization/roleDefinitions/"""', 'role', 're.I'], {}), "('/subscriptions/.+/providers/Microsoft.Authorization/roleDefinitions/'\n , role, re.I)\n", (48123, 48212), False, 'import re\n'), ((49079, 49103), 'azure.cli.core.commands.validators.validate_tags', 'validate_tags', (['namespace'], {}), '(namespace)\n', (49092, 49103), False, 'from azure.cli.core.commands.validators import get_default_location_from_resource_group, validate_file_or_dict, validate_parameter_set, validate_tags\n'), ((58706, 58730), 'azure.cli.core.commands.validators.validate_tags', 'validate_tags', (['namespace'], {}), '(namespace)\n', (58719, 58730), False, 'from azure.cli.core.commands.validators import get_default_location_from_resource_group, validate_file_or_dict, validate_parameter_set, validate_tags\n'), ((61087, 61111), 'azure.cli.core.commands.validators.validate_tags', 'validate_tags', (['namespace'], {}), '(namespace)\n', (61100, 61111), False, 'from azure.cli.core.commands.validators import get_default_location_from_resource_group, validate_file_or_dict, validate_parameter_set, validate_tags\n'), ((61830, 61854), 'azure.cli.core.commands.validators.validate_tags', 'validate_tags', (['namespace'], {}), '(namespace)\n', (61843, 61854), False, 'from azure.cli.core.commands.validators import get_default_location_from_resource_group, validate_file_or_dict, validate_parameter_set, validate_tags\n'), ((66320, 66376), 'azure.cli.core.commands.validators.get_default_location_from_resource_group', 'get_default_location_from_resource_group', (['cmd', 'namespace'], {}), '(cmd, namespace)\n', (66360, 66376), False, 'from azure.cli.core.commands.validators import get_default_location_from_resource_group, validate_file_or_dict, validate_parameter_set, validate_tags\n'), ((66381, 66405), 'azure.cli.core.commands.validators.validate_tags', 'validate_tags', (['namespace'], {}), '(namespace)\n', (66394, 66405), False, 'from azure.cli.core.commands.validators import get_default_location_from_resource_group, validate_file_or_dict, validate_parameter_set, validate_tags\n'), ((3940, 4000), 'azure.cli.core.commands.client_factory.get_mgmt_service_client', 'get_mgmt_service_client', (['cli_ctx', 'ResourceType.MGMT_KEYVAULT'], {}), '(cli_ctx, ResourceType.MGMT_KEYVAULT)\n', (3963, 4000), False, 'from azure.cli.core.commands.client_factory import get_mgmt_service_client\n'), ((4059, 4086), 'msrestazure.tools.parse_resource_id', 'parse_resource_id', (['vault.id'], {}), '(vault.id)\n', (4076, 4086), False, 'from msrestazure.tools import parse_resource_id\n'), ((4652, 4680), 'azure.cli.core.commands.client_factory.get_subscription_id', 'get_subscription_id', (['cli_ctx'], {}), '(cli_ctx)\n', (4671, 4680), False, 'from azure.cli.core.commands.client_factory import get_subscription_id\n'), ((4763, 4784), 'msrestazure.tools.resource_id', 'resource_id', ([], {}), '(**kwargs)\n', (4774, 4784), False, 'from msrestazure.tools import resource_id\n'), ((9019, 9044), 'urlparse.urlparse', 'urlparse', (['namespace.image'], {}), '(namespace.image)\n', (9027, 9044), False, 'from urlparse import urlparse\n'), ((12583, 12639), 'azure.cli.core.commands.validators.get_default_location_from_resource_group', 'get_default_location_from_resource_group', (['cmd', 'namespace'], {}), '(cmd, namespace)\n', (12623, 12639), False, 'from azure.cli.core.commands.validators import get_default_location_from_resource_group, validate_file_or_dict, validate_parameter_set, validate_tags\n'), ((18457, 18491), 'msrestazure.tools.parse_resource_id', 'parse_resource_id', (['namespace.image'], {}), '(namespace.image)\n', (18474, 18491), False, 'from msrestazure.tools import parse_resource_id\n'), ((22182, 22226), 'msrestazure.tools.parse_resource_id', 'parse_resource_id', (['namespace.storage_account'], {}), '(namespace.storage_account)\n', (22199, 22226), False, 'from msrestazure.tools import parse_resource_id\n'), ((22315, 22411), 'azure.cli.command_modules.vm._vm_utils.check_existence', 'check_existence', (['cmd.cli_ctx', "storage_id['name']", 'rg', '"""Microsoft.Storage"""', '"""storageAccounts"""'], {}), "(cmd.cli_ctx, storage_id['name'], rg, 'Microsoft.Storage',\n 'storageAccounts')\n", (22330, 22411), False, 'from azure.cli.command_modules.vm._vm_utils import check_existence, get_target_network_api, get_storage_blob_uri\n'), ((24261, 24306), 'msrestazure.tools.parse_resource_id', 'parse_resource_id', (['namespace.availability_set'], {}), '(namespace.availability_set)\n', (24278, 24306), False, 'from msrestazure.tools import parse_resource_id\n'), ((26797, 26825), 'msrestazure.tools.is_valid_resource_id', 'is_valid_resource_id', (['subnet'], {}), '(subnet)\n', (26817, 26825), False, 'from msrestazure.tools import is_valid_resource_id\n'), ((27088, 27189), 'azure.cli.command_modules.vm._vm_utils.check_existence', 'check_existence', (['cmd.cli_ctx', 'subnet', 'rg', '"""Microsoft.Network"""', '"""subnets"""', 'vnet', '"""virtualNetworks"""'], {}), "(cmd.cli_ctx, subnet, rg, 'Microsoft.Network', 'subnets',\n vnet, 'virtualNetworks')\n", (27103, 27189), False, 'from azure.cli.command_modules.vm._vm_utils import check_existence, get_target_network_api, get_storage_blob_uri\n'), ((35108, 35127), 'knack.util.CLIError', 'CLIError', (['error_msg'], {}), '(error_msg)\n', (35116, 35127), False, 'from knack.util import CLIError\n'), ((35934, 36058), 'azure.cli.command_modules.vm._vm_utils.check_existence', 'check_existence', (['cmd.cli_ctx', 'namespace.nsg', 'namespace.resource_group_name', '"""Microsoft.Network"""', '"""networkSecurityGroups"""'], {}), "(cmd.cli_ctx, namespace.nsg, namespace.resource_group_name,\n 'Microsoft.Network', 'networkSecurityGroups')\n", (35949, 36058), False, 'from azure.cli.command_modules.vm._vm_utils import check_existence, get_target_network_api, get_storage_blob_uri\n'), ((36927, 37062), 'azure.cli.command_modules.vm._vm_utils.check_existence', 'check_existence', (['cmd.cli_ctx', 'namespace.public_ip_address', 'namespace.resource_group_name', '"""Microsoft.Network"""', '"""publicIPAddresses"""'], {}), "(cmd.cli_ctx, namespace.public_ip_address, namespace.\n resource_group_name, 'Microsoft.Network', 'publicIPAddresses')\n", (36942, 37062), False, 'from azure.cli.command_modules.vm._vm_utils import check_existence, get_target_network_api, get_storage_blob_uri\n'), ((40281, 40349), 'knack.util.CLIError', 'CLIError', (['"""Unable to resolve OS type. Specify \'--os-type\' argument."""'], {}), '("Unable to resolve OS type. Specify \'--os-type\' argument.")\n', (40289, 40349), False, 'from knack.util import CLIError\n'), ((40743, 40789), 'knack.util.CLIError', 'CLIError', (['"""SSH not supported for Windows VMs."""'], {}), "('SSH not supported for Windows VMs.')\n", (40751, 40789), False, 'from knack.util import CLIError\n'), ((42106, 42150), 'knack.util.CLIError', 'CLIError', (['"""admin user name can not be empty"""'], {}), "('admin user name can not be empty')\n", (42114, 42150), False, 'from knack.util import CLIError\n'), ((42614, 42658), 'knack.util.CLIError', 'CLIError', (['(linux_err if is_linux else win_err)'], {}), '(linux_err if is_linux else win_err)\n', (42622, 42658), False, 'from knack.util import CLIError\n'), ((42679, 42709), 're.findall', 're.findall', (['"""^[$-]+"""', 'username'], {}), "('^[$-]+', username)\n", (42689, 42709), False, 'import re\n'), ((42726, 42745), 'knack.util.CLIError', 'CLIError', (['linux_err'], {}), '(linux_err)\n', (42734, 42745), False, 'from knack.util import CLIError\n'), ((42808, 42825), 'knack.util.CLIError', 'CLIError', (['win_err'], {}), '(win_err)\n', (42816, 42825), False, 'from knack.util import CLIError\n'), ((44287, 44432), 'knack.util.CLIError', 'CLIError', (['"""Password must have the 3 of the following: 1 lower case character, 1 upper case character, 1 number and 1 special character"""'], {}), "(\n 'Password must have the 3 of the following: 1 lower case character, 1 upper case character, 1 number and 1 special character'\n )\n", (44295, 44432), False, 'from knack.util import CLIError\n'), ((48005, 48070), 'azure.cli.core.commands.client_factory.get_mgmt_service_client', 'get_mgmt_service_client', (['cli_ctx', 'ResourceType.MGMT_AUTHORIZATION'], {}), '(cli_ctx, ResourceType.MGMT_AUTHORIZATION)\n', (48028, 48070), False, 'from azure.cli.core.commands.client_factory import get_mgmt_service_client\n'), ((50013, 50085), 'knack.util.CLIError', 'CLIError', (['"""usage error: --license-type is only applicable on Windows VM"""'], {}), "('usage error: --license-type is only applicable on Windows VM')\n", (50021, 50085), False, 'from knack.util import CLIError\n'), ((50216, 50285), 'azure.cli.command_modules.vm._vm_utils.get_storage_blob_uri', 'get_storage_blob_uri', (['cmd.cli_ctx', 'namespace.boot_diagnostics_storage'], {}), '(cmd.cli_ctx, namespace.boot_diagnostics_storage)\n', (50236, 50285), False, 'from azure.cli.command_modules.vm._vm_utils import check_existence, get_target_network_api, get_storage_blob_uri\n'), ((51273, 51347), 'knack.util.CLIError', 'CLIError', (['"""usage error: --platform-fault-domain-count COUNT --zones ZONES"""'], {}), "('usage error: --platform-fault-domain-count COUNT --zones ZONES')\n", (51281, 51347), False, 'from knack.util import CLIError\n'), ((52155, 52255), 'knack.util.CLIError', 'CLIError', (['"""incorrect usage: --load-balancer NAME_OR_ID | --application-gateway NAME_OR_ID"""'], {}), "(\n 'incorrect usage: --load-balancer NAME_OR_ID | --application-gateway NAME_OR_ID'\n )\n", (52163, 52255), False, 'from knack.util import CLIError\n'), ((54807, 54919), 'azure.cli.core.commands.validators.validate_parameter_set', 'validate_parameter_set', (['namespace', 'required', 'forbidden'], {'description': '"""network balancer: application gateway"""'}), "(namespace, required, forbidden, description=\n 'network balancer: application gateway')\n", (54829, 54919), False, 'from azure.cli.core.commands.validators import get_default_location_from_resource_group, validate_file_or_dict, validate_parameter_set, validate_tags\n'), ((59775, 59861), 'knack.util.CLIError', 'CLIError', (['"""usage error: --license-type is only applicable on Windows VM scaleset"""'], {}), "(\n 'usage error: --license-type is only applicable on Windows VM scaleset')\n", (59783, 59861), False, 'from knack.util import CLIError\n'), ((59940, 60043), 'knack.util.CLIError', 'CLIError', (['"""Usage error: --vm-domain-name can only be used when --public-ip-per-vm is enabled"""'], {}), "(\n 'Usage error: --vm-domain-name can only be used when --public-ip-per-vm is enabled'\n )\n", (59948, 60043), False, 'from knack.util import CLIError\n'), ((60110, 60181), 'knack.util.CLIError', 'CLIError', (['"""Usage error: --priority PRIORITY [--eviction-policy POLICY]"""'], {}), "('Usage error: --priority PRIORITY [--eviction-policy POLICY]')\n", (60118, 60181), False, 'from knack.util import CLIError\n'), ((60751, 60825), 'knack.util.CLIError', 'CLIError', (['"""usage error: --disk EXIST_DISK --instance-id ID | --size-gb GB"""'], {}), "('usage error: --disk EXIST_DISK --instance-id ID | --size-gb GB')\n", (60759, 60825), False, 'from knack.util import CLIError\n'), ((62104, 62129), 'msrestazure.tools.parse_resource_id', 'parse_resource_id', (['res_id'], {}), '(res_id)\n', (62121, 62129), False, 'from msrestazure.tools import parse_resource_id\n'), ((63966, 63982), 'urlparse.urlparse', 'urlparse', (['source'], {}), '(source)\n', (63974, 63982), False, 'from urlparse import urlparse\n'), ((1845, 1870), 'msrestazure.tools.is_valid_resource_id', 'is_valid_resource_id', (['val'], {}), '(val)\n', (1865, 1870), False, 'from msrestazure.tools import is_valid_resource_id\n'), ((1890, 2041), 'msrestazure.tools.resource_id', 'resource_id', ([], {'subscription': 'subscription_id', 'resource_group': 'resource_group', 'namespace': '"""Microsoft.Network"""', 'type': '"""applicationSecurityGroups"""', 'name': 'val'}), "(subscription=subscription_id, resource_group=resource_group,\n namespace='Microsoft.Network', type='applicationSecurityGroups', name=val)\n", (1901, 2041), False, 'from msrestazure.tools import resource_id\n'), ((2600, 2632), 'azure.cli.core.commands.client_factory.get_subscription_id', 'get_subscription_id', (['cmd.cli_ctx'], {}), '(cmd.cli_ctx)\n', (2619, 2632), False, 'from azure.cli.core.commands.client_factory import get_subscription_id\n'), ((2767, 2795), 'azure.cli.core.util.hash_string', 'hash_string', (['vm_id'], {'length': '(8)'}), '(vm_id, length=8)\n', (2778, 2795), False, 'from azure.cli.core.util import hash_string\n'), ((3324, 3348), 'msrestazure.tools.is_valid_resource_id', 'is_valid_resource_id', (['kv'], {}), '(kv)\n', (3344, 3348), False, 'from msrestazure.tools import is_valid_resource_id\n'), ((6126, 6155), 'azure.cli.core.commands.validators.validate_file_or_dict', 'validate_file_or_dict', (['secret'], {}), '(secret)\n', (6147, 6155), False, 'from azure.cli.core.commands.validators import get_default_location_from_resource_group, validate_file_or_dict, validate_parameter_set, validate_tags\n'), ((14932, 14998), 'knack.util.CLIError', 'CLIError', (['"""incorrect usage: --image IMAGE | --attach-os-disk DISK"""'], {}), "('incorrect usage: --image IMAGE | --attach-os-disk DISK')\n", (14940, 14998), False, 'from knack.util import CLIError\n'), ((23020, 23083), 'azure.cli.core.commands.client_factory.get_mgmt_service_client', 'get_mgmt_service_client', (['cmd.cli_ctx', 'ResourceType.MGMT_STORAGE'], {}), '(cmd.cli_ctx, ResourceType.MGMT_STORAGE)\n', (23043, 23083), False, 'from azure.cli.core.commands.client_factory import get_mgmt_service_client\n'), ((24424, 24503), 'azure.cli.command_modules.vm._vm_utils.check_existence', 'check_existence', (['cmd.cli_ctx', 'name', 'rg', '"""Microsoft.Compute"""', '"""availabilitySets"""'], {}), "(cmd.cli_ctx, name, rg, 'Microsoft.Compute', 'availabilitySets')\n", (24439, 24503), False, 'from azure.cli.command_modules.vm._vm_utils import check_existence, get_target_network_api, get_storage_blob_uri\n'), ((26915, 27028), 'knack.util.CLIError', 'CLIError', (['"""incorrect \'--subnet\' usage: --subnet SUBNET_ID | --subnet SUBNET_NAME --vnet-name VNET_NAME"""'], {}), '(\n "incorrect \'--subnet\' usage: --subnet SUBNET_ID | --subnet SUBNET_NAME --vnet-name VNET_NAME"\n )\n', (26923, 27028), False, 'from knack.util import CLIError\n'), ((35475, 35494), 'knack.util.CLIError', 'CLIError', (['error_msg'], {}), '(error_msg)\n', (35483, 35494), False, 'from knack.util import CLIError\n'), ((38557, 38682), 'knack.util.CLIError', 'CLIError', (['"""--public-ip-address can only be used when creating a new load balancer or application gateway frontend."""'], {}), "(\n '--public-ip-address can only be used when creating a new load balancer or application gateway frontend.'\n )\n", (38565, 38682), False, 'from knack.util import CLIError\n'), ((44542, 44565), 'os.path.expanduser', 'os.path.expanduser', (['"""~"""'], {}), "('~')\n", (44560, 44565), False, 'import os\n'), ((44823, 44864), 'azure.cli.core.keys.is_valid_ssh_rsa_public_key', 'keys.is_valid_ssh_rsa_public_key', (['content'], {}), '(content)\n', (44855, 44864), True, 'import azure.cli.core.keys as keys\n'), ((46949, 47085), 'knack.util.CLIError', 'CLIError', (['"""usage error: user assigned identity is only available under profile with minimum Compute API version of 2017-12-01"""'], {}), "(\n 'usage error: user assigned identity is only available under profile with minimum Compute API version of 2017-12-01'\n )\n", (46957, 47085), False, 'from knack.util import CLIError\n'), ((47711, 47783), 'knack.util.CLIError', 'CLIError', (['"""usage error: --assign-identity [--scope SCOPE] [--role ROLE]"""'], {}), "('usage error: --assign-identity [--scope SCOPE] [--role ROLE]')\n", (47719, 47783), False, 'from knack.util import CLIError\n'), ((48284, 48299), 'uuid.UUID', 'uuid.UUID', (['role'], {}), '(role)\n', (48293, 48299), False, 'import uuid\n'), ((55165, 55271), 'azure.cli.core.commands.validators.validate_parameter_set', 'validate_parameter_set', (['namespace', 'required', 'forbidden'], {'description': '"""network balancer: load balancer"""'}), "(namespace, required, forbidden, description=\n 'network balancer: load balancer')\n", (55187, 55271), False, 'from azure.cli.core.commands.validators import get_default_location_from_resource_group, validate_file_or_dict, validate_parameter_set, validate_tags\n'), ((58319, 58350), 'azure.cli.command_modules.vm._vm_utils.get_target_network_api', 'get_target_network_api', (['cli_ctx'], {}), '(cli_ctx)\n', (58341, 58350), False, 'from azure.cli.command_modules.vm._vm_utils import check_existence, get_target_network_api, get_storage_blob_uri\n'), ((60902, 60961), 'knack.util.CLIError', 'CLIError', (['"""usage error: --disk EXIST_DISK --instance-id ID"""'], {}), "('usage error: --disk EXIST_DISK --instance-id ID')\n", (60910, 60961), False, 'from knack.util import CLIError\n'), ((62537, 62639), 'knack.util.CLIError', 'CLIError', (['"""\'--data-disk-sources\' is not allowed when capturing images from virtual machines"""'], {}), '(\n "\'--data-disk-sources\' is not allowed when capturing images from virtual machines"\n )\n', (62545, 62639), False, 'from knack.util import CLIError\n'), ((65051, 65152), 'knack.util.CLIError', 'CLIError', (['"""Incorrect usage \'--key-encryption-keyvault\': \'--key-encryption-key\' is required"""'], {}), '(\n "Incorrect usage \'--key-encryption-keyvault\': \'--key-encryption-key\' is required"\n )\n', (65059, 65152), False, 'from knack.util import CLIError\n'), ((3457, 3481), 'msrestazure.tools.is_valid_resource_id', 'is_valid_resource_id', (['kv'], {}), '(kv)\n', (3477, 3481), False, 'from msrestazure.tools import is_valid_resource_id\n'), ((24662, 24694), 'azure.cli.core.commands.client_factory.get_subscription_id', 'get_subscription_id', (['cmd.cli_ctx'], {}), '(cmd.cli_ctx)\n', (24681, 24694), False, 'from azure.cli.core.commands.client_factory import get_subscription_id\n'), ((41324, 41369), 'knack.prompting.prompt_pass', 'prompt_pass', (['"""Admin Password: """'], {'confirm': '(True)'}), "('Admin Password: ', confirm=True)\n", (41335, 41369), False, 'from knack.prompting import prompt_pass, NoTTYException\n'), ((41419, 41479), 'knack.util.CLIError', 'CLIError', (['"""Please specify password in non-interactive mode."""'], {}), "('Please specify password in non-interactive mode.')\n", (41427, 41479), False, 'from knack.util import CLIError\n'), ((45323, 45388), 'azure.cli.core.keys.generate_ssh_keys', 'keys.generate_ssh_keys', (['private_key_filepath', 'public_key_filepath'], {}), '(private_key_filepath, public_key_filepath)\n', (45345, 45388), True, 'import azure.cli.core.keys as keys\n'), ((45756, 45905), 'knack.util.CLIError', 'CLIError', (['"""An RSA key file or key value must be supplied to SSH Key Value. You can use --generate-ssh-keys to let CLI generate one for you"""'], {}), "(\n 'An RSA key file or key value must be supplied to SSH Key Value. You can use --generate-ssh-keys to let CLI generate one for you'\n )\n", (45764, 45905), False, 'from knack.util import CLIError\n'), ((47227, 47327), 'knack.util.CLIError', 'CLIError', (['"""usage error: \'--scope\'/\'--role\' is only applicable when assign system identity"""'], {}), '(\n "usage error: \'--scope\'/\'--role\' is only applicable when assign system identity"\n )\n', (47235, 47327), False, 'from knack.util import CLIError\n'), ((51577, 51703), 'knack.util.CLIError', 'CLIError', (['"""usage error: \'--single-placement-group\' should be turned off for zonal scale-sets or with 100+ instances"""'], {}), '(\n "usage error: \'--single-placement-group\' should be turned off for zonal scale-sets or with 100+ instances"\n )\n', (51585, 51703), False, 'from knack.util import CLIError\n'), ((61575, 61596), 'knack.util.CLIError', 'CLIError', (['usage_error'], {}), '(usage_error)\n', (61583, 61596), False, 'from knack.util import CLIError\n'), ((61642, 61663), 'knack.util.CLIError', 'CLIError', (['usage_error'], {}), '(usage_error)\n', (61650, 61663), False, 'from knack.util import CLIError\n'), ((63623, 63733), 'knack.util.CLIError', 'CLIError', (['"""usage error: os type is required to create the image, please specify \'--os-type OS_TYPE\'"""'], {}), '(\n "usage error: os type is required to create the image, please specify \'--os-type OS_TYPE\'"\n )\n', (63631, 63733), False, 'from knack.util import CLIError\n'), ((33329, 33351), 're.match', 're.match', (['s', 'sku', 're.I'], {}), '(s, sku, re.I)\n', (33337, 33351), False, 'import re\n'), ((53341, 53389), 'msrestazure.tools.parse_resource_id', 'parse_resource_id', (['namespace.application_gateway'], {}), '(namespace.application_gateway)\n', (53358, 53389), False, 'from msrestazure.tools import parse_resource_id\n'), ((55439, 55481), 'msrestazure.tools.parse_resource_id', 'parse_resource_id', (['namespace.load_balancer'], {}), '(namespace.load_balancer)\n', (55456, 55481), False, 'from msrestazure.tools import parse_resource_id\n'), ((53192, 53240), 'msrestazure.tools.parse_resource_id', 'parse_resource_id', (['namespace.application_gateway'], {}), '(namespace.application_gateway)\n', (53209, 53240), False, 'from msrestazure.tools import parse_resource_id\n'), ((55321, 55363), 'msrestazure.tools.parse_resource_id', 'parse_resource_id', (['namespace.load_balancer'], {}), '(namespace.load_balancer)\n', (55338, 55363), False, 'from msrestazure.tools import parse_resource_id\n'), ((39629, 39661), 'azure.cli.core.commands.client_factory.get_subscription_id', 'get_subscription_id', (['cmd.cli_ctx'], {}), '(cmd.cli_ctx)\n', (39648, 39661), False, 'from azure.cli.core.commands.client_factory import get_subscription_id\n')]
ednihs-yahska/unibrowser
scraping/faqscraper.py
c91aaf7df8b316c707e5a268f82e789615be9fb8
import re import httplib2 from bs4 import BeautifulSoup from scraping.faqscrapperutil import stripExtra, removeDuplicates, removeBlackListedQuestions, getBlackListedQuestions, convertToJsonList, saveToMongo from scraping.Constants import ENABLE_CUSTOM_QUESTIONS_FILTER, FAQ_LINKS, COLLECTION_NAME def cleanQuestions(questions): questionList = [] for question in questions: questionList.append(stripExtra(question.lstrip().rstrip())) return removeDuplicates(questionList) def getLastAnswer(question, bodyText): start = bodyText.index(question) + len(question) text = bodyText[start : -1].lstrip() # print(text.lstrip()) whitespaceCount = 0 # print(answerLength) for i in range(0, len(text)): # print(answer[i], ' isSpace : ', answer[i].isspace()) if text[i].isspace(): whitespaceCount = whitespaceCount + 1 if whitespaceCount >= 3: # print(0 + i - 3) # print(text[0 : 0 + i - 2]) return text[0 : 0 + i - 2] else : if whitespaceCount != 0: whitespaceCount = 0 def cleanAnswer(answer): answerLength = len(answer) whitespaceCount = 0 # print(answerLength) for i in range(0, answerLength): # print(answer[i], ' isSpace : ', answer[i].isspace()) if answer[i].isspace(): whitespaceCount = whitespaceCount + 1 if whitespaceCount >= 3: # print(0 + i - 3) return answer[0 : 0 + i - 2].lstrip() else : if whitespaceCount != 0: whitespaceCount = 0 return answer.rstrip() def getAnswers(body, questions): bodyText = body.getText() # answerTag = getAnswerTag(body, bodyText, questions) # print(bodyText) questionCount = len(questions) answerList = [] for i in range(0, questionCount): print('Q: ', questions[i]) if i == questionCount - 1: #Last element answer = getLastAnswer(questions[i], bodyText) else : start = bodyText.index(questions[i]) + len(questions[i]) end = bodyText.index(questions[i + 1], start, -1) print("Start : ", start , " End : ", end) soup1 = BeautifulSoup(bodyText[start : end], 'html.parser') # print(soup1) answer = soup1.getText().lstrip() answer = cleanAnswer(answer) answerList.append(answer) print('A: ', answer) return answerList def processWithCustomQuestions(questions): # isCustomQuestionsEnabled = checkConfigForFlag(ENABLE_CUSTOM_QUESTIONS_FILTER) # print("isCustomQuestionsEnabled : ", isCustomQuestionsEnabled) if ENABLE_CUSTOM_QUESTIONS_FILTER == False: return blackListedQuestions = getBlackListedQuestions() removeBlackListedQuestions(questions, blackListedQuestions) print(questions) def getFaqOfLink(link): # print("LINK : ", link) http = httplib2.Http() status, html = http.request(link) soup = BeautifulSoup(html, 'html.parser') body = soup.body questions = cleanQuestions(soup(text=re.compile(r'\s*((?:how|How|Can|can|what|What|where|Where|describe|Describe|Who|who|When|when|Why|why|Should|should|is|Is|I|Do|do|Are|are|Will|will)[^.<>?]*?\s*\?)'))) # print(questions) processWithCustomQuestions(questions) answerList = getAnswers(body, questions) return questions, answerList # link = "https://transportation.oregonstate.edu/aabc/frequently-asked-questions" # questions, answerList = getFaqOfLink(link) if __name__== "__main__": with open(FAQ_LINKS, 'r') as myfile: FAQ_LINKS = myfile.read().split('\n') faqJsonList = [] for i in range(0, len(FAQ_LINKS)): link = FAQ_LINKS[i] questions, answerList = getFaqOfLink(link) jsonList = convertToJsonList(link, questions, answerList) faqJsonList.extend(jsonList) # saveJsonToFile(faqJsonList, "output.txt") saveToMongo(faqJsonList, COLLECTION_NAME)
[((483, 513), 'scraping.faqscrapperutil.removeDuplicates', 'removeDuplicates', (['questionList'], {}), '(questionList)\n', (499, 513), False, 'from scraping.faqscrapperutil import stripExtra, removeDuplicates, removeBlackListedQuestions, getBlackListedQuestions, convertToJsonList, saveToMongo\n'), ((2845, 2870), 'scraping.faqscrapperutil.getBlackListedQuestions', 'getBlackListedQuestions', ([], {}), '()\n', (2868, 2870), False, 'from scraping.faqscrapperutil import stripExtra, removeDuplicates, removeBlackListedQuestions, getBlackListedQuestions, convertToJsonList, saveToMongo\n'), ((2875, 2934), 'scraping.faqscrapperutil.removeBlackListedQuestions', 'removeBlackListedQuestions', (['questions', 'blackListedQuestions'], {}), '(questions, blackListedQuestions)\n', (2901, 2934), False, 'from scraping.faqscrapperutil import stripExtra, removeDuplicates, removeBlackListedQuestions, getBlackListedQuestions, convertToJsonList, saveToMongo\n'), ((3022, 3037), 'httplib2.Http', 'httplib2.Http', ([], {}), '()\n', (3035, 3037), False, 'import httplib2\n'), ((3087, 3121), 'bs4.BeautifulSoup', 'BeautifulSoup', (['html', '"""html.parser"""'], {}), "(html, 'html.parser')\n", (3100, 3121), False, 'from bs4 import BeautifulSoup\n'), ((4050, 4091), 'scraping.faqscrapperutil.saveToMongo', 'saveToMongo', (['faqJsonList', 'COLLECTION_NAME'], {}), '(faqJsonList, COLLECTION_NAME)\n', (4061, 4091), False, 'from scraping.faqscrapperutil import stripExtra, removeDuplicates, removeBlackListedQuestions, getBlackListedQuestions, convertToJsonList, saveToMongo\n'), ((3903, 3949), 'scraping.faqscrapperutil.convertToJsonList', 'convertToJsonList', (['link', 'questions', 'answerList'], {}), '(link, questions, answerList)\n', (3920, 3949), False, 'from scraping.faqscrapperutil import stripExtra, removeDuplicates, removeBlackListedQuestions, getBlackListedQuestions, convertToJsonList, saveToMongo\n'), ((2293, 2342), 'bs4.BeautifulSoup', 'BeautifulSoup', (['bodyText[start:end]', '"""html.parser"""'], {}), "(bodyText[start:end], 'html.parser')\n", (2306, 2342), False, 'from bs4 import BeautifulSoup\n'), ((3184, 3361), 're.compile', 're.compile', (['"""\\\\s*((?:how|How|Can|can|what|What|where|Where|describe|Describe|Who|who|When|when|Why|why|Should|should|is|Is|I|Do|do|Are|are|Will|will)[^.<>?]*?\\\\s*\\\\?)"""'], {}), "(\n '\\\\s*((?:how|How|Can|can|what|What|where|Where|describe|Describe|Who|who|When|when|Why|why|Should|should|is|Is|I|Do|do|Are|are|Will|will)[^.<>?]*?\\\\s*\\\\?)'\n )\n", (3194, 3361), False, 'import re\n')]
ckousoulis/macos-messages
messages/term_utils.py
acf7ac94a81f7d097e2025c6ec7dd429de010795
"""Terminal utilities specific to message archives. Creates colored text and helps write Messages output. """ from contextlib import contextmanager import itertools import readline FG_COLORS = dict(itertools.chain( zip(("black", "red", "green", "yellow", "blue", "magenta", "cyan", "white", ), range(30, 38)), zip(("bright_black", "bright_red", "bright_green", "bright_yellow", "bright_blue", "bright_magenta", "bright_cyan", "bright_white", ), range(90, 98)))) BG_COLORS = dict((f"on_{key}", val + 10) for key, val in FG_COLORS.items()) ATTRIBUTES = dict( zip(("bold", "faint", "italic", "underline", "slow_blink", "rapid_blink", "reverse", "conceal", "strikethrough", ), range(1, 10))) def colored(text, color=None, on_color=None, attrs=None, escape=False): """Wraps text with ANSI escape codes to achieve the desired look. Args: color: The foreground color. on_color: The background color. attrs: A list of effects. escape: True to escape invisibles (for readline); else False. Returns: A string with the original text wrapped by escape codes. """ def sgr(*codes): return "\x1b[%sm" % ";".join(map(str, codes)) def esc(text): return "\x01%s\x02" % text codes = [] if color: codes.append(FG_COLORS[color]) if on_color: codes.append(BG_COLORS[on_color]) if attrs: codes.extend(ATTRIBUTES[attr] for attr in attrs) if not escape: esc = lambda n: n return "%s%s%s" % (esc(sgr(*codes)), text, esc(sgr(0))) @contextmanager def readline_disabled(): """Context manager to temporarily disable readline features. """ readline.set_auto_history(False) try: yield finally: readline.set_auto_history(True) def confirm(text): """Presents a yes/no prompt to the user and handles replies. Args: text: A message string to present before confirmation. Returns: True if the user confirmed the prompt; else False. """ replies = { "yes": True, "no": False, } prompt = "%s (yes/no): " % colored("Are you sure?", "red", attrs=["bold"], escape=True) reply = "" with readline_disabled(): print(text) while reply not in replies: try: reply = input(prompt).casefold() except (EOFError, KeyboardInterrupt): reply = "no" print(reply) return replies[reply]
[((1839, 1871), 'readline.set_auto_history', 'readline.set_auto_history', (['(False)'], {}), '(False)\n', (1864, 1871), False, 'import readline\n'), ((1904, 1935), 'readline.set_auto_history', 'readline.set_auto_history', (['(True)'], {}), '(True)\n', (1929, 1935), False, 'import readline\n')]
Project-MONAI/MONAI
tests/test_subpixel_upsample.py
2bab12c67c3cc1d54a4847628ce1e879064be11c
# Copyright 2020 - 2021 MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch import torch.nn as nn from parameterized import parameterized from monai.networks import eval_mode from monai.networks.blocks import SubpixelUpsample from monai.networks.layers.factories import Conv TEST_CASE_SUBPIXEL = [] for inch in range(1, 5): for dim in range(1, 4): for factor in range(1, 3): test_case = [ {"dimensions": dim, "in_channels": inch, "scale_factor": factor}, (2, inch, *([8] * dim)), (2, inch, *([8 * factor] * dim)), ] TEST_CASE_SUBPIXEL.append(test_case) TEST_CASE_SUBPIXEL_2D_EXTRA = [ {"dimensions": 2, "in_channels": 2, "scale_factor": 3}, (2, 2, 8, 4), # different size for H and W (2, 2, 24, 12), ] TEST_CASE_SUBPIXEL_3D_EXTRA = [ {"dimensions": 3, "in_channels": 1, "scale_factor": 2}, (2, 1, 16, 8, 4), # different size for H, W and D (2, 1, 32, 16, 8), ] conv_block = nn.Sequential( Conv[Conv.CONV, 3](1, 4, kernel_size=1), Conv[Conv.CONV, 3](4, 8, kernel_size=3, stride=1, padding=1) ) TEST_CASE_SUBPIXEL_CONV_BLOCK_EXTRA = [ {"dimensions": 3, "in_channels": 1, "scale_factor": 2, "conv_block": conv_block}, (2, 1, 16, 8, 4), # different size for H, W and D (2, 1, 32, 16, 8), ] TEST_CASE_SUBPIXEL.append(TEST_CASE_SUBPIXEL_2D_EXTRA) TEST_CASE_SUBPIXEL.append(TEST_CASE_SUBPIXEL_3D_EXTRA) TEST_CASE_SUBPIXEL.append(TEST_CASE_SUBPIXEL_CONV_BLOCK_EXTRA) # add every test back with the pad/pool sequential component omitted for tests in list(TEST_CASE_SUBPIXEL): args: dict = tests[0] # type: ignore args = dict(args) args["apply_pad_pool"] = False TEST_CASE_SUBPIXEL.append([args, tests[1], tests[2]]) class TestSUBPIXEL(unittest.TestCase): @parameterized.expand(TEST_CASE_SUBPIXEL) def test_subpixel_shape(self, input_param, input_shape, expected_shape): net = SubpixelUpsample(**input_param) with eval_mode(net): result = net.forward(torch.randn(input_shape)) self.assertEqual(result.shape, expected_shape) if __name__ == "__main__": unittest.main()
[((2354, 2394), 'parameterized.parameterized.expand', 'parameterized.expand', (['TEST_CASE_SUBPIXEL'], {}), '(TEST_CASE_SUBPIXEL)\n', (2374, 2394), False, 'from parameterized import parameterized\n'), ((2698, 2713), 'unittest.main', 'unittest.main', ([], {}), '()\n', (2711, 2713), False, 'import unittest\n'), ((2486, 2517), 'monai.networks.blocks.SubpixelUpsample', 'SubpixelUpsample', ([], {}), '(**input_param)\n', (2502, 2517), False, 'from monai.networks.blocks import SubpixelUpsample\n'), ((2531, 2545), 'monai.networks.eval_mode', 'eval_mode', (['net'], {}), '(net)\n', (2540, 2545), False, 'from monai.networks import eval_mode\n'), ((2580, 2604), 'torch.randn', 'torch.randn', (['input_shape'], {}), '(input_shape)\n', (2591, 2604), False, 'import torch\n')]
magetron/secure-flow-prototype
gen-cfg.py
c683939620fec889f882ea095d2b27e3e4bb98fe
from staticfg import CFGBuilder userCfg = CFGBuilder().build_from_file('user.py', './auction/user.py') bidCfg = CFGBuilder().build_from_file('bid.py', './auction/bid.py') auctionCfg = CFGBuilder().build_from_file('auction.py','./auction/auction.py') #auctionEventCfg = CFGBuilder().build_from_file('auction_event.py','./auction/auction_event.py') bidCfg.build_visual('bidCfg', 'pdf') auctionCfg.build_visual('auctionCfg', 'pdf') #auctionEventCfg.build_visual('auctionEventCfg.pdf', 'pdf')
[((43, 55), 'staticfg.CFGBuilder', 'CFGBuilder', ([], {}), '()\n', (53, 55), False, 'from staticfg import CFGBuilder\n'), ((113, 125), 'staticfg.CFGBuilder', 'CFGBuilder', ([], {}), '()\n', (123, 125), False, 'from staticfg import CFGBuilder\n'), ((185, 197), 'staticfg.CFGBuilder', 'CFGBuilder', ([], {}), '()\n', (195, 197), False, 'from staticfg import CFGBuilder\n')]
dimitrov-dimitar/competitive-programming
CodeForces/A2OJ Ladder/softuni_problem.py
f2b022377baf6d4beff213fc513907b774c12352
total_budget = 0 while True: destination = input() if destination == "End": break minimal_budget = float(input()) while True: command = input() if command == "End": break money = float(command) total_budget += money if total_budget >= minimal_budget: print(f"Going to {destination}!") total_budget = 0 break
[]
rockzhu/footmark
footmark/ram/regioninfo.py
af2144e9139a63b475fa2b56c3307ddfd49c43e4
from footmark.regioninfo import RegionInfo class RAMRegionInfo(RegionInfo): """ Represents an ram Region """ def __init__(self, connection=None, name=None, id=None, connection_cls=None): from footmark.ram.connection import RAMConnection super(RAMRegionInfo, self).__init__(connection, name, id, RAMConnection)
[]
sergiopasra/glue
glue/plugins/export_d3po.py
c25a217a122a11818382672c99cb21f57a30636f
from __future__ import absolute_import, division, print_function import os import json from glue.core import Subset DISPATCH = {} def save_page(page, page_number, label, subset): """ Convert a tab of a glue session into a D3PO page :param page: Tuple of data viewers to save :param label: Tab label """ result = {} # layout settings result['grid'] = {'nRows': 1, 'nColumns': len(page)} result['name'] = str(label) result['caption'] = 'Generated by Glue' # style settings d = page[0]._data[0] unselected = dict(opacity=d.style.alpha, size=d.style.markersize / 2, color=d.style.color) result['markerStyle'] = dict(unselected=unselected) if subset is not None: s = subset.style selected = dict(opacity=s.alpha, size=s.markersize / 2, color=s.color) result['markerStyle']['selected'] = selected result['selection'] = {'type': 'booleanColumn', 'columnName': 'selection_%i' % page_number} result['histogramStyle'] = result['markerStyle'] # save each plot result['plots'] = list(map(save_plot, page, range(len(page)))) return result def save_plot_base(plot, index): result = {} result['gridPosition'] = [0, index] return result def save_plot(plot, index): typ = type(plot) return DISPATCH[typ](plot, index) def save_scatter(plot, index): """ Convert a single glue scatter plot to a D3PO plot :param plot: Glue scatter plot :class:`~glue.viewers.scatter.qt.ScatterViewer` :param index: 1D index of plot on the page :type index: int :rtype: json-serializable dict """ result = save_plot_base(plot, index) result['type'] = 'scatter' result['xAxis'] = dict(columnName=plot.state.x_att.label, range=[float(plot.state.x_min), float(plot.state.x_max)]) result['yAxis'] = dict(columnName=plot.state.y_att.label, range=[float(plot.state.y_min), float(plot.state.y_max)]) # XXX log scales return result def save_histogram(plot, index): """ Convert a single histogram to a D3PO plot :param plot: Glue histogram :type plot: :class:`~glue.viewers.histogram.qt.HistogramViewer` :param index: 1D index of plot on the page :type index: int :rtype: json-serializable dict """ result = save_plot_base(plot, index) result['type'] = 'histogram' result['xAxis'] = dict(columnName=plot.state.x_att.label, bins=int(plot.state.hist_n_bin), range=[float(plot.state.hist_x_min), float(plot.state.hist_x_max)]) # XXX normed, cumultive, log return result def stage_subsets(application): """ Return a tuple of the subset to use for each stage/tab, or None if the tab has no subset If more than one subset is used per stage/tab, returns None """ result = [] for page in application.viewers: subset = None for viewer in page: for layer_artist in viewer.layers: if not layer_artist.visible: continue s = layer_artist.layer if not isinstance(s, Subset): continue if subset is not None and s is not subset: return None if subset is None: subset = s result.append(subset) return tuple(result) def can_save_d3po(application): """ Check whether an application can be exported to D3PO. Raises an exception if not """ dc = application.session.data_collection if len(dc) != 1: raise ValueError("D3PO Export only supports a single dataset") for tab in application.viewers: for viewer in tab: if not isinstance(viewer, tuple(DISPATCH.keys())): raise ValueError("D3PO Export only supports scatter " "and histogram plots") if sum(len(tab) for tab in application.viewers) == 0: raise ValueError("D3PO Export requires at least one scatterplot " "or histogram") if stage_subsets(application) is None: raise ValueError("D3PO Export restricted to 0 or 1 subsets visible " "in each tab") def make_data_file(data, subsets, path): """ Create the data.csv file, given Data and tuple of subsets """ from astropy.table import Table, Column data_path = os.path.join(path, 'data.csv') t = Table([data[c] for c in data.components], names=[c.label for c in data.components]) for i, subset in enumerate(subsets): if subset is None: continue c = Column(data=subset.to_mask().astype('i'), name='selection_%i' % i) t.add_column(c) t.write(data_path, format='ascii', delimiter=',') def save_d3po(application, path, launch=True): """Save a Glue session to a D3PO bundle. Currently, this has the following restrictions: - The Glue session must have only one dataset open, and 0 or 1 subsets - Only scatter plots or histograms are present - At least one plot is present :param application: Glue appication to save :param path: Path to directory to save in. Will be created if needed """ if os.path.exists(path) and not os.path.isdir(path): os.unlink(path) if not os.path.exists(path): os.mkdir(path) data = application.session.data_collection[0] subsets = stage_subsets(application) viewers = application.viewers # data.csv make_data_file(data, subsets, path) # states.json result = {} result['filename'] = 'data.csv' # XXX don't think this is needed? result['title'] = "Glue export of %s" % data.label result['states'] = list(map(save_page, application.viewers, range(len(viewers)), application.tab_names, subsets)) state_path = os.path.join(path, 'states.json') with open(state_path, 'w') as outfile: json.dump(result, outfile, indent=2, sort_keys=True) # index.html html_path = os.path.join(path, 'index.html') with open(html_path, 'w') as outfile: outfile.write(HTML) # show the result if launch: launch_d3po(path) def launch_d3po(path): """Start a server to view an exported D3PO bundle, and open a browser. :param path: The TLD of the bundle """ from glue.external.six.moves.socketserver import TCPServer from glue.external.six.moves.SimpleHTTPServer import SimpleHTTPRequestHandler from random import randrange from socket import error import webbrowser from threading import Thread os.chdir(path) while True: try: PORT = randrange(8000, 9000) server = TCPServer(("", PORT), SimpleHTTPRequestHandler, False) server.allow_reuse_address = True server.server_bind() break except error: # port already taken pass print('Serving D3PO on port 0.0.0.0:%i' % PORT) server.server_activate() thread = Thread(target=server.serve_forever) thread.setDaemon(True) # do not prevent shutdown thread.start() webbrowser.open('http://0.0.0.0:%i' % PORT) def setup(): from glue.config import exporters exporters.add('D3PO', save_d3po, can_save_d3po, outmode='directory') HTML = """ <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <link rel="stylesheet" type="text/css" href="http://d3po.org/static/css/style.css"> <link rel="stylesheet" type="text/css" href="http://d3po.org/static/css/d3po.css"> <link href='http://fonts.googleapis.com/css?family=Source+Sans+Pro:100,200,300,400,700' rel='stylesheet' type='text/css'> <style> #footer { position: fixed; bottom: 0; right: 0; } </style> <!-- not to be confused with Planet Telex --> <!-- Javscript dependencies --> <script src="http://d3js.org/d3.v3.min.js" charset="utf-8"></script> <script src="http://d3po.org/static/js/util.js"></script> <script src="//ajax.googleapis.com/ajax/libs/jquery/1.10.2/jquery.min.js"></script> <script src="http://d3po.org/static/js/d3po.js"></script> <script src="http://d3po.org/static/js/d3po.init.js"></script> </head> <body> <div id="svg"><svg></svg></div> <div id="controls"> <ul class="navigation"> </ul> </div> <div id="caption"></div> <div id="footer"> More information: <a href="http://d3po.org">d3po.org</a> </div> <script type="text/javascript"> $(document).ready(function() { initialize('states.json', 'data.csv'); } ); </script> </body> </html> """ try: from glue.viewers.scatter.qt import ScatterViewer from glue.viewers.histogram.qt import HistogramViewer except ImportError: pass else: DISPATCH[ScatterViewer] = save_scatter DISPATCH[HistogramViewer] = save_histogram
[((4561, 4591), 'os.path.join', 'os.path.join', (['path', '"""data.csv"""'], {}), "(path, 'data.csv')\n", (4573, 4591), False, 'import os\n'), ((4601, 4689), 'astropy.table.Table', 'Table', (['[data[c] for c in data.components]'], {'names': '[c.label for c in data.components]'}), '([data[c] for c in data.components], names=[c.label for c in data.\n components])\n', (4606, 4689), False, 'from astropy.table import Table, Column\n'), ((6098, 6131), 'os.path.join', 'os.path.join', (['path', '"""states.json"""'], {}), "(path, 'states.json')\n", (6110, 6131), False, 'import os\n'), ((6270, 6302), 'os.path.join', 'os.path.join', (['path', '"""index.html"""'], {}), "(path, 'index.html')\n", (6282, 6302), False, 'import os\n'), ((6852, 6866), 'os.chdir', 'os.chdir', (['path'], {}), '(path)\n', (6860, 6866), False, 'import os\n'), ((7268, 7303), 'threading.Thread', 'Thread', ([], {'target': 'server.serve_forever'}), '(target=server.serve_forever)\n', (7274, 7303), False, 'from threading import Thread\n'), ((7381, 7424), 'webbrowser.open', 'webbrowser.open', (["('http://0.0.0.0:%i' % PORT)"], {}), "('http://0.0.0.0:%i' % PORT)\n", (7396, 7424), False, 'import webbrowser\n'), ((7482, 7550), 'glue.config.exporters.add', 'exporters.add', (['"""D3PO"""', 'save_d3po', 'can_save_d3po'], {'outmode': '"""directory"""'}), "('D3PO', save_d3po, can_save_d3po, outmode='directory')\n", (7495, 7550), False, 'from glue.config import exporters\n'), ((5392, 5412), 'os.path.exists', 'os.path.exists', (['path'], {}), '(path)\n', (5406, 5412), False, 'import os\n'), ((5450, 5465), 'os.unlink', 'os.unlink', (['path'], {}), '(path)\n', (5459, 5465), False, 'import os\n'), ((5478, 5498), 'os.path.exists', 'os.path.exists', (['path'], {}), '(path)\n', (5492, 5498), False, 'import os\n'), ((5508, 5522), 'os.mkdir', 'os.mkdir', (['path'], {}), '(path)\n', (5516, 5522), False, 'import os\n'), ((6183, 6235), 'json.dump', 'json.dump', (['result', 'outfile'], {'indent': '(2)', 'sort_keys': '(True)'}), '(result, outfile, indent=2, sort_keys=True)\n', (6192, 6235), False, 'import json\n'), ((5421, 5440), 'os.path.isdir', 'os.path.isdir', (['path'], {}), '(path)\n', (5434, 5440), False, 'import os\n'), ((6916, 6937), 'random.randrange', 'randrange', (['(8000)', '(9000)'], {}), '(8000, 9000)\n', (6925, 6937), False, 'from random import randrange\n'), ((6959, 7013), 'glue.external.six.moves.socketserver.TCPServer', 'TCPServer', (["('', PORT)", 'SimpleHTTPRequestHandler', '(False)'], {}), "(('', PORT), SimpleHTTPRequestHandler, False)\n", (6968, 7013), False, 'from glue.external.six.moves.socketserver import TCPServer\n')]
CarlosWillian/python
exercicios/ex 061 a 070/ex061.py
f863578245fbf402e5b46f844a247355afed0d62
print('Crie sua P.A. de 10 termos') n1 = int(input('Digite o primeiro termo da P.A.: ')) r = int(input('Digite a razão: ')) termo = n1 c = 1 print('A P.A. é (', end='') while c <= 10: print('{}'.format(termo), end='') print(', ' if c < 10 else '', end='') termo += r c += 1 print(')')
[]
zmedico/pyrqlite
src/pyrqlite/connections.py
17a22221e4e796a04c28aa578a93821cc3349b41
from __future__ import unicode_literals import codecs import logging try: from http.client import HTTPConnection, HTTPSConnection except ImportError: # pylint: disable=import-error from httplib import HTTPConnection, HTTPSConnection try: from urllib.parse import urlparse except ImportError: # pylint: disable=import-error from urlparse import urlparse from .constants import ( UNLIMITED_REDIRECTS, ) from .cursors import Cursor from ._ephemeral import EphemeralRqlited as _EphemeralRqlited from .extensions import PARSE_DECLTYPES, PARSE_COLNAMES class Connection(object): from .exceptions import ( Warning, Error, InterfaceError, DatabaseError, DataError, OperationalError, IntegrityError, InternalError, ProgrammingError, NotSupportedError, ) def __init__(self, scheme='http', host='localhost', port=4001, user=None, password=None, connect_timeout=None, detect_types=0, max_redirects=UNLIMITED_REDIRECTS): self.messages = [] self.scheme = scheme self.host = host self.port = port self._headers = {} if not (user is None or password is None): self._headers['Authorization'] = 'Basic ' + \ codecs.encode('{}:{}'.format(user, password).encode('utf-8'), 'base64').decode('utf-8').rstrip('\n') self.connect_timeout = connect_timeout self.max_redirects = max_redirects self.detect_types = detect_types self.parse_decltypes = detect_types & PARSE_DECLTYPES self.parse_colnames = detect_types & PARSE_COLNAMES self._ephemeral = None if scheme == ':memory:': self._ephemeral = _EphemeralRqlited().__enter__() self.host, self.port = self._ephemeral.http self._connection = self._init_connection() def _init_connection(self): if self.scheme in ('http', ':memory:'): cls = HTTPConnection elif self.scheme == 'https': cls = HTTPSConnection else: raise Connection.ProgrammingError('Unsupported scheme %r' % self.scheme) return cls(self.host, port=self.port, timeout=None if self.connect_timeout is None else float(self.connect_timeout)) def _retry_request(self, method, uri, body=None, headers={}): tries = 10 while tries: tries -= 1 try: self._connection.request(method, uri, body=body, headers=dict(self._headers, **headers)) return self._connection.getresponse() except Exception: if not tries: raise self._connection.close() self._connection = self._init_connection() def _fetch_response(self, method, uri, body=None, headers={}): """ Fetch a response, handling redirection. """ response = self._retry_request(method, uri, body=body, headers=headers) redirects = 0 while response.status == 301 and \ response.getheader('Location') is not None and \ (self.max_redirects == UNLIMITED_REDIRECTS or redirects < self.max_redirects): redirects += 1 uri = response.getheader('Location') location = urlparse(uri) logging.getLogger(__name__).debug("status: %s reason: '%s' location: '%s'", response.status, response.reason, uri) if self.host != location.hostname or self.port != location.port: self._connection.close() self.host = location.hostname self.port = location.port self._connection = self._init_connection() response = self._retry_request(method, uri, body=body, headers=headers) return response def close(self): """Close the connection now (rather than whenever .__del__() is called). The connection will be unusable from this point forward; an Error (or subclass) exception will be raised if any operation is attempted with the connection. The same applies to all cursor objects trying to use the connection. Note that closing a connection without committing the changes first will cause an implicit rollback to be performed.""" self._connection.close() if self._ephemeral is not None: self._ephemeral.__exit__(None, None, None) self._ephemeral = None def __del__(self): self.close() def commit(self): """Database modules that do not support transactions should implement this method with void functionality.""" pass def rollback(self): """This method is optional since not all databases provide transaction support. """ pass def cursor(self, factory=None): """Return a new Cursor Object using the connection.""" if factory: return factory(self) else: return Cursor(self) def execute(self, *args, **kwargs): return self.cursor().execute(*args, **kwargs)
[((3455, 3468), 'urlparse.urlparse', 'urlparse', (['uri'], {}), '(uri)\n', (3463, 3468), False, 'from urlparse import urlparse\n'), ((3482, 3509), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (3499, 3509), False, 'import logging\n')]
achoraev/SoftUni
PythonBasics/ConditionalStatements/Exercise/toy_shop.py
0cc7db470a096cc33bbe0ca6bd90060b79120573
price = float(input()) puzzles = int(input()) dolls = int(input()) bears = int(input()) minions = int(input()) trucks = int(input()) total_toys = puzzles + dolls + bears + minions + trucks price_puzzles = puzzles * 2.6 price_dolls = dolls * 3 price_bears = bears * 4.1 price_minions = minions * 8.2 price_trucks = trucks * 2 total_price = price_puzzles + price_dolls + price_bears + price_minions + price_trucks if total_toys >= 50: total_price = total_price - (total_price * 0.25) rent = total_price * 0.1 total_price = total_price - rent if total_price >= price: print(f"Yes! {(total_price - price):.2f} lv left.") else: print(f"Not enough money! {(price - total_price):.2f} lv needed.")
[]
citrix-openstack-build/ironic
ironic/tests/api/utils.py
4b9eed0aeba44739caa742a48b55d824eae8ec55
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # -*- encoding: utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Utils for testing the API service. """ import datetime import json ADMIN_TOKEN = '4562138218392831' MEMBER_TOKEN = '4562138218392832' class FakeMemcache(object): """Fake cache that is used for keystone tokens lookup.""" _cache = { 'tokens/%s' % ADMIN_TOKEN: { 'access': { 'token': {'id': ADMIN_TOKEN}, 'user': {'id': 'user_id1', 'name': 'user_name1', 'tenantId': '123i2910', 'tenantName': 'mytenant', 'roles': [{'name': 'admin'}] }, } }, 'tokens/%s' % MEMBER_TOKEN: { 'access': { 'token': {'id': MEMBER_TOKEN}, 'user': {'id': 'user_id2', 'name': 'user-good', 'tenantId': 'project-good', 'tenantName': 'goodies', 'roles': [{'name': 'Member'}] } } } } def __init__(self): self.set_key = None self.set_value = None self.token_expiration = None def get(self, key): dt = datetime.datetime.now() + datetime.timedelta(minutes=5) return json.dumps((self._cache.get(key), dt.strftime('%s'))) def set(self, key, value, timeout=None): self.set_value = value self.set_key = key
[((1850, 1873), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (1871, 1873), False, 'import datetime\n'), ((1876, 1905), 'datetime.timedelta', 'datetime.timedelta', ([], {'minutes': '(5)'}), '(minutes=5)\n', (1894, 1905), False, 'import datetime\n')]
thewordisbird/bookshelf
bookshelf/main/forms.py
5166720bdc0dbffedc14b71b0f75ad78dc69b465
import datetime from flask_wtf import FlaskForm from wtforms import ( StringField, TextAreaField, DateTimeField, HiddenField, PasswordField, ) from wtforms.validators import DataRequired, ValidationError, Email, EqualTo class NullableDateTimeField(DateTimeField): """Modify DateField to allow for Null values""" def process_formdata(self, valuelist): # Bypasses wtForms validation for blank datetime field. if valuelist: date_str = " ".join(valuelist).strip() if date_str == "": self.data = None return try: self.data = datetime.datetime.strptime(date_str, self.format) except ValueError: self.data = None raise ValueError(self.gettext("Not a valid date value")) class SearchForm(FlaskForm): search = StringField("Search", validators=[DataRequired()]) class ReviewForm(FlaskForm): rating = HiddenField("Rating", validators=[DataRequired()]) review_title = StringField("Headline") review_content = TextAreaField("Review") date_started = NullableDateTimeField("Date Started", format="%m/%d/%Y") date_finished = NullableDateTimeField("Date Finished", format="%m/%d/%Y") def validate_date_finished(self, date_finished): if self.date_started.data and date_finished.data: if self.date_started.data > date_finished.data: print("Date finished must be greater than or equal to date started") raise ValidationError( "Date finished must be greater than or equal to date started." ) elif self.date_started.data or date_finished.data: print("missing date") raise ValidationError("If setting read dates, both dates are required.") class EditProfileForm(FlaskForm): display_name = StringField("Name", validators=[]) email = StringField("Email", validators=[Email(message="Invalid Email Address.")]) password = PasswordField( "Password", validators=[EqualTo("confirm_password", message="Passwords must match.")], ) confirm_password = PasswordField("Confirm Password", validators=[])
[((1047, 1070), 'wtforms.StringField', 'StringField', (['"""Headline"""'], {}), "('Headline')\n", (1058, 1070), False, 'from wtforms import StringField, TextAreaField, DateTimeField, HiddenField, PasswordField\n'), ((1092, 1115), 'wtforms.TextAreaField', 'TextAreaField', (['"""Review"""'], {}), "('Review')\n", (1105, 1115), False, 'from wtforms import StringField, TextAreaField, DateTimeField, HiddenField, PasswordField\n'), ((1901, 1935), 'wtforms.StringField', 'StringField', (['"""Name"""'], {'validators': '[]'}), "('Name', validators=[])\n", (1912, 1935), False, 'from wtforms import StringField, TextAreaField, DateTimeField, HiddenField, PasswordField\n'), ((2185, 2233), 'wtforms.PasswordField', 'PasswordField', (['"""Confirm Password"""'], {'validators': '[]'}), "('Confirm Password', validators=[])\n", (2198, 2233), False, 'from wtforms import StringField, TextAreaField, DateTimeField, HiddenField, PasswordField\n'), ((651, 700), 'datetime.datetime.strptime', 'datetime.datetime.strptime', (['date_str', 'self.format'], {}), '(date_str, self.format)\n', (677, 700), False, 'import datetime\n'), ((916, 930), 'wtforms.validators.DataRequired', 'DataRequired', ([], {}), '()\n', (928, 930), False, 'from wtforms.validators import DataRequired, ValidationError, Email, EqualTo\n'), ((1011, 1025), 'wtforms.validators.DataRequired', 'DataRequired', ([], {}), '()\n', (1023, 1025), False, 'from wtforms.validators import DataRequired, ValidationError, Email, EqualTo\n'), ((1549, 1628), 'wtforms.validators.ValidationError', 'ValidationError', (['"""Date finished must be greater than or equal to date started."""'], {}), "('Date finished must be greater than or equal to date started.')\n", (1564, 1628), False, 'from wtforms.validators import DataRequired, ValidationError, Email, EqualTo\n'), ((1779, 1845), 'wtforms.validators.ValidationError', 'ValidationError', (['"""If setting read dates, both dates are required."""'], {}), "('If setting read dates, both dates are required.')\n", (1794, 1845), False, 'from wtforms.validators import DataRequired, ValidationError, Email, EqualTo\n'), ((1981, 2020), 'wtforms.validators.Email', 'Email', ([], {'message': '"""Invalid Email Address."""'}), "(message='Invalid Email Address.')\n", (1986, 2020), False, 'from wtforms.validators import DataRequired, ValidationError, Email, EqualTo\n'), ((2093, 2153), 'wtforms.validators.EqualTo', 'EqualTo', (['"""confirm_password"""'], {'message': '"""Passwords must match."""'}), "('confirm_password', message='Passwords must match.')\n", (2100, 2153), False, 'from wtforms.validators import DataRequired, ValidationError, Email, EqualTo\n')]
DanielM24/Romanian-sub-dialect-identificator
main.py
78b3e00f8ee768eb0b1e8cf832a2dc0b8504b04d
# -*- coding: utf-8 -*- """Proiect.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1TR1Frf0EX4PtFZkLlVdGtMTINqhoQwRw """ # Importarea librariilor import numpy as np import pandas as pd # pandas pentru citirea fisierelor from sklearn import preprocessing from sklearn import svm # importarea modelului from sklearn.feature_extraction.text import TfidfVectorizer # modelarea datelor pentru a obtine valori numerice din text from sklearn.metrics import classification_report, confusion_matrix # Incarcarea datelor train_labels = pd.read_csv('train_labels.txt', sep='\t', header=None, engine='python') train_labels = train_labels.to_numpy() # convertim data frame-ul intr-un vector train_labels = train_labels[:,1] # pastram doar etichetele train_samples = pd.read_csv('train_samples.txt', sep='\t', header=None, engine='python') train_samples = train_samples.to_numpy() train_samples = train_samples[:,1] # pastram doar cuvintele validation_samples = pd.read_csv('validation_samples.txt', sep='\t', header=None, engine='python') validation_samples = validation_samples.to_numpy() validation_samples = validation_samples[:,1] # salvam cuvintele validation_labels = pd.read_csv('validation_labels.txt', sep='\t', header=None, engine='python') validation_labels = validation_labels.to_numpy() validation_labels = validation_labels[:,1] # pastram doar etichetele test_samples = pd.read_csv('test_samples.txt', sep='\t', header=None, engine='python') test_samples = test_samples.to_numpy() label = test_samples[:,0] # salvam etichetele test_samples = test_samples[:,1] # salvam cuvintele def normalize_data(train_data, test_data, type='l2'): # functia care intoarce datele normalizate #tipul de normalizare este setat implicit la l2 scaler = None if type == 'standard': scaler = preprocessing.StandardScaler() elif type == 'min_max': scaler = preprocessing.MinMaxScaler() elif type == 'l1' or type == 'l2': scaler = preprocessing.Normalizer(norm = type) if scaler is not None: scaler.fit(train_data) scaled_train_data = scaler.transform(train_data) scaled_test_data = scaler.transform(test_data) return scaled_train_data, scaled_test_data else: return train_data, test_data # Modelarea datelor vectorizer = TfidfVectorizer() training_features = vectorizer.fit_transform(train_samples) validation_features = vectorizer.transform(validation_samples) testing_features = vectorizer.transform(test_samples) # Normalizarea datelor norm_train, norm_test = normalize_data(training_features, testing_features) norm_validation, _ = normalize_data(validation_features, validation_features) # Aplicam modelul SVM model_svm = svm.SVC(kernel='linear', C=23, gamma=110) # definim modelul model_svm.fit(norm_train, train_labels) # procesul de invatare test_predictions = model_svm.predict(norm_test) # predictie pe datele de test print("Classification report: ") print(classification_report(validation_labels, model_svm.predict(norm_validation))) print("Confusion matrix: ") print(confusion_matrix(validation_labels, model_svm.predict(norm_validation))) # Exportarea datelor in format CSV test_export = {'id':label,'label':test_predictions} data_f = pd.DataFrame(test_export) data_f.to_csv('test_submission.csv',index=False)
[((602, 673), 'pandas.read_csv', 'pd.read_csv', (['"""train_labels.txt"""'], {'sep': '"""\t"""', 'header': 'None', 'engine': '"""python"""'}), "('train_labels.txt', sep='\\t', header=None, engine='python')\n", (613, 673), True, 'import pandas as pd\n'), ((830, 902), 'pandas.read_csv', 'pd.read_csv', (['"""train_samples.txt"""'], {'sep': '"""\t"""', 'header': 'None', 'engine': '"""python"""'}), "('train_samples.txt', sep='\\t', header=None, engine='python')\n", (841, 902), True, 'import pandas as pd\n'), ((1026, 1103), 'pandas.read_csv', 'pd.read_csv', (['"""validation_samples.txt"""'], {'sep': '"""\t"""', 'header': 'None', 'engine': '"""python"""'}), "('validation_samples.txt', sep='\\t', header=None, engine='python')\n", (1037, 1103), True, 'import pandas as pd\n'), ((1240, 1316), 'pandas.read_csv', 'pd.read_csv', (['"""validation_labels.txt"""'], {'sep': '"""\t"""', 'header': 'None', 'engine': '"""python"""'}), "('validation_labels.txt', sep='\\t', header=None, engine='python')\n", (1251, 1316), True, 'import pandas as pd\n'), ((1451, 1522), 'pandas.read_csv', 'pd.read_csv', (['"""test_samples.txt"""'], {'sep': '"""\t"""', 'header': 'None', 'engine': '"""python"""'}), "('test_samples.txt', sep='\\t', header=None, engine='python')\n", (1462, 1522), True, 'import pandas as pd\n'), ((2378, 2395), 'sklearn.feature_extraction.text.TfidfVectorizer', 'TfidfVectorizer', ([], {}), '()\n', (2393, 2395), False, 'from sklearn.feature_extraction.text import TfidfVectorizer\n'), ((2789, 2830), 'sklearn.svm.SVC', 'svm.SVC', ([], {'kernel': '"""linear"""', 'C': '(23)', 'gamma': '(110)'}), "(kernel='linear', C=23, gamma=110)\n", (2796, 2830), False, 'from sklearn import svm\n'), ((3313, 3338), 'pandas.DataFrame', 'pd.DataFrame', (['test_export'], {}), '(test_export)\n', (3325, 3338), True, 'import pandas as pd\n'), ((1872, 1902), 'sklearn.preprocessing.StandardScaler', 'preprocessing.StandardScaler', ([], {}), '()\n', (1900, 1902), False, 'from sklearn import preprocessing\n'), ((1949, 1977), 'sklearn.preprocessing.MinMaxScaler', 'preprocessing.MinMaxScaler', ([], {}), '()\n', (1975, 1977), False, 'from sklearn import preprocessing\n'), ((2035, 2070), 'sklearn.preprocessing.Normalizer', 'preprocessing.Normalizer', ([], {'norm': 'type'}), '(norm=type)\n', (2059, 2070), False, 'from sklearn import preprocessing\n')]
remmyzen/nqs-tensorflow2
logger/__init__.py
2af5d5ebb108eac4d2daa5082bdef11c8107bd1b
from .logger import Logger from .logger_supervised import LoggerSupervised
[]
milton0825/flytekit
flytekit/core/workflow.py
7667a154402d7c02e25006bd6cce926917382a1e
from __future__ import annotations import collections import inspect from dataclasses import dataclass from enum import Enum from typing import Any, Callable, Dict, List, Optional, Tuple, Type, Union from flytekit.common import constants as _common_constants from flytekit.common.exceptions.user import FlyteValidationException, FlyteValueException from flytekit.core.base_task import PythonTask from flytekit.core.class_based_resolver import ClassStorageTaskResolver from flytekit.core.condition import ConditionalSection from flytekit.core.context_manager import ( BranchEvalMode, CompilationState, ExecutionState, FlyteContext, FlyteContextManager, FlyteEntities, ) from flytekit.core.interface import ( Interface, transform_inputs_to_parameters, transform_interface_to_typed_interface, transform_signature_to_interface, ) from flytekit.core.launch_plan import LaunchPlan from flytekit.core.node import Node from flytekit.core.promise import ( NodeOutput, Promise, VoidPromise, binding_from_python_std, create_and_link_node, create_native_named_tuple, create_task_output, translate_inputs_to_literals, ) from flytekit.core.python_auto_container import PythonAutoContainerTask from flytekit.core.reference_entity import ReferenceEntity, WorkflowReference from flytekit.core.type_engine import TypeEngine from flytekit.loggers import logger from flytekit.models import interface as _interface_models from flytekit.models import literals as _literal_models from flytekit.models.core import workflow as _workflow_model GLOBAL_START_NODE = Node( id=_common_constants.GLOBAL_INPUT_NODE_ID, metadata=None, bindings=[], upstream_nodes=[], flyte_entity=None, ) class WorkflowFailurePolicy(Enum): FAIL_IMMEDIATELY = _workflow_model.WorkflowMetadata.OnFailurePolicy.FAIL_IMMEDIATELY FAIL_AFTER_EXECUTABLE_NODES_COMPLETE = ( _workflow_model.WorkflowMetadata.OnFailurePolicy.FAIL_AFTER_EXECUTABLE_NODES_COMPLETE ) @dataclass class WorkflowMetadata(object): on_failure: WorkflowFailurePolicy def __post_init__(self): if ( self.on_failure != WorkflowFailurePolicy.FAIL_IMMEDIATELY and self.on_failure != WorkflowFailurePolicy.FAIL_AFTER_EXECUTABLE_NODES_COMPLETE ): raise FlyteValidationException(f"Failure policy {self.on_failure} not acceptable") def to_flyte_model(self): if self.on_failure == WorkflowFailurePolicy.FAIL_IMMEDIATELY: on_failure = 0 else: on_failure = 1 return _workflow_model.WorkflowMetadata(on_failure=on_failure) @dataclass class WorkflowMetadataDefaults(object): """ This class is similarly named to the one above. Please see the IDL for more information but essentially, this WorkflowMetadataDefaults class represents the defaults that are handed down to a workflow's tasks, whereas WorkflowMetadata represents metadata about the workflow itself. """ interruptible: bool def __post_init__(self): if self.interruptible is not True and self.interruptible is not False: raise FlyteValidationException(f"Interruptible must be boolean, {self.interruptible} invalid") def to_flyte_model(self): return _workflow_model.WorkflowMetadataDefaults(interruptible=self.interruptible) def construct_input_promises(inputs: List[str]): return { input_name: Promise(var=input_name, val=NodeOutput(node=GLOBAL_START_NODE, var=input_name)) for input_name in inputs } def get_promise(binding_data: _literal_models.BindingData, outputs_cache: Dict[Node, Dict[str, Promise]]) -> Promise: """ This is a helper function that will turn a binding into a Promise object, using a lookup map. Please see get_promise_map for the rest of the details. """ if binding_data.promise is not None: if not isinstance(binding_data.promise, NodeOutput): raise FlyteValidationException( f"Binding data Promises have to be of the NodeOutput type {type(binding_data.promise)} found" ) # b.var is the name of the input to the task # binding_data.promise.var is the name of the upstream node's output we want return outputs_cache[binding_data.promise.node][binding_data.promise.var] elif binding_data.scalar is not None: return Promise(var="placeholder", val=_literal_models.Literal(scalar=binding_data.scalar)) elif binding_data.collection is not None: literals = [] for bd in binding_data.collection.bindings: p = get_promise(bd, outputs_cache) literals.append(p.val) return Promise( var="placeholder", val=_literal_models.Literal(collection=_literal_models.LiteralCollection(literals=literals)), ) elif binding_data.map is not None: literals = {} for k, bd in binding_data.map.bindings.items(): p = get_promise(bd, outputs_cache) literals[k] = p.val return Promise( var="placeholder", val=_literal_models.Literal(map=_literal_models.LiteralMap(literals=literals)) ) raise FlyteValidationException("Binding type unrecognized.") def get_promise_map( bindings: List[_literal_models.Binding], outputs_cache: Dict[Node, Dict[str, Promise]] ) -> Dict[str, Promise]: """ Local execution of imperatively defined workflows is done node by node. This function will fill in the node's entity's input arguments, which are specified using the bindings list, and a map of nodes to its outputs. Basically this takes the place of propeller in resolving bindings, pulling in outputs from previously completed nodes and filling in the necessary inputs. """ entity_kwargs = {} for b in bindings: entity_kwargs[b.var] = get_promise(b.binding, outputs_cache) return entity_kwargs class WorkflowBase(object): def __init__( self, name: str, workflow_metadata: WorkflowMetadata, workflow_metadata_defaults: WorkflowMetadataDefaults, python_interface: Interface, **kwargs, ): self._name = name self._workflow_metadata = workflow_metadata self._workflow_metadata_defaults = workflow_metadata_defaults self._python_interface = python_interface self._interface = transform_interface_to_typed_interface(python_interface) self._inputs = {} self._unbound_inputs = set() self._nodes = [] self._output_bindings: Optional[List[_literal_models.Binding]] = [] FlyteEntities.entities.append(self) super().__init__(**kwargs) @property def name(self) -> str: return self._name @property def short_name(self) -> str: return self._name.split(".")[-1] @property def workflow_metadata(self) -> Optional[WorkflowMetadata]: return self._workflow_metadata @property def workflow_metadata_defaults(self): return self._workflow_metadata_defaults @property def python_interface(self) -> Interface: return self._python_interface @property def interface(self) -> _interface_models.TypedInterface: return self._interface @property def output_bindings(self) -> List[_literal_models.Binding]: return self._output_bindings @property def nodes(self) -> List[Node]: return self._nodes def __repr__(self): return ( f"WorkflowBase - {self._name} && " f"Inputs ({len(self._python_interface.inputs)}): {self._python_interface.inputs} && " f"Outputs ({len(self._python_interface.outputs)}): {self._python_interface.outputs} && " f"Output bindings: {self._output_bindings} && " ) def __call__(self, *args, **kwargs): """ The call pattern for Workflows is close to, but not exactly, the call pattern for Tasks. For local execution, it goes __call__ -> _local_execute -> execute From execute, different things happen for the two Workflow styles. For PythonFunctionWorkflows, the Python function is run, for the ImperativeWorkflow, each node is run one at a time. """ if len(args) > 0: raise AssertionError("Only Keyword Arguments are supported for Workflow executions") ctx = FlyteContextManager.current_context() # Get default agruements and override with kwargs passed in input_kwargs = self.python_interface.default_inputs_as_kwargs input_kwargs.update(kwargs) # The first condition is compilation. if ctx.compilation_state is not None: return create_and_link_node(ctx, entity=self, interface=self.python_interface, **input_kwargs) # This condition is hit when this workflow (self) is being called as part of a parent's workflow local run. # The context specifying the local workflow execution has already been set. elif ( ctx.execution_state is not None and ctx.execution_state.mode == ExecutionState.Mode.LOCAL_WORKFLOW_EXECUTION ): if ctx.execution_state.branch_eval_mode == BranchEvalMode.BRANCH_SKIPPED: if self.python_interface and self.python_interface.output_tuple_name: variables = [k for k in self.python_interface.outputs.keys()] output_tuple = collections.namedtuple(self.python_interface.output_tuple_name, variables) nones = [None for _ in self.python_interface.outputs.keys()] return output_tuple(*nones) else: return None # We are already in a local execution, just continue the execution context return self._local_execute(ctx, **input_kwargs) # Last is starting a local workflow execution else: # Run some sanity checks # Even though the _local_execute call generally expects inputs to be Promises, we don't have to do the # conversion here in this loop. The reason is because we don't prevent users from specifying inputs # as direct scalars, which means there's another Promise-generating loop inside _local_execute too for k, v in input_kwargs.items(): if k not in self.interface.inputs: raise ValueError(f"Received unexpected keyword argument {k}") if isinstance(v, Promise): raise ValueError(f"Received a promise for a workflow call, when expecting a native value for {k}") with FlyteContextManager.with_context( ctx.with_execution_state( ctx.new_execution_state().with_params(mode=ExecutionState.Mode.LOCAL_WORKFLOW_EXECUTION) ) ) as child_ctx: result = self._local_execute(child_ctx, **input_kwargs) expected_outputs = len(self.python_interface.outputs) if expected_outputs == 0: if result is None or isinstance(result, VoidPromise): return None else: raise Exception(f"Workflow local execution expected 0 outputs but something received {result}") if (1 < expected_outputs == len(result)) or (result is not None and expected_outputs == 1): return create_native_named_tuple(ctx, result, self.python_interface) raise ValueError("expected outputs and actual outputs do not match") def execute(self, **kwargs): raise Exception("Should not be called") def _local_execute(self, ctx: FlyteContext, **kwargs) -> Union[Tuple[Promise], Promise, VoidPromise]: # This is done to support the invariant that Workflow local executions always work with Promise objects # holding Flyte literal values. Even in a wf, a user can call a sub-workflow with a Python native value. for k, v in kwargs.items(): if not isinstance(v, Promise): t = self.python_interface.inputs[k] kwargs[k] = Promise(var=k, val=TypeEngine.to_literal(ctx, v, t, self.interface.inputs[k].type)) # The output of this will always be a combination of Python native values and Promises containing Flyte # Literals. function_outputs = self.execute(**kwargs) # First handle the empty return case. # A workflow function may return a task that doesn't return anything # def wf(): # return t1() # or it may not return at all # def wf(): # t1() # In the former case we get the task's VoidPromise, in the latter we get None if isinstance(function_outputs, VoidPromise) or function_outputs is None: if len(self.python_interface.outputs) != 0: raise FlyteValueException( function_outputs, f"{function_outputs} received but interface has {len(self.python_interface.outputs)} outputs.", ) return VoidPromise(self.name) # Because we should've already returned in the above check, we just raise an error here. if len(self.python_interface.outputs) == 0: raise FlyteValueException( function_outputs, f"{function_outputs} received but should've been VoidPromise or None." ) expected_output_names = list(self.python_interface.outputs.keys()) if len(expected_output_names) == 1: # Here we have to handle the fact that the wf could've been declared with a typing.NamedTuple of # length one. That convention is used for naming outputs - and single-length-NamedTuples are # particularly troublesome but elegant handling of them is not a high priority # Again, we're using the output_tuple_name as a proxy. if self.python_interface.output_tuple_name and isinstance(function_outputs, tuple): wf_outputs_as_map = {expected_output_names[0]: function_outputs[0]} else: wf_outputs_as_map = {expected_output_names[0]: function_outputs} else: wf_outputs_as_map = {expected_output_names[i]: function_outputs[i] for i, _ in enumerate(function_outputs)} # Basically we need to repackage the promises coming from the tasks into Promises that match the workflow's # interface. We do that by extracting out the literals, and creating new Promises wf_outputs_as_literal_dict = translate_inputs_to_literals( ctx, wf_outputs_as_map, flyte_interface_types=self.interface.outputs, native_types=self.python_interface.outputs, ) # Recreate new promises that use the workflow's output names. new_promises = [Promise(var, wf_outputs_as_literal_dict[var]) for var in expected_output_names] return create_task_output(new_promises, self.python_interface) class ImperativeWorkflow(WorkflowBase): def __init__( self, name: str, failure_policy: Optional[WorkflowFailurePolicy] = None, interruptible: Optional[bool] = False, ): metadata = WorkflowMetadata(on_failure=failure_policy or WorkflowFailurePolicy.FAIL_IMMEDIATELY) workflow_metadata_defaults = WorkflowMetadataDefaults(interruptible) self._compilation_state = CompilationState(prefix="") self._inputs = {} # This unbound inputs construct is just here to help workflow authors detect issues a bit earlier. It just # keeps track of workflow inputs that you've declared with add_workflow_input but haven't yet consumed. This # is an error that Admin would return at compile time anyways, but this allows flytekit to raise # the error earlier. self._unbound_inputs = set() super().__init__( name=name, workflow_metadata=metadata, workflow_metadata_defaults=workflow_metadata_defaults, python_interface=Interface(), ) @property def compilation_state(self) -> CompilationState: """ Compilation is done a bit at a time, one task or other entity call at a time. This is why this workflow class has to keep track of its own compilation state. """ return self._compilation_state @property def nodes(self) -> List[Node]: return self._compilation_state.nodes @property def inputs(self) -> Dict[str, Promise]: """ This holds the input promises to the workflow. The nodes in these Promise objects should always point to the global start node. """ return self._inputs def __repr__(self): return super().__repr__() + f"Nodes ({len(self.compilation_state.nodes)}): {self.compilation_state.nodes}" def execute(self, **kwargs): """ Called by _local_execute. This function is how local execution for imperative workflows runs. Because when an entity is added using the add_entity function, all inputs to that entity should've been already declared, we can just iterate through the nodes in order and we shouldn't run into any dependency issues. That is, we force the user to declare entities already in a topological sort. To keep track of outputs, we create a map to start things off, filled in only with the workflow inputs (if any). As things are run, their outputs are stored in this map. After all nodes are run, we fill in workflow level outputs the same way as any other previous node. """ if not self.ready(): raise FlyteValidationException(f"Workflow not ready, wf is currently {self}") # Create a map that holds the outputs of each node. intermediate_node_outputs = {GLOBAL_START_NODE: {}} # type: Dict[Node, Dict[str, Promise]] # Start things off with the outputs of the global input node, i.e. the inputs to the workflow. # _local_execute should've already ensured that all the values in kwargs are Promise objects for k, v in kwargs.items(): intermediate_node_outputs[GLOBAL_START_NODE][k] = v # Next iterate through the nodes in order. for node in self.compilation_state.nodes: if node not in intermediate_node_outputs.keys(): intermediate_node_outputs[node] = {} # Retrieve the entity from the node, and call it by looking up the promises the node's bindings require, # and then fill them in using the node output tracker map we have. entity = node.flyte_entity entity_kwargs = get_promise_map(node.bindings, intermediate_node_outputs) # Handle the calling and outputs of each node's entity results = entity(**entity_kwargs) expected_output_names = list(entity.python_interface.outputs.keys()) if isinstance(results, VoidPromise) or results is None: continue # pragma: no cover # Move along, nothing to assign # Because we should've already returned in the above check, we just raise an Exception here. if len(entity.python_interface.outputs) == 0: raise FlyteValueException(results, f"{results} received but should've been VoidPromise or None.") # if there's only one output, if len(expected_output_names) == 1: if entity.python_interface.output_tuple_name and isinstance(results, tuple): intermediate_node_outputs[node][expected_output_names[0]] = results[0] else: intermediate_node_outputs[node][expected_output_names[0]] = results else: if len(results) != len(expected_output_names): raise FlyteValueException(results, f"Different lengths {results} {expected_output_names}") for idx, r in enumerate(results): intermediate_node_outputs[node][expected_output_names[idx]] = r # The rest of this function looks like the above but now we're doing it for the workflow as a whole rather # than just one node at a time. if len(self.python_interface.outputs) == 0: return VoidPromise(self.name) # The values that we return below from the output have to be pulled by fulfilling all of the # workflow's output bindings. # The return style here has to match what 1) what the workflow would've returned had it been declared # functionally, and 2) what a user would return in mock function. That is, if it's a tuple, then it # should be a tuple here, if it's a one element named tuple, then we do a one-element non-named tuple, # if it's a single element then we return a single element if len(self.output_bindings) == 1: # Again use presence of output_tuple_name to understand that we're dealing with a one-element # named tuple if self.python_interface.output_tuple_name: return (get_promise(self.output_bindings[0].binding, intermediate_node_outputs),) # Just a normal single element return get_promise(self.output_bindings[0].binding, intermediate_node_outputs) return tuple([get_promise(b.binding, intermediate_node_outputs) for b in self.output_bindings]) def add_entity(self, entity: Union[PythonTask, LaunchPlan, WorkflowBase], **kwargs) -> Node: """ Anytime you add an entity, all the inputs to the entity must be bound. """ # circular import from flytekit.core.node_creation import create_node ctx = FlyteContext.current_context() if ctx.compilation_state is not None: raise Exception("Can't already be compiling") with FlyteContextManager.with_context(ctx.with_compilation_state(self.compilation_state)) as ctx: n = create_node(entity=entity, **kwargs) def get_input_values(input_value): if isinstance(input_value, list): input_promises = [] for x in input_value: input_promises.extend(get_input_values(x)) return input_promises if isinstance(input_value, dict): input_promises = [] for _, v in input_value.items(): input_promises.extend(get_input_values(v)) return input_promises else: return [input_value] # Every time an entity is added, mark it as used. The above function though will gather all the input # values but we're only interested in the ones that are Promises so let's filter for those. # There's probably a way to clean this up, maybe key off of the name instead of value? all_input_values = get_input_values(kwargs) for input_value in filter(lambda x: isinstance(x, Promise), all_input_values): if input_value in self._unbound_inputs: self._unbound_inputs.remove(input_value) return n def add_workflow_input(self, input_name: str, python_type: Type) -> Interface: """ Adds an input to the workflow. """ if input_name in self._inputs: raise FlyteValidationException(f"Input {input_name} has already been specified for wf {self.name}.") self._python_interface = self._python_interface.with_inputs(extra_inputs={input_name: python_type}) self._interface = transform_interface_to_typed_interface(self._python_interface) self._inputs[input_name] = Promise(var=input_name, val=NodeOutput(node=GLOBAL_START_NODE, var=input_name)) self._unbound_inputs.add(self._inputs[input_name]) return self._inputs[input_name] def add_workflow_output( self, output_name: str, p: Union[Promise, List[Promise], Dict[str, Promise]], python_type: Optional[Type] = None ): """ Add an output with the given name from the given node output. """ if output_name in self._python_interface.outputs: raise FlyteValidationException(f"Output {output_name} already exists in workflow {self.name}") if python_type is None: if type(p) == list or type(p) == dict: raise FlyteValidationException( f"If specifying a list or dict of Promises, you must specify the python_type type for {output_name}" f" starting with the container type (e.g. List[int]" ) python_type = p.ref.node.flyte_entity.python_interface.outputs[p.var] logger.debug(f"Inferring python type for wf output {output_name} from Promise provided {python_type}") flyte_type = TypeEngine.to_literal_type(python_type=python_type) ctx = FlyteContext.current_context() if ctx.compilation_state is not None: raise Exception("Can't already be compiling") with FlyteContextManager.with_context(ctx.with_compilation_state(self.compilation_state)) as ctx: b = binding_from_python_std( ctx, output_name, expected_literal_type=flyte_type, t_value=p, t_value_type=python_type ) self._output_bindings.append(b) self._python_interface = self._python_interface.with_outputs(extra_outputs={output_name: python_type}) self._interface = transform_interface_to_typed_interface(self._python_interface) def add_task(self, task: PythonTask, **kwargs) -> Node: return self.add_entity(task, **kwargs) def add_launch_plan(self, launch_plan: LaunchPlan, **kwargs) -> Node: return self.add_entity(launch_plan, **kwargs) def add_subwf(self, sub_wf: WorkflowBase, **kwargs) -> Node: return self.add_entity(sub_wf, **kwargs) def ready(self) -> bool: """ This function returns whether or not the workflow is in a ready state, which means * Has at least one node * All workflow inputs are bound These conditions assume that all nodes and workflow i/o changes were done with the functions above, which do additional checking. """ if len(self.compilation_state.nodes) == 0: return False if len(self._unbound_inputs) > 0: return False return True class PythonFunctionWorkflow(WorkflowBase, ClassStorageTaskResolver): """ Please read :std:ref:`flyte:divedeep-workflows` first for a high-level understanding of what workflows are in Flyte. This Python object represents a workflow defined by a function and decorated with the :py:func:`@workflow <flytekit.workflow>` decorator. Please see notes on that object for additional information. """ def __init__( self, workflow_function: Callable, metadata: Optional[WorkflowMetadata], default_metadata: Optional[WorkflowMetadataDefaults], ): name = f"{workflow_function.__module__}.{workflow_function.__name__}" self._workflow_function = workflow_function native_interface = transform_signature_to_interface(inspect.signature(workflow_function)) # TODO do we need this - can this not be in launchplan only? # This can be in launch plan only, but is here only so that we don't have to re-evaluate. Or # we can re-evaluate. self._input_parameters = None super().__init__( name=name, workflow_metadata=metadata, workflow_metadata_defaults=default_metadata, python_interface=native_interface, ) @property def function(self): return self._workflow_function def task_name(self, t: PythonAutoContainerTask) -> str: return f"{self.name}.{t.__module__}.{t.name}" def compile(self, **kwargs): """ Supply static Python native values in the kwargs if you want them to be used in the compilation. This mimics a 'closure' in the traditional sense of the word. """ ctx = FlyteContextManager.current_context() self._input_parameters = transform_inputs_to_parameters(ctx, self.python_interface) all_nodes = [] prefix = f"{ctx.compilation_state.prefix}-{self.short_name}-" if ctx.compilation_state is not None else "" with FlyteContextManager.with_context( ctx.with_compilation_state(CompilationState(prefix=prefix, task_resolver=self)) ) as comp_ctx: # Construct the default input promise bindings, but then override with the provided inputs, if any input_kwargs = construct_input_promises([k for k in self.interface.inputs.keys()]) input_kwargs.update(kwargs) workflow_outputs = self._workflow_function(**input_kwargs) all_nodes.extend(comp_ctx.compilation_state.nodes) # This little loop was added as part of the task resolver change. The task resolver interface itself is # more or less stateless (the future-proofing get_all_tasks function notwithstanding). However the # implementation of the TaskResolverMixin that this workflow class inherits from (ClassStorageTaskResolver) # does store state. This loop adds Tasks that are defined within the body of the workflow to the workflow # object itself. for n in comp_ctx.compilation_state.nodes: if isinstance(n.flyte_entity, PythonAutoContainerTask) and n.flyte_entity.task_resolver == self: logger.debug(f"WF {self.name} saving task {n.flyte_entity.name}") self.add(n.flyte_entity) # Iterate through the workflow outputs bindings = [] output_names = list(self.interface.outputs.keys()) # The reason the length 1 case is separate is because the one output might be a list. We don't want to # iterate through the list here, instead we should let the binding creation unwrap it and make a binding # collection/map out of it. if len(output_names) == 1: if isinstance(workflow_outputs, tuple): if len(workflow_outputs) != 1: raise AssertionError( f"The Workflow specification indicates only one return value, received {len(workflow_outputs)}" ) if self.python_interface.output_tuple_name is None: raise AssertionError( "Outputs specification for Workflow does not define a tuple, but return value is a tuple" ) workflow_outputs = workflow_outputs[0] t = self.python_interface.outputs[output_names[0]] b = binding_from_python_std( ctx, output_names[0], self.interface.outputs[output_names[0]].type, workflow_outputs, t, ) bindings.append(b) elif len(output_names) > 1: if not isinstance(workflow_outputs, tuple): raise AssertionError("The Workflow specification indicates multiple return values, received only one") if len(output_names) != len(workflow_outputs): raise Exception(f"Length mismatch {len(output_names)} vs {len(workflow_outputs)}") for i, out in enumerate(output_names): if isinstance(workflow_outputs[i], ConditionalSection): raise AssertionError("A Conditional block (if-else) should always end with an `else_()` clause") t = self.python_interface.outputs[out] b = binding_from_python_std( ctx, out, self.interface.outputs[out].type, workflow_outputs[i], t, ) bindings.append(b) # Save all the things necessary to create an SdkWorkflow, except for the missing project and domain self._nodes = all_nodes self._output_bindings = bindings if not output_names: return None if len(output_names) == 1: return bindings[0] return tuple(bindings) def execute(self, **kwargs): """ This function is here only to try to streamline the pattern between workflows and tasks. Since tasks call execute from dispatch_execute which is in _local_execute, workflows should also call an execute inside _local_execute. This makes mocking cleaner. """ return self._workflow_function(**kwargs) def workflow( _workflow_function=None, failure_policy: Optional[WorkflowFailurePolicy] = None, interruptible: Optional[bool] = False, ): """ This decorator declares a function to be a Flyte workflow. Workflows are declarative entities that construct a DAG of tasks using the data flow between tasks. Unlike a task, the function body of a workflow is evaluated at serialization-time (aka compile-time). This is because while we can determine the entire structure of a task by looking at the function's signature, workflows need to run through the function itself because the body of the function is what expresses the workflow structure. It's also important to note that, local execution notwithstanding, it is not evaluated again when the workflow runs on Flyte. That is, workflows should not call non-Flyte entities since they are only run once (again, this is with respect to the platform, local runs notwithstanding). Please see the :std:doc:`cookbook:sphx_glr_auto_core_flyte_basics_basic_workflow.py` for more usage examples. :param _workflow_function: This argument is implicitly passed and represents the decorated function. :param failure_policy: Use the options in flytekit.WorkflowFailurePolicy :param interruptible: Whether or not tasks launched from this workflow are by default interruptible """ def wrapper(fn): workflow_metadata = WorkflowMetadata(on_failure=failure_policy or WorkflowFailurePolicy.FAIL_IMMEDIATELY) workflow_metadata_defaults = WorkflowMetadataDefaults(interruptible) workflow_instance = PythonFunctionWorkflow( fn, metadata=workflow_metadata, default_metadata=workflow_metadata_defaults ) workflow_instance.compile() return workflow_instance if _workflow_function: return wrapper(_workflow_function) else: return wrapper class ReferenceWorkflow(ReferenceEntity, PythonFunctionWorkflow): """ A reference workflow is a pointer to a workflow that already exists on your Flyte installation. This object will not initiate a network call to Admin, which is why the user is asked to provide the expected interface. If at registration time the interface provided causes an issue with compilation, an error will be returned. """ def __init__( self, project: str, domain: str, name: str, version: str, inputs: Dict[str, Type], outputs: Dict[str, Type] ): super().__init__(WorkflowReference(project, domain, name, version), inputs, outputs) def reference_workflow( project: str, domain: str, name: str, version: str, ) -> Callable[[Callable[..., Any]], ReferenceWorkflow]: """ A reference workflow is a pointer to a workflow that already exists on your Flyte installation. This object will not initiate a network call to Admin, which is why the user is asked to provide the expected interface. If at registration time the interface provided causes an issue with compilation, an error will be returned. """ def wrapper(fn) -> ReferenceWorkflow: interface = transform_signature_to_interface(inspect.signature(fn)) return ReferenceWorkflow(project, domain, name, version, interface.inputs, interface.outputs) return wrapper
[((1613, 1730), 'flytekit.core.node.Node', 'Node', ([], {'id': '_common_constants.GLOBAL_INPUT_NODE_ID', 'metadata': 'None', 'bindings': '[]', 'upstream_nodes': '[]', 'flyte_entity': 'None'}), '(id=_common_constants.GLOBAL_INPUT_NODE_ID, metadata=None, bindings=[],\n upstream_nodes=[], flyte_entity=None)\n', (1617, 1730), False, 'from flytekit.core.node import Node\n'), ((5233, 5287), 'flytekit.common.exceptions.user.FlyteValidationException', 'FlyteValidationException', (['"""Binding type unrecognized."""'], {}), "('Binding type unrecognized.')\n", (5257, 5287), False, 'from flytekit.common.exceptions.user import FlyteValidationException, FlyteValueException\n'), ((2601, 2656), 'flytekit.models.core.workflow.WorkflowMetadata', '_workflow_model.WorkflowMetadata', ([], {'on_failure': 'on_failure'}), '(on_failure=on_failure)\n', (2633, 2656), True, 'from flytekit.models.core import workflow as _workflow_model\n'), ((3306, 3380), 'flytekit.models.core.workflow.WorkflowMetadataDefaults', '_workflow_model.WorkflowMetadataDefaults', ([], {'interruptible': 'self.interruptible'}), '(interruptible=self.interruptible)\n', (3346, 3380), True, 'from flytekit.models.core import workflow as _workflow_model\n'), ((6445, 6501), 'flytekit.core.interface.transform_interface_to_typed_interface', 'transform_interface_to_typed_interface', (['python_interface'], {}), '(python_interface)\n', (6483, 6501), False, 'from flytekit.core.interface import Interface, transform_inputs_to_parameters, transform_interface_to_typed_interface, transform_signature_to_interface\n'), ((6674, 6709), 'flytekit.core.context_manager.FlyteEntities.entities.append', 'FlyteEntities.entities.append', (['self'], {}), '(self)\n', (6703, 6709), False, 'from flytekit.core.context_manager import BranchEvalMode, CompilationState, ExecutionState, FlyteContext, FlyteContextManager, FlyteEntities\n'), ((8466, 8503), 'flytekit.core.context_manager.FlyteContextManager.current_context', 'FlyteContextManager.current_context', ([], {}), '()\n', (8501, 8503), False, 'from flytekit.core.context_manager import BranchEvalMode, CompilationState, ExecutionState, FlyteContext, FlyteContextManager, FlyteEntities\n'), ((14677, 14824), 'flytekit.core.promise.translate_inputs_to_literals', 'translate_inputs_to_literals', (['ctx', 'wf_outputs_as_map'], {'flyte_interface_types': 'self.interface.outputs', 'native_types': 'self.python_interface.outputs'}), '(ctx, wf_outputs_as_map, flyte_interface_types=\n self.interface.outputs, native_types=self.python_interface.outputs)\n', (14705, 14824), False, 'from flytekit.core.promise import NodeOutput, Promise, VoidPromise, binding_from_python_std, create_and_link_node, create_native_named_tuple, create_task_output, translate_inputs_to_literals\n'), ((15069, 15124), 'flytekit.core.promise.create_task_output', 'create_task_output', (['new_promises', 'self.python_interface'], {}), '(new_promises, self.python_interface)\n', (15087, 15124), False, 'from flytekit.core.promise import NodeOutput, Promise, VoidPromise, binding_from_python_std, create_and_link_node, create_native_named_tuple, create_task_output, translate_inputs_to_literals\n'), ((15552, 15579), 'flytekit.core.context_manager.CompilationState', 'CompilationState', ([], {'prefix': '""""""'}), "(prefix='')\n", (15568, 15579), False, 'from flytekit.core.context_manager import BranchEvalMode, CompilationState, ExecutionState, FlyteContext, FlyteContextManager, FlyteEntities\n'), ((21895, 21925), 'flytekit.core.context_manager.FlyteContext.current_context', 'FlyteContext.current_context', ([], {}), '()\n', (21923, 21925), False, 'from flytekit.core.context_manager import BranchEvalMode, CompilationState, ExecutionState, FlyteContext, FlyteContextManager, FlyteEntities\n'), ((23829, 23891), 'flytekit.core.interface.transform_interface_to_typed_interface', 'transform_interface_to_typed_interface', (['self._python_interface'], {}), '(self._python_interface)\n', (23867, 23891), False, 'from flytekit.core.interface import Interface, transform_inputs_to_parameters, transform_interface_to_typed_interface, transform_signature_to_interface\n'), ((25086, 25137), 'flytekit.core.type_engine.TypeEngine.to_literal_type', 'TypeEngine.to_literal_type', ([], {'python_type': 'python_type'}), '(python_type=python_type)\n', (25112, 25137), False, 'from flytekit.core.type_engine import TypeEngine\n'), ((25153, 25183), 'flytekit.core.context_manager.FlyteContext.current_context', 'FlyteContext.current_context', ([], {}), '()\n', (25181, 25183), False, 'from flytekit.core.context_manager import BranchEvalMode, CompilationState, ExecutionState, FlyteContext, FlyteContextManager, FlyteEntities\n'), ((28407, 28444), 'flytekit.core.context_manager.FlyteContextManager.current_context', 'FlyteContextManager.current_context', ([], {}), '()\n', (28442, 28444), False, 'from flytekit.core.context_manager import BranchEvalMode, CompilationState, ExecutionState, FlyteContext, FlyteContextManager, FlyteEntities\n'), ((28478, 28536), 'flytekit.core.interface.transform_inputs_to_parameters', 'transform_inputs_to_parameters', (['ctx', 'self.python_interface'], {}), '(ctx, self.python_interface)\n', (28508, 28536), False, 'from flytekit.core.interface import Interface, transform_inputs_to_parameters, transform_interface_to_typed_interface, transform_signature_to_interface\n'), ((2340, 2416), 'flytekit.common.exceptions.user.FlyteValidationException', 'FlyteValidationException', (['f"""Failure policy {self.on_failure} not acceptable"""'], {}), "(f'Failure policy {self.on_failure} not acceptable')\n", (2364, 2416), False, 'from flytekit.common.exceptions.user import FlyteValidationException, FlyteValueException\n'), ((3171, 3264), 'flytekit.common.exceptions.user.FlyteValidationException', 'FlyteValidationException', (['f"""Interruptible must be boolean, {self.interruptible} invalid"""'], {}), "(\n f'Interruptible must be boolean, {self.interruptible} invalid')\n", (3195, 3264), False, 'from flytekit.common.exceptions.user import FlyteValidationException, FlyteValueException\n'), ((8791, 8883), 'flytekit.core.promise.create_and_link_node', 'create_and_link_node', (['ctx'], {'entity': 'self', 'interface': 'self.python_interface'}), '(ctx, entity=self, interface=self.python_interface, **\n input_kwargs)\n', (8811, 8883), False, 'from flytekit.core.promise import NodeOutput, Promise, VoidPromise, binding_from_python_std, create_and_link_node, create_native_named_tuple, create_task_output, translate_inputs_to_literals\n'), ((13197, 13219), 'flytekit.core.promise.VoidPromise', 'VoidPromise', (['self.name'], {}), '(self.name)\n', (13208, 13219), False, 'from flytekit.core.promise import NodeOutput, Promise, VoidPromise, binding_from_python_std, create_and_link_node, create_native_named_tuple, create_task_output, translate_inputs_to_literals\n'), ((13388, 13501), 'flytekit.common.exceptions.user.FlyteValueException', 'FlyteValueException', (['function_outputs', 'f"""{function_outputs} received but should\'ve been VoidPromise or None."""'], {}), '(function_outputs,\n f"{function_outputs} received but should\'ve been VoidPromise or None.")\n', (13407, 13501), False, 'from flytekit.common.exceptions.user import FlyteValidationException, FlyteValueException\n'), ((14973, 15018), 'flytekit.core.promise.Promise', 'Promise', (['var', 'wf_outputs_as_literal_dict[var]'], {}), '(var, wf_outputs_as_literal_dict[var])\n', (14980, 15018), False, 'from flytekit.core.promise import NodeOutput, Promise, VoidPromise, binding_from_python_std, create_and_link_node, create_native_named_tuple, create_task_output, translate_inputs_to_literals\n'), ((17833, 17904), 'flytekit.common.exceptions.user.FlyteValidationException', 'FlyteValidationException', (['f"""Workflow not ready, wf is currently {self}"""'], {}), "(f'Workflow not ready, wf is currently {self}')\n", (17857, 17904), False, 'from flytekit.common.exceptions.user import FlyteValidationException, FlyteValueException\n'), ((20467, 20489), 'flytekit.core.promise.VoidPromise', 'VoidPromise', (['self.name'], {}), '(self.name)\n', (20478, 20489), False, 'from flytekit.core.promise import NodeOutput, Promise, VoidPromise, binding_from_python_std, create_and_link_node, create_native_named_tuple, create_task_output, translate_inputs_to_literals\n'), ((22152, 22188), 'flytekit.core.node_creation.create_node', 'create_node', ([], {'entity': 'entity'}), '(entity=entity, **kwargs)\n', (22163, 22188), False, 'from flytekit.core.node_creation import create_node\n'), ((23600, 23699), 'flytekit.common.exceptions.user.FlyteValidationException', 'FlyteValidationException', (['f"""Input {input_name} has already been specified for wf {self.name}."""'], {}), "(\n f'Input {input_name} has already been specified for wf {self.name}.')\n", (23624, 23699), False, 'from flytekit.common.exceptions.user import FlyteValidationException, FlyteValueException\n'), ((24434, 24527), 'flytekit.common.exceptions.user.FlyteValidationException', 'FlyteValidationException', (['f"""Output {output_name} already exists in workflow {self.name}"""'], {}), "(\n f'Output {output_name} already exists in workflow {self.name}')\n", (24458, 24527), False, 'from flytekit.common.exceptions.user import FlyteValidationException, FlyteValueException\n'), ((24961, 25073), 'flytekit.loggers.logger.debug', 'logger.debug', (['f"""Inferring python type for wf output {output_name} from Promise provided {python_type}"""'], {}), "(\n f'Inferring python type for wf output {output_name} from Promise provided {python_type}'\n )\n", (24973, 25073), False, 'from flytekit.loggers import logger\n'), ((25410, 25526), 'flytekit.core.promise.binding_from_python_std', 'binding_from_python_std', (['ctx', 'output_name'], {'expected_literal_type': 'flyte_type', 't_value': 'p', 't_value_type': 'python_type'}), '(ctx, output_name, expected_literal_type=flyte_type,\n t_value=p, t_value_type=python_type)\n', (25433, 25526), False, 'from flytekit.core.promise import NodeOutput, Promise, VoidPromise, binding_from_python_std, create_and_link_node, create_native_named_tuple, create_task_output, translate_inputs_to_literals\n'), ((25742, 25804), 'flytekit.core.interface.transform_interface_to_typed_interface', 'transform_interface_to_typed_interface', (['self._python_interface'], {}), '(self._python_interface)\n', (25780, 25804), False, 'from flytekit.core.interface import Interface, transform_inputs_to_parameters, transform_interface_to_typed_interface, transform_signature_to_interface\n'), ((27481, 27517), 'inspect.signature', 'inspect.signature', (['workflow_function'], {}), '(workflow_function)\n', (27498, 27517), False, 'import inspect\n'), ((31099, 31216), 'flytekit.core.promise.binding_from_python_std', 'binding_from_python_std', (['ctx', 'output_names[0]', 'self.interface.outputs[output_names[0]].type', 'workflow_outputs', 't'], {}), '(ctx, output_names[0], self.interface.outputs[\n output_names[0]].type, workflow_outputs, t)\n', (31122, 31216), False, 'from flytekit.core.promise import NodeOutput, Promise, VoidPromise, binding_from_python_std, create_and_link_node, create_native_named_tuple, create_task_output, translate_inputs_to_literals\n'), ((35492, 35541), 'flytekit.core.reference_entity.WorkflowReference', 'WorkflowReference', (['project', 'domain', 'name', 'version'], {}), '(project, domain, name, version)\n', (35509, 35541), False, 'from flytekit.core.reference_entity import ReferenceEntity, WorkflowReference\n'), ((36159, 36180), 'inspect.signature', 'inspect.signature', (['fn'], {}), '(fn)\n', (36176, 36180), False, 'import inspect\n'), ((3493, 3543), 'flytekit.core.promise.NodeOutput', 'NodeOutput', ([], {'node': 'GLOBAL_START_NODE', 'var': 'input_name'}), '(node=GLOBAL_START_NODE, var=input_name)\n', (3503, 3543), False, 'from flytekit.core.promise import NodeOutput, Promise, VoidPromise, binding_from_python_std, create_and_link_node, create_native_named_tuple, create_task_output, translate_inputs_to_literals\n'), ((16194, 16205), 'flytekit.core.interface.Interface', 'Interface', ([], {}), '()\n', (16203, 16205), False, 'from flytekit.core.interface import Interface, transform_inputs_to_parameters, transform_interface_to_typed_interface, transform_signature_to_interface\n'), ((19436, 19531), 'flytekit.common.exceptions.user.FlyteValueException', 'FlyteValueException', (['results', 'f"""{results} received but should\'ve been VoidPromise or None."""'], {}), '(results,\n f"{results} received but should\'ve been VoidPromise or None.")\n', (19455, 19531), False, 'from flytekit.common.exceptions.user import FlyteValidationException, FlyteValueException\n'), ((23955, 24005), 'flytekit.core.promise.NodeOutput', 'NodeOutput', ([], {'node': 'GLOBAL_START_NODE', 'var': 'input_name'}), '(node=GLOBAL_START_NODE, var=input_name)\n', (23965, 24005), False, 'from flytekit.core.promise import NodeOutput, Promise, VoidPromise, binding_from_python_std, create_and_link_node, create_native_named_tuple, create_task_output, translate_inputs_to_literals\n'), ((24629, 24814), 'flytekit.common.exceptions.user.FlyteValidationException', 'FlyteValidationException', (['f"""If specifying a list or dict of Promises, you must specify the python_type type for {output_name} starting with the container type (e.g. List[int]"""'], {}), "(\n f'If specifying a list or dict of Promises, you must specify the python_type type for {output_name} starting with the container type (e.g. List[int]'\n )\n", (24653, 24814), False, 'from flytekit.common.exceptions.user import FlyteValidationException, FlyteValueException\n'), ((4456, 4507), 'flytekit.models.literals.Literal', '_literal_models.Literal', ([], {'scalar': 'binding_data.scalar'}), '(scalar=binding_data.scalar)\n', (4479, 4507), True, 'from flytekit.models import literals as _literal_models\n'), ((11500, 11561), 'flytekit.core.promise.create_native_named_tuple', 'create_native_named_tuple', (['ctx', 'result', 'self.python_interface'], {}), '(ctx, result, self.python_interface)\n', (11525, 11561), False, 'from flytekit.core.promise import NodeOutput, Promise, VoidPromise, binding_from_python_std, create_and_link_node, create_native_named_tuple, create_task_output, translate_inputs_to_literals\n'), ((20021, 20109), 'flytekit.common.exceptions.user.FlyteValueException', 'FlyteValueException', (['results', 'f"""Different lengths {results} {expected_output_names}"""'], {}), "(results,\n f'Different lengths {results} {expected_output_names}')\n", (20040, 20109), False, 'from flytekit.common.exceptions.user import FlyteValidationException, FlyteValueException\n'), ((28762, 28813), 'flytekit.core.context_manager.CompilationState', 'CompilationState', ([], {'prefix': 'prefix', 'task_resolver': 'self'}), '(prefix=prefix, task_resolver=self)\n', (28778, 28813), False, 'from flytekit.core.context_manager import BranchEvalMode, CompilationState, ExecutionState, FlyteContext, FlyteContextManager, FlyteEntities\n'), ((29901, 29966), 'flytekit.loggers.logger.debug', 'logger.debug', (['f"""WF {self.name} saving task {n.flyte_entity.name}"""'], {}), "(f'WF {self.name} saving task {n.flyte_entity.name}')\n", (29913, 29966), False, 'from flytekit.loggers import logger\n'), ((32022, 32117), 'flytekit.core.promise.binding_from_python_std', 'binding_from_python_std', (['ctx', 'out', 'self.interface.outputs[out].type', 'workflow_outputs[i]', 't'], {}), '(ctx, out, self.interface.outputs[out].type,\n workflow_outputs[i], t)\n', (32045, 32117), False, 'from flytekit.core.promise import NodeOutput, Promise, VoidPromise, binding_from_python_std, create_and_link_node, create_native_named_tuple, create_task_output, translate_inputs_to_literals\n'), ((9516, 9590), 'collections.namedtuple', 'collections.namedtuple', (['self.python_interface.output_tuple_name', 'variables'], {}), '(self.python_interface.output_tuple_name, variables)\n', (9538, 9590), False, 'import collections\n'), ((12236, 12299), 'flytekit.core.type_engine.TypeEngine.to_literal', 'TypeEngine.to_literal', (['ctx', 'v', 't', 'self.interface.inputs[k].type'], {}), '(ctx, v, t, self.interface.inputs[k].type)\n', (12257, 12299), False, 'from flytekit.core.type_engine import TypeEngine\n'), ((4817, 4869), 'flytekit.models.literals.LiteralCollection', '_literal_models.LiteralCollection', ([], {'literals': 'literals'}), '(literals=literals)\n', (4850, 4869), True, 'from flytekit.models import literals as _literal_models\n'), ((5165, 5210), 'flytekit.models.literals.LiteralMap', '_literal_models.LiteralMap', ([], {'literals': 'literals'}), '(literals=literals)\n', (5191, 5210), True, 'from flytekit.models import literals as _literal_models\n')]
madhukarkm/NeMo
nemo/collections/asr/parts/numba/rnnt_loss/rnnt_numpy.py
648c97f076147684bee6aaada209f2f20adcaf5d
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Copyright 2018-2019, Mingkun Huang # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from torch.autograd import Function, Variable from torch.nn import Module def check_type(var, t, name): if var.dtype is not t: raise TypeError("{} must be {}".format(name, t)) def check_contiguous(var, name): if not var.is_contiguous(): raise ValueError("{} must be contiguous".format(name)) def check_dim(var, dim, name): if len(var.shape) != dim: raise ValueError("{} must be {}D".format(name, dim)) def certify_inputs(log_probs, labels, lengths, label_lengths): # check_type(log_probs, torch.float32, "log_probs") check_type(labels, torch.int32, "labels") check_type(label_lengths, torch.int32, "label_lengths") check_type(lengths, torch.int32, "lengths") check_contiguous(log_probs, "log_probs") check_contiguous(labels, "labels") check_contiguous(label_lengths, "label_lengths") check_contiguous(lengths, "lengths") if lengths.shape[0] != log_probs.shape[0]: raise ValueError( f"Must have a length per example. " f"Given lengths dim: {lengths.shape[0]}, " f"Log probs dim : {log_probs.shape[0]}" ) if label_lengths.shape[0] != log_probs.shape[0]: raise ValueError( "Must have a label length per example. " f"Given label lengths dim : {label_lengths.shape[0]}, " f"Log probs dim : {log_probs.shape[0]}" ) check_dim(log_probs, 4, "log_probs") check_dim(labels, 2, "labels") check_dim(lengths, 1, "lenghts") check_dim(label_lengths, 1, "label_lenghts") max_T = torch.max(lengths) max_U = torch.max(label_lengths) T, U = log_probs.shape[1:3] if T != max_T: raise ValueError(f"Input length mismatch! Given T: {T}, Expected max T from input lengths: {max_T}") if U != max_U + 1: raise ValueError(f"Output length mismatch! Given U: {U}, Expected max U from target lengths: {max_U} + 1") def _assert_no_grad(tensor): assert not tensor.requires_grad, ( "gradients only computed for log_probs - please " "mark other tensors as not requiring gradients" ) def forward_pass(log_probs, labels, blank): """ Computes probability of the forward variable alpha. Args: log_probs: Tensor of shape [T, U, V+1] labels: Labels of shape [B, U] blank: Index of the blank token. Returns: A tuple of the forward variable probabilities - alpha of shape [T, U] and the log likelihood of this forward step. """ T, U, _ = log_probs.shape alphas = np.zeros((T, U), dtype='f') for t in range(1, T): alphas[t, 0] = alphas[t - 1, 0] + log_probs[t - 1, 0, blank] for u in range(1, U): alphas[0, u] = alphas[0, u - 1] + log_probs[0, u - 1, labels[u - 1]] for t in range(1, T): for u in range(1, U): no_emit = alphas[t - 1, u] + log_probs[t - 1, u, blank] emit = alphas[t, u - 1] + log_probs[t, u - 1, labels[u - 1]] alphas[t, u] = np.logaddexp(emit, no_emit) loglike = alphas[T - 1, U - 1] + log_probs[T - 1, U - 1, blank] return alphas, loglike def backward_pass(log_probs, labels, blank): """ Computes probability of the backward variable beta. Args: log_probs: Tensor of shape [T, U, V+1] labels: Labels of shape [B, U] blank: Index of the blank token. Returns: A tuple of the backward variable probabilities - beta of shape [T, U] and the log likelihood of this backward step. """ T, U, _ = log_probs.shape betas = np.zeros((T, U), dtype='f') betas[T - 1, U - 1] = log_probs[T - 1, U - 1, blank] for t in reversed(range(T - 1)): betas[t, U - 1] = betas[t + 1, U - 1] + log_probs[t, U - 1, blank] for u in reversed(range(U - 1)): betas[T - 1, u] = betas[T - 1, u + 1] + log_probs[T - 1, u, labels[u]] for t in reversed(range(T - 1)): for u in reversed(range(U - 1)): no_emit = betas[t + 1, u] + log_probs[t, u, blank] emit = betas[t, u + 1] + log_probs[t, u, labels[u]] betas[t, u] = np.logaddexp(emit, no_emit) return betas, betas[0, 0] def compute_gradient(log_probs, alphas, betas, labels, blank, fastemit_lambda): """ Computes the gradients of the log_probs with respect to the log probability of this step occuring. Args: Args: log_probs: Tensor of shape [T, U, V+1] alphas: Tensor of shape [T, U] which represents the forward variable. betas: Tensor of shape [T, U] which represents the backward variable. labels: Labels of shape [B, U] blank: Index of the blank token. Returns: Gradients of shape [T, U, V+1] with respect to the forward log probability """ T, U, _ = log_probs.shape grads = np.full(log_probs.shape, -float("inf")) log_like = betas[0, 0] # == alphas[T - 1, U - 1] + betas[T - 1, U - 1] # // grad to last blank transition grads[T - 1, U - 1, blank] = alphas[T - 1, U - 1] grads[: T - 1, :, blank] = alphas[: T - 1, :] + betas[1:, :] # // grad to label transition for u, l in enumerate(labels): grads[:, u, l] = alphas[:, u] + betas[:, u + 1] grads = -np.exp(grads + log_probs - log_like) if fastemit_lambda > 0.0: for u, l in enumerate(labels): grads[:, u, l] = (1.0 + fastemit_lambda) * grads[:, u, l] return grads def fastemit_regularization(log_probs, labels, alphas, betas, blank, fastemit_lambda): """ Describes the computation of FastEmit regularization from the paper - [FastEmit: Low-latency Streaming ASR with Sequence-level Emission Regularization](https://arxiv.org/abs/2010.11148) Args: log_probs: Tensor of shape [T, U, V+1] labels: Unused. Labels of shape [B, U] alphas: Tensor of shape [T, U] which represents the forward variable. betas: Unused. Tensor of shape [T, U] which represents the backward variable. blank: Index of the blank token. fastemit_lambda: Float scaling factor for FastEmit regularization. Returns: The regularized negative log likelihood - lambda * P˜(At, u|x) """ # General calculation of the fastemit regularization alignments T, U, _ = log_probs.shape # alignment = np.zeros((T, U), dtype='float32') # # for t in range(0, T): # alignment[t, U - 1] = alphas[t, U - 1] + betas[t, U - 1] # # for t in range(0, T): # for u in range(0, U - 1): # emit = alphas[t, u] + log_probs[t, u, labels[u]] + betas[t, u + 1] # alignment[t, u] = emit # reg = fastemit_lambda * (alignment[T - 1, U - 1]) # The above is equivalent to below, without need of computing above # reg = fastemit_lambda * (alphas[T - 1, U - 1] + betas[T - 1, U - 1]) # The above is also equivalent to below, without need of computing the betas alignment matrix reg = fastemit_lambda * (alphas[T - 1, U - 1] + log_probs[T - 1, U - 1, blank]) return -reg def transduce(log_probs, labels, blank=0, fastemit_lambda=0.0): """ Args: log_probs: 3D array with shape [input len, output len + 1, vocab size] labels: 1D array with shape [output time steps] blank: Index of the blank token. fastemit_lambda: Float scaling factor for FastEmit regularization. Returns: float: The negative log-likelihood 3D array: Gradients with respect to the unnormalized input actications 2d arrays: Alphas matrix (TxU) 2d array: Betas matrix (TxU) """ alphas, ll_forward = forward_pass(log_probs, labels, blank) betas, ll_backward = backward_pass(log_probs, labels, blank) grads = compute_gradient(log_probs, alphas, betas, labels, blank, fastemit_lambda) return -ll_forward, grads, alphas, betas def transduce_batch(log_probs, labels, flen, glen, blank=0, fastemit_lambda=0.0): """ Compute the transducer loss of the batch. Args: log_probs: [B, T, U, V+1]. Activation matrix normalized with log-softmax. labels: [B, U+1] - ground truth labels with <SOS> padded as blank token in the beginning. flen: Length vector of the acoustic sequence. glen: Length vector of the target sequence. blank: Id of the blank token. fastemit_lambda: Float scaling factor for FastEmit regularization. Returns: Batch of transducer forward log probabilities (loss) and the gradients of the activation matrix. """ grads = np.zeros_like(log_probs) costs = [] for b in range(log_probs.shape[0]): t = int(flen[b]) u = int(glen[b]) + 1 ll, g, alphas, betas = transduce(log_probs[b, :t, :u, :], labels[b, : u - 1], blank, fastemit_lambda) grads[b, :t, :u, :] = g reg = fastemit_regularization( log_probs[b, :t, :u, :], labels[b, : u - 1], alphas, betas, blank, fastemit_lambda ) ll += reg costs.append(ll) return costs, grads class _RNNT(Function): @staticmethod def forward(ctx, acts, labels, act_lens, label_lens, blank, fastemit_lambda): costs, grads = transduce_batch( acts.detach().cpu().numpy(), labels.cpu().numpy(), act_lens.cpu().numpy(), label_lens.cpu().numpy(), blank, fastemit_lambda, ) costs = torch.FloatTensor([sum(costs)]) grads = torch.Tensor(grads).to(acts) ctx.grads = grads return costs @staticmethod def backward(ctx, grad_output): return ctx.grads, None, None, None, None, None class RNNTLoss(Module): """ Parameters: `blank_label` (int): default 0 - label index of blank token fastemit_lambda: Float scaling factor for FastEmit regularization. """ def __init__(self, blank: int = 0, fastemit_lambda: float = 0.0): super(RNNTLoss, self).__init__() self.blank = blank self.fastemit_lambda = fastemit_lambda self.rnnt = _RNNT.apply def forward(self, acts, labels, act_lens, label_lens): assert len(labels.size()) == 2 _assert_no_grad(labels) _assert_no_grad(act_lens) _assert_no_grad(label_lens) certify_inputs(acts, labels, act_lens, label_lens) acts = torch.nn.functional.log_softmax(acts, -1) return self.rnnt(acts, labels, act_lens, label_lens, self.blank, self.fastemit_lambda) if __name__ == '__main__': loss = RNNTLoss(fastemit_lambda=0.01) torch.manual_seed(0) acts = torch.randn(1, 2, 5, 3) labels = torch.tensor([[0, 2, 1, 2]], dtype=torch.int32) act_lens = torch.tensor([2], dtype=torch.int32) label_lens = torch.tensor([len(labels[0])], dtype=torch.int32) loss_val = loss(acts, labels, act_lens, label_lens)
[((2801, 2819), 'torch.max', 'torch.max', (['lengths'], {}), '(lengths)\n', (2810, 2819), False, 'import torch\n'), ((2832, 2856), 'torch.max', 'torch.max', (['label_lengths'], {}), '(label_lengths)\n', (2841, 2856), False, 'import torch\n'), ((3781, 3808), 'numpy.zeros', 'np.zeros', (['(T, U)'], {'dtype': '"""f"""'}), "((T, U), dtype='f')\n", (3789, 3808), True, 'import numpy as np\n'), ((4802, 4829), 'numpy.zeros', 'np.zeros', (['(T, U)'], {'dtype': '"""f"""'}), "((T, U), dtype='f')\n", (4810, 4829), True, 'import numpy as np\n'), ((9810, 9834), 'numpy.zeros_like', 'np.zeros_like', (['log_probs'], {}), '(log_probs)\n', (9823, 9834), True, 'import numpy as np\n'), ((11831, 11851), 'torch.manual_seed', 'torch.manual_seed', (['(0)'], {}), '(0)\n', (11848, 11851), False, 'import torch\n'), ((11864, 11887), 'torch.randn', 'torch.randn', (['(1)', '(2)', '(5)', '(3)'], {}), '(1, 2, 5, 3)\n', (11875, 11887), False, 'import torch\n'), ((11901, 11948), 'torch.tensor', 'torch.tensor', (['[[0, 2, 1, 2]]'], {'dtype': 'torch.int32'}), '([[0, 2, 1, 2]], dtype=torch.int32)\n', (11913, 11948), False, 'import torch\n'), ((11964, 12000), 'torch.tensor', 'torch.tensor', (['[2]'], {'dtype': 'torch.int32'}), '([2], dtype=torch.int32)\n', (11976, 12000), False, 'import torch\n'), ((6467, 6503), 'numpy.exp', 'np.exp', (['(grads + log_probs - log_like)'], {}), '(grads + log_probs - log_like)\n', (6473, 6503), True, 'import numpy as np\n'), ((11618, 11659), 'torch.nn.functional.log_softmax', 'torch.nn.functional.log_softmax', (['acts', '(-1)'], {}), '(acts, -1)\n', (11649, 11659), False, 'import torch\n'), ((4233, 4260), 'numpy.logaddexp', 'np.logaddexp', (['emit', 'no_emit'], {}), '(emit, no_emit)\n', (4245, 4260), True, 'import numpy as np\n'), ((5349, 5376), 'numpy.logaddexp', 'np.logaddexp', (['emit', 'no_emit'], {}), '(emit, no_emit)\n', (5361, 5376), True, 'import numpy as np\n'), ((10736, 10755), 'torch.Tensor', 'torch.Tensor', (['grads'], {}), '(grads)\n', (10748, 10755), False, 'import torch\n')]
joeloskarsson/CGAN-regression
dataset_specifications/swirls.py
1cbcced10d28c11df8500373fc625e5df493f21d
import numpy as np import math from dataset_specifications.dataset import Dataset class SwirlsSet(Dataset): def __init__(self): super().__init__() self.name = "swirls" self.n_samples = { "train": 2000, "val": 1000, "test": 1000, } self.y_dim = 2 # 2D heteroskedastic Gaussian mixture model with 2 components def sample_ys(self, xs): n = xs.shape[0] components = np.random.randint(2, size=n) # uniform 0,1 angles = math.pi*components + (math.pi/2.)*xs[:,0] # Angles to centers means = np.stack((np.cos(angles), np.sin(angles)), axis=1) noise = np.random.randn(n, 2) # samples form 2d gaussian std = 0.3 - 0.2*np.abs(xs-1.) ys = means + std*noise return ys def sample(self, n): xs = np.random.uniform(low=0., high=2., size=(n,1)) ys = self.sample_ys(xs) return np.concatenate((xs, ys), axis=1)
[((476, 504), 'numpy.random.randint', 'np.random.randint', (['(2)'], {'size': 'n'}), '(2, size=n)\n', (493, 504), True, 'import numpy as np\n'), ((682, 703), 'numpy.random.randn', 'np.random.randn', (['n', '(2)'], {}), '(n, 2)\n', (697, 703), True, 'import numpy as np\n'), ((858, 907), 'numpy.random.uniform', 'np.random.uniform', ([], {'low': '(0.0)', 'high': '(2.0)', 'size': '(n, 1)'}), '(low=0.0, high=2.0, size=(n, 1))\n', (875, 907), True, 'import numpy as np\n'), ((952, 984), 'numpy.concatenate', 'np.concatenate', (['(xs, ys)'], {'axis': '(1)'}), '((xs, ys), axis=1)\n', (966, 984), True, 'import numpy as np\n'), ((624, 638), 'numpy.cos', 'np.cos', (['angles'], {}), '(angles)\n', (630, 638), True, 'import numpy as np\n'), ((640, 654), 'numpy.sin', 'np.sin', (['angles'], {}), '(angles)\n', (646, 654), True, 'import numpy as np\n'), ((756, 772), 'numpy.abs', 'np.abs', (['(xs - 1.0)'], {}), '(xs - 1.0)\n', (762, 772), True, 'import numpy as np\n')]
AndreasKaratzas/stonne
pytorch-frontend/tools/code_coverage/oss_coverage.py
2915fcc46cc94196303d81abbd1d79a56d6dd4a9
#!/usr/bin/env python import time from package.oss.cov_json import get_json_report from package.oss.init import initialization from package.tool.summarize_jsons import summarize_jsons from package.util.setting import TestPlatform def report_coverage() -> None: start_time = time.time() (options, test_list, interested_folders) = initialization() # run cpp tests get_json_report(test_list, options) # collect coverage data from json profiles if options.need_summary: summarize_jsons( test_list, interested_folders, [""], TestPlatform.OSS, start_time ) if __name__ == "__main__": report_coverage()
[((281, 292), 'time.time', 'time.time', ([], {}), '()\n', (290, 292), False, 'import time\n'), ((340, 356), 'package.oss.init.initialization', 'initialization', ([], {}), '()\n', (354, 356), False, 'from package.oss.init import initialization\n'), ((381, 416), 'package.oss.cov_json.get_json_report', 'get_json_report', (['test_list', 'options'], {}), '(test_list, options)\n', (396, 416), False, 'from package.oss.cov_json import get_json_report\n'), ((501, 587), 'package.tool.summarize_jsons.summarize_jsons', 'summarize_jsons', (['test_list', 'interested_folders', "['']", 'TestPlatform.OSS', 'start_time'], {}), "(test_list, interested_folders, [''], TestPlatform.OSS,\n start_time)\n", (516, 587), False, 'from package.tool.summarize_jsons import summarize_jsons\n')]
dscohen75/twitoff
twitoff/predict.py
62d5702e989a6b5fc54aaf9326e240dd63c9fd06
import numpy as np from sklearn.linear_model import LogisticRegression from .models import User from .twitter import vectorize_tweet def predict_user(user1_name, user2_name, tweet_text): """ Determine and return which user is more likely to say a given Tweet. Example: predict_user('ausen', 'elonmusk', 'Lambda School Rocks!') Returns 1 corresponding to 1st user passed in, or 0 for second. """ user1 = User.query.filter(User.name == user1_name).one() user2 = User.query.filter(User.name == user2_name).one() user1_vect = np.array([tweet.vect for tweet in user1.tweets]) user2_vect = np.array([tweet.vect for tweet in user2.tweets]) vects = np.vstack([user1_vect, user2_vect]) labels = np.concatenate([np.ones(len(user1.tweets)), np.zeros(len(user2.tweets))]) log_reg = LogisticRegression().fit(vects, labels) # We've done the model fitting, now to predict... hypo_tweet_vect = vectorize_tweet(tweet_text) return log_reg.predict(np.array(hypo_tweet_vect).reshape(1,-1))
[((561, 609), 'numpy.array', 'np.array', (['[tweet.vect for tweet in user1.tweets]'], {}), '([tweet.vect for tweet in user1.tweets])\n', (569, 609), True, 'import numpy as np\n'), ((627, 675), 'numpy.array', 'np.array', (['[tweet.vect for tweet in user2.tweets]'], {}), '([tweet.vect for tweet in user2.tweets])\n', (635, 675), True, 'import numpy as np\n'), ((689, 724), 'numpy.vstack', 'np.vstack', (['[user1_vect, user2_vect]'], {}), '([user1_vect, user2_vect])\n', (698, 724), True, 'import numpy as np\n'), ((856, 876), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {}), '()\n', (874, 876), False, 'from sklearn.linear_model import LogisticRegression\n'), ((1027, 1052), 'numpy.array', 'np.array', (['hypo_tweet_vect'], {}), '(hypo_tweet_vect)\n', (1035, 1052), True, 'import numpy as np\n')]
emanuelfeld/groupthink
groupthink/version.py
d8a6f666080352d396b07096cbd6304391f7c38d
#!/usr/bin/env python # -*- coding: utf-8 -*- # This file is part of groupthink. # https://github.com/emanuelfeld/groupthink # This project is in the public domain within the United States. # Additionally, the Government of the District of Columbia waives # copyright and related rights in the work worldwide through the CC0 1.0 # Universal public domain dedication. __version__ = '1.0.0' # NOQA
[]
George-Polya/st-gcn
feeder/feeder_ucf.py
e3209796d6de160161063e4c93a00c62b35d3591
# sys import os import sys import numpy as np import random import pickle import json # torch import torch import torch.nn as nn from torchvision import datasets, transforms # operation from . import tools class Feeder_UCF(torch.utils.data.Dataset): """ Feeder for skeleton-based action recognition in kinetics-skeleton dataset Arguments: data_path: the path to '.npy' data, the shape of data should be (N, C, T, V, M) label_path: the path to label random_choose: If true, randomly choose a portion of the input sequence random_shift: If true, randomly pad zeros at the begining or end of sequence random_move: If true, perform randomly but continuously changed transformation to input sequence window_size: The length of the output sequence pose_matching: If ture, match the pose between two frames num_person_in: The number of people the feeder can observe in the input sequence num_person_out: The number of people the feeder in the output sequence debug: If true, only use the first 100 samples """ def __init__(self, data_path, label_path, ignore_empty_sample=True, random_choose=False, random_shift=False, random_move=False, window_size=-1, pose_matching=False, num_person_in=5, num_person_out=2, debug=False): self.debug = debug self.data_path = data_path self.label_path = label_path self.random_choose = random_choose self.random_shift = random_shift self.random_move = random_move self.window_size = window_size self.num_person_in = num_person_in self.num_person_out = num_person_out self.pose_matching = pose_matching self.ignore_empty_sample = ignore_empty_sample self.load_data() def load_data(self): # load file list self.sample_name = os.listdir(self.data_path) if self.debug: self.sample_name = self.sample_name[0:2] # load label label_path = self.label_path with open(label_path) as f: label_info = json.load(f) sample_id = [name.split('.')[0] for name in self.sample_name] self.label = np.array( [label_info[id]['label_index'] for id in sample_id]) has_skeleton = np.array( [label_info[id]['has_skeleton'] for id in sample_id]) # ignore the samples which does not has skeleton sequence if self.ignore_empty_sample: self.sample_name = [ s for h, s in zip(has_skeleton, self.sample_name) if h ] self.label = self.label[has_skeleton] # output data shape (N, C, T, V, M) self.N = len(self.sample_name) #sample self.C = 3 #channel self.T = 90000 #frame self.V = 18 #joint self.M = self.num_person_out #person def __len__(self): return len(self.sample_name) def __iter__(self): return self def __getitem__(self, index): # output shape (C, T, V, M) # get data sample_name = self.sample_name[index] sample_path = os.path.join(self.data_path, sample_name) with open(sample_path, 'r') as f: video_info = json.load(f) # fill data_numpy data_numpy = np.zeros((self.C, self.T, self.V, self.num_person_in)) count = 0 for frame_info in video_info['data']: frame_index = frame_info['frame_index'] for m, skeleton_info in enumerate(frame_info["skeleton"]): if m >= self.num_person_in: break pose = skeleton_info['pose'] score = skeleton_info['score'] frame_index = int(frame_index) # print(frame_index) data_numpy[0, frame_index, :, m] = pose[0::2] data_numpy[1, frame_index, :, m] = pose[1::2] data_numpy[2, frame_index, :, m] = score # count += 1 # print(" ",count, " ") # centralization data_numpy[0:2] = data_numpy[0:2] - 0.5 data_numpy[0][data_numpy[2] == 0] = 0 data_numpy[1][data_numpy[2] == 0] = 0 # get & check label index label = video_info['label_index'] assert (self.label[index] == label) # data augmentation if self.random_shift: data_numpy = tools.random_shift(data_numpy) if self.random_choose: data_numpy = tools.random_choose(data_numpy, self.window_size) elif self.window_size > 0: data_numpy = tools.auto_pading(data_numpy, self.window_size) if self.random_move: data_numpy = tools.random_move(data_numpy) # sort by score sort_index = (-data_numpy[2, :, :, :].sum(axis=1)).argsort(axis=1) for t, s in enumerate(sort_index): data_numpy[:, t, :, :] = data_numpy[:, t, :, s].transpose((1, 2, 0)) data_numpy = data_numpy[:, :, :, 0:self.num_person_out] # match poses between 2 frames if self.pose_matching: data_numpy = tools.openpose_match(data_numpy) return data_numpy, label def top_k(self, score, top_k): assert (all(self.label >= 0)) rank = score.argsort() hit_top_k = [l in rank[i, -top_k:] for i, l in enumerate(self.label)] return sum(hit_top_k) * 1.0 / len(hit_top_k) def top_k_by_category(self, score, top_k): assert (all(self.label >= 0)) return tools.top_k_by_category(self.label, score, top_k) def calculate_recall_precision(self, score): assert (all(self.label >= 0)) return tools.calculate_recall_precision(self.label, score)
[((2055, 2081), 'os.listdir', 'os.listdir', (['self.data_path'], {}), '(self.data_path)\n', (2065, 2081), False, 'import os\n'), ((2393, 2454), 'numpy.array', 'np.array', (["[label_info[id]['label_index'] for id in sample_id]"], {}), "([label_info[id]['label_index'] for id in sample_id])\n", (2401, 2454), True, 'import numpy as np\n'), ((2491, 2553), 'numpy.array', 'np.array', (["[label_info[id]['has_skeleton'] for id in sample_id]"], {}), "([label_info[id]['has_skeleton'] for id in sample_id])\n", (2499, 2553), True, 'import numpy as np\n'), ((3330, 3371), 'os.path.join', 'os.path.join', (['self.data_path', 'sample_name'], {}), '(self.data_path, sample_name)\n', (3342, 3371), False, 'import os\n'), ((3500, 3554), 'numpy.zeros', 'np.zeros', (['(self.C, self.T, self.V, self.num_person_in)'], {}), '((self.C, self.T, self.V, self.num_person_in))\n', (3508, 3554), True, 'import numpy as np\n'), ((2279, 2291), 'json.load', 'json.load', (['f'], {}), '(f)\n', (2288, 2291), False, 'import json\n'), ((3439, 3451), 'json.load', 'json.load', (['f'], {}), '(f)\n', (3448, 3451), False, 'import json\n')]
Visualway/Vitary
apps/core/migrations/0001_initial.py
c7db9a25837fa7390b2177b9db48e73c6f1ab3c8
# Generated by Django 4.0.2 on 2022-03-02 03:29 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('vit', '0001_initial'), ] operations = [ migrations.CreateModel( name='Badge', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50)), ('description', models.TextField()), ('color', models.CharField(choices=[('success', 'Green'), ('info', 'Blue'), ('link', 'Purple'), ('primary', 'Turquoise'), ('warning', 'Yellow'), ('danger', 'Red'), ('dark', 'Black'), ('white', 'White')], max_length=50)), ('special', models.BooleanField(default=False)), ], options={ 'ordering': ['name'], }, ), migrations.CreateModel( name='Requirments', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50)), ('description', models.TextField()), ('badge', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='core.badge')), ], options={ 'ordering': ['name'], }, ), migrations.CreateModel( name='Abuse', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('abuse_type', models.CharField(choices=[('ABUSE', 'Abuse'), ('INAPPROPRIATE', 'Inappropriate'), ('SPAM', 'Spam'), ('BULLYING', 'Bullying'), ('SEXUAL_CONTENT', 'Sexual Content'), ('OTHER', 'Other')], max_length=50)), ('description', models.TextField()), ('date', models.DateTimeField(auto_now_add=True)), ('to_vit', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='vit.vit')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], options={ 'verbose_name_plural': 'Abuses', 'ordering': ['-date'], }, ), ]
[((247, 304), 'django.db.migrations.swappable_dependency', 'migrations.swappable_dependency', (['settings.AUTH_USER_MODEL'], {}), '(settings.AUTH_USER_MODEL)\n', (278, 304), False, 'from django.db import migrations, models\n'), ((467, 563), 'django.db.models.BigAutoField', 'models.BigAutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (486, 563), False, 'from django.db import migrations, models\n'), ((587, 618), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(50)'}), '(max_length=50)\n', (603, 618), False, 'from django.db import migrations, models\n'), ((653, 671), 'django.db.models.TextField', 'models.TextField', ([], {}), '()\n', (669, 671), False, 'from django.db import migrations, models\n'), ((700, 916), 'django.db.models.CharField', 'models.CharField', ([], {'choices': "[('success', 'Green'), ('info', 'Blue'), ('link', 'Purple'), ('primary',\n 'Turquoise'), ('warning', 'Yellow'), ('danger', 'Red'), ('dark',\n 'Black'), ('white', 'White')]", 'max_length': '(50)'}), "(choices=[('success', 'Green'), ('info', 'Blue'), ('link',\n 'Purple'), ('primary', 'Turquoise'), ('warning', 'Yellow'), ('danger',\n 'Red'), ('dark', 'Black'), ('white', 'White')], max_length=50)\n", (716, 916), False, 'from django.db import migrations, models\n'), ((939, 973), 'django.db.models.BooleanField', 'models.BooleanField', ([], {'default': '(False)'}), '(default=False)\n', (958, 973), False, 'from django.db import migrations, models\n'), ((1185, 1281), 'django.db.models.BigAutoField', 'models.BigAutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (1204, 1281), False, 'from django.db import migrations, models\n'), ((1305, 1336), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(50)'}), '(max_length=50)\n', (1321, 1336), False, 'from django.db import migrations, models\n'), ((1371, 1389), 'django.db.models.TextField', 'models.TextField', ([], {}), '()\n', (1387, 1389), False, 'from django.db import migrations, models\n'), ((1418, 1497), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'to': '"""core.badge"""'}), "(on_delete=django.db.models.deletion.CASCADE, to='core.badge')\n", (1435, 1497), False, 'from django.db import migrations, models\n'), ((1703, 1799), 'django.db.models.BigAutoField', 'models.BigAutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (1722, 1799), False, 'from django.db import migrations, models\n'), ((1829, 2037), 'django.db.models.CharField', 'models.CharField', ([], {'choices': "[('ABUSE', 'Abuse'), ('INAPPROPRIATE', 'Inappropriate'), ('SPAM', 'Spam'),\n ('BULLYING', 'Bullying'), ('SEXUAL_CONTENT', 'Sexual Content'), (\n 'OTHER', 'Other')]", 'max_length': '(50)'}), "(choices=[('ABUSE', 'Abuse'), ('INAPPROPRIATE',\n 'Inappropriate'), ('SPAM', 'Spam'), ('BULLYING', 'Bullying'), (\n 'SEXUAL_CONTENT', 'Sexual Content'), ('OTHER', 'Other')], max_length=50)\n", (1845, 2037), False, 'from django.db import migrations, models\n'), ((2063, 2081), 'django.db.models.TextField', 'models.TextField', ([], {}), '()\n', (2079, 2081), False, 'from django.db import migrations, models\n'), ((2109, 2148), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)'}), '(auto_now_add=True)\n', (2129, 2148), False, 'from django.db import migrations, models\n'), ((2178, 2254), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'to': '"""vit.vit"""'}), "(on_delete=django.db.models.deletion.CASCADE, to='vit.vit')\n", (2195, 2254), False, 'from django.db import migrations, models\n'), ((2282, 2378), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'to': 'settings.AUTH_USER_MODEL'}), '(on_delete=django.db.models.deletion.CASCADE, to=settings.\n AUTH_USER_MODEL)\n', (2299, 2378), False, 'from django.db import migrations, models\n')]
epiphany-platform/cdl-temporary
tests/common/schema_registry.py
daa704f379c05d7b733c382058ff88a2549d33d7
import os import subprocess import time import grpc import tests.rpc.proto.schema_registry_pb2 as pb2 import tests.rpc.proto.schema_registry_pb2_grpc as pb2_grpc from tests.common.postgres import PostgresConfig EXE = os.getenv('SCHEMA_REGISTRY_EXE') or 'schema-registry' class SchemaRegistry: def __init__(self, edge_registry_addr, kafka_brokers, postgres_config: PostgresConfig, kafka_group_id='schema_registry', input_port='50101', initial_schema=None): self.edge_registry_addr = edge_registry_addr self.kafka_brokers = kafka_brokers self.kafka_group_id = kafka_group_id self.input_port = input_port self.postgres_config = postgres_config self.initial_schema = initial_schema self.svc = None def start(self): env = { "SCHEMA_REGISTRY_COMMUNICATION_METHOD": 'kafka', "SCHEMA_REGISTRY_KAFKA__BROKERS": self.kafka_brokers, "SCHEMA_REGISTRY_KAFKA__GROUP_ID": self.kafka_group_id, "SCHEMA_REGISTRY_INPUT_PORT": self.input_port, "SCHEMA_REGISTRY_MONITORING__OTEL_SERVICE_NAME": 'schema-registry', "SCHEMA_REGISTRY_MONITORING__STATUS_PORT": '0', "SCHEMA_REGISTRY_SERVICES__EDGE_REGISTRY_URL": self.edge_registry_addr, **self.postgres_config.to_dict("SCHEMA_REGISTRY") } if self.initial_schema is not None: env.update(SCHEMA_REGISTRY_IMPORT_FILE=self.initial_schema) self.svc = subprocess.Popen([EXE], env=env) time.sleep(3) return self def stop(self): self.svc.kill() def create_schema(self, name, destination, query, body, schema_type): with grpc.insecure_channel(f"localhost:{self.input_port}") as channel: stub = pb2_grpc.SchemaRegistryStub(channel) resp = stub.AddSchema( pb2.NewSchema( definition=bytes(body, 'utf-8'), name=name, insert_destination=destination, query_address=query, schema_type=pb2.SchemaType(schema_type=schema_type))) return resp.id
[((219, 251), 'os.getenv', 'os.getenv', (['"""SCHEMA_REGISTRY_EXE"""'], {}), "('SCHEMA_REGISTRY_EXE')\n", (228, 251), False, 'import os\n'), ((1585, 1617), 'subprocess.Popen', 'subprocess.Popen', (['[EXE]'], {'env': 'env'}), '([EXE], env=env)\n', (1601, 1617), False, 'import subprocess\n'), ((1626, 1639), 'time.sleep', 'time.sleep', (['(3)'], {}), '(3)\n', (1636, 1639), False, 'import time\n'), ((1794, 1847), 'grpc.insecure_channel', 'grpc.insecure_channel', (['f"""localhost:{self.input_port}"""'], {}), "(f'localhost:{self.input_port}')\n", (1815, 1847), False, 'import grpc\n'), ((1879, 1915), 'tests.rpc.proto.schema_registry_pb2_grpc.SchemaRegistryStub', 'pb2_grpc.SchemaRegistryStub', (['channel'], {}), '(channel)\n', (1906, 1915), True, 'import tests.rpc.proto.schema_registry_pb2_grpc as pb2_grpc\n'), ((2191, 2230), 'tests.rpc.proto.schema_registry_pb2.SchemaType', 'pb2.SchemaType', ([], {'schema_type': 'schema_type'}), '(schema_type=schema_type)\n', (2205, 2230), True, 'import tests.rpc.proto.schema_registry_pb2 as pb2\n')]
dlaso99/3scale-tests
testsuite/tests/apicast/policy/routing/test_routing_policy_catch_all.py
b31a3b3596af6d632b393e383c0417ea56bd95ca
""" When a routing policy is set with an empty condition, it should be loaded correctly and should route all the requests to a correct backend. """ from urllib.parse import urlparse import pytest from packaging.version import Version # noqa # pylint: disable=unused-import from testsuite import TESTED_VERSION, rawobj # noqa # pylint: disable=unused-import from testsuite.echoed_request import EchoedRequest pytestmark = [ pytest.mark.skipif("TESTED_VERSION < Version('2.11')"), pytest.mark.issue("https://issues.redhat.com/browse/THREESCALE-6415")] @pytest.fixture(scope="module") def service_proxy_settings(private_base_url): """ Asserts, that echo api is used as the default backend """ return rawobj.Proxy(private_base_url("echo_api")) @pytest.fixture(scope="module") def service(service, private_base_url): """ Set the routing policy to route all requests to httpbin. (Using the logic that an empty condition should act as a catch all rule) """ proxy = service.proxy.list() proxy.policies.insert(0, rawobj.PolicyConfig( "routing", { "rules": [ { "url": private_base_url("httpbin"), "condition": {}, }]})) return service def test_routing_policy_without_header(api_client, private_base_url): """ Sends a request and asserts, that the routing policy is active and the requests is routed to the correct backend (httpbin) """ parsed_url = urlparse(private_base_url("httpbin")) response = api_client().get("/get") assert response.status_code == 200 echoed_request = EchoedRequest.create(response) assert echoed_request.headers["Host"] == parsed_url.hostname
[((565, 595), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""module"""'}), "(scope='module')\n", (579, 595), False, 'import pytest\n'), ((773, 803), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""module"""'}), "(scope='module')\n", (787, 803), False, 'import pytest\n'), ((431, 485), 'pytest.mark.skipif', 'pytest.mark.skipif', (['"""TESTED_VERSION < Version(\'2.11\')"""'], {}), '("TESTED_VERSION < Version(\'2.11\')")\n', (449, 485), False, 'import pytest\n'), ((491, 560), 'pytest.mark.issue', 'pytest.mark.issue', (['"""https://issues.redhat.com/browse/THREESCALE-6415"""'], {}), "('https://issues.redhat.com/browse/THREESCALE-6415')\n", (508, 560), False, 'import pytest\n'), ((1647, 1677), 'testsuite.echoed_request.EchoedRequest.create', 'EchoedRequest.create', (['response'], {}), '(response)\n', (1667, 1677), False, 'from testsuite.echoed_request import EchoedRequest\n')]
vmturbo/ceilometer
ceilometer/data_processing/notifications.py
f856d3c915b738a64bce14967ba8114fe923c1af
# Copyright (c) 2014 Mirantis Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. from oslo.config import cfg import oslo.messaging from ceilometer import plugin from ceilometer import sample OPTS = [ cfg.StrOpt('sahara_control_exchange', default='sahara', help="Exchange name for Data Processing notifications."), ] cfg.CONF.register_opts(OPTS) SERVICE = 'sahara' class DataProcessing(plugin.NotificationBase): resource_name = '%s.cluster' % SERVICE @property def event_types(self): return [ '%s.create' % self.resource_name, '%s.update' % self.resource_name, '%s.delete' % self.resource_name, ] @staticmethod def get_targets(conf): """Return a sequence of oslo.messaging.Target It is defining the exchange and topics to be connected for this plugin. """ return [oslo.messaging.Target(topic=topic, exchange=conf.sahara_control_exchange) for topic in conf.notification_topics] def process_notification(self, message): name = message['event_type'].replace(self.resource_name, 'cluster') project_id = message['payload']['project_id'] user_id = message['_context_user_id'] yield sample.Sample.from_notification( name=name, type=sample.TYPE_DELTA, unit='cluster', volume=1, resource_id=message['payload']['cluster_id'], user_id=user_id, project_id=project_id, message=message)
[((857, 885), 'oslo.config.cfg.CONF.register_opts', 'cfg.CONF.register_opts', (['OPTS'], {}), '(OPTS)\n', (879, 885), False, 'from oslo.config import cfg\n'), ((710, 827), 'oslo.config.cfg.StrOpt', 'cfg.StrOpt', (['"""sahara_control_exchange"""'], {'default': '"""sahara"""', 'help': '"""Exchange name for Data Processing notifications."""'}), "('sahara_control_exchange', default='sahara', help=\n 'Exchange name for Data Processing notifications.')\n", (720, 827), False, 'from oslo.config import cfg\n'), ((1820, 2024), 'ceilometer.sample.Sample.from_notification', 'sample.Sample.from_notification', ([], {'name': 'name', 'type': 'sample.TYPE_DELTA', 'unit': '"""cluster"""', 'volume': '(1)', 'resource_id': "message['payload']['cluster_id']", 'user_id': 'user_id', 'project_id': 'project_id', 'message': 'message'}), "(name=name, type=sample.TYPE_DELTA, unit=\n 'cluster', volume=1, resource_id=message['payload']['cluster_id'],\n user_id=user_id, project_id=project_id, message=message)\n", (1851, 2024), False, 'from ceilometer import sample\n')]
JalajaTR/cQube
tests/src/Diksha_Reports/usage_by_textbook/download_all_collection_records.py
6bf58ab25f0c36709630987ab730bbd5d9192c03
import os import time from selenium.webdriver.support.select import Select from Data.parameters import Data from get_dir import pwd from reuse_func import GetData class All_records_download(): def __init__(self,driver): self.driver = driver self.filename ='' def test_download_csv(self): self.data = GetData() self.p = pwd() self.driver.find_element_by_xpath(Data.hyper_link).click() self.data.page_loading(self.driver) colltype = Select(self.driver.find_element_by_name('collection_type')) colltype.select_by_visible_text(' Overall ') self.data.page_loading(self.driver) self.driver.find_element_by_id(Data.Download).click() time.sleep(4) self.filename = self.p.get_download_dir() + '/collectionType_all_data.csv' time.sleep(2) file = os.path.isfile(self.filename) os.remove(self.filename) return file
[((337, 346), 'reuse_func.GetData', 'GetData', ([], {}), '()\n', (344, 346), False, 'from reuse_func import GetData\n'), ((364, 369), 'get_dir.pwd', 'pwd', ([], {}), '()\n', (367, 369), False, 'from get_dir import pwd\n'), ((727, 740), 'time.sleep', 'time.sleep', (['(4)'], {}), '(4)\n', (737, 740), False, 'import time\n'), ((832, 845), 'time.sleep', 'time.sleep', (['(2)'], {}), '(2)\n', (842, 845), False, 'import time\n'), ((861, 890), 'os.path.isfile', 'os.path.isfile', (['self.filename'], {}), '(self.filename)\n', (875, 890), False, 'import os\n'), ((899, 923), 'os.remove', 'os.remove', (['self.filename'], {}), '(self.filename)\n', (908, 923), False, 'import os\n')]
Naysabots/yt-dlp
yt_dlp/cookies.py
bef4697a6a4c225d010125d6ff6dfbfd4fb76e33
import contextlib import ctypes import json import os import shutil import struct import subprocess import sys import tempfile from datetime import datetime, timedelta, timezone from enum import Enum, auto from hashlib import pbkdf2_hmac from .aes import ( aes_cbc_decrypt_bytes, aes_gcm_decrypt_and_verify_bytes, unpad_pkcs7, ) from .compat import compat_b64decode, compat_cookiejar_Cookie from .minicurses import MultilinePrinter, QuietMultilinePrinter from .utils import Popen, YoutubeDLCookieJar, error_to_str, expand_path try: import sqlite3 SQLITE_AVAILABLE = True except ImportError: # although sqlite3 is part of the standard library, it is possible to compile python without # sqlite support. See: https://github.com/yt-dlp/yt-dlp/issues/544 SQLITE_AVAILABLE = False try: import secretstorage SECRETSTORAGE_AVAILABLE = True except ImportError: SECRETSTORAGE_AVAILABLE = False SECRETSTORAGE_UNAVAILABLE_REASON = ( 'as the `secretstorage` module is not installed. ' 'Please install by running `python3 -m pip install secretstorage`.') except Exception as _err: SECRETSTORAGE_AVAILABLE = False SECRETSTORAGE_UNAVAILABLE_REASON = f'as the `secretstorage` module could not be initialized. {_err}' CHROMIUM_BASED_BROWSERS = {'brave', 'chrome', 'chromium', 'edge', 'opera', 'vivaldi'} SUPPORTED_BROWSERS = CHROMIUM_BASED_BROWSERS | {'firefox', 'safari'} class YDLLogger: def __init__(self, ydl=None): self._ydl = ydl def debug(self, message): if self._ydl: self._ydl.write_debug(message) def info(self, message): if self._ydl: self._ydl.to_screen(f'[Cookies] {message}') def warning(self, message, only_once=False): if self._ydl: self._ydl.report_warning(message, only_once) def error(self, message): if self._ydl: self._ydl.report_error(message) def progress_bar(self): """Return a context manager with a print method. (Optional)""" # Do not print to files/pipes, loggers, or when --no-progress is used if not self._ydl or self._ydl.params.get('noprogress') or self._ydl.params.get('logger'): return file = self._ydl._out_files['error'] try: if not file.isatty(): return except BaseException: return printer = MultilinePrinter(file, preserve_output=False) printer.print = lambda message: printer.print_at_line(f'[Cookies] {message}', 0) return printer def _create_progress_bar(logger): if hasattr(logger, 'progress_bar'): printer = logger.progress_bar() if printer: return printer printer = QuietMultilinePrinter() printer.print = lambda _: None return printer def load_cookies(cookie_file, browser_specification, ydl): cookie_jars = [] if browser_specification is not None: browser_name, profile, keyring = _parse_browser_specification(*browser_specification) cookie_jars.append(extract_cookies_from_browser(browser_name, profile, YDLLogger(ydl), keyring=keyring)) if cookie_file is not None: cookie_file = expand_path(cookie_file) jar = YoutubeDLCookieJar(cookie_file) if os.access(cookie_file, os.R_OK): jar.load(ignore_discard=True, ignore_expires=True) cookie_jars.append(jar) return _merge_cookie_jars(cookie_jars) def extract_cookies_from_browser(browser_name, profile=None, logger=YDLLogger(), *, keyring=None): if browser_name == 'firefox': return _extract_firefox_cookies(profile, logger) elif browser_name == 'safari': return _extract_safari_cookies(profile, logger) elif browser_name in CHROMIUM_BASED_BROWSERS: return _extract_chrome_cookies(browser_name, profile, keyring, logger) else: raise ValueError(f'unknown browser: {browser_name}') def _extract_firefox_cookies(profile, logger): logger.info('Extracting cookies from firefox') if not SQLITE_AVAILABLE: logger.warning('Cannot extract cookies from firefox without sqlite3 support. ' 'Please use a python interpreter compiled with sqlite3 support') return YoutubeDLCookieJar() if profile is None: search_root = _firefox_browser_dir() elif _is_path(profile): search_root = profile else: search_root = os.path.join(_firefox_browser_dir(), profile) cookie_database_path = _find_most_recently_used_file(search_root, 'cookies.sqlite', logger) if cookie_database_path is None: raise FileNotFoundError(f'could not find firefox cookies database in {search_root}') logger.debug(f'Extracting cookies from: "{cookie_database_path}"') with tempfile.TemporaryDirectory(prefix='yt_dlp') as tmpdir: cursor = None try: cursor = _open_database_copy(cookie_database_path, tmpdir) cursor.execute('SELECT host, name, value, path, expiry, isSecure FROM moz_cookies') jar = YoutubeDLCookieJar() with _create_progress_bar(logger) as progress_bar: table = cursor.fetchall() total_cookie_count = len(table) for i, (host, name, value, path, expiry, is_secure) in enumerate(table): progress_bar.print(f'Loading cookie {i: 6d}/{total_cookie_count: 6d}') cookie = compat_cookiejar_Cookie( version=0, name=name, value=value, port=None, port_specified=False, domain=host, domain_specified=bool(host), domain_initial_dot=host.startswith('.'), path=path, path_specified=bool(path), secure=is_secure, expires=expiry, discard=False, comment=None, comment_url=None, rest={}) jar.set_cookie(cookie) logger.info(f'Extracted {len(jar)} cookies from firefox') return jar finally: if cursor is not None: cursor.connection.close() def _firefox_browser_dir(): if sys.platform in ('linux', 'linux2'): return os.path.expanduser('~/.mozilla/firefox') elif sys.platform == 'win32': return os.path.expandvars(R'%APPDATA%\Mozilla\Firefox\Profiles') elif sys.platform == 'darwin': return os.path.expanduser('~/Library/Application Support/Firefox') else: raise ValueError(f'unsupported platform: {sys.platform}') def _get_chromium_based_browser_settings(browser_name): # https://chromium.googlesource.com/chromium/src/+/HEAD/docs/user_data_dir.md if sys.platform in ('linux', 'linux2'): config = _config_home() browser_dir = { 'brave': os.path.join(config, 'BraveSoftware/Brave-Browser'), 'chrome': os.path.join(config, 'google-chrome'), 'chromium': os.path.join(config, 'chromium'), 'edge': os.path.join(config, 'microsoft-edge'), 'opera': os.path.join(config, 'opera'), 'vivaldi': os.path.join(config, 'vivaldi'), }[browser_name] elif sys.platform == 'win32': appdata_local = os.path.expandvars('%LOCALAPPDATA%') appdata_roaming = os.path.expandvars('%APPDATA%') browser_dir = { 'brave': os.path.join(appdata_local, R'BraveSoftware\Brave-Browser\User Data'), 'chrome': os.path.join(appdata_local, R'Google\Chrome\User Data'), 'chromium': os.path.join(appdata_local, R'Chromium\User Data'), 'edge': os.path.join(appdata_local, R'Microsoft\Edge\User Data'), 'opera': os.path.join(appdata_roaming, R'Opera Software\Opera Stable'), 'vivaldi': os.path.join(appdata_local, R'Vivaldi\User Data'), }[browser_name] elif sys.platform == 'darwin': appdata = os.path.expanduser('~/Library/Application Support') browser_dir = { 'brave': os.path.join(appdata, 'BraveSoftware/Brave-Browser'), 'chrome': os.path.join(appdata, 'Google/Chrome'), 'chromium': os.path.join(appdata, 'Chromium'), 'edge': os.path.join(appdata, 'Microsoft Edge'), 'opera': os.path.join(appdata, 'com.operasoftware.Opera'), 'vivaldi': os.path.join(appdata, 'Vivaldi'), }[browser_name] else: raise ValueError(f'unsupported platform: {sys.platform}') # Linux keyring names can be determined by snooping on dbus while opening the browser in KDE: # dbus-monitor "interface='org.kde.KWallet'" "type=method_return" keyring_name = { 'brave': 'Brave', 'chrome': 'Chrome', 'chromium': 'Chromium', 'edge': 'Microsoft Edge' if sys.platform == 'darwin' else 'Chromium', 'opera': 'Opera' if sys.platform == 'darwin' else 'Chromium', 'vivaldi': 'Vivaldi' if sys.platform == 'darwin' else 'Chrome', }[browser_name] browsers_without_profiles = {'opera'} return { 'browser_dir': browser_dir, 'keyring_name': keyring_name, 'supports_profiles': browser_name not in browsers_without_profiles } def _extract_chrome_cookies(browser_name, profile, keyring, logger): logger.info(f'Extracting cookies from {browser_name}') if not SQLITE_AVAILABLE: logger.warning(f'Cannot extract cookies from {browser_name} without sqlite3 support. ' 'Please use a python interpreter compiled with sqlite3 support') return YoutubeDLCookieJar() config = _get_chromium_based_browser_settings(browser_name) if profile is None: search_root = config['browser_dir'] elif _is_path(profile): search_root = profile config['browser_dir'] = os.path.dirname(profile) if config['supports_profiles'] else profile else: if config['supports_profiles']: search_root = os.path.join(config['browser_dir'], profile) else: logger.error(f'{browser_name} does not support profiles') search_root = config['browser_dir'] cookie_database_path = _find_most_recently_used_file(search_root, 'Cookies', logger) if cookie_database_path is None: raise FileNotFoundError(f'could not find {browser_name} cookies database in "{search_root}"') logger.debug(f'Extracting cookies from: "{cookie_database_path}"') decryptor = get_cookie_decryptor(config['browser_dir'], config['keyring_name'], logger, keyring=keyring) with tempfile.TemporaryDirectory(prefix='yt_dlp') as tmpdir: cursor = None try: cursor = _open_database_copy(cookie_database_path, tmpdir) cursor.connection.text_factory = bytes column_names = _get_column_names(cursor, 'cookies') secure_column = 'is_secure' if 'is_secure' in column_names else 'secure' cursor.execute(f'SELECT host_key, name, value, encrypted_value, path, expires_utc, {secure_column} FROM cookies') jar = YoutubeDLCookieJar() failed_cookies = 0 unencrypted_cookies = 0 with _create_progress_bar(logger) as progress_bar: table = cursor.fetchall() total_cookie_count = len(table) for i, line in enumerate(table): progress_bar.print(f'Loading cookie {i: 6d}/{total_cookie_count: 6d}') is_encrypted, cookie = _process_chrome_cookie(decryptor, *line) if not cookie: failed_cookies += 1 continue elif not is_encrypted: unencrypted_cookies += 1 jar.set_cookie(cookie) if failed_cookies > 0: failed_message = f' ({failed_cookies} could not be decrypted)' else: failed_message = '' logger.info(f'Extracted {len(jar)} cookies from {browser_name}{failed_message}') counts = decryptor.cookie_counts.copy() counts['unencrypted'] = unencrypted_cookies logger.debug(f'cookie version breakdown: {counts}') return jar finally: if cursor is not None: cursor.connection.close() def _process_chrome_cookie(decryptor, host_key, name, value, encrypted_value, path, expires_utc, is_secure): host_key = host_key.decode('utf-8') name = name.decode('utf-8') value = value.decode('utf-8') path = path.decode('utf-8') is_encrypted = not value and encrypted_value if is_encrypted: value = decryptor.decrypt(encrypted_value) if value is None: return is_encrypted, None return is_encrypted, compat_cookiejar_Cookie( version=0, name=name, value=value, port=None, port_specified=False, domain=host_key, domain_specified=bool(host_key), domain_initial_dot=host_key.startswith('.'), path=path, path_specified=bool(path), secure=is_secure, expires=expires_utc, discard=False, comment=None, comment_url=None, rest={}) class ChromeCookieDecryptor: """ Overview: Linux: - cookies are either v10 or v11 - v10: AES-CBC encrypted with a fixed key - v11: AES-CBC encrypted with an OS protected key (keyring) - v11 keys can be stored in various places depending on the activate desktop environment [2] Mac: - cookies are either v10 or not v10 - v10: AES-CBC encrypted with an OS protected key (keyring) and more key derivation iterations than linux - not v10: 'old data' stored as plaintext Windows: - cookies are either v10 or not v10 - v10: AES-GCM encrypted with a key which is encrypted with DPAPI - not v10: encrypted with DPAPI Sources: - [1] https://chromium.googlesource.com/chromium/src/+/refs/heads/main/components/os_crypt/ - [2] https://chromium.googlesource.com/chromium/src/+/refs/heads/main/components/os_crypt/key_storage_linux.cc - KeyStorageLinux::CreateService """ def decrypt(self, encrypted_value): raise NotImplementedError('Must be implemented by sub classes') @property def cookie_counts(self): raise NotImplementedError('Must be implemented by sub classes') def get_cookie_decryptor(browser_root, browser_keyring_name, logger, *, keyring=None): if sys.platform in ('linux', 'linux2'): return LinuxChromeCookieDecryptor(browser_keyring_name, logger, keyring=keyring) elif sys.platform == 'darwin': return MacChromeCookieDecryptor(browser_keyring_name, logger) elif sys.platform == 'win32': return WindowsChromeCookieDecryptor(browser_root, logger) else: raise NotImplementedError(f'Chrome cookie decryption is not supported on this platform: {sys.platform}') class LinuxChromeCookieDecryptor(ChromeCookieDecryptor): def __init__(self, browser_keyring_name, logger, *, keyring=None): self._logger = logger self._v10_key = self.derive_key(b'peanuts') password = _get_linux_keyring_password(browser_keyring_name, keyring, logger) self._v11_key = None if password is None else self.derive_key(password) self._cookie_counts = {'v10': 0, 'v11': 0, 'other': 0} @staticmethod def derive_key(password): # values from # https://chromium.googlesource.com/chromium/src/+/refs/heads/main/components/os_crypt/os_crypt_linux.cc return pbkdf2_sha1(password, salt=b'saltysalt', iterations=1, key_length=16) @property def cookie_counts(self): return self._cookie_counts def decrypt(self, encrypted_value): version = encrypted_value[:3] ciphertext = encrypted_value[3:] if version == b'v10': self._cookie_counts['v10'] += 1 return _decrypt_aes_cbc(ciphertext, self._v10_key, self._logger) elif version == b'v11': self._cookie_counts['v11'] += 1 if self._v11_key is None: self._logger.warning('cannot decrypt v11 cookies: no key found', only_once=True) return None return _decrypt_aes_cbc(ciphertext, self._v11_key, self._logger) else: self._cookie_counts['other'] += 1 return None class MacChromeCookieDecryptor(ChromeCookieDecryptor): def __init__(self, browser_keyring_name, logger): self._logger = logger password = _get_mac_keyring_password(browser_keyring_name, logger) self._v10_key = None if password is None else self.derive_key(password) self._cookie_counts = {'v10': 0, 'other': 0} @staticmethod def derive_key(password): # values from # https://chromium.googlesource.com/chromium/src/+/refs/heads/main/components/os_crypt/os_crypt_mac.mm return pbkdf2_sha1(password, salt=b'saltysalt', iterations=1003, key_length=16) @property def cookie_counts(self): return self._cookie_counts def decrypt(self, encrypted_value): version = encrypted_value[:3] ciphertext = encrypted_value[3:] if version == b'v10': self._cookie_counts['v10'] += 1 if self._v10_key is None: self._logger.warning('cannot decrypt v10 cookies: no key found', only_once=True) return None return _decrypt_aes_cbc(ciphertext, self._v10_key, self._logger) else: self._cookie_counts['other'] += 1 # other prefixes are considered 'old data' which were stored as plaintext # https://chromium.googlesource.com/chromium/src/+/refs/heads/main/components/os_crypt/os_crypt_mac.mm return encrypted_value class WindowsChromeCookieDecryptor(ChromeCookieDecryptor): def __init__(self, browser_root, logger): self._logger = logger self._v10_key = _get_windows_v10_key(browser_root, logger) self._cookie_counts = {'v10': 0, 'other': 0} @property def cookie_counts(self): return self._cookie_counts def decrypt(self, encrypted_value): version = encrypted_value[:3] ciphertext = encrypted_value[3:] if version == b'v10': self._cookie_counts['v10'] += 1 if self._v10_key is None: self._logger.warning('cannot decrypt v10 cookies: no key found', only_once=True) return None # https://chromium.googlesource.com/chromium/src/+/refs/heads/main/components/os_crypt/os_crypt_win.cc # kNonceLength nonce_length = 96 // 8 # boringssl # EVP_AEAD_AES_GCM_TAG_LEN authentication_tag_length = 16 raw_ciphertext = ciphertext nonce = raw_ciphertext[:nonce_length] ciphertext = raw_ciphertext[nonce_length:-authentication_tag_length] authentication_tag = raw_ciphertext[-authentication_tag_length:] return _decrypt_aes_gcm(ciphertext, self._v10_key, nonce, authentication_tag, self._logger) else: self._cookie_counts['other'] += 1 # any other prefix means the data is DPAPI encrypted # https://chromium.googlesource.com/chromium/src/+/refs/heads/main/components/os_crypt/os_crypt_win.cc return _decrypt_windows_dpapi(encrypted_value, self._logger).decode('utf-8') def _extract_safari_cookies(profile, logger): if profile is not None: logger.error('safari does not support profiles') if sys.platform != 'darwin': raise ValueError(f'unsupported platform: {sys.platform}') cookies_path = os.path.expanduser('~/Library/Cookies/Cookies.binarycookies') if not os.path.isfile(cookies_path): logger.debug('Trying secondary cookie location') cookies_path = os.path.expanduser('~/Library/Containers/com.apple.Safari/Data/Library/Cookies/Cookies.binarycookies') if not os.path.isfile(cookies_path): raise FileNotFoundError('could not find safari cookies database') with open(cookies_path, 'rb') as f: cookies_data = f.read() jar = parse_safari_cookies(cookies_data, logger=logger) logger.info(f'Extracted {len(jar)} cookies from safari') return jar class ParserError(Exception): pass class DataParser: def __init__(self, data, logger): self._data = data self.cursor = 0 self._logger = logger def read_bytes(self, num_bytes): if num_bytes < 0: raise ParserError(f'invalid read of {num_bytes} bytes') end = self.cursor + num_bytes if end > len(self._data): raise ParserError('reached end of input') data = self._data[self.cursor:end] self.cursor = end return data def expect_bytes(self, expected_value, message): value = self.read_bytes(len(expected_value)) if value != expected_value: raise ParserError(f'unexpected value: {value} != {expected_value} ({message})') def read_uint(self, big_endian=False): data_format = '>I' if big_endian else '<I' return struct.unpack(data_format, self.read_bytes(4))[0] def read_double(self, big_endian=False): data_format = '>d' if big_endian else '<d' return struct.unpack(data_format, self.read_bytes(8))[0] def read_cstring(self): buffer = [] while True: c = self.read_bytes(1) if c == b'\x00': return b''.join(buffer).decode('utf-8') else: buffer.append(c) def skip(self, num_bytes, description='unknown'): if num_bytes > 0: self._logger.debug(f'skipping {num_bytes} bytes ({description}): {self.read_bytes(num_bytes)!r}') elif num_bytes < 0: raise ParserError(f'invalid skip of {num_bytes} bytes') def skip_to(self, offset, description='unknown'): self.skip(offset - self.cursor, description) def skip_to_end(self, description='unknown'): self.skip_to(len(self._data), description) def _mac_absolute_time_to_posix(timestamp): return int((datetime(2001, 1, 1, 0, 0, tzinfo=timezone.utc) + timedelta(seconds=timestamp)).timestamp()) def _parse_safari_cookies_header(data, logger): p = DataParser(data, logger) p.expect_bytes(b'cook', 'database signature') number_of_pages = p.read_uint(big_endian=True) page_sizes = [p.read_uint(big_endian=True) for _ in range(number_of_pages)] return page_sizes, p.cursor def _parse_safari_cookies_page(data, jar, logger): p = DataParser(data, logger) p.expect_bytes(b'\x00\x00\x01\x00', 'page signature') number_of_cookies = p.read_uint() record_offsets = [p.read_uint() for _ in range(number_of_cookies)] if number_of_cookies == 0: logger.debug(f'a cookies page of size {len(data)} has no cookies') return p.skip_to(record_offsets[0], 'unknown page header field') with _create_progress_bar(logger) as progress_bar: for i, record_offset in enumerate(record_offsets): progress_bar.print(f'Loading cookie {i: 6d}/{number_of_cookies: 6d}') p.skip_to(record_offset, 'space between records') record_length = _parse_safari_cookies_record(data[record_offset:], jar, logger) p.read_bytes(record_length) p.skip_to_end('space in between pages') def _parse_safari_cookies_record(data, jar, logger): p = DataParser(data, logger) record_size = p.read_uint() p.skip(4, 'unknown record field 1') flags = p.read_uint() is_secure = bool(flags & 0x0001) p.skip(4, 'unknown record field 2') domain_offset = p.read_uint() name_offset = p.read_uint() path_offset = p.read_uint() value_offset = p.read_uint() p.skip(8, 'unknown record field 3') expiration_date = _mac_absolute_time_to_posix(p.read_double()) _creation_date = _mac_absolute_time_to_posix(p.read_double()) # noqa: F841 try: p.skip_to(domain_offset) domain = p.read_cstring() p.skip_to(name_offset) name = p.read_cstring() p.skip_to(path_offset) path = p.read_cstring() p.skip_to(value_offset) value = p.read_cstring() except UnicodeDecodeError: logger.warning('failed to parse Safari cookie because UTF-8 decoding failed', only_once=True) return record_size p.skip_to(record_size, 'space at the end of the record') cookie = compat_cookiejar_Cookie( version=0, name=name, value=value, port=None, port_specified=False, domain=domain, domain_specified=bool(domain), domain_initial_dot=domain.startswith('.'), path=path, path_specified=bool(path), secure=is_secure, expires=expiration_date, discard=False, comment=None, comment_url=None, rest={}) jar.set_cookie(cookie) return record_size def parse_safari_cookies(data, jar=None, logger=YDLLogger()): """ References: - https://github.com/libyal/dtformats/blob/main/documentation/Safari%20Cookies.asciidoc - this data appears to be out of date but the important parts of the database structure is the same - there are a few bytes here and there which are skipped during parsing """ if jar is None: jar = YoutubeDLCookieJar() page_sizes, body_start = _parse_safari_cookies_header(data, logger) p = DataParser(data[body_start:], logger) for page_size in page_sizes: _parse_safari_cookies_page(p.read_bytes(page_size), jar, logger) p.skip_to_end('footer') return jar class _LinuxDesktopEnvironment(Enum): """ https://chromium.googlesource.com/chromium/src/+/refs/heads/main/base/nix/xdg_util.h DesktopEnvironment """ OTHER = auto() CINNAMON = auto() GNOME = auto() KDE = auto() PANTHEON = auto() UNITY = auto() XFCE = auto() class _LinuxKeyring(Enum): """ https://chromium.googlesource.com/chromium/src/+/refs/heads/main/components/os_crypt/key_storage_util_linux.h SelectedLinuxBackend """ KWALLET = auto() GNOMEKEYRING = auto() BASICTEXT = auto() SUPPORTED_KEYRINGS = _LinuxKeyring.__members__.keys() def _get_linux_desktop_environment(env): """ https://chromium.googlesource.com/chromium/src/+/refs/heads/main/base/nix/xdg_util.cc GetDesktopEnvironment """ xdg_current_desktop = env.get('XDG_CURRENT_DESKTOP', None) desktop_session = env.get('DESKTOP_SESSION', None) if xdg_current_desktop is not None: xdg_current_desktop = xdg_current_desktop.split(':')[0].strip() if xdg_current_desktop == 'Unity': if desktop_session is not None and 'gnome-fallback' in desktop_session: return _LinuxDesktopEnvironment.GNOME else: return _LinuxDesktopEnvironment.UNITY elif xdg_current_desktop == 'GNOME': return _LinuxDesktopEnvironment.GNOME elif xdg_current_desktop == 'X-Cinnamon': return _LinuxDesktopEnvironment.CINNAMON elif xdg_current_desktop == 'KDE': return _LinuxDesktopEnvironment.KDE elif xdg_current_desktop == 'Pantheon': return _LinuxDesktopEnvironment.PANTHEON elif xdg_current_desktop == 'XFCE': return _LinuxDesktopEnvironment.XFCE elif desktop_session is not None: if desktop_session in ('mate', 'gnome'): return _LinuxDesktopEnvironment.GNOME elif 'kde' in desktop_session: return _LinuxDesktopEnvironment.KDE elif 'xfce' in desktop_session: return _LinuxDesktopEnvironment.XFCE else: if 'GNOME_DESKTOP_SESSION_ID' in env: return _LinuxDesktopEnvironment.GNOME elif 'KDE_FULL_SESSION' in env: return _LinuxDesktopEnvironment.KDE return _LinuxDesktopEnvironment.OTHER def _choose_linux_keyring(logger): """ https://chromium.googlesource.com/chromium/src/+/refs/heads/main/components/os_crypt/key_storage_util_linux.cc SelectBackend """ desktop_environment = _get_linux_desktop_environment(os.environ) logger.debug(f'detected desktop environment: {desktop_environment.name}') if desktop_environment == _LinuxDesktopEnvironment.KDE: linux_keyring = _LinuxKeyring.KWALLET elif desktop_environment == _LinuxDesktopEnvironment.OTHER: linux_keyring = _LinuxKeyring.BASICTEXT else: linux_keyring = _LinuxKeyring.GNOMEKEYRING return linux_keyring def _get_kwallet_network_wallet(logger): """ The name of the wallet used to store network passwords. https://chromium.googlesource.com/chromium/src/+/refs/heads/main/components/os_crypt/kwallet_dbus.cc KWalletDBus::NetworkWallet which does a dbus call to the following function: https://api.kde.org/frameworks/kwallet/html/classKWallet_1_1Wallet.html Wallet::NetworkWallet """ default_wallet = 'kdewallet' try: proc = Popen([ 'dbus-send', '--session', '--print-reply=literal', '--dest=org.kde.kwalletd5', '/modules/kwalletd5', 'org.kde.KWallet.networkWallet' ], stdout=subprocess.PIPE, stderr=subprocess.DEVNULL) stdout, stderr = proc.communicate_or_kill() if proc.returncode != 0: logger.warning('failed to read NetworkWallet') return default_wallet else: network_wallet = stdout.decode('utf-8').strip() logger.debug(f'NetworkWallet = "{network_wallet}"') return network_wallet except Exception as e: logger.warning(f'exception while obtaining NetworkWallet: {e}') return default_wallet def _get_kwallet_password(browser_keyring_name, logger): logger.debug('using kwallet-query to obtain password from kwallet') if shutil.which('kwallet-query') is None: logger.error('kwallet-query command not found. KWallet and kwallet-query ' 'must be installed to read from KWallet. kwallet-query should be' 'included in the kwallet package for your distribution') return b'' network_wallet = _get_kwallet_network_wallet(logger) try: proc = Popen([ 'kwallet-query', '--read-password', f'{browser_keyring_name} Safe Storage', '--folder', f'{browser_keyring_name} Keys', network_wallet ], stdout=subprocess.PIPE, stderr=subprocess.DEVNULL) stdout, stderr = proc.communicate_or_kill() if proc.returncode != 0: logger.error(f'kwallet-query failed with return code {proc.returncode}. Please consult ' 'the kwallet-query man page for details') return b'' else: if stdout.lower().startswith(b'failed to read'): logger.debug('failed to read password from kwallet. Using empty string instead') # this sometimes occurs in KDE because chrome does not check hasEntry and instead # just tries to read the value (which kwallet returns "") whereas kwallet-query # checks hasEntry. To verify this: # dbus-monitor "interface='org.kde.KWallet'" "type=method_return" # while starting chrome. # this may be a bug as the intended behaviour is to generate a random password and store # it, but that doesn't matter here. return b'' else: logger.debug('password found') if stdout[-1:] == b'\n': stdout = stdout[:-1] return stdout except Exception as e: logger.warning(f'exception running kwallet-query: {error_to_str(e)}') return b'' def _get_gnome_keyring_password(browser_keyring_name, logger): if not SECRETSTORAGE_AVAILABLE: logger.error(f'secretstorage not available {SECRETSTORAGE_UNAVAILABLE_REASON}') return b'' # the Gnome keyring does not seem to organise keys in the same way as KWallet, # using `dbus-monitor` during startup, it can be observed that chromium lists all keys # and presumably searches for its key in the list. It appears that we must do the same. # https://github.com/jaraco/keyring/issues/556 with contextlib.closing(secretstorage.dbus_init()) as con: col = secretstorage.get_default_collection(con) for item in col.get_all_items(): if item.get_label() == f'{browser_keyring_name} Safe Storage': return item.get_secret() else: logger.error('failed to read from keyring') return b'' def _get_linux_keyring_password(browser_keyring_name, keyring, logger): # note: chrome/chromium can be run with the following flags to determine which keyring backend # it has chosen to use # chromium --enable-logging=stderr --v=1 2>&1 | grep key_storage_ # Chromium supports a flag: --password-store=<basic|gnome|kwallet> so the automatic detection # will not be sufficient in all cases. keyring = _LinuxKeyring[keyring] if keyring else _choose_linux_keyring(logger) logger.debug(f'Chosen keyring: {keyring.name}') if keyring == _LinuxKeyring.KWALLET: return _get_kwallet_password(browser_keyring_name, logger) elif keyring == _LinuxKeyring.GNOMEKEYRING: return _get_gnome_keyring_password(browser_keyring_name, logger) elif keyring == _LinuxKeyring.BASICTEXT: # when basic text is chosen, all cookies are stored as v10 (so no keyring password is required) return None assert False, f'Unknown keyring {keyring}' def _get_mac_keyring_password(browser_keyring_name, logger): logger.debug('using find-generic-password to obtain password from OSX keychain') try: proc = Popen( ['security', 'find-generic-password', '-w', # write password to stdout '-a', browser_keyring_name, # match 'account' '-s', f'{browser_keyring_name} Safe Storage'], # match 'service' stdout=subprocess.PIPE, stderr=subprocess.DEVNULL) stdout, stderr = proc.communicate_or_kill() if stdout[-1:] == b'\n': stdout = stdout[:-1] return stdout except Exception as e: logger.warning(f'exception running find-generic-password: {error_to_str(e)}') return None def _get_windows_v10_key(browser_root, logger): path = _find_most_recently_used_file(browser_root, 'Local State', logger) if path is None: logger.error('could not find local state file') return None logger.debug(f'Found local state file at "{path}"') with open(path, encoding='utf8') as f: data = json.load(f) try: base64_key = data['os_crypt']['encrypted_key'] except KeyError: logger.error('no encrypted key in Local State') return None encrypted_key = compat_b64decode(base64_key) prefix = b'DPAPI' if not encrypted_key.startswith(prefix): logger.error('invalid key') return None return _decrypt_windows_dpapi(encrypted_key[len(prefix):], logger) def pbkdf2_sha1(password, salt, iterations, key_length): return pbkdf2_hmac('sha1', password, salt, iterations, key_length) def _decrypt_aes_cbc(ciphertext, key, logger, initialization_vector=b' ' * 16): plaintext = unpad_pkcs7(aes_cbc_decrypt_bytes(ciphertext, key, initialization_vector)) try: return plaintext.decode('utf-8') except UnicodeDecodeError: logger.warning('failed to decrypt cookie (AES-CBC) because UTF-8 decoding failed. Possibly the key is wrong?', only_once=True) return None def _decrypt_aes_gcm(ciphertext, key, nonce, authentication_tag, logger): try: plaintext = aes_gcm_decrypt_and_verify_bytes(ciphertext, key, authentication_tag, nonce) except ValueError: logger.warning('failed to decrypt cookie (AES-GCM) because the MAC check failed. Possibly the key is wrong?', only_once=True) return None try: return plaintext.decode('utf-8') except UnicodeDecodeError: logger.warning('failed to decrypt cookie (AES-GCM) because UTF-8 decoding failed. Possibly the key is wrong?', only_once=True) return None def _decrypt_windows_dpapi(ciphertext, logger): """ References: - https://docs.microsoft.com/en-us/windows/win32/api/dpapi/nf-dpapi-cryptunprotectdata """ from ctypes.wintypes import DWORD class DATA_BLOB(ctypes.Structure): _fields_ = [('cbData', DWORD), ('pbData', ctypes.POINTER(ctypes.c_char))] buffer = ctypes.create_string_buffer(ciphertext) blob_in = DATA_BLOB(ctypes.sizeof(buffer), buffer) blob_out = DATA_BLOB() ret = ctypes.windll.crypt32.CryptUnprotectData( ctypes.byref(blob_in), # pDataIn None, # ppszDataDescr: human readable description of pDataIn None, # pOptionalEntropy: salt? None, # pvReserved: must be NULL None, # pPromptStruct: information about prompts to display 0, # dwFlags ctypes.byref(blob_out) # pDataOut ) if not ret: logger.warning('failed to decrypt with DPAPI', only_once=True) return None result = ctypes.string_at(blob_out.pbData, blob_out.cbData) ctypes.windll.kernel32.LocalFree(blob_out.pbData) return result def _config_home(): return os.environ.get('XDG_CONFIG_HOME', os.path.expanduser('~/.config')) def _open_database_copy(database_path, tmpdir): # cannot open sqlite databases if they are already in use (e.g. by the browser) database_copy_path = os.path.join(tmpdir, 'temporary.sqlite') shutil.copy(database_path, database_copy_path) conn = sqlite3.connect(database_copy_path) return conn.cursor() def _get_column_names(cursor, table_name): table_info = cursor.execute(f'PRAGMA table_info({table_name})').fetchall() return [row[1].decode('utf-8') for row in table_info] def _find_most_recently_used_file(root, filename, logger): # if there are multiple browser profiles, take the most recently used one i, paths = 0, [] with _create_progress_bar(logger) as progress_bar: for curr_root, dirs, files in os.walk(root): for file in files: i += 1 progress_bar.print(f'Searching for "{filename}": {i: 6d} files searched') if file == filename: paths.append(os.path.join(curr_root, file)) return None if not paths else max(paths, key=lambda path: os.lstat(path).st_mtime) def _merge_cookie_jars(jars): output_jar = YoutubeDLCookieJar() for jar in jars: for cookie in jar: output_jar.set_cookie(cookie) if jar.filename is not None: output_jar.filename = jar.filename return output_jar def _is_path(value): return os.path.sep in value def _parse_browser_specification(browser_name, profile=None, keyring=None): if browser_name not in SUPPORTED_BROWSERS: raise ValueError(f'unsupported browser: "{browser_name}"') if keyring not in (None, *SUPPORTED_KEYRINGS): raise ValueError(f'unsupported keyring: "{keyring}"') if profile is not None and _is_path(profile): profile = os.path.expanduser(profile) return browser_name, profile, keyring
[((19722, 19783), 'os.path.expanduser', 'os.path.expanduser', (['"""~/Library/Cookies/Cookies.binarycookies"""'], {}), "('~/Library/Cookies/Cookies.binarycookies')\n", (19740, 19783), False, 'import os\n'), ((25864, 25870), 'enum.auto', 'auto', ([], {}), '()\n', (25868, 25870), False, 'from enum import Enum, auto\n'), ((25886, 25892), 'enum.auto', 'auto', ([], {}), '()\n', (25890, 25892), False, 'from enum import Enum, auto\n'), ((25905, 25911), 'enum.auto', 'auto', ([], {}), '()\n', (25909, 25911), False, 'from enum import Enum, auto\n'), ((25922, 25928), 'enum.auto', 'auto', ([], {}), '()\n', (25926, 25928), False, 'from enum import Enum, auto\n'), ((25944, 25950), 'enum.auto', 'auto', ([], {}), '()\n', (25948, 25950), False, 'from enum import Enum, auto\n'), ((25963, 25969), 'enum.auto', 'auto', ([], {}), '()\n', (25967, 25969), False, 'from enum import Enum, auto\n'), ((25981, 25987), 'enum.auto', 'auto', ([], {}), '()\n', (25985, 25987), False, 'from enum import Enum, auto\n'), ((26186, 26192), 'enum.auto', 'auto', ([], {}), '()\n', (26190, 26192), False, 'from enum import Enum, auto\n'), ((26212, 26218), 'enum.auto', 'auto', ([], {}), '()\n', (26216, 26218), False, 'from enum import Enum, auto\n'), ((26235, 26241), 'enum.auto', 'auto', ([], {}), '()\n', (26239, 26241), False, 'from enum import Enum, auto\n'), ((35370, 35429), 'hashlib.pbkdf2_hmac', 'pbkdf2_hmac', (['"""sha1"""', 'password', 'salt', 'iterations', 'key_length'], {}), "('sha1', password, salt, iterations, key_length)\n", (35381, 35429), False, 'from hashlib import pbkdf2_hmac\n'), ((36806, 36845), 'ctypes.create_string_buffer', 'ctypes.create_string_buffer', (['ciphertext'], {}), '(ciphertext)\n', (36833, 36845), False, 'import ctypes\n'), ((37436, 37486), 'ctypes.string_at', 'ctypes.string_at', (['blob_out.pbData', 'blob_out.cbData'], {}), '(blob_out.pbData, blob_out.cbData)\n', (37452, 37486), False, 'import ctypes\n'), ((37491, 37540), 'ctypes.windll.kernel32.LocalFree', 'ctypes.windll.kernel32.LocalFree', (['blob_out.pbData'], {}), '(blob_out.pbData)\n', (37523, 37540), False, 'import ctypes\n'), ((37818, 37858), 'os.path.join', 'os.path.join', (['tmpdir', '"""temporary.sqlite"""'], {}), "(tmpdir, 'temporary.sqlite')\n", (37830, 37858), False, 'import os\n'), ((37863, 37909), 'shutil.copy', 'shutil.copy', (['database_path', 'database_copy_path'], {}), '(database_path, database_copy_path)\n', (37874, 37909), False, 'import shutil\n'), ((37921, 37956), 'sqlite3.connect', 'sqlite3.connect', (['database_copy_path'], {}), '(database_copy_path)\n', (37936, 37956), False, 'import sqlite3\n'), ((3300, 3331), 'os.access', 'os.access', (['cookie_file', 'os.R_OK'], {}), '(cookie_file, os.R_OK)\n', (3309, 3331), False, 'import os\n'), ((4809, 4853), 'tempfile.TemporaryDirectory', 'tempfile.TemporaryDirectory', ([], {'prefix': '"""yt_dlp"""'}), "(prefix='yt_dlp')\n", (4836, 4853), False, 'import tempfile\n'), ((6187, 6227), 'os.path.expanduser', 'os.path.expanduser', (['"""~/.mozilla/firefox"""'], {}), "('~/.mozilla/firefox')\n", (6205, 6227), False, 'import os\n'), ((10520, 10564), 'tempfile.TemporaryDirectory', 'tempfile.TemporaryDirectory', ([], {'prefix': '"""yt_dlp"""'}), "(prefix='yt_dlp')\n", (10547, 10564), False, 'import tempfile\n'), ((19796, 19824), 'os.path.isfile', 'os.path.isfile', (['cookies_path'], {}), '(cookies_path)\n', (19810, 19824), False, 'import os\n'), ((19906, 20018), 'os.path.expanduser', 'os.path.expanduser', (['"""~/Library/Containers/com.apple.Safari/Data/Library/Cookies/Cookies.binarycookies"""'], {}), "(\n '~/Library/Containers/com.apple.Safari/Data/Library/Cookies/Cookies.binarycookies'\n )\n", (19924, 20018), False, 'import os\n'), ((29961, 29990), 'shutil.which', 'shutil.which', (['"""kwallet-query"""'], {}), "('kwallet-query')\n", (29973, 29990), False, 'import shutil\n'), ((32507, 32548), 'secretstorage.get_default_collection', 'secretstorage.get_default_collection', (['con'], {}), '(con)\n', (32543, 32548), False, 'import secretstorage\n'), ((34883, 34895), 'json.load', 'json.load', (['f'], {}), '(f)\n', (34892, 34895), False, 'import json\n'), ((36870, 36891), 'ctypes.sizeof', 'ctypes.sizeof', (['buffer'], {}), '(buffer)\n', (36883, 36891), False, 'import ctypes\n'), ((36988, 37009), 'ctypes.byref', 'ctypes.byref', (['blob_in'], {}), '(blob_in)\n', (37000, 37009), False, 'import ctypes\n'), ((37274, 37296), 'ctypes.byref', 'ctypes.byref', (['blob_out'], {}), '(blob_out)\n', (37286, 37296), False, 'import ctypes\n'), ((37626, 37657), 'os.path.expanduser', 'os.path.expanduser', (['"""~/.config"""'], {}), "('~/.config')\n", (37644, 37657), False, 'import os\n'), ((38417, 38430), 'os.walk', 'os.walk', (['root'], {}), '(root)\n', (38424, 38430), False, 'import os\n'), ((39458, 39485), 'os.path.expanduser', 'os.path.expanduser', (['profile'], {}), '(profile)\n', (39476, 39485), False, 'import os\n'), ((6277, 6336), 'os.path.expandvars', 'os.path.expandvars', (['"""%APPDATA%\\\\Mozilla\\\\Firefox\\\\Profiles"""'], {}), "('%APPDATA%\\\\Mozilla\\\\Firefox\\\\Profiles')\n", (6295, 6336), False, 'import os\n'), ((7205, 7241), 'os.path.expandvars', 'os.path.expandvars', (['"""%LOCALAPPDATA%"""'], {}), "('%LOCALAPPDATA%')\n", (7223, 7241), False, 'import os\n'), ((7268, 7299), 'os.path.expandvars', 'os.path.expandvars', (['"""%APPDATA%"""'], {}), "('%APPDATA%')\n", (7286, 7299), False, 'import os\n'), ((20024, 20052), 'os.path.isfile', 'os.path.isfile', (['cookies_path'], {}), '(cookies_path)\n', (20038, 20052), False, 'import os\n'), ((32458, 32483), 'secretstorage.dbus_init', 'secretstorage.dbus_init', ([], {}), '()\n', (32481, 32483), False, 'import secretstorage\n'), ((6385, 6444), 'os.path.expanduser', 'os.path.expanduser', (['"""~/Library/Application Support/Firefox"""'], {}), "('~/Library/Application Support/Firefox')\n", (6403, 6444), False, 'import os\n'), ((6782, 6833), 'os.path.join', 'os.path.join', (['config', '"""BraveSoftware/Brave-Browser"""'], {}), "(config, 'BraveSoftware/Brave-Browser')\n", (6794, 6833), False, 'import os\n'), ((6857, 6894), 'os.path.join', 'os.path.join', (['config', '"""google-chrome"""'], {}), "(config, 'google-chrome')\n", (6869, 6894), False, 'import os\n'), ((6920, 6952), 'os.path.join', 'os.path.join', (['config', '"""chromium"""'], {}), "(config, 'chromium')\n", (6932, 6952), False, 'import os\n'), ((6974, 7012), 'os.path.join', 'os.path.join', (['config', '"""microsoft-edge"""'], {}), "(config, 'microsoft-edge')\n", (6986, 7012), False, 'import os\n'), ((7035, 7064), 'os.path.join', 'os.path.join', (['config', '"""opera"""'], {}), "(config, 'opera')\n", (7047, 7064), False, 'import os\n'), ((7089, 7120), 'os.path.join', 'os.path.join', (['config', '"""vivaldi"""'], {}), "(config, 'vivaldi')\n", (7101, 7120), False, 'import os\n'), ((7885, 7936), 'os.path.expanduser', 'os.path.expanduser', (['"""~/Library/Application Support"""'], {}), "('~/Library/Application Support')\n", (7903, 7936), False, 'import os\n'), ((9778, 9802), 'os.path.dirname', 'os.path.dirname', (['profile'], {}), '(profile)\n', (9793, 9802), False, 'import os\n'), ((9923, 9967), 'os.path.join', 'os.path.join', (["config['browser_dir']", 'profile'], {}), "(config['browser_dir'], profile)\n", (9935, 9967), False, 'import os\n'), ((36760, 36789), 'ctypes.POINTER', 'ctypes.POINTER', (['ctypes.c_char'], {}), '(ctypes.c_char)\n', (36774, 36789), False, 'import ctypes\n'), ((7345, 7415), 'os.path.join', 'os.path.join', (['appdata_local', '"""BraveSoftware\\\\Brave-Browser\\\\User Data"""'], {}), "(appdata_local, 'BraveSoftware\\\\Brave-Browser\\\\User Data')\n", (7357, 7415), False, 'import os\n'), ((7438, 7494), 'os.path.join', 'os.path.join', (['appdata_local', '"""Google\\\\Chrome\\\\User Data"""'], {}), "(appdata_local, 'Google\\\\Chrome\\\\User Data')\n", (7450, 7494), False, 'import os\n'), ((7519, 7569), 'os.path.join', 'os.path.join', (['appdata_local', '"""Chromium\\\\User Data"""'], {}), "(appdata_local, 'Chromium\\\\User Data')\n", (7531, 7569), False, 'import os\n'), ((7591, 7648), 'os.path.join', 'os.path.join', (['appdata_local', '"""Microsoft\\\\Edge\\\\User Data"""'], {}), "(appdata_local, 'Microsoft\\\\Edge\\\\User Data')\n", (7603, 7648), False, 'import os\n'), ((7670, 7731), 'os.path.join', 'os.path.join', (['appdata_roaming', '"""Opera Software\\\\Opera Stable"""'], {}), "(appdata_roaming, 'Opera Software\\\\Opera Stable')\n", (7682, 7731), False, 'import os\n'), ((7756, 7805), 'os.path.join', 'os.path.join', (['appdata_local', '"""Vivaldi\\\\User Data"""'], {}), "(appdata_local, 'Vivaldi\\\\User Data')\n", (7768, 7805), False, 'import os\n'), ((22224, 22271), 'datetime.datetime', 'datetime', (['(2001)', '(1)', '(1)', '(0)', '(0)'], {'tzinfo': 'timezone.utc'}), '(2001, 1, 1, 0, 0, tzinfo=timezone.utc)\n', (22232, 22271), False, 'from datetime import datetime, timedelta, timezone\n'), ((22274, 22302), 'datetime.timedelta', 'timedelta', ([], {'seconds': 'timestamp'}), '(seconds=timestamp)\n', (22283, 22302), False, 'from datetime import datetime, timedelta, timezone\n'), ((7982, 8034), 'os.path.join', 'os.path.join', (['appdata', '"""BraveSoftware/Brave-Browser"""'], {}), "(appdata, 'BraveSoftware/Brave-Browser')\n", (7994, 8034), False, 'import os\n'), ((8058, 8096), 'os.path.join', 'os.path.join', (['appdata', '"""Google/Chrome"""'], {}), "(appdata, 'Google/Chrome')\n", (8070, 8096), False, 'import os\n'), ((8122, 8155), 'os.path.join', 'os.path.join', (['appdata', '"""Chromium"""'], {}), "(appdata, 'Chromium')\n", (8134, 8155), False, 'import os\n'), ((8177, 8216), 'os.path.join', 'os.path.join', (['appdata', '"""Microsoft Edge"""'], {}), "(appdata, 'Microsoft Edge')\n", (8189, 8216), False, 'import os\n'), ((8239, 8287), 'os.path.join', 'os.path.join', (['appdata', '"""com.operasoftware.Opera"""'], {}), "(appdata, 'com.operasoftware.Opera')\n", (8251, 8287), False, 'import os\n'), ((8312, 8344), 'os.path.join', 'os.path.join', (['appdata', '"""Vivaldi"""'], {}), "(appdata, 'Vivaldi')\n", (8324, 8344), False, 'import os\n'), ((38646, 38675), 'os.path.join', 'os.path.join', (['curr_root', 'file'], {}), '(curr_root, file)\n', (38658, 38675), False, 'import os\n'), ((38739, 38753), 'os.lstat', 'os.lstat', (['path'], {}), '(path)\n', (38747, 38753), False, 'import os\n')]
jaraco/hgtools
hgtools/tests/conftest.py
1090d139e5dbdab864da8f1917a9e674331b6f9b
import os import pytest from hgtools import managers def _ensure_present(mgr): try: mgr.version() except Exception: pytest.skip() @pytest.fixture def tmpdir_as_cwd(tmpdir): with tmpdir.as_cwd(): yield tmpdir @pytest.fixture def hg_repo(tmpdir_as_cwd): mgr = managers.MercurialManager() _ensure_present(mgr) mgr._invoke('init', '.') os.makedirs('bar') touch('bar/baz') mgr._invoke('addremove') mgr._invoke('ci', '-m', 'committed') with open('bar/baz', 'w') as baz: baz.write('content') mgr._invoke('ci', '-m', 'added content') return tmpdir_as_cwd @pytest.fixture def git_repo(tmpdir_as_cwd): mgr = managers.GitManager() _ensure_present(mgr) mgr._invoke('init') mgr._invoke('config', 'user.email', 'hgtools@example.com') mgr._invoke('config', 'user.name', 'HGTools') os.makedirs('bar') touch('bar/baz') mgr._invoke('add', '.') mgr._invoke('commit', '-m', 'committed') with open('bar/baz', 'w') as baz: baz.write('content') mgr._invoke('commit', '-am', 'added content') return tmpdir_as_cwd def touch(filename): with open(filename, 'a'): pass
[((306, 333), 'hgtools.managers.MercurialManager', 'managers.MercurialManager', ([], {}), '()\n', (331, 333), False, 'from hgtools import managers\n'), ((392, 410), 'os.makedirs', 'os.makedirs', (['"""bar"""'], {}), "('bar')\n", (403, 410), False, 'import os\n'), ((696, 717), 'hgtools.managers.GitManager', 'managers.GitManager', ([], {}), '()\n', (715, 717), False, 'from hgtools import managers\n'), ((884, 902), 'os.makedirs', 'os.makedirs', (['"""bar"""'], {}), "('bar')\n", (895, 902), False, 'import os\n'), ((144, 157), 'pytest.skip', 'pytest.skip', ([], {}), '()\n', (155, 157), False, 'import pytest\n')]
handsome3163/H2Dgame-Firefly
gfirefly/dbentrust/dbutils.py
2d213928977dc490909f456327e5cae80998e60d
#coding:utf8 ''' Created on 2013-8-21 @author: lan (www.9miao.com) ''' import itertools import datetime def safeunicode(obj, encoding='utf-8'): r""" Converts any given object to unicode string. >>> safeunicode('hello') u'hello' >>> safeunicode(2) u'2' >>> safeunicode('\xe1\x88\xb4') u'\u1234' """ t = type(obj) if t is unicode: return obj elif t is str: return obj.decode(encoding) elif t in [int, float, bool]: return unicode(obj) elif hasattr(obj, '__unicode__') or isinstance(obj, unicode): return unicode(obj) else: return str(obj).decode(encoding) def safestr(obj, encoding='utf-8'): r""" Converts any given object to utf-8 encoded string. >>> safestr('hello') 'hello' >>> safestr(u'\u1234') '\xe1\x88\xb4' >>> safestr(2) '2' """ if isinstance(obj, unicode): return obj.encode(encoding) elif isinstance(obj, str): return obj elif hasattr(obj, 'next'): # iterator return itertools.imap(safestr, obj) else: return str(obj) def sqlify(obj): """ converts `obj` to its proper SQL version >>> sqlify(None) 'NULL' >>> sqlify(True) "'t'" >>> sqlify(3) '3' """ # because `1 == True and hash(1) == hash(True)` # we have to do this the hard way... if obj is None: return 'NULL' elif obj is True: return "'t'" elif obj is False: return "'f'" elif datetime and isinstance(obj, datetime.datetime): return repr(obj.isoformat()) else: if isinstance(obj, unicode): obj = obj.encode('utf8') return repr(obj) def sqllist(lst): """ Converts the arguments for use in something like a WHERE clause. >>> sqllist(['a', 'b']) 'a, b' >>> sqllist('a') 'a' >>> sqllist(u'abc') u'abc' """ if isinstance(lst, basestring): return lst else: return ', '.join(lst) def _sqllist(values): """ >>> _sqllist([1, 2, 3]) <sql: '(1, 2, 3)'> """ items = [] items.append('(') for i, v in enumerate(values): if i != 0: items.append(', ') items.append(sqlparam(v)) items.append(')') return SQLQuery(items) def sqlquote(a): """ Ensures `a` is quoted properly for use in a SQL query. >>> 'WHERE x = ' + sqlquote(True) + ' AND y = ' + sqlquote(3) <sql: "WHERE x = 't' AND y = 3"> >>> 'WHERE x = ' + sqlquote(True) + ' AND y IN ' + sqlquote([2, 3]) <sql: "WHERE x = 't' AND y IN (2, 3)"> """ if isinstance(a, list): return _sqllist(a) else: return sqlparam(a).sqlquery() def _interpolate(sformat): """ Takes a format string and returns a list of 2-tuples of the form (boolean, string) where boolean says whether string should be evaled or not. from <http://lfw.org/python/Itpl.py> (public domain, Ka-Ping Yee) """ from tokenize import tokenprog tokenprog = tokenprog def matchorfail(text, pos): match = tokenprog.match(text, pos) if match is None: raise _ItplError(text, pos) return match, match.end() namechars = "abcdefghijklmnopqrstuvwxyz" \ "ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_"; chunks = [] pos = 0 while 1: dollar = sformat.find("$", pos) if dollar < 0: break nextchar = sformat[dollar + 1] if nextchar == "{": chunks.append((0, sformat[pos:dollar])) pos, level = dollar + 2, 1 while level: match, pos = matchorfail(sformat, pos) tstart, tend = match.regs[3] token = sformat[tstart:tend] if token == "{": level = level + 1 elif token == "}": level = level - 1 chunks.append((1, sformat[dollar + 2:pos - 1])) elif nextchar in namechars: chunks.append((0, sformat[pos:dollar])) match, pos = matchorfail(sformat, dollar + 1) while pos < len(sformat): if sformat[pos] == "." and \ pos + 1 < len(sformat) and sformat[pos + 1] in namechars: match, pos = matchorfail(sformat, pos + 1) elif sformat[pos] in "([": pos, level = pos + 1, 1 while level: match, pos = matchorfail(sformat, pos) tstart, tend = match.regs[3] token = sformat[tstart:tend] if token[0] in "([": level = level + 1 elif token[0] in ")]": level = level - 1 else: break chunks.append((1, sformat[dollar + 1:pos])) else: chunks.append((0, sformat[pos:dollar + 1])) pos = dollar + 1 + (nextchar == "$") if pos < len(sformat): chunks.append((0, sformat[pos:])) return chunks def sqlwhere(dictionary, grouping=' AND '): """ Converts a `dictionary` to an SQL WHERE clause `SQLQuery`. >>> sqlwhere({'cust_id': 2, 'order_id':3}) <sql: 'order_id = 3 AND cust_id = 2'> >>> sqlwhere({'cust_id': 2, 'order_id':3}, grouping=', ') <sql: 'order_id = 3, cust_id = 2'> >>> sqlwhere({'a': 'a', 'b': 'b'}).query() 'a = %s AND b = %s' """ return SQLQuery.join([k + ' = ' + sqlparam(v) for k, v in dictionary.items()], grouping) def reparam(string_, dictionary): """ Takes a string and a dictionary and interpolates the string using values from the dictionary. Returns an `SQLQuery` for the result. >>> reparam("s = $s", dict(s=True)) <sql: "s = 't'"> >>> reparam("s IN $s", dict(s=[1, 2])) <sql: 's IN (1, 2)'> """ dictionary = dictionary.copy() # eval mucks with it result = [] for live, chunk in _interpolate(string_): if live: v = eval(chunk, dictionary) result.append(sqlquote(v)) else: result.append(chunk) return SQLQuery.join(result, '') class UnknownParamstyle(Exception): """ raised for unsupported db paramstyles (currently supported: qmark, numeric, format, pyformat) """ pass class _ItplError(ValueError): def __init__(self, text, pos): ValueError.__init__(self) self.text = text self.pos = pos def __str__(self): return "unfinished expression in %s at char %d" % ( repr(self.text), self.pos) class SQLParam(object): """ Parameter in SQLQuery. >>> q = SQLQuery(["SELECT * FROM test WHERE name=", SQLParam("joe")]) >>> q <sql: "SELECT * FROM test WHERE name='joe'"> >>> q.query() 'SELECT * FROM test WHERE name=%s' >>> q.values() ['joe'] """ __slots__ = ["value"] def __init__(self, value): self.value = value def get_marker(self, paramstyle='pyformat'): if paramstyle == 'qmark': return '?' elif paramstyle == 'numeric': return ':1' elif paramstyle is None or paramstyle in ['format', 'pyformat']: return '%s' raise UnknownParamstyle, paramstyle def sqlquery(self): return SQLQuery([self]) def __add__(self, other): return self.sqlquery() + other def __radd__(self, other): return other + self.sqlquery() def __str__(self): return str(self.value) def __repr__(self): return '<param: %s>' % repr(self.value) sqlparam = SQLParam class SQLQuery(object): """ You can pass this sort of thing as a clause in any db function. Otherwise, you can pass a dictionary to the keyword argument `vars` and the function will call reparam for you. Internally, consists of `items`, which is a list of strings and SQLParams, which get concatenated to produce the actual query. """ __slots__ = ["items"] # tested in sqlquote's docstring def __init__(self, items=None): r"""Creates a new SQLQuery. >>> SQLQuery("x") <sql: 'x'> >>> q = SQLQuery(['SELECT * FROM ', 'test', ' WHERE x=', SQLParam(1)]) >>> q <sql: 'SELECT * FROM test WHERE x=1'> >>> q.query(), q.values() ('SELECT * FROM test WHERE x=%s', [1]) >>> SQLQuery(SQLParam(1)) <sql: '1'> """ if items is None: self.items = [] elif isinstance(items, list): self.items = items elif isinstance(items, SQLParam): self.items = [items] elif isinstance(items, SQLQuery): self.items = list(items.items) else: self.items = [items] # Take care of SQLLiterals for i, item in enumerate(self.items): if isinstance(item, SQLParam) and isinstance(item.value, SQLLiteral): self.items[i] = item.value.v def append(self, value): self.items.append(value) def __add__(self, other): if isinstance(other, basestring): items = [other] elif isinstance(other, SQLQuery): items = other.items else: return NotImplemented return SQLQuery(self.items + items) def __radd__(self, other): if isinstance(other, basestring): items = [other] else: return NotImplemented return SQLQuery(items + self.items) def __iadd__(self, other): if isinstance(other, (basestring, SQLParam)): self.items.append(other) elif isinstance(other, SQLQuery): self.items.extend(other.items) else: return NotImplemented return self def __len__(self): return len(self.query()) def query(self, paramstyle=None): """ Returns the query part of the sql query. >>> q = SQLQuery(["SELECT * FROM test WHERE name=", SQLParam('joe')]) >>> q.query() 'SELECT * FROM test WHERE name=%s' >>> q.query(paramstyle='qmark') 'SELECT * FROM test WHERE name=?' """ s = [] for x in self.items: if isinstance(x, SQLParam): x = x.get_marker(paramstyle) s.append(safestr(x)) else: x = safestr(x) # automatically escape % characters in the query # For backward compatability, ignore escaping when the query looks already escaped if paramstyle in ['format', 'pyformat']: if '%' in x and '%%' not in x: x = x.replace('%', '%%') s.append(x) return "".join(s) def values(self): """ Returns the values of the parameters used in the sql query. >>> q = SQLQuery(["SELECT * FROM test WHERE name=", SQLParam('joe')]) >>> q.values() ['joe'] """ return [i.value for i in self.items if isinstance(i, SQLParam)] def join(items, sep=' ', prefix=None, suffix=None, target=None): """ Joins multiple queries. >>> SQLQuery.join(['a', 'b'], ', ') <sql: 'a, b'> Optinally, prefix and suffix arguments can be provided. >>> SQLQuery.join(['a', 'b'], ', ', prefix='(', suffix=')') <sql: '(a, b)'> If target argument is provided, the items are appended to target instead of creating a new SQLQuery. """ if target is None: target = SQLQuery() target_items = target.items if prefix: target_items.append(prefix) for i, item in enumerate(items): if i != 0: target_items.append(sep) if isinstance(item, SQLQuery): target_items.extend(item.items) else: target_items.append(item) if suffix: target_items.append(suffix) return target join = staticmethod(join) def _str(self): try: return self.query() % tuple([sqlify(x) for x in self.values()]) except (ValueError, TypeError): return self.query() def __str__(self): return safestr(self._str()) def __unicode__(self): return safeunicode(self._str()) def __repr__(self): return '<sql: %s>' % repr(str(self)) class SQLLiteral: """ Protects a string from `sqlquote`. >>> sqlquote('NOW()') <sql: "'NOW()'"> >>> sqlquote(SQLLiteral('NOW()')) <sql: 'NOW()'> """ def __init__(self, v): self.v = v def __repr__(self): return self.v class SQLProducer: """Database""" def __init__(self): """Creates a database. """ pass def query(self, sql_query,processed=False, svars=None): """ Execute SQL query `sql_query` using dictionary `vars` to interpolate it. If `processed=True`, `vars` is a `reparam`-style list to use instead of interpolating. >>> db = DB(None, {}) >>> db.query("SELECT * FROM foo", _test=True) <sql: 'SELECT * FROM foo'> >>> db.query("SELECT * FROM foo WHERE x = $x", vars=dict(x='f'), _test=True) <sql: "SELECT * FROM foo WHERE x = 'f'"> >>> db.query("SELECT * FROM foo WHERE x = " + sqlquote('f'), _test=True) <sql: "SELECT * FROM foo WHERE x = 'f'"> """ if svars is None: svars = {} if not processed and not isinstance(sql_query, SQLQuery): sql_query = reparam(sql_query, svars) return sql_query def sql_clauses(self, what, tables, where, group, order, limit, offset): return ( ('SELECT', what), ('FROM', sqllist(tables)), ('WHERE', where), ('GROUP BY', group), ('ORDER BY', order), ('LIMIT', limit), ('OFFSET', offset)) def gen_clause(self, sql, val, svars): if isinstance(val, (int, long)): if sql == 'WHERE': nout = 'id = ' + sqlquote(val) else: nout = SQLQuery(val) elif isinstance(val, (list, tuple)) and len(val) == 2: nout = SQLQuery(val[0], val[1]) # backwards-compatibility elif isinstance(val, SQLQuery): nout = val else: nout = reparam(val, svars) def xjoin(a, b): if a and b: return a + ' ' + b else: return a or b return xjoin(sql, nout) def _where(self, where, svars): if isinstance(where, (int, long)): where = "id = " + sqlparam(where) elif isinstance(where, (list, tuple)) and len(where) == 2: where = SQLQuery(where[0], where[1]) elif isinstance(where, SQLQuery): pass else: where = reparam(where, svars) return where def select(self, tables, svars=None, what='*', where=None, order=None, group=None, limit=None, offset=None, _test=False): """ Selects `what` from `tables` with clauses `where`, `order`, `group`, `limit`, and `offset`. Uses vars to interpolate. Otherwise, each clause can be a SQLQuery. >>> db = DB(None, {}) >>> db.select('foo', _test=True) <sql: 'SELECT * FROM foo'> >>> db.select(['foo', 'bar'], where="foo.bar_id = bar.id", limit=5, _test=True) <sql: 'SELECT * FROM foo, bar WHERE foo.bar_id = bar.id LIMIT 5'> """ if svars is None: svars = {} sql_clauses = self.sql_clauses(what, tables, where, group, order, limit, offset) clauses = [self.gen_clause(sql, val, svars) for sql, val in sql_clauses if val is not None] qout = SQLQuery.join(clauses) if _test: return qout return self.query(qout, processed=True) def insert(self, tablename, seqname=None, _test=False, **values): """ Inserts `values` into `tablename`. Returns current sequence ID. Set `seqname` to the ID if it's not the default, or to `False` if there isn't one. >>> db = DB(None, {}) >>> q = db.insert('foo', name='bob', age=2, created=SQLLiteral('NOW()'), _test=True) >>> q <sql: "INSERT INTO foo (age, name, created) VALUES (2, 'bob', NOW())"> >>> q.query() 'INSERT INTO foo (age, name, created) VALUES (%s, %s, NOW())' >>> q.values() [2, 'bob'] """ def q(x): return "(" + x + ")" if values: _keys = SQLQuery.join(values.keys(), ', ') _values = SQLQuery.join([sqlparam(v) for v in values.values()], ', ') sql_query = "INSERT INTO %s " % tablename + q(_keys) + ' VALUES ' + q(_values) else: sql_query = SQLQuery(self._get_insert_default_values_query(tablename)) return sql_query def _get_insert_default_values_query(self, table): return "INSERT INTO %s DEFAULT VALUES" % table def multiple_insert(self, tablename, values, seqname=None, _test=False): """ Inserts multiple rows into `tablename`. The `values` must be a list of dictioanries, one for each row to be inserted, each with the same set of keys. Returns the list of ids of the inserted rows. Set `seqname` to the ID if it's not the default, or to `False` if there isn't one. >>> db = DB(None, {}) >>> db.supports_multiple_insert = True >>> values = [{"name": "foo", "email": "foo@example.com"}, {"name": "bar", "email": "bar@example.com"}] >>> db.multiple_insert('person', values=values, _test=True) <sql: "INSERT INTO person (name, email) VALUES ('foo', 'foo@example.com'), ('bar', 'bar@example.com')"> """ if not values: return [] if not self.supports_multiple_insert: out = [self.insert(tablename, seqname=seqname, _test=_test, **v) for v in values] if seqname is False: return None else: return out keys = values[0].keys() #@@ make sure all keys are valid # make sure all rows have same keys. for v in values: if v.keys() != keys: raise ValueError, 'Bad data' sql_query = SQLQuery('INSERT INTO %s (%s) VALUES ' % (tablename, ', '.join(keys))) for i, row in enumerate(values): if i != 0: sql_query.append(", ") SQLQuery.join([SQLParam(row[k]) for k in keys], sep=", ", target=sql_query, prefix="(", suffix=")") if _test: return sql_query db_cursor = self._db_cursor() if seqname is not False: sql_query = self._process_insert_query(sql_query, tablename, seqname) if isinstance(sql_query, tuple): # for some databases, a separate query has to be made to find # the id of the inserted row. q1, q2 = sql_query self._db_execute(db_cursor, q1) self._db_execute(db_cursor, q2) else: self._db_execute(db_cursor, sql_query) try: out = db_cursor.fetchone()[0] out = range(out-len(values)+1, out+1) except Exception: out = None if not self.ctx.transactions: self.ctx.commit() return out def update(self, tables, where, svars=None, _test=False, **values): """ Update `tables` with clause `where` (interpolated using `vars`) and setting `values`. >>> db = DB(None, {}) >>> name = 'Joseph' >>> q = db.update('foo', where='name = $name', name='bob', age=2, ... created=SQLLiteral('NOW()'), vars=locals(), _test=True) >>> q <sql: "UPDATE foo SET age = 2, name = 'bob', created = NOW() WHERE name = 'Joseph'"> >>> q.query() 'UPDATE foo SET age = %s, name = %s, created = NOW() WHERE name = %s' >>> q.values() [2, 'bob', 'Joseph'] """ if svars is None: svars = {} where = self._where(where, svars) query = ( "UPDATE " + sqllist(tables) + " SET " + sqlwhere(values, ', ') + " WHERE " + where) if _test: return query db_cursor = self._db_cursor() self._db_execute(db_cursor, query) if not self.ctx.transactions: self.ctx.commit() return db_cursor.rowcount def delete(self, table, where, using=None, svars=None, _test=False): """ Deletes from `table` with clauses `where` and `using`. >>> db = DB(None, {}) >>> name = 'Joe' >>> db.delete('foo', where='name = $name', vars=locals(), _test=True) <sql: "DELETE FROM foo WHERE name = 'Joe'"> """ if svars is None: svars = {} where = self._where(where, svars) q = 'DELETE FROM ' + table if using: q += ' USING ' + sqllist(using) if where: q += ' WHERE ' + where return q sqlproducer = SQLProducer()
[]
tysonclugg/dddppp
dddppp/settings.py
22f52d671ca71c2df8d6ac566a1626e5f05b3159
""" Django settings for dddppp project. Generated by 'django-admin startproject' using Django 1.8.2. For more information on this file, see https://docs.djangoproject.com/en/1.8/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.8/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os import pkg_resources import pwd PROJECT_NAME = 'dddppp' # Enforce a valid POSIX environment # Get missing environment variables via call to pwd.getpwuid(...) _PW_CACHE = None _PW_MAP = { 'LOGNAME': 'pw_name', 'USER': 'pw_name', 'USERNAME': 'pw_name', 'UID': 'pw_uid', 'GID': 'pw_gid', 'HOME': 'pw_dir', 'SHELL': 'pw_shell', } for _missing_env in set(_PW_MAP).difference(os.environ): if _PW_CACHE is None: _PW_CACHE = pwd.getpwuid(os.getuid()) os.environ[_missing_env] = str(getattr(_PW_CACHE, _PW_MAP[_missing_env])) del _PW_CACHE, _PW_MAP, pwd BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.8/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'nfd_lvt=&k#h#$a^_l09j#5%s=mg+0aw=@t84ry$&rps43c33+' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [ 'localhost', ] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'dddp', 'dddp.server', 'dddp.accounts', 'dddppp.slides', ] for (requirement, pth) in [ ('django-extensions', 'django_extensions'), ]: try: pkg_resources.get_distribution(requirement) except ( pkg_resources.DistributionNotFound, pkg_resources.VersionConflict, ): continue INSTALLED_APPS.append(pth) MIDDLEWARE_CLASSES = [ 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', #'django.middleware.security.SecurityMiddleware', ] ROOT_URLCONF = 'dddppp.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'dddppp.wsgi.application' # Database # https://docs.djangoproject.com/en/1.8/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': os.environ.get('PGDATABASE', PROJECT_NAME), 'USER': os.environ.get('PGUSER', os.environ['LOGNAME']), 'PASSWORD': os.environ.get('DJANGO_DATABASE_PASSWORD', ''), 'HOST': os.environ.get('PGHOST', ''), 'PORT': os.environ.get('PGPORT', ''), } } # Internationalization # https://docs.djangoproject.com/en/1.8/topics/i18n/ LANGUAGE_CODE = 'en-au' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.8/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'static') STATICFILES_STORAGE = 'whitenoise.django.GzipManifestStaticFilesStorage' # django-secure # see: https://github.com/carljm/django-secure/ for more options SECURE_PROXY_SSL_HEADER = ('HTTP_X_FORWARDED_PROTO', 'https') #SECURE_SSL_REDIRECT = True SECURE_CONTENT_TYPE_NOSNIFF = True SECURE_FRAME_DENY = True SESSION_COOKIE_SECURE = True SESSION_COOKIE_HTTPONLY = True DDDPPP_CONTENT_TYPES = [] PROJ_ROOT = os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))
[((3870, 3902), 'os.path.join', 'os.path.join', (['BASE_DIR', '"""static"""'], {}), "(BASE_DIR, 'static')\n", (3882, 3902), False, 'import os\n'), ((1024, 1049), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (1039, 1049), False, 'import os\n'), ((1846, 1889), 'pkg_resources.get_distribution', 'pkg_resources.get_distribution', (['requirement'], {}), '(requirement)\n', (1876, 1889), False, 'import pkg_resources\n'), ((3280, 3322), 'os.environ.get', 'os.environ.get', (['"""PGDATABASE"""', 'PROJECT_NAME'], {}), "('PGDATABASE', PROJECT_NAME)\n", (3294, 3322), False, 'import os\n'), ((3340, 3387), 'os.environ.get', 'os.environ.get', (['"""PGUSER"""', "os.environ['LOGNAME']"], {}), "('PGUSER', os.environ['LOGNAME'])\n", (3354, 3387), False, 'import os\n'), ((3409, 3455), 'os.environ.get', 'os.environ.get', (['"""DJANGO_DATABASE_PASSWORD"""', '""""""'], {}), "('DJANGO_DATABASE_PASSWORD', '')\n", (3423, 3455), False, 'import os\n'), ((3473, 3501), 'os.environ.get', 'os.environ.get', (['"""PGHOST"""', '""""""'], {}), "('PGHOST', '')\n", (3487, 3501), False, 'import os\n'), ((3519, 3547), 'os.environ.get', 'os.environ.get', (['"""PGPORT"""', '""""""'], {}), "('PGPORT', '')\n", (3533, 3547), False, 'import os\n'), ((4337, 4362), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (4352, 4362), False, 'import os\n'), ((861, 872), 'os.getuid', 'os.getuid', ([], {}), '()\n', (870, 872), False, 'import os\n')]
dantas/wifi
setup.py
e9cd6df7d3411f1532843999f6c33f45369c3fe4
#!/usr/bin/env python from setuptools import setup import os __doc__ = """ Command line tool and library wrappers around iwlist and /etc/network/interfaces. """ def read(fname): return open(os.path.join(os.path.dirname(__file__), fname)).read() install_requires = [ 'setuptools', 'pbkdf2', ] try: import argparse except: install_requires.append('argparse') version = '1.0.0' setup( name='wifi', version=version, author='Rocky Meza, Gavin Wahl', author_email='rockymeza@gmail.com', description=__doc__, long_description=read('README.rst'), packages=['wifi'], scripts=['bin/wifi'], test_suite='tests', platforms=["Debian"], license='BSD', install_requires=install_requires, classifiers=[ "License :: OSI Approved :: BSD License", "Topic :: System :: Networking", "Operating System :: POSIX :: Linux", "Environment :: Console", "Programming Language :: Python", "Programming Language :: Python :: 2.6", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3.3", ], data_files=[ ('/etc/bash_completion.d/', ['extras/wifi-completion.bash']), ] )
[((210, 235), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (225, 235), False, 'import os\n')]
severinbeauvais/sbc-auth
auth-api/src/auth_api/resources/org_products.py
c98f75ea8970a357c62093b6e9f7deab61ae87c5
# Copyright © 2019 Province of British Columbia # # Licensed under the Apache License, Version 2.0 (the 'License'); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an 'AS IS' BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """API endpoints for managing an Org resource.""" from flask import request from flask_restplus import Namespace, Resource, cors from auth_api import status as http_status from auth_api.exceptions import BusinessException from auth_api.jwt_wrapper import JWTWrapper from auth_api.schemas import ProductSubscriptionSchema from auth_api.schemas import utils as schema_utils from auth_api.services import Product as ProductService from auth_api.tracer import Tracer from auth_api.utils.roles import Role from auth_api.utils.util import cors_preflight API = Namespace('products', description='Endpoints for products management') TRACER = Tracer.get_instance() _JWT = JWTWrapper.get_instance() @cors_preflight('GET,POST,OPTIONS') @API.route('', methods=['GET', 'POST', 'OPTIONS']) class OrgProducts(Resource): """Resource for managing product subscriptions.""" @staticmethod @TRACER.trace() @cors.crossdomain(origin='*') @_JWT.has_one_of_roles([Role.STAFF_CREATE_ACCOUNTS.value]) def post(org_id): """Post a new product subscription to the org using the request body.""" request_json = request.get_json() valid_format, errors = schema_utils.validate(request_json, 'org_product_subscription') if not valid_format: return {'message': schema_utils.serialize(errors)}, http_status.HTTP_400_BAD_REQUEST try: subscriptions = ProductService.create_product_subscription(org_id, request_json) if subscriptions is None: response, status = {'message': 'Not authorized to perform this action'}, \ http_status.HTTP_401_UNAUTHORIZED else: response, status = {'subscriptions': ProductSubscriptionSchema().dump(subscriptions, many=True)}, \ http_status.HTTP_201_CREATED except BusinessException as exception: response, status = {'code': exception.code, 'message': exception.message}, exception.status_code return response, status
[((1152, 1222), 'flask_restplus.Namespace', 'Namespace', (['"""products"""'], {'description': '"""Endpoints for products management"""'}), "('products', description='Endpoints for products management')\n", (1161, 1222), False, 'from flask_restplus import Namespace, Resource, cors\n'), ((1232, 1253), 'auth_api.tracer.Tracer.get_instance', 'Tracer.get_instance', ([], {}), '()\n', (1251, 1253), False, 'from auth_api.tracer import Tracer\n'), ((1261, 1286), 'auth_api.jwt_wrapper.JWTWrapper.get_instance', 'JWTWrapper.get_instance', ([], {}), '()\n', (1284, 1286), False, 'from auth_api.jwt_wrapper import JWTWrapper\n'), ((1290, 1324), 'auth_api.utils.util.cors_preflight', 'cors_preflight', (['"""GET,POST,OPTIONS"""'], {}), "('GET,POST,OPTIONS')\n", (1304, 1324), False, 'from auth_api.utils.util import cors_preflight\n'), ((1504, 1532), 'flask_restplus.cors.crossdomain', 'cors.crossdomain', ([], {'origin': '"""*"""'}), "(origin='*')\n", (1520, 1532), False, 'from flask_restplus import Namespace, Resource, cors\n'), ((1722, 1740), 'flask.request.get_json', 'request.get_json', ([], {}), '()\n', (1738, 1740), False, 'from flask import request\n'), ((1772, 1835), 'auth_api.schemas.utils.validate', 'schema_utils.validate', (['request_json', '"""org_product_subscription"""'], {}), "(request_json, 'org_product_subscription')\n", (1793, 1835), True, 'from auth_api.schemas import utils as schema_utils\n'), ((2004, 2068), 'auth_api.services.Product.create_product_subscription', 'ProductService.create_product_subscription', (['org_id', 'request_json'], {}), '(org_id, request_json)\n', (2046, 2068), True, 'from auth_api.services import Product as ProductService\n'), ((1896, 1926), 'auth_api.schemas.utils.serialize', 'schema_utils.serialize', (['errors'], {}), '(errors)\n', (1918, 1926), True, 'from auth_api.schemas import utils as schema_utils\n'), ((2338, 2365), 'auth_api.schemas.ProductSubscriptionSchema', 'ProductSubscriptionSchema', ([], {}), '()\n', (2363, 2365), False, 'from auth_api.schemas import ProductSubscriptionSchema\n')]
nicole331/TWLight
TWLight/applications/management/commands/send_coordinator_reminders.py
fab9002e76868f8a2ef36f9279c777de34243b2c
import logging from collections import Counter from django.core.management.base import BaseCommand from django.db.models import Q from TWLight.applications.models import Application from TWLight.resources.models import Partner from TWLight.applications.signals import Reminder from TWLight.users.models import Editor logger = logging.getLogger(__name__) class Command(BaseCommand): def handle(self, *args, **options): # This is not DRY. Originally, this pulled the queryset from # TWLight.applications.views.ListApplicationsView.get_queryset(). # But that now expects a request object. So, we did a copy/paste. # We're actually getting apps with a status of PENDING or QUESTION # or APPROVED, and their corresponding user preferences being True # for partners with a status of AVAILABLE. all_apps = ( Application.objects.filter( Q( partner__coordinator__editor__user__userprofile__pending_app_reminders=True ) & Q(status=Application.PENDING) | Q( partner__coordinator__editor__user__userprofile__discussion_app_reminders=True ) & Q(status=Application.QUESTION) | Q( partner__coordinator__editor__user__userprofile__approved_app_reminders=True ) & Q(status=Application.APPROVED), partner__status__in=[Partner.AVAILABLE], editor__isnull=False, ) .exclude(editor__user__groups__name="restricted") .order_by("status", "partner", "date_created") ) # A deduplicated dict of coordinators from the pending app queryset, along # with a count of how many total pending apps they have coordinators = Counter( all_apps.values_list( "partner__coordinator__editor", "partner__coordinator__email", "partner__coordinator__editor__user__userprofile__lang", ) ) for coordinator, count in list(coordinators.items()): try: # We create a dictionary with the three status codes # we'd want to send emails for, and their corresponding # counts. app_status_and_count = { Application.PENDING: all_apps.filter( status=Application.PENDING, partner__coordinator__editor=coordinator[0], ).count(), Application.QUESTION: all_apps.filter( status=Application.QUESTION, partner__coordinator__editor=coordinator[0], ).count(), Application.APPROVED: all_apps.filter( status=Application.APPROVED, partner__coordinator__editor=coordinator[0], ).count(), } editor = Editor.objects.get(id=coordinator[0]) except Editor.DoesNotExist: logger.info( "Editor {} does not exist; skipping.".format(coordinator[0]) ) break # Only bother with the signal if we have a coordinator email. if coordinator[1]: Reminder.coordinator_reminder.send( sender=self.__class__, app_status_and_count=app_status_and_count, coordinator_wp_username=editor.wp_username, coordinator_email=coordinator[1], coordinator_lang=coordinator[2], )
[((328, 355), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (345, 355), False, 'import logging\n'), ((3069, 3106), 'TWLight.users.models.Editor.objects.get', 'Editor.objects.get', ([], {'id': 'coordinator[0]'}), '(id=coordinator[0])\n', (3087, 3106), False, 'from TWLight.users.models import Editor\n'), ((3418, 3643), 'TWLight.applications.signals.Reminder.coordinator_reminder.send', 'Reminder.coordinator_reminder.send', ([], {'sender': 'self.__class__', 'app_status_and_count': 'app_status_and_count', 'coordinator_wp_username': 'editor.wp_username', 'coordinator_email': 'coordinator[1]', 'coordinator_lang': 'coordinator[2]'}), '(sender=self.__class__,\n app_status_and_count=app_status_and_count, coordinator_wp_username=\n editor.wp_username, coordinator_email=coordinator[1], coordinator_lang=\n coordinator[2])\n', (3452, 3643), False, 'from TWLight.applications.signals import Reminder\n'), ((1291, 1370), 'django.db.models.Q', 'Q', ([], {'partner__coordinator__editor__user__userprofile__approved_app_reminders': '(True)'}), '(partner__coordinator__editor__user__userprofile__approved_app_reminders=True)\n', (1292, 1370), False, 'from django.db.models import Q\n'), ((1427, 1457), 'django.db.models.Q', 'Q', ([], {'status': 'Application.APPROVED'}), '(status=Application.APPROVED)\n', (1428, 1457), False, 'from django.db.models import Q\n'), ((921, 999), 'django.db.models.Q', 'Q', ([], {'partner__coordinator__editor__user__userprofile__pending_app_reminders': '(True)'}), '(partner__coordinator__editor__user__userprofile__pending_app_reminders=True)\n', (922, 999), False, 'from django.db.models import Q\n'), ((1056, 1085), 'django.db.models.Q', 'Q', ([], {'status': 'Application.PENDING'}), '(status=Application.PENDING)\n', (1057, 1085), False, 'from django.db.models import Q\n'), ((1104, 1190), 'django.db.models.Q', 'Q', ([], {'partner__coordinator__editor__user__userprofile__discussion_app_reminders': '(True)'}), '(partner__coordinator__editor__user__userprofile__discussion_app_reminders\n =True)\n', (1105, 1190), False, 'from django.db.models import Q\n'), ((1242, 1272), 'django.db.models.Q', 'Q', ([], {'status': 'Application.QUESTION'}), '(status=Application.QUESTION)\n', (1243, 1272), False, 'from django.db.models import Q\n')]
rapattack88/mcclanahoochie
python/3D-rrt/pvtrace/LightSources.py
6df72553ba954b52e949a6847a213b22f9e90157
# pvtrace is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # pvtrace is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import numpy as np from external.transformations import translation_matrix, rotation_matrix import external.transformations as tf from Trace import Photon from Geometry import Box, Cylinder, FinitePlane, transform_point, transform_direction, rotation_matrix_from_vector_alignment, norm from Materials import Spectrum def random_spherecial_vector(): # This method of calculating isotropic vectors is taken from GNU Scientific Library LOOP = True while LOOP: x = -1. + 2. * np.random.uniform() y = -1. + 2. * np.random.uniform() s = x**2 + y**2 if s <= 1.0: LOOP = False z = -1. + 2. * s a = 2 * np.sqrt(1 - s) x = a * x y = a * y return np.array([x,y,z]) class SimpleSource(object): """A light source that will generate photons of a single colour, direction and position.""" def __init__(self, position=[0,0,0], direction=[0,0,1], wavelength=555, use_random_polarisation=False): super(SimpleSource, self).__init__() self.position = position self.direction = direction self.wavelength = wavelength self.use_random_polarisation = use_random_polarisation self.throw = 0 self.source_id = "SimpleSource_" + str(id(self)) def photon(self): photon = Photon() photon.source = self.source_id photon.position = np.array(self.position) photon.direction = np.array(self.direction) photon.active = True photon.wavelength = self.wavelength # If use_polarisation is set generate a random polarisation vector of the photon if self.use_random_polarisation: # Randomise rotation angle around xy-plane, the transform from +z to the direction of the photon vec = random_spherecial_vector() vec[2] = 0. vec = norm(vec) R = rotation_matrix_from_vector_alignment(self.direction, [0,0,1]) photon.polarisation = transform_direction(vec, R) else: photon.polarisation = None photon.id = self.throw self.throw = self.throw + 1 return photon class Laser(object): """A light source that will generate photons of a single colour, direction and position.""" def __init__(self, position=[0,0,0], direction=[0,0,1], wavelength=555, polarisation=None): super(Laser, self).__init__() self.position = np.array(position) self.direction = np.array(direction) self.wavelength = wavelength assert polarisation != None, "Polarisation of the Laser is not set." self.polarisation = np.array(polarisation) self.throw = 0 self.source_id = "LaserSource_" + str(id(self)) def photon(self): photon = Photon() photon.source = self.source_id photon.position = np.array(self.position) photon.direction = np.array(self.direction) photon.active = True photon.wavelength = self.wavelength photon.polarisation = self.polarisation photon.id = self.throw self.throw = self.throw + 1 return photon class PlanarSource(object): """A box that emits photons from the top surface (normal), sampled from the spectrum.""" def __init__(self, spectrum=None, wavelength=555, direction=(0,0,1), length=0.05, width=0.05): super(PlanarSource, self).__init__() self.spectrum = spectrum self.wavelength = wavelength self.plane = FinitePlane(length=length, width=width) self.length = length self.width = width # direction is the direction that photons are fired out of the plane in the GLOBAL FRAME. # i.e. this is passed directly to the photon to set is's direction self.direction = direction self.throw = 0 self.source_id = "PlanarSource_" + str(id(self)) def translate(self, translation): self.plane.append_transform(tf.translation_matrix(translation)) def rotate(self, angle, axis): self.plane.append_transform(tf.rotation_matrix(angle, axis)) def photon(self): photon = Photon() photon.source = self.source_id photon.id = self.throw self.throw = self.throw + 1 # Create a point which is on the surface of the finite plane in it's local frame x = np.random.uniform(0., self.length) y = np.random.uniform(0., self.width) local_point = (x, y, 0.) # Transform the direciton photon.position = transform_point(local_point, self.plane.transform) photon.direction = self.direction photon.active = True if self.spectrum != None: photon.wavelength = self.spectrum.wavelength_at_probability(np.random.uniform()) else: photon.wavelength = self.wavelength return photon class LensSource(object): """ A source where photons generated in a plane are focused on a line with space tolerance given by variable "focussize". The focus line should be perpendicular to the plane normal and aligned with the z-axis. """ def __init__(self, spectrum = None, wavelength = 555, linepoint=(0,0,0), linedirection=(0,0,1), focussize = 0, planeorigin = (-1,-1,-1), planeextent = (-1,1,1)): super(LensSource, self).__init__() self.spectrum = spectrum self.wavelength = wavelength self.planeorigin = planeorigin self.planeextent = planeextent self.linepoint = np.array(linepoint) self.linedirection = np.array(linedirection) self.focussize = focussize self.throw = 0 self.source_id = "LensSource_" + str(id(self)) def photon(self): photon = Photon() photon.source = self.source_id photon.id = self.throw self.throw = self.throw + 1 # Position x = np.random.uniform(self.planeorigin[0],self.planeextent[0]) y = np.random.uniform(self.planeorigin[1],self.planeextent[1]) z = np.random.uniform(self.planeorigin[2],self.planeextent[2]) photon.position = np.array((x,y,z)) # Direction focuspoint = np.array((0.,0.,0.)) focuspoint[0] = self.linepoint[0] + np.random.uniform(-self.focussize,self.focussize) focuspoint[1] = self.linepoint[1] + np.random.uniform(-self.focussize,self.focussize) focuspoint[2] = photon.position[2] direction = focuspoint - photon.position modulus = (direction[0]**2+direction[1]**2+direction[2]**2)**0.5 photon.direction = direction/modulus # Wavelength if self.spectrum != None: photon.wavelength = self.spectrum.wavelength_at_probability(np.random.uniform()) else: photon.wavelength = self.wavelength return photon class LensSourceAngle(object): """ A source where photons generated in a plane are focused on a line with space tolerance given by variable "focussize". The focus line should be perpendicular to the plane normal and aligned with the z-axis. For this lense an additional z-boost is added (Angle of incidence in z-direction). """ def __init__(self, spectrum = None, wavelength = 555, linepoint=(0,0,0), linedirection=(0,0,1), angle = 0, focussize = 0, planeorigin = (-1,-1,-1), planeextent = (-1,1,1)): super(LensSourceAngle, self).__init__() self.spectrum = spectrum self.wavelength = wavelength self.planeorigin = planeorigin self.planeextent = planeextent self.linepoint = np.array(linepoint) self.linedirection = np.array(linedirection) self.focussize = focussize self.angle = angle self.throw = 0 self.source_id = "LensSourceAngle_" + str(id(self)) def photon(self): photon = Photon() photon.id = self.throw self.throw = self.throw + 1 # Position x = np.random.uniform(self.planeorigin[0],self.planeextent[0]) y = np.random.uniform(self.planeorigin[1],self.planeextent[1]) boost = y*np.tan(self.angle) z = np.random.uniform(self.planeorigin[2],self.planeextent[2]) - boost photon.position = np.array((x,y,z)) # Direction focuspoint = np.array((0.,0.,0.)) focuspoint[0] = self.linepoint[0] + np.random.uniform(-self.focussize,self.focussize) focuspoint[1] = self.linepoint[1] + np.random.uniform(-self.focussize,self.focussize) focuspoint[2] = photon.position[2] + boost direction = focuspoint - photon.position modulus = (direction[0]**2+direction[1]**2+direction[2]**2)**0.5 photon.direction = direction/modulus # Wavelength if self.spectrum != None: photon.wavelength = self.spectrum.wavelength_at_probability(np.random.uniform()) else: photon.wavelength = self.wavelength return photon class CylindricalSource(object): """ A source for photons emitted in a random direction and position inside a cylinder(radius, length) """ def __init__(self, spectrum = None, wavelength = 555, radius = 1, length = 10): super(CylindricalSource, self).__init__() self.spectrum = spectrum self.wavelength = wavelength self.shape = Cylinder(radius = radius, length = length) self.radius = radius self.length = length self.throw = 0 self.source_id = "CylindricalSource_" + str(id(self)) def translate(self, translation): self.shape.append_transform(tf.translation_matrix(translation)) def rotate(self, angle, axis): self.shape.append_transform(tf.rotation_matrix(angle, axis)) def photon(self): photon = Photon() photon.source = self.source_id photon.id = self.throw self.throw = self.throw + 1 # Position of emission phi = np.random.uniform(0., 2*np.pi) r = np.random.uniform(0.,self.radius) x = r*np.cos(phi) y = r*np.sin(phi) z = np.random.uniform(0.,self.length) local_center = (x,y,z) photon.position = transform_point(local_center, self.shape.transform) # Direction of emission (no need to transform if meant to be isotropic) phi = np.random.uniform(0.,2*np.pi) theta = np.random.uniform(0.,np.pi) x = np.cos(phi)*np.sin(theta) y = np.sin(phi)*np.sin(theta) z = np.cos(theta) local_direction = (x,y,z) photon.direction = local_direction # Set wavelength of photon if self.spectrum != None: photon.wavelength = self.spectrum.wavelength_at_probability(np.random.uniform()) else: photon.wavelength = self.wavelength # Further initialisation photon.active = True return photon class PointSource(object): """ A point source that emits randomly in solid angle specified by phimin, ..., thetamax """ def __init__(self, spectrum = None, wavelength = 555, center = (0.,0.,0.), phimin = 0, phimax = 2*np.pi, thetamin = 0, thetamax = np.pi): super(PointSource, self).__init__() self.spectrum = spectrum self.wavelength = wavelength self.center = center self.phimin = phimin self.phimax = phimax self.thetamin = thetamin self.thetamax = thetamax self.throw = 0 self.source_id = "PointSource_" + str(id(self)) def photon(self): photon = Photon() photon.source = self.source_id photon.id = self.throw self.throw = self.throw + 1 phi = np.random.uniform(self.phimin, self.phimax) theta = np.random.uniform(self.thetamin, self.thetamax) x = np.cos(phi)*np.sin(theta) y = np.sin(phi)*np.sin(theta) z = np.cos(theta) direction = (x,y,z) transform = tf.translation_matrix((0,0,0)) point = transform_point(self.center, transform) photon.direction = direction photon.position = point if self.spectrum != None: photon.wavelength = self.spectrum.wavelength_at_probability(np.random.uniform()) else: photon.wavelength = self.wavelength photon.active = True return photon class RadialSource(object): """ A point source that emits at discrete angles theta(i) and phi(i) """ def __init__(self, spectrum = None, wavelength = 555, center = (0.,0.,0.), phimin = 0, phimax = 2*np.pi, thetamin = 0, thetamax = np.pi, spacing=20): super(RadialSource, self).__init__() self.spectrum = spectrum self.wavelength = wavelength self.center = center self.phimin = phimin self.phimax = phimax self.thetamin = thetamin self.thetamax = thetamax self.spacing = spacing self.throw = 0 self.source_id = "RadialSource_" + str(id(self)) def photon(self): photon = Photon() photon.source = self.source_id photon.id = self.throw self.throw = self.throw + 1 intphi = np.random.randint(1, self.spacing+1) inttheta = np.random.randint(1, self.spacing+1) phi = intphi*(self.phimax-self.phimin)/self.spacing if self.thetamin == self.thetamax: theta = self.thetamin else: theta = inttheta*(self.thetamax-self.thetamin)/self.spacing x = np.cos(phi)*np.sin(theta) y = np.sin(phi)*np.sin(theta) z = np.cos(theta) direction = (x,y,z) transform = tf.translation_matrix((0,0,0)) point = transform_point(self.center, transform) photon.direction = direction photon.position = point if self.spectrum != None: photon.wavelength = self.spectrum.wavelength_at_probability(np.random.uniform()) else: photon.wavelength = self.wavelength photon.active = True return photon
[((1353, 1372), 'numpy.array', 'np.array', (['[x, y, z]'], {}), '([x, y, z])\n', (1361, 1372), True, 'import numpy as np\n'), ((1299, 1313), 'numpy.sqrt', 'np.sqrt', (['(1 - s)'], {}), '(1 - s)\n', (1306, 1313), True, 'import numpy as np\n'), ((1971, 1979), 'Trace.Photon', 'Photon', ([], {}), '()\n', (1977, 1979), False, 'from Trace import Photon\n'), ((2045, 2068), 'numpy.array', 'np.array', (['self.position'], {}), '(self.position)\n', (2053, 2068), True, 'import numpy as np\n'), ((2096, 2120), 'numpy.array', 'np.array', (['self.direction'], {}), '(self.direction)\n', (2104, 2120), True, 'import numpy as np\n'), ((3139, 3157), 'numpy.array', 'np.array', (['position'], {}), '(position)\n', (3147, 3157), True, 'import numpy as np\n'), ((3183, 3202), 'numpy.array', 'np.array', (['direction'], {}), '(direction)\n', (3191, 3202), True, 'import numpy as np\n'), ((3345, 3367), 'numpy.array', 'np.array', (['polarisation'], {}), '(polarisation)\n', (3353, 3367), True, 'import numpy as np\n'), ((3513, 3521), 'Trace.Photon', 'Photon', ([], {}), '()\n', (3519, 3521), False, 'from Trace import Photon\n'), ((3587, 3610), 'numpy.array', 'np.array', (['self.position'], {}), '(self.position)\n', (3595, 3610), True, 'import numpy as np\n'), ((3638, 3662), 'numpy.array', 'np.array', (['self.direction'], {}), '(self.direction)\n', (3646, 3662), True, 'import numpy as np\n'), ((4239, 4278), 'Geometry.FinitePlane', 'FinitePlane', ([], {'length': 'length', 'width': 'width'}), '(length=length, width=width)\n', (4250, 4278), False, 'from Geometry import Box, Cylinder, FinitePlane, transform_point, transform_direction, rotation_matrix_from_vector_alignment, norm\n'), ((4891, 4899), 'Trace.Photon', 'Photon', ([], {}), '()\n', (4897, 4899), False, 'from Trace import Photon\n'), ((5108, 5143), 'numpy.random.uniform', 'np.random.uniform', (['(0.0)', 'self.length'], {}), '(0.0, self.length)\n', (5125, 5143), True, 'import numpy as np\n'), ((5155, 5189), 'numpy.random.uniform', 'np.random.uniform', (['(0.0)', 'self.width'], {}), '(0.0, self.width)\n', (5172, 5189), True, 'import numpy as np\n'), ((5291, 5341), 'Geometry.transform_point', 'transform_point', (['local_point', 'self.plane.transform'], {}), '(local_point, self.plane.transform)\n', (5306, 5341), False, 'from Geometry import Box, Cylinder, FinitePlane, transform_point, transform_direction, rotation_matrix_from_vector_alignment, norm\n'), ((6264, 6283), 'numpy.array', 'np.array', (['linepoint'], {}), '(linepoint)\n', (6272, 6283), True, 'import numpy as np\n'), ((6313, 6336), 'numpy.array', 'np.array', (['linedirection'], {}), '(linedirection)\n', (6321, 6336), True, 'import numpy as np\n'), ((6490, 6498), 'Trace.Photon', 'Photon', ([], {}), '()\n', (6496, 6498), False, 'from Trace import Photon\n'), ((6646, 6705), 'numpy.random.uniform', 'np.random.uniform', (['self.planeorigin[0]', 'self.planeextent[0]'], {}), '(self.planeorigin[0], self.planeextent[0])\n', (6663, 6705), True, 'import numpy as np\n'), ((6717, 6776), 'numpy.random.uniform', 'np.random.uniform', (['self.planeorigin[1]', 'self.planeextent[1]'], {}), '(self.planeorigin[1], self.planeextent[1])\n', (6734, 6776), True, 'import numpy as np\n'), ((6788, 6847), 'numpy.random.uniform', 'np.random.uniform', (['self.planeorigin[2]', 'self.planeextent[2]'], {}), '(self.planeorigin[2], self.planeextent[2])\n', (6805, 6847), True, 'import numpy as np\n'), ((6873, 6892), 'numpy.array', 'np.array', (['(x, y, z)'], {}), '((x, y, z))\n', (6881, 6892), True, 'import numpy as np\n'), ((6949, 6974), 'numpy.array', 'np.array', (['(0.0, 0.0, 0.0)'], {}), '((0.0, 0.0, 0.0))\n', (6957, 6974), True, 'import numpy as np\n'), ((8392, 8411), 'numpy.array', 'np.array', (['linepoint'], {}), '(linepoint)\n', (8400, 8411), True, 'import numpy as np\n'), ((8441, 8464), 'numpy.array', 'np.array', (['linedirection'], {}), '(linedirection)\n', (8449, 8464), True, 'import numpy as np\n'), ((8658, 8666), 'Trace.Photon', 'Photon', ([], {}), '()\n', (8664, 8666), False, 'from Trace import Photon\n'), ((8784, 8843), 'numpy.random.uniform', 'np.random.uniform', (['self.planeorigin[0]', 'self.planeextent[0]'], {}), '(self.planeorigin[0], self.planeextent[0])\n', (8801, 8843), True, 'import numpy as np\n'), ((8855, 8914), 'numpy.random.uniform', 'np.random.uniform', (['self.planeorigin[1]', 'self.planeextent[1]'], {}), '(self.planeorigin[1], self.planeextent[1])\n', (8872, 8914), True, 'import numpy as np\n'), ((9056, 9075), 'numpy.array', 'np.array', (['(x, y, z)'], {}), '((x, y, z))\n', (9064, 9075), True, 'import numpy as np\n'), ((9132, 9157), 'numpy.array', 'np.array', (['(0.0, 0.0, 0.0)'], {}), '((0.0, 0.0, 0.0))\n', (9140, 9157), True, 'import numpy as np\n'), ((10215, 10253), 'Geometry.Cylinder', 'Cylinder', ([], {'radius': 'radius', 'length': 'length'}), '(radius=radius, length=length)\n', (10223, 10253), False, 'from Geometry import Box, Cylinder, FinitePlane, transform_point, transform_direction, rotation_matrix_from_vector_alignment, norm\n'), ((10673, 10681), 'Trace.Photon', 'Photon', ([], {}), '()\n', (10679, 10681), False, 'from Trace import Photon\n'), ((10843, 10876), 'numpy.random.uniform', 'np.random.uniform', (['(0.0)', '(2 * np.pi)'], {}), '(0.0, 2 * np.pi)\n', (10860, 10876), True, 'import numpy as np\n'), ((10886, 10921), 'numpy.random.uniform', 'np.random.uniform', (['(0.0)', 'self.radius'], {}), '(0.0, self.radius)\n', (10903, 10921), True, 'import numpy as np\n'), ((11002, 11037), 'numpy.random.uniform', 'np.random.uniform', (['(0.0)', 'self.length'], {}), '(0.0, self.length)\n', (11019, 11037), True, 'import numpy as np\n'), ((11102, 11153), 'Geometry.transform_point', 'transform_point', (['local_center', 'self.shape.transform'], {}), '(local_center, self.shape.transform)\n', (11117, 11153), False, 'from Geometry import Box, Cylinder, FinitePlane, transform_point, transform_direction, rotation_matrix_from_vector_alignment, norm\n'), ((11266, 11299), 'numpy.random.uniform', 'np.random.uniform', (['(0.0)', '(2 * np.pi)'], {}), '(0.0, 2 * np.pi)\n', (11283, 11299), True, 'import numpy as np\n'), ((11312, 11341), 'numpy.random.uniform', 'np.random.uniform', (['(0.0)', 'np.pi'], {}), '(0.0, np.pi)\n', (11329, 11341), True, 'import numpy as np\n'), ((11437, 11450), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (11443, 11450), True, 'import numpy as np\n'), ((12545, 12553), 'Trace.Photon', 'Photon', ([], {}), '()\n', (12551, 12553), False, 'from Trace import Photon\n'), ((12683, 12726), 'numpy.random.uniform', 'np.random.uniform', (['self.phimin', 'self.phimax'], {}), '(self.phimin, self.phimax)\n', (12700, 12726), True, 'import numpy as np\n'), ((12743, 12790), 'numpy.random.uniform', 'np.random.uniform', (['self.thetamin', 'self.thetamax'], {}), '(self.thetamin, self.thetamax)\n', (12760, 12790), True, 'import numpy as np\n'), ((12888, 12901), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (12894, 12901), True, 'import numpy as np\n'), ((12959, 12991), 'external.transformations.translation_matrix', 'tf.translation_matrix', (['(0, 0, 0)'], {}), '((0, 0, 0))\n', (12980, 12991), True, 'import external.transformations as tf\n'), ((13006, 13045), 'Geometry.transform_point', 'transform_point', (['self.center', 'transform'], {}), '(self.center, transform)\n', (13021, 13045), False, 'from Geometry import Box, Cylinder, FinitePlane, transform_point, transform_direction, rotation_matrix_from_vector_alignment, norm\n'), ((14082, 14090), 'Trace.Photon', 'Photon', ([], {}), '()\n', (14088, 14090), False, 'from Trace import Photon\n'), ((14232, 14270), 'numpy.random.randint', 'np.random.randint', (['(1)', '(self.spacing + 1)'], {}), '(1, self.spacing + 1)\n', (14249, 14270), True, 'import numpy as np\n'), ((14296, 14334), 'numpy.random.randint', 'np.random.randint', (['(1)', '(self.spacing + 1)'], {}), '(1, self.spacing + 1)\n', (14313, 14334), True, 'import numpy as np\n'), ((14669, 14682), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (14675, 14682), True, 'import numpy as np\n'), ((14740, 14772), 'external.transformations.translation_matrix', 'tf.translation_matrix', (['(0, 0, 0)'], {}), '((0, 0, 0))\n', (14761, 14772), True, 'import external.transformations as tf\n'), ((14787, 14826), 'Geometry.transform_point', 'transform_point', (['self.center', 'transform'], {}), '(self.center, transform)\n', (14802, 14826), False, 'from Geometry import Box, Cylinder, FinitePlane, transform_point, transform_direction, rotation_matrix_from_vector_alignment, norm\n'), ((2542, 2551), 'Geometry.norm', 'norm', (['vec'], {}), '(vec)\n', (2546, 2551), False, 'from Geometry import Box, Cylinder, FinitePlane, transform_point, transform_direction, rotation_matrix_from_vector_alignment, norm\n'), ((2568, 2632), 'Geometry.rotation_matrix_from_vector_alignment', 'rotation_matrix_from_vector_alignment', (['self.direction', '[0, 0, 1]'], {}), '(self.direction, [0, 0, 1])\n', (2605, 2632), False, 'from Geometry import Box, Cylinder, FinitePlane, transform_point, transform_direction, rotation_matrix_from_vector_alignment, norm\n'), ((2665, 2692), 'Geometry.transform_direction', 'transform_direction', (['vec', 'R'], {}), '(vec, R)\n', (2684, 2692), False, 'from Geometry import Box, Cylinder, FinitePlane, transform_point, transform_direction, rotation_matrix_from_vector_alignment, norm\n'), ((4702, 4736), 'external.transformations.translation_matrix', 'tf.translation_matrix', (['translation'], {}), '(translation)\n', (4723, 4736), True, 'import external.transformations as tf\n'), ((4814, 4845), 'external.transformations.rotation_matrix', 'tf.rotation_matrix', (['angle', 'axis'], {}), '(angle, axis)\n', (4832, 4845), True, 'import external.transformations as tf\n'), ((7022, 7072), 'numpy.random.uniform', 'np.random.uniform', (['(-self.focussize)', 'self.focussize'], {}), '(-self.focussize, self.focussize)\n', (7039, 7072), True, 'import numpy as np\n'), ((7116, 7166), 'numpy.random.uniform', 'np.random.uniform', (['(-self.focussize)', 'self.focussize'], {}), '(-self.focussize, self.focussize)\n', (7133, 7166), True, 'import numpy as np\n'), ((8932, 8950), 'numpy.tan', 'np.tan', (['self.angle'], {}), '(self.angle)\n', (8938, 8950), True, 'import numpy as np\n'), ((8963, 9022), 'numpy.random.uniform', 'np.random.uniform', (['self.planeorigin[2]', 'self.planeextent[2]'], {}), '(self.planeorigin[2], self.planeextent[2])\n', (8980, 9022), True, 'import numpy as np\n'), ((9205, 9255), 'numpy.random.uniform', 'np.random.uniform', (['(-self.focussize)', 'self.focussize'], {}), '(-self.focussize, self.focussize)\n', (9222, 9255), True, 'import numpy as np\n'), ((9299, 9349), 'numpy.random.uniform', 'np.random.uniform', (['(-self.focussize)', 'self.focussize'], {}), '(-self.focussize, self.focussize)\n', (9316, 9349), True, 'import numpy as np\n'), ((10492, 10526), 'external.transformations.translation_matrix', 'tf.translation_matrix', (['translation'], {}), '(translation)\n', (10513, 10526), True, 'import external.transformations as tf\n'), ((10600, 10631), 'external.transformations.rotation_matrix', 'tf.rotation_matrix', (['angle', 'axis'], {}), '(angle, axis)\n', (10618, 10631), True, 'import external.transformations as tf\n'), ((10951, 10962), 'numpy.cos', 'np.cos', (['phi'], {}), '(phi)\n', (10957, 10962), True, 'import numpy as np\n'), ((10977, 10988), 'numpy.sin', 'np.sin', (['phi'], {}), '(phi)\n', (10983, 10988), True, 'import numpy as np\n'), ((11361, 11372), 'numpy.cos', 'np.cos', (['phi'], {}), '(phi)\n', (11367, 11372), True, 'import numpy as np\n'), ((11373, 11386), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (11379, 11386), True, 'import numpy as np\n'), ((11399, 11410), 'numpy.sin', 'np.sin', (['phi'], {}), '(phi)\n', (11405, 11410), True, 'import numpy as np\n'), ((11411, 11424), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (11417, 11424), True, 'import numpy as np\n'), ((12812, 12823), 'numpy.cos', 'np.cos', (['phi'], {}), '(phi)\n', (12818, 12823), True, 'import numpy as np\n'), ((12824, 12837), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (12830, 12837), True, 'import numpy as np\n'), ((12850, 12861), 'numpy.sin', 'np.sin', (['phi'], {}), '(phi)\n', (12856, 12861), True, 'import numpy as np\n'), ((12862, 12875), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (12868, 12875), True, 'import numpy as np\n'), ((14586, 14597), 'numpy.cos', 'np.cos', (['phi'], {}), '(phi)\n', (14592, 14597), True, 'import numpy as np\n'), ((14598, 14611), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (14604, 14611), True, 'import numpy as np\n'), ((14630, 14641), 'numpy.sin', 'np.sin', (['phi'], {}), '(phi)\n', (14636, 14641), True, 'import numpy as np\n'), ((14642, 14655), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (14648, 14655), True, 'import numpy as np\n'), ((1120, 1139), 'numpy.random.uniform', 'np.random.uniform', ([], {}), '()\n', (1137, 1139), True, 'import numpy as np\n'), ((1163, 1182), 'numpy.random.uniform', 'np.random.uniform', ([], {}), '()\n', (1180, 1182), True, 'import numpy as np\n'), ((5519, 5538), 'numpy.random.uniform', 'np.random.uniform', ([], {}), '()\n', (5536, 5538), True, 'import numpy as np\n'), ((7522, 7541), 'numpy.random.uniform', 'np.random.uniform', ([], {}), '()\n', (7539, 7541), True, 'import numpy as np\n'), ((9712, 9731), 'numpy.random.uniform', 'np.random.uniform', ([], {}), '()\n', (9729, 9731), True, 'import numpy as np\n'), ((11687, 11706), 'numpy.random.uniform', 'np.random.uniform', ([], {}), '()\n', (11704, 11706), True, 'import numpy as np\n'), ((13239, 13258), 'numpy.random.uniform', 'np.random.uniform', ([], {}), '()\n', (13256, 13258), True, 'import numpy as np\n'), ((15020, 15039), 'numpy.random.uniform', 'np.random.uniform', ([], {}), '()\n', (15037, 15039), True, 'import numpy as np\n')]
nthparty/circuitry
circuitry/circuitry.py
e8bc8bde93cf5056368a14a21086f18f1bcd934f
"""Embedded DSL for assembling logic circuits. Embedded domain-specific combinator library for assembling abstract definitions of logic circuits and synthesizing circuits from those definitions. """ from __future__ import annotations from typing import Sequence import doctest from parts import parts from circuit import op, gate, circuit, signature class bit(): """ Class for representing an abstract bit. Such a bit can be interpreted concretely as a value, but it is also used to keep track of relationships between operators and to represent the wires within a circuit built up out of those operators. >>> bit.hook_operation(lambda o, v, *args: None) >>> bit.circuit(circuit()) >>> b = output(input(1).and_(input(1))) >>> b.value == bit.circuit().evaluate([1,1])[0] True >>> def make_hook(bit_): ... def hook(o, v, *args): ... return bit_.constructor(*args)(v, bit_.gate(o, [a.gate for a in args])) ... return hook >>> bit.hook_operation(make_hook(bit)) >>> bit.circuit(circuit()) >>> b = output(input(0).and_(input(0))) >>> b.value == bit.circuit().evaluate([0,0])[0] True """ _circuit = None _hook_operation = None @staticmethod def circuit(circuit_=None): if circuit_ is not None: bit._circuit = circuit_ return None else: bit._circuit.prune_and_topological_sort_stable() return bit._circuit @staticmethod def hook_operation(hook=None): bit._hook_operation = hook @staticmethod def operation(o, *args): # Ensure second argument is a `bit`. args = list(args) if len(args) == 2: args[1] = constant(args[1]) if isinstance(args[1], int) else args[1] # Compute the value of the result of the operation on the arguments. v = o(*[a.value for a in args]) # Return output from hook if it exists and if # it returns an output. if bit._hook_operation is not None: r = bit._hook_operation(o, v, *args) if r is not None: return r return bit.constructor(*args)(v, bit.gate(o, [a.gate for a in args])) @staticmethod def constructor(b1, b2=None): # The inference code below is not currently in use. """ if isinstance(b1, input_one) and isinstance(b2, input_one): return input_one elif isinstance(b1, input_two) and isinstance(b2, input_two): return input_two elif isinstance(b1, (input_one, input_two)) and b2 is None: return type(b1) else: return bit """ return bit @staticmethod def gate(operation, igs): return bit._circuit.gate(operation, igs) def __init__(self, value, gate_=None): self.value = value self.gate = bit._circuit.gate() if gate_ is None else gate_ def __int__(self): return self.value def not_(self): """ >>> results = [] >>> for x in [0, 1]: ... bit.circuit(circuit()) ... b = output(input(x).not_()) ... results.append(int(b) == bit.circuit().evaluate([x])[0]) >>> all(results) True """ return bit.operation(op.not_, self) def __invert__(self): """ >>> results = [] >>> for x in [0, 1]: ... bit.circuit(circuit()) ... b = output(~input(x)) ... results.append(int(b) == bit.circuit().evaluate([x])[0]) >>> all(results) True """ return bit.operation(op.not_, self) def __rsub__(self, other): """ >>> results = [] >>> for x in [0, 1]: ... bit.circuit(circuit()) ... b = output(1 - input(x)) ... results.append(int(b) == bit.circuit().evaluate([x])[0]) >>> all(results) True >>> bit.circuit(circuit()) >>> 2 - input(0) Traceback (most recent call last): ... ValueError: can only subtract a bit from the integer 1 """ if other == 1: return bit.operation(op.not_, self) raise ValueError('can only subtract a bit from the integer 1') def and_(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x).and_(input(y))) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.and_, self, other) def __and__(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x) & input(y)) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.and_, self, other) def __rand__(self, other): """ >>> bit.circuit(circuit()) >>> b = 0 & constant(1) >>> b.value 0 """ return self & (constant(other) if isinstance(other, int) else other) def nimp(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x).nimp(input(y))) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.nimp_, self, other) def nimp_(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x).nimp_(input(y))) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.nimp_, self, other) def __gt__(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x) > input(y)) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return self.nimp(other) def nif(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x).nif(input(y))) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.nif_, self, other) def nif_(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x).nif_(input(y))) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.nif_, self, other) def __lt__(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x) < input(y)) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return self.nif(other) def xor(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x).xor(input(y))) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.xor_, self, other) def xor_(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x).xor_(input(y))) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.xor_, self, other) def __xor__(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x) ^ input(y)) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.xor_, self, other) def __rxor__(self, other): """ >>> bit.circuit(circuit()) >>> b = 1 ^ constant(0) >>> b.value 1 """ return self ^ (constant(other) if isinstance(other, int) else other) def or_(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x).or_(input(y))) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.or_, self, other) def __or__(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x) | input(y)) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.or_, self, other) def __ror__(self, other): """ >>> bit.circuit(circuit()) >>> b = 1 | constant(0) >>> b.value 1 """ return self | (constant(other) if isinstance(other, int) else other) def nor(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x).nor(input(y))) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.nor_, self, other) def nor_(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x).nor_(input(y))) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.nor_, self, other) def __mod__(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x) % input(y)) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.nor_, self, other) def xnor(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x).xnor(input(y))) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.xnor_, self, other) def xnor_(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x).xnor_(input(y))) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.xnor_, self, other) def __eq__(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x) == input(y)) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.xnor_, self, other) def if_(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x).if_(input(y))) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.if_, self, other) def __ge__(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x) >= input(y)) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.if_, self, other) def imp(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x).imp(input(y))) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.imp_, self, other) def imp_(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x).imp_(input(y))) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.imp_, self, other) def __le__(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x) <= input(y)) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.imp_, self, other) def nand(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x).nand(input(y))) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.nand_, self, other) def nand_(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x).nand_(input(y))) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.nand_, self, other) def __matmul__(self, other): """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... b = output(input(x) @ input(y)) ... results.append(int(b) == bit.circuit().evaluate([x,y])[0]) >>> all(results) True """ return bit.operation(op.nand_, self, other) class constant(bit): """Bit that is designated as a constant input.""" class input(bit): """Bit that is designated as a variable input.""" def __init__(self: bit, value: int): self.value = value self.gate = bit._circuit.gate(op.id_, is_input=True) class input_one(input): """Bit that is designated as a variable input from one source.""" class input_two(input): """Bit that is designated as a variable input from a second source.""" class output(bit): """ Bit that is designated an output. >>> bit.circuit(circuit()) >>> b0 = output(input(1).not_()) >>> b1 = output(b0.not_()) >>> b2 = output(b0) >>> [b0.value, b1.value, b2.value] [0, 1, 0] """ def __init__(self: bit, b: bit): # Check if bit is ready as final output or whether there are others dependent on it. if len(b.gate.outputs) > 0: b = ~(~b) # Preserve the bit by copying it to a new wire. self.value = b.value self.gate = bit._circuit.gate(op.id_, [b.gate], is_output=True) class bits_type(int): # pylint: disable=R0903 """ Class for representing an input or output type of a function decorated for automated synthesis. """ class bits(list): """ Class for representing a vector of abstract bits. """ @staticmethod def from_byte(byte_: int, constructor=bit) -> bits: return bits([ constructor(bit_) for bit_ in reversed([(byte_>>i)%2 for i in range(8)]) ]) @staticmethod def from_bytes(bytes_, constructor=bit) -> bits: """ >>> bit.circuit(circuit()) >>> [b.value for b in bits.from_bytes(bytes([255]))] [1, 1, 1, 1, 1, 1, 1, 1] >>> bit.circuit(circuit()) >>> [b.value for b in bits.from_bytes(bytes([11, 0]))] [0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0] """ return bits([ bit_ for byte_ in bytes_ for bit_ in bits.from_byte(byte_, constructor) ]) @staticmethod def zeros(n: int) -> bits: """ >>> bit.circuit(circuit()) >>> xs = bits.zeros(3) >>> ys = outputs(xs.not_()) >>> [y.value for y in ys] [1, 1, 1] """ return bits([constant(0)]*n) def __new__(cls, argument = None) -> bits: """ Return bits object given the supplied argument. """ return bits_type(argument)\ if isinstance(argument, int) else\ list.__new__(cls, argument) def __int__(self: bits) -> int: """ >>> bit.circuit(circuit()) >>> xs = constants([0, 0, 0]) >>> ys = outputs(xs.not_()) >>> int(ys) 7 """ return sum(int(b)*(2**i) for (i, b) in zip(range(len(self)), reversed(self))) def not_(self: bits) -> bits: """ >>> results = [] >>> for x in [0, 1]: ... bit.circuit(circuit()) ... xs = inputs([x, x, x]) ... ys = outputs(xs.not_()) ... ns = [int(y) for y in ys] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x])) >>> all(results) True """ return bits([x.not_() for x in self]) def __invert__(self: bits) -> bits: """ >>> results = [] >>> for x in [0, 1]: ... bit.circuit(circuit()) ... xs = inputs([x, x, x]) ... ys = outputs(~xs) ... ns = [int(y) for y in ys] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x])) >>> all(results) True """ return bits([x.not_() for x in self]) def and_(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs.and_(ys)) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.and_(y) for (x, y) in zip(self, other)]) def __and__(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs & ys) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.and_(y) for (x, y) in zip(self, other)]) def nimp(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs.nimp(ys)) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.nimp_(y) for (x, y) in zip(self, other)]) def nimp_(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs.nimp_(ys)) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.nimp_(y) for (x, y) in zip(self, other)]) def __gt__(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs > ys) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.nimp_(y) for (x, y) in zip(self, other)]) def nif(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs.nif(ys)) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.nif_(y) for (x, y) in zip(self, other)]) def nif_(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs.nif_(ys)) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.nif_(y) for (x, y) in zip(self, other)]) def __lt__(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs < ys) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.nif_(y) for (x, y) in zip(self, other)]) def xor(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs.xor(ys)) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.xor_(y) for (x, y) in zip(self, other)]) def xor_(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs.xor_(ys)) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.xor_(y) for (x, y) in zip(self, other)]) def __xor__(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs ^ ys) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.xor_(y) for (x, y) in zip(self, other)]) def or_(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs.or_(ys)) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.or_(y) for (x, y) in zip(self, other)]) def __or__(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs | ys) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.or_(y) for (x, y) in zip(self, other)]) def nor(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs.nor(ys)) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.nor_(y) for (x, y) in zip(self, other)]) def nor_(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs.nor_(ys)) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.nor_(y) for (x, y) in zip(self, other)]) def __mod__(self, other) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs % ys) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.nor_(y) for (x, y) in zip(self, other)]) def xnor(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs.xnor(ys)) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.xnor_(y) for (x, y) in zip(self, other)]) def xnor_(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs.xnor_(ys)) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.xnor_(y) for (x, y) in zip(self, other)]) def __eq__(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs == ys) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.xnor_(y) for (x, y) in zip(self, other)]) def if_(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs.if_(ys)) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.if_(y) for (x, y) in zip(self, other)]) def __ge__(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs >= ys) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.if_(y) for (x, y) in zip(self, other)]) def imp(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs.imp(ys)) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.imp_(y) for (x, y) in zip(self, other)]) def imp_(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs.imp_(ys)) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.imp_(y) for (x, y) in zip(self, other)]) def __le__(self: bits, other: bits) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs <= ys) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.imp_(y) for (x, y) in zip(self, other)]) def nand(self: bits, other) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs.nand(ys)) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.nand_(y) for (x, y) in zip(self, other)]) def nand_(self: bits, other) -> bits: """ >>> results = [] >>> for (x, y) in [(0, 0), (0, 1), (1, 0), (1, 1)]: ... bit.circuit(circuit()) ... (xs, ys) = (inputs([x, x, x]), inputs([y, y, y])) ... zs = outputs(xs.nand_(ys)) ... ns = [int(z) for z in zs] ... c = bit.circuit() ... results.append(ns == c.evaluate([x, x, x, y, y, y])) >>> all(results) True """ return bits([x.nand_(y) for (x, y) in zip(self, other)]) def __rshift__(self: bits, other) -> bits: """ Overloaded operator: rotation and shift operations. >>> bit.circuit(circuit()) >>> bs = bits(map(bit, [1,1,1,1,0,0,0,0])) >>> bs = bs >> 3 >>> [b.value for b in bs] [0, 0, 0, 1, 1, 1, 1, 0] >>> bit.circuit(circuit()) >>> bs = bits(map(bit, [0,0,0,0,1,1,1,1])) >>> bs = bs >> {3} >>> [b.value for b in bs] [1, 1, 1, 0, 0, 0, 0, 1] """ if isinstance(other, set) and isinstance(list(other)[0], int): # Rotation. quantity = list(other)[0] return bits(self[len(self)-quantity:]) ** bits(self[0:len(self)-quantity]) else: # Shift return bits([constant(0)]*other) ** bits(self[0:len(self)-other]) def __lshift__(self: bits, other) -> bits: """ >>> bit.circuit(circuit()) >>> bs = bits(map(bit, [1,1,1,1,0,0,0,0])) >>> bs = bs << 3 >>> [b.value for b in bs] [1, 0, 0, 0, 0, 0, 0, 0] """ return bits(self[other:]) ** bits([constant(0) for _ in range(other)]) def __truediv__(self: bits, other) -> Sequence[bits]: """ >>> bit.circuit(circuit()) >>> bs = bits(map(bit, [1,1,1,1,0,0,0,0])) >>> bss = list(bs / 2) >>> ([b.value for b in bss[0]], [b.value for b in bss[1]]) ([1, 1, 1, 1], [0, 0, 0, 0]) >>> bit.circuit(circuit()) >>> bs = bits(map(bit, [1,1,1,1,0,0,0,0])) >>> bss = list(bs / {2}) >>> [[b.value for b in bs] for bs in bss] [[1, 1], [1, 1], [0, 0], [0, 0]] >>> bit.circuit(circuit()) >>> bs = bits(map(bit, [1,1,1,1,0,0,0,0])) >>> bss = list(bs / [1, 3, 4]) >>> [[b.value for b in bs] for bs in bss] [[1], [1, 1, 1], [0, 0, 0, 0]] """ if isinstance(other, list) and len(other) > 0 and isinstance(other[0], int): return map(bits, parts(self, length=other)) # Sequence of lengths. elif isinstance(other, set) and len(other) == 1 and isinstance(list(other)[0], int): return self / (len(self)//list(other)[0]) # Parts of length `other`. else: return map(bits, parts(self, other)) # Number of parts is `other`. def __add__(self: bits, other) -> bits: """Concatenation of bit vectors.""" result = list(self) result.extend(list(other)) return bits(result) def __pow__(self: bits, other) -> bits: """Concatenation of bit vectors.""" return self + other def constants(l): return bits(map(constant, l)) def inputs(l): return bits(map(input, l)) def outputs(l): return bits(map(output, l)) def synthesize(f): """ Decorator for automatically synthesizing a circuit from a function that takes only `bit` and/or `bits` objects as its arguments and returns an output of type `bit` or `bits`. >>> @synthesize ... def equal(x: bit, y: bit) -> bit: ... return (x & y) | ((1 - x) & (1 - y)) >>> xys = [bits([x, y]) for x in (0, 1) for y in (0, 1)] >>> [equal.circuit.evaluate(xy) for xy in xys] [[1], [0], [0], [1]] >>> @synthesize ... def conjunction(xy: bits(2)) -> bits(2): ... return (xy[0], xy[0] & xy[1]) >>> xys = [bits([x, y]) for x in (0, 1) for y in (0, 1)] >>> [conjunction.circuit.evaluate(xy) for xy in xys] [[0, 0], [0, 0], [1, 0], [1, 1]] >>> @synthesize ... def equal(x, y): ... return x & y Traceback (most recent call last): ... RuntimeError: automated circuit synthesis failed """ # Functions for determining types/signature from # the type annotation of the decorated function. type_in = lambda a: input(0) if a is bit else inputs([0] * a) type_out = lambda a: output if a is bit else outputs # For forward-compatibility with PEP 563. eval_ = lambda a: eval(a) if isinstance(a, str) else a # pylint: disable=W0123 try: # Construct the circuit and add it to the function as an attribute. bit.circuit(circuit()) args_in = { k: type_in(eval_(a)) for (k, a) in f.__annotations__.items() if k != 'return' } type_out(eval_(f.__annotations__['return']))(f(**args_in)) f.circuit = bit.circuit() except: raise RuntimeError('automated circuit synthesis failed') from None # Return the original function. return f if __name__ == "__main__": doctest.testmod() # pragma: no cover
[((38084, 38101), 'doctest.testmod', 'doctest.testmod', ([], {}), '()\n', (38099, 38101), False, 'import doctest\n'), ((37671, 37680), 'circuit.circuit', 'circuit', ([], {}), '()\n', (37678, 37680), False, 'from circuit import op, gate, circuit, signature\n'), ((35533, 35558), 'parts.parts', 'parts', (['self'], {'length': 'other'}), '(self, length=other)\n', (35538, 35558), False, 'from parts import parts\n'), ((35800, 35818), 'parts.parts', 'parts', (['self', 'other'], {}), '(self, other)\n', (35805, 35818), False, 'from parts import parts\n')]
KanayBhandari/discord_bot_project
plot_user_activity.py
4baa62c963c532b08060689bed872e36e72460f9
import discord import random from datetime import datetime import pandas as pd import matplotlib.pyplot as plt import csv async def plot_user_activity(client, ctx): plt.style.use('fivethirtyeight') df = pd.read_csv('innovators.csv', encoding= 'unicode_escape') author = df['author'].to_list() message_counter = {} for i in author: if i in message_counter: message_counter[i] += 1 else: message_counter[i] = 1 # for not mentioning the bot in the line graph. message_counter.pop('ninza_bot_test') authors_in_discord = list(message_counter.keys()) no_of_messages = list(message_counter.values()) plt.plot(authors_in_discord, no_of_messages, marker = 'o', markersize=10) plt.title('msg sent by author in the server.') plt.xlabel('Author') plt.ylabel('Message_count') plt.savefig('output2.png') plt.tight_layout() plt.close() await ctx.send(file = discord.File('output2.png'))
[((180, 212), 'matplotlib.pyplot.style.use', 'plt.style.use', (['"""fivethirtyeight"""'], {}), "('fivethirtyeight')\n", (193, 212), True, 'import matplotlib.pyplot as plt\n'), ((223, 279), 'pandas.read_csv', 'pd.read_csv', (['"""innovators.csv"""'], {'encoding': '"""unicode_escape"""'}), "('innovators.csv', encoding='unicode_escape')\n", (234, 279), True, 'import pandas as pd\n'), ((718, 789), 'matplotlib.pyplot.plot', 'plt.plot', (['authors_in_discord', 'no_of_messages'], {'marker': '"""o"""', 'markersize': '(10)'}), "(authors_in_discord, no_of_messages, marker='o', markersize=10)\n", (726, 789), True, 'import matplotlib.pyplot as plt\n'), ((797, 843), 'matplotlib.pyplot.title', 'plt.title', (['"""msg sent by author in the server."""'], {}), "('msg sent by author in the server.')\n", (806, 843), True, 'import matplotlib.pyplot as plt\n'), ((849, 869), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Author"""'], {}), "('Author')\n", (859, 869), True, 'import matplotlib.pyplot as plt\n'), ((875, 902), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Message_count"""'], {}), "('Message_count')\n", (885, 902), True, 'import matplotlib.pyplot as plt\n'), ((910, 936), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""output2.png"""'], {}), "('output2.png')\n", (921, 936), True, 'import matplotlib.pyplot as plt\n'), ((942, 960), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (958, 960), True, 'import matplotlib.pyplot as plt\n'), ((966, 977), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (975, 977), True, 'import matplotlib.pyplot as plt\n'), ((1007, 1034), 'discord.File', 'discord.File', (['"""output2.png"""'], {}), "('output2.png')\n", (1019, 1034), False, 'import discord\n')]
skojaku/fastnode2vec
setup.py
bb65f68469f00f489fa6744d35b8756200b4e285
#!/usr/bin/env python3 import os from setuptools import setup def read(fname): return open(os.path.join(os.path.dirname(__file__), fname)).read() setup( name="fastnode2vec", version="0.0.5", author="Louis Abraham", license="MIT", author_email="louis.abraham@yahoo.fr", description="Fast implementation of node2vec", long_description=read("README.md"), long_description_content_type="text/markdown", url="https://github.com/louisabraham/fastnode2vec", packages=["fastnode2vec"], install_requires=["numpy", "numba", "gensim", "click", "tqdm"], python_requires=">=3.6", entry_points={"console_scripts": ["fastnode2vec = fastnode2vec.cli:node2vec"]}, classifiers=["Topic :: Scientific/Engineering :: Artificial Intelligence"], )
[((111, 136), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (126, 136), False, 'import os\n')]
nhattvm11/flask-restful-boilerplate
app/main/config.py
a450c03c1b1db2886b4e00b2c30284a59d9b91e6
import os basedir = os.path.abspath(os.path.dirname(__file__)) class Config: SECRET_KEY = os.getenv('SECRET_KEY', '') DEBUG = False class DevelopmentConfig(Config): DEBUG = True SQLALCHEMY_DATABASE_URI = 'sqlite:///' + os.path.join(basedir, 'flask_main.db') SQLALCHEMY_TRACK_MODIFICATIONS = False class TestingConfig(Config): DEBUG = True TESTING = True SQLALCHEMY_DATABASE_URI = 'sqlite:///' + os.path.join(basedir, 'flask_main.db') PRESERVE_CONTEXT_ON_EXCEPTION = False SQLALCHEMY_TRACK_MODIFICATIONS = False class ProductionConfig(Config): DEBUG = False config_by_name = dict( dev=DevelopmentConfig, test=TestingConfig, prod=ProductionConfig ) key = Config.SECRET_KEY
[((37, 62), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (52, 62), False, 'import os\n'), ((96, 123), 'os.getenv', 'os.getenv', (['"""SECRET_KEY"""', '""""""'], {}), "('SECRET_KEY', '')\n", (105, 123), False, 'import os\n'), ((239, 277), 'os.path.join', 'os.path.join', (['basedir', '"""flask_main.db"""'], {}), "(basedir, 'flask_main.db')\n", (251, 277), False, 'import os\n'), ((433, 471), 'os.path.join', 'os.path.join', (['basedir', '"""flask_main.db"""'], {}), "(basedir, 'flask_main.db')\n", (445, 471), False, 'import os\n')]
djouani/Learning-Ansible-2.X-Third-Edition
Chapter07/library/check_user_py3.py
34d6745c2bde8367ad2db7c9343bc8477b0643d7
#!/usr/bin/env python import pwd from ansible.module_utils.basic import AnsibleModule class User: def __init__(self, user): self.user = user # Check if user exists def check_if_user_exists(self): try: user = pwd.getpwnam(self.user) success = True ret_msg = 'User %s exists' % self.user except KeyError: success = False ret_msg = 'User %s does not exists' % self.user return success, ret_msg def main(): # Parsing argument file module = AnsibleModule( argument_spec = dict( user = dict(required=True) ) ) user = module.params.get('user') chkusr = User(user) success, ret_msg = chkusr.check_if_user_exists() # Error handling and JSON return if success: module.exit_json(msg=ret_msg) else: module.fail_json(msg=ret_msg) if __name__ == "__main__": main()
[((251, 274), 'pwd.getpwnam', 'pwd.getpwnam', (['self.user'], {}), '(self.user)\n', (263, 274), False, 'import pwd\n')]
GenomicsNX/cellxgene
backend/server/converters/schema/ontology.py
f9c744327a3be48c93b47bba71a480e1eeb97835
"""Methods for working with ontologies and the OLS.""" from urllib.parse import quote_plus import requests OLS_API_ROOT = "http://www.ebi.ac.uk/ols/api" # Curie means something like CL:0000001 def _ontology_name(curie): """Get the name of the ontology from the curie, CL or UBERON for example.""" return curie.split(":")[0] def _ontology_value(curie): """Get the id component of the curie, 0000001 from CL:0000001 for example.""" return curie.split(":")[1] def _double_encode(url): """Double url encode a url. This is required by the OLS API.""" return quote_plus(quote_plus(url)) def _iri(curie): """Get the iri from a curie. This is a bit hopeful that they all map to purl.obolibrary.org""" if _ontology_name(curie) == "EFO": return f"http://www.ebi.ac.uk/efo/EFO_{_ontology_value(curie)}" return f"http://purl.obolibrary.org/obo/{_ontology_name(curie)}_{_ontology_value(curie)}" class OntologyLookupError(Exception): """Exception for some problem with looking up ontology information.""" def _ontology_info_url(curie): """Get the to make a GET to to get information about an ontology term.""" # If the curie is empty, just return an empty string. This happens when there is no # valid ontology value. if not curie: return "" else: return f"{OLS_API_ROOT}/ontologies/{_ontology_name(curie)}/terms/{_double_encode(_iri(curie))}" def get_ontology_label(curie): """For a given curie like 'CL:1000413', get the label like 'endothelial cell of artery'""" url = _ontology_info_url(curie) if not url: return "" response = requests.get(url) if not response.ok: raise OntologyLookupError( f"Curie {curie} lookup failed, got status code {response.status_code}: {response.text}" ) return response.json()["label"] def lookup_candidate_term(label, ontology="cl", method="select"): """Lookup candidate terms for a label. This is useful when there is an existing label in a submitted dataset, and you want to find an appropriate ontology term. Args: label: the label to find ontology terms for ontology: the ontology to search in, cl or uberon or efo for example method: select or search. search provides much broader results Returns: list of (curie, label) tuples returned by OLS """ # using OLS REST API [https://www.ebi.ac.uk/ols/docs/api] url = f"{OLS_API_ROOT}/{method}?q={quote_plus(label)}&ontology={ontology.lower()}" response = requests.get(url) if not response.ok: raise OntologyLookupError( f"Label {label} lookup failed, got status code {response.status_code}: {response.text}" ) return [(r["obo_id"], r["label"]) for r in response.json()["response"]["docs"]]
[((1646, 1663), 'requests.get', 'requests.get', (['url'], {}), '(url)\n', (1658, 1663), False, 'import requests\n'), ((2550, 2567), 'requests.get', 'requests.get', (['url'], {}), '(url)\n', (2562, 2567), False, 'import requests\n'), ((597, 612), 'urllib.parse.quote_plus', 'quote_plus', (['url'], {}), '(url)\n', (607, 612), False, 'from urllib.parse import quote_plus\n'), ((2487, 2504), 'urllib.parse.quote_plus', 'quote_plus', (['label'], {}), '(label)\n', (2497, 2504), False, 'from urllib.parse import quote_plus\n')]
djaodjin/djaodjin-survey
survey/api/matrix.py
a6eb8a577fecd219850478c245d9ebe990438a64
# Copyright (c) 2020, DjaoDjin inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED # TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import logging, re from collections import OrderedDict from django.db.models import F from django.http import Http404 from django.shortcuts import get_object_or_404 from extra_views.contrib.mixins import SearchableListMixin from rest_framework import generics from rest_framework.pagination import PageNumberPagination from rest_framework import response as http from ..compat import reverse from ..mixins import MatrixMixin from ..models import Answer, Matrix, EditableFilter from ..utils import (get_account_model, get_account_serializer, get_question_serializer) from .serializers import EditableFilterSerializer, MatrixSerializer LOGGER = logging.getLogger(__name__) class MatrixCreateAPIView(generics.ListCreateAPIView): """ Filtered list of ``Question``. **Examples**: .. code-block:: http GET /api/matrix/ Response: { "slug": "all", "title": "All accounts against all questions", "metric": { "slug": "all-questions", "title": "All questions", "predicates": [] }, "cohorts": [{ "slug": "all-accounts", "title": "All accounts", "predicates": [] }] } .. code-block:: http POST /api/matrix/ { "slug": "all", "title": "All accounts against all questions", "metric": { "slug": "all-questions", "title": "All questions", "predicates": [] }, "cohorts": [{ "slug": "all-accounts", "title": "All accounts", "predicates": [] }] } Response: 201 CREATED { "slug": "all", "title": "All accounts against all questions", "metric": { "slug": "all-questions", "title": "All questions", "predicates": [] }, "cohorts": [{ "slug": "all-accounts", "title": "All accounts", "predicates": [] }] } """ serializer_class = MatrixSerializer def get_queryset(self): return Matrix.objects.all() class MatrixDetailAPIView(MatrixMixin, generics.RetrieveUpdateDestroyAPIView): """ A table of scores for cohorts aganist a metric. **Examples**: .. code-block:: http GET /api/matrix/languages Response: [{ "slug": "languages", "title": "All cohorts for all questions" "scores":{ "portfolio-a": "0.1", "portfolio-b": "0.5", } }] """ serializer_class = MatrixSerializer lookup_field = 'slug' lookup_url_kwarg = 'path' question_model = get_question_serializer().Meta.model def aggregate_scores(self, metric, cohorts, cut=None, accounts=None): #pylint:disable=unused-argument,too-many-locals if accounts is None: accounts = get_account_model().objects.all() scores = {} if metric: assert 'metric' in metric.tags, \ "filter '%s' is not tagged as a metric" % str(metric) includes, excludes = metric.as_kwargs() questions = self.question_model.objects.filter( **includes).exclude(**excludes) nb_questions = len(questions) if nb_questions > 0: for cohort in cohorts: if isinstance(cohort, EditableFilter): includes, excludes = cohort.as_kwargs() qs_accounts = accounts.filter( **includes).exclude(**excludes) else: # If `matrix.cohorts is None`, the `cohorts` argument # will be a list of single account objects. qs_accounts = [cohort] nb_accounts = len(qs_accounts) if nb_accounts > 0: nb_correct_answers = Answer.objects.filter( question__in=questions, sample__account__in=qs_accounts).filter( measured=F('question__correct_answer')).count() score = nb_correct_answers * 100 / ( nb_questions * nb_accounts) LOGGER.debug("score for '%s' = (%d * 100) "\ "/ (%d * %d) = %f", str(cohort), nb_correct_answers, nb_questions, nb_accounts, score) assert score <= 100 scores.update({str(cohort): score}) return {"scores": scores} @property def matrix(self): if not hasattr(self, '_matrix'): self._matrix = Matrix.objects.filter( slug=self.kwargs.get(self.matrix_url_kwarg)).first() return self._matrix def get_accounts(self): #pylint:disable=unused-argument,no-self-use return get_account_model().objects.all() def get_likely_metric(self, cohort_slug): """ Returns a URL to a ``Matrix`` derived from *cohort*. Many times people will use the same name to either mean a cohort or a metric and expect the system will magically switch between both meaning. This is an attempt at magic. """ likely_metric = None look = re.match(r"(\S+)(-\d+)", cohort_slug) if look: try: likely_metric = self.request.build_absolute_uri( reverse('matrix_chart', args=( EditableFilter.objects.get(slug=look.group(1)).slug,))) except EditableFilter.DoesNotExist: pass return likely_metric def get(self, request, *args, **kwargs): #pylint:disable=unused-argument,too-many-locals matrix = self.matrix if matrix: metric = self.matrix.metric else: parts = self.kwargs.get(self.matrix_url_kwarg).split('/') metric = get_object_or_404(EditableFilter, slug=parts[-1]) matrix = Matrix.objects.filter(slug=parts[0]).first() if not matrix: raise Http404() cohort_serializer = EditableFilterSerializer cohorts = matrix.cohorts.exclude(tags__contains='aggregate') public_cohorts = matrix.cohorts.filter(tags__contains='aggregate') cut = matrix.cut if not cohorts: # We don't have any cohorts, let's show individual accounts instead. if cut: includes, excludes = cut.as_kwargs() accounts = self.get_accounts().filter( **includes).exclude(**excludes) else: accounts = self.get_accounts() cohort_serializer = get_account_serializer() # Implementation Note: switch cohorts from an queryset # of `EditableFilter` to a queryset of `Account` ... cohorts = accounts result = [] scores = {} val = { 'slug': metric.slug, 'title': metric.title, 'metric': EditableFilterSerializer().to_representation(metric), 'cut': EditableFilterSerializer().to_representation(cut), 'cohorts': cohort_serializer(many=True).to_representation(cohorts)} # In some case, a metric and cohort have a connection # and could have the same name. for cohort in val['cohorts']: likely_metric = self.get_likely_metric(cohort['slug']) if likely_metric: cohort['likely_metric'] = likely_metric scores.update(val) scores.update({"values": self.aggregate_scores( metric, cohorts, cut, accounts=self.get_accounts())}) result += [scores] if public_cohorts: public_scores = {} public_scores.update(val) public_scores.update( {"cohorts": EditableFilterSerializer( public_cohorts, many=True).data, "values": self.aggregate_scores(metric, public_cohorts)}) result += [public_scores] return http.Response(result) class EditableFilterQuerysetMixin(object): @staticmethod def get_queryset(): return EditableFilter.objects.all() class EditableFilterListAPIView(SearchableListMixin, EditableFilterQuerysetMixin, generics.ListCreateAPIView): """ List fitlers **Tags**: survey **Examples** .. code-block:: http GET /api/xia/matrix/filters/ HTTP/1.1 responds .. code-block:: json { "count": 2, previous: null, next: null, results: [ { "slug": "all", "title": "All", "tags": "", "predicates": [ "rank": 1, "operator": "", "operand": "", "field": "", "selector": "" ], "likely_metric": "" }, { "slug": "none", "title": "None", "tags": "", "predicates": [ "rank": 1, "operator": "", "operand": "", "field": "", "selector": "" ], "likely_metric": "" } ] } """ search_fields = ['tags'] serializer_class = EditableFilterSerializer def post(self, request, *args, **kwargs): """ Create a fitler **Tags**: survey **Examples** .. code-block:: http POST /api/xia/matrix/filters/ HTTP/1.1 responds .. code-block:: json { "count": 2, previous: null, next: null, results: [ { "slug": "all", "title": "All", "tags": "", "predicates": [ "rank": 1, "operator": "", "operand": "", "field": "", "selector": "" ], "likely_metric": "" }, { "slug": "none", "title": "None", "tags": "", "predicates": [ "rank": 1, "operator": "", "operand": "", "field": "", "selector": "" ], "likely_metric": "" } ] } """ #pylint:disable=useless-super-delegation return super(EditableFilterListAPIView, self).post( request, *args, **kwargs) class EditableFilterDetailAPIView(generics.RetrieveUpdateDestroyAPIView): """ Retrieve a fitler **Tags**: survey **Examples** .. code-block:: http GET /api/xia/matrix/filters/all/ HTTP/1.1 responds .. code-block:: json { "slug": "all", "title": "All", "tags": "", "predicates": [ "rank": 1, "operator": "", "operand": "", "field": "", "selector": "" ], "likely_metric": "" } """ serializer_class = EditableFilterSerializer lookup_field = 'slug' lookup_url_kwarg = 'editable_filter' def get_queryset(self): return EditableFilter.objects.all() def put(self, request, *args, **kwargs): """ Updates a fitler **Tags**: survey **Examples** .. code-block:: http PUT /api/xia/matrix/filters/all/ HTTP/1.1 .. code-block:: json { "slug": "all", "title": "All", "tags": "", "predicates": [ "rank": 1, "operator": "", "operand": "", "field": "", "selector": "" ], "likely_metric": "" } responds .. code-block:: json { "slug": "all", "title": "All", "tags": "", "predicates": [ "rank": 1, "operator": "", "operand": "", "field": "", "selector": "" ], "likely_metric": "" } """ #pylint:disable=useless-super-delegation return super(EditableFilterDetailAPIView, self).put( request, *args, **kwargs) def delete(self, request, *args, **kwargs): """ Deletes a fitler **Tags**: survey **Examples** .. code-block:: http DELETE /api/xia/matrix/filters/all/ HTTP/1.1 """ #pylint:disable=useless-super-delegation return super(EditableFilterDetailAPIView, self).delete( request, *args, **kwargs) class EditableFilterPagination(PageNumberPagination): def paginate_queryset(self, queryset, request, view=None): self.editable_filter = view.editable_filter return super(EditableFilterPagination, self).paginate_queryset( queryset, request, view=view) def get_paginated_response(self, data): return http.Response(OrderedDict([ ('editable_filter', EditableFilterSerializer().to_representation( self.editable_filter)), ('count', self.page.paginator.count), ('next', self.get_next_link()), ('previous', self.get_previous_link()), ('results', data) ])) class EditableFilterObjectsAPIView(generics.ListAPIView): """ List filter objects **Tags**: survey **Examples** .. code-block:: http GET /api/xia/matrix/filters/ HTTP/1.1 responds .. code-block:: json { "created_at": "2020-01-01T00:00:00Z", "measured": 12 } """ pagination_class = EditableFilterPagination serializer_class = None # override in subclasses lookup_field = 'slug' lookup_url_kwarg = 'editable_filter' def get_queryset(self): return self.get_serializer_class().Meta.model.objects.all() def get(self, request, *args, **kwargs): #pylint: disable=unused-argument self.editable_filter = generics.get_object_or_404( EditableFilter.objects.all(), slug=self.kwargs[self.lookup_url_kwarg]) return super(EditableFilterObjectsAPIView, self).get( request, *args, **kwargs) class AccountListAPIView(EditableFilterObjectsAPIView): """ Filtered list of ``EditableFilter``. **Examples**: .. code-block:: http GET /api/questions/languages Response: { "slug": "languages", "title": "All questions related to languages" "predicates":[{ "operator": "contains", "operand": "language", "field": "text", "selector":"keepmatching" }] } """ serializer_class = get_account_serializer() class QuestionListAPIView(EditableFilterObjectsAPIView): """ Filtered list of ``Question``. **Examples**: .. code-block:: http GET /api/questions/languages Response: { "slug": "languages", "title": "All questions related to languages" "predicates":[{ "operator": "contains", "operand": "language", "field": "text", "selector":"keepmatching" }] } """ serializer_class = get_question_serializer()
[((1995, 2022), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (2012, 2022), False, 'import logging, re\n'), ((6912, 6950), 're.match', 're.match', (['"""(\\\\S+)(-\\\\d+)"""', 'cohort_slug'], {}), "('(\\\\S+)(-\\\\d+)', cohort_slug)\n", (6920, 6950), False, 'import logging, re\n'), ((9721, 9742), 'rest_framework.response.Response', 'http.Response', (['result'], {}), '(result)\n', (9734, 9742), True, 'from rest_framework import response as http\n'), ((7574, 7623), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['EditableFilter'], {'slug': 'parts[-1]'}), '(EditableFilter, slug=parts[-1])\n', (7591, 7623), False, 'from django.shortcuts import get_object_or_404\n'), ((7731, 7740), 'django.http.Http404', 'Http404', ([], {}), '()\n', (7738, 7740), False, 'from django.http import Http404\n'), ((5678, 5707), 'django.db.models.F', 'F', (['"""question__correct_answer"""'], {}), "('question__correct_answer')\n", (5679, 5707), False, 'from django.db.models import F\n')]
iFishy/DomainApp
remove_labels.py
970ee96450859b1c40a86a9d654beb99c56aa00f
from __future__ import print_function import httplib2 import os import sys import pickle from apiclient import discovery from apiclient import errors from oauth2client import client from oauth2client import tools from oauth2client.file import Storage try: import argparse flags = argparse.ArgumentParser(parents=[tools.argparser]).parse_args() except ImportError: flags = None # If modifying these scopes, delete your previously saved credentials # at ~/.credentials/gmail-python-quickstart.json SCOPES = 'https://www.googleapis.com/auth/gmail.labels' CLIENT_SECRET_FILE = 'client_secret.json' APPLICATION_NAME = 'Inbox Organize' def get_credentials(): """Gets valid user credentials from storage. If nothing has been stored, or if the stored credentials are invalid, the OAuth2 flow is completed to obtain the new credentials. Returns: Credentials, the obtained credential. """ home_dir = os.path.expanduser('~') credential_dir = os.path.join(home_dir, '.credentials') if not os.path.exists(credential_dir): os.makedirs(credential_dir) credential_path = os.path.join(credential_dir, 'gmail-python-quickstart.json') store = Storage(credential_path) credentials = store.get() if not credentials or credentials.invalid: flow = client.flow_from_clientsecrets(CLIENT_SECRET_FILE, SCOPES) flow.user_agent = APPLICATION_NAME if flags: credentials = tools.run_flow(flow, store, flags) else: # Needed only for compatibility with Python 2.6 credentials = tools.run(flow, store) print('Storing credentials to ' + credential_path) return credentials def GetLabels(service, user_id): try: response = service.users().labels().list(userId=user_id).execute() labels = response['labels'] """ for label in labels: print ('Label id: %s - Label name: %s' % (label['id'], label['name'])) """ return labels except errors.HttpError as error: print ('An error occurred: %s' % error) def DeleteLabel(service, user_id, label_id): try: service.users().labels().delete(userId=user_id, id=label_id).execute() print ('Label with id: %s deleted successfully.' % label_id) except errors.HttpError as error: print ('An error occurred: %s' % error) def main(): credentials = get_credentials() http = credentials.authorize(httplib2.Http()) service = discovery.build('gmail', 'v1', http=http) userId = 'me' labels = GetLabels(service, userId) for label in labels: if (label['type'] == 'user'): print('Deleting label:', label['name']) DeleteLabel(service, userId, label['id']) if __name__ == '__main__': main()
[((936, 959), 'os.path.expanduser', 'os.path.expanduser', (['"""~"""'], {}), "('~')\n", (954, 959), False, 'import os\n'), ((980, 1018), 'os.path.join', 'os.path.join', (['home_dir', '""".credentials"""'], {}), "(home_dir, '.credentials')\n", (992, 1018), False, 'import os\n'), ((1116, 1176), 'os.path.join', 'os.path.join', (['credential_dir', '"""gmail-python-quickstart.json"""'], {}), "(credential_dir, 'gmail-python-quickstart.json')\n", (1128, 1176), False, 'import os\n'), ((1198, 1222), 'oauth2client.file.Storage', 'Storage', (['credential_path'], {}), '(credential_path)\n', (1205, 1222), False, 'from oauth2client.file import Storage\n'), ((2440, 2481), 'apiclient.discovery.build', 'discovery.build', (['"""gmail"""', '"""v1"""'], {'http': 'http'}), "('gmail', 'v1', http=http)\n", (2455, 2481), False, 'from apiclient import discovery\n'), ((1029, 1059), 'os.path.exists', 'os.path.exists', (['credential_dir'], {}), '(credential_dir)\n', (1043, 1059), False, 'import os\n'), ((1067, 1094), 'os.makedirs', 'os.makedirs', (['credential_dir'], {}), '(credential_dir)\n', (1078, 1094), False, 'import os\n'), ((1311, 1369), 'oauth2client.client.flow_from_clientsecrets', 'client.flow_from_clientsecrets', (['CLIENT_SECRET_FILE', 'SCOPES'], {}), '(CLIENT_SECRET_FILE, SCOPES)\n', (1341, 1369), False, 'from oauth2client import client\n'), ((2410, 2425), 'httplib2.Http', 'httplib2.Http', ([], {}), '()\n', (2423, 2425), False, 'import httplib2\n'), ((289, 339), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'parents': '[tools.argparser]'}), '(parents=[tools.argparser])\n', (312, 339), False, 'import argparse\n'), ((1450, 1484), 'oauth2client.tools.run_flow', 'tools.run_flow', (['flow', 'store', 'flags'], {}), '(flow, store, flags)\n', (1464, 1484), False, 'from oauth2client import tools\n'), ((1568, 1590), 'oauth2client.tools.run', 'tools.run', (['flow', 'store'], {}), '(flow, store)\n', (1577, 1590), False, 'from oauth2client import tools\n')]
danielmarostica/pygadgetreader
readgadget/modules/rs_structs.py
977949da7fcb6585f3e0270019d369c6967b317c
import numpy as np import sys ## ROCKSTAR ## halostruct1 = np.dtype([('id',np.int64), ('pos',np.float32,(6,)), ('corevel',np.float32,(3,)), ('bulkvel',np.float32,(3,)), ('m',np.float32), ('r',np.float32), ('child_r',np.float32), ('vmax_r',np.float32), ('mgrav',np.float32), ('vmax',np.float32), ('rvmax',np.float32), ('rs',np.float32), ('klypin_rs',np.float32), ('vrms',np.float32), ('J',np.float32,(3,)), ('energy',np.float32), ('spin',np.float32), ('alt_m',np.float32,(4,)), ('Xoff',np.float32), ('Voff',np.float32), ('b_to_a',np.float32), ('c_to_a',np.float32), ('A',np.float32,(3,)), ('b_to_a2',np.float32), ('c_to_a2',np.float32), ('A2',np.float32,(3,)), ('bullock_spin',np.float32), ('kin_to_pot',np.float32), ('m_pe_b',np.float32), ('m_pe_d',np.float32), ('dummy1',np.float32), ## ALIGNMENT ('num_p',np.int64), ('num_child_particles',np.int64), ('p_start',np.int64), ('desc',np.int64), ('flags',np.int64), ('n_core',np.int64), ('dummy2',np.float32), ## ALIGNMENT ('min_pos_err',np.float32), ('min_vel_err',np.float32), ('min_bulkvel_err',np.float32) ]) halostruct2 = np.dtype([('id',np.int64), ('pos',np.float32,(6,)), ('corevel',np.float32,(3,)), ('bulkvel',np.float32,(3,)), ('m',np.float32), ('r',np.float32), ('child_r',np.float32), ('vmax_r',np.float32), ('mgrav',np.float32), ('vmax',np.float32), ('rvmax',np.float32), ('rs',np.float32), ('klypin_rs',np.float32), ('vrms',np.float32), ('J',np.float32,(3,)), ('energy',np.float32), ('spin',np.float32), ('alt_m',np.float32,(4,)), ('Xoff',np.float32), ('Voff',np.float32), ('b_to_a',np.float32), ('c_to_a',np.float32), ('A',np.float32,(3,)), ('b_to_a2',np.float32), ('c_to_a2',np.float32), ('A2',np.float32,(3,)), ('bullock_spin',np.float32), ('kin_to_pot',np.float32), ('m_pe_b',np.float32), ('m_pe_d',np.float32), ('halfmass_radius',np.float32), #('dummy1',np.float32), ## ALIGNMENT ('num_p',np.int64), ('num_child_particles',np.int64), ('p_start',np.int64), ('desc',np.int64), ('flags',np.int64), ('n_core',np.int64), ('dummy2',np.float32), ## ALIGNMENT ('min_pos_err',np.float32), ('min_vel_err',np.float32), ('min_bulkvel_err',np.float32) ]) ## ROCKSTAR-GALAXIES ## halogalaxystruct1 = np.dtype([('id',np.int64), ('pos',np.float32,(6,)), ('corevel',np.float32,(3,)), ('bulkvel',np.float32,(3,)), ('m',np.float32), ('r',np.float32), ('child_r',np.float32), ('vmax_r',np.float32), ('mgrav',np.float32), ('vmax',np.float32), ('rvmax',np.float32), ('rs',np.float32), ('klypin_rs',np.float32), ('vrms',np.float32), ('J',np.float32,(3,)), ('energy',np.float32), ('spin',np.float32), ('alt_m',np.float32,(4,)), ('Xoff',np.float32), ('Voff',np.float32), ('b_to_a',np.float32), ('c_to_a',np.float32), ('A',np.float32,(3,)), ('b_to_a2',np.float32), ('c_to_a2',np.float32), ('A2',np.float32,(3,)), ('bullock_spin',np.float32), ('kin_to_pot',np.float32), ('m_pe_b',np.float32), ('m_pe_d',np.float32), ('dummy1',np.float32), ## ALIGNMENT ('num_p',np.int64), ('num_child_particles',np.int64), ('p_start',np.int64), ('desc',np.int64), ('flags',np.int64), ('n_core',np.int64), ('dummy2',np.float32), ## ALIGNMENT ('min_pos_err',np.float32), ('min_vel_err',np.float32), ('min_bulkvel_err',np.float32), ('type',np.int32), ('sm',np.float32), ('gas',np.float32), ('bh',np.float32), ('peak_density',np.float32), ('av_density',np.float32), ]) def getRSformat(obj): if obj.galaxies == 0: if obj.format_revision == 0: print('OUTDATED ROCKSTAR, PLEASE UPDATE!') sys.exit() elif obj.format_revision == 1: if obj.debug: print('returning halostruct1') return halostruct1 elif obj.format_revision == 2: if obj.debug: print('returning halostruct2') return halostruct2 else: print('found HALO_FORMAT_REVISION=%d, if this is >2 email me!' % obj.format_revision) sys.exit() elif obj.galaxies == 1: if obj.format_revision == 0: print('OUTDATED ROCKSTAR-GALAXIES, PLEASE UPDATE!') sys.exit() elif obj.format_revision == 1: if obj.debug: print('returning halogalaxystruct1') return halogalaxystruct1 else: print('found HALO_FORMAT_REVISION=%d, if this is >1 email me!' % obj.format_revision) sys.exit()
[((60, 1145), 'numpy.dtype', 'np.dtype', (["[('id', np.int64), ('pos', np.float32, (6,)), ('corevel', np.float32, (3,)),\n ('bulkvel', np.float32, (3,)), ('m', np.float32), ('r', np.float32), (\n 'child_r', np.float32), ('vmax_r', np.float32), ('mgrav', np.float32),\n ('vmax', np.float32), ('rvmax', np.float32), ('rs', np.float32), (\n 'klypin_rs', np.float32), ('vrms', np.float32), ('J', np.float32, (3,)),\n ('energy', np.float32), ('spin', np.float32), ('alt_m', np.float32, (4,\n )), ('Xoff', np.float32), ('Voff', np.float32), ('b_to_a', np.float32),\n ('c_to_a', np.float32), ('A', np.float32, (3,)), ('b_to_a2', np.float32\n ), ('c_to_a2', np.float32), ('A2', np.float32, (3,)), ('bullock_spin',\n np.float32), ('kin_to_pot', np.float32), ('m_pe_b', np.float32), (\n 'm_pe_d', np.float32), ('dummy1', np.float32), ('num_p', np.int64), (\n 'num_child_particles', np.int64), ('p_start', np.int64), ('desc', np.\n int64), ('flags', np.int64), ('n_core', np.int64), ('dummy2', np.\n float32), ('min_pos_err', np.float32), ('min_vel_err', np.float32), (\n 'min_bulkvel_err', np.float32)]"], {}), "([('id', np.int64), ('pos', np.float32, (6,)), ('corevel', np.\n float32, (3,)), ('bulkvel', np.float32, (3,)), ('m', np.float32), ('r',\n np.float32), ('child_r', np.float32), ('vmax_r', np.float32), ('mgrav',\n np.float32), ('vmax', np.float32), ('rvmax', np.float32), ('rs', np.\n float32), ('klypin_rs', np.float32), ('vrms', np.float32), ('J', np.\n float32, (3,)), ('energy', np.float32), ('spin', np.float32), ('alt_m',\n np.float32, (4,)), ('Xoff', np.float32), ('Voff', np.float32), (\n 'b_to_a', np.float32), ('c_to_a', np.float32), ('A', np.float32, (3,)),\n ('b_to_a2', np.float32), ('c_to_a2', np.float32), ('A2', np.float32, (3\n ,)), ('bullock_spin', np.float32), ('kin_to_pot', np.float32), (\n 'm_pe_b', np.float32), ('m_pe_d', np.float32), ('dummy1', np.float32),\n ('num_p', np.int64), ('num_child_particles', np.int64), ('p_start', np.\n int64), ('desc', np.int64), ('flags', np.int64), ('n_core', np.int64),\n ('dummy2', np.float32), ('min_pos_err', np.float32), ('min_vel_err', np\n .float32), ('min_bulkvel_err', np.float32)])\n", (68, 1145), True, 'import numpy as np\n'), ((2082, 3178), 'numpy.dtype', 'np.dtype', (["[('id', np.int64), ('pos', np.float32, (6,)), ('corevel', np.float32, (3,)),\n ('bulkvel', np.float32, (3,)), ('m', np.float32), ('r', np.float32), (\n 'child_r', np.float32), ('vmax_r', np.float32), ('mgrav', np.float32),\n ('vmax', np.float32), ('rvmax', np.float32), ('rs', np.float32), (\n 'klypin_rs', np.float32), ('vrms', np.float32), ('J', np.float32, (3,)),\n ('energy', np.float32), ('spin', np.float32), ('alt_m', np.float32, (4,\n )), ('Xoff', np.float32), ('Voff', np.float32), ('b_to_a', np.float32),\n ('c_to_a', np.float32), ('A', np.float32, (3,)), ('b_to_a2', np.float32\n ), ('c_to_a2', np.float32), ('A2', np.float32, (3,)), ('bullock_spin',\n np.float32), ('kin_to_pot', np.float32), ('m_pe_b', np.float32), (\n 'm_pe_d', np.float32), ('halfmass_radius', np.float32), ('num_p', np.\n int64), ('num_child_particles', np.int64), ('p_start', np.int64), (\n 'desc', np.int64), ('flags', np.int64), ('n_core', np.int64), ('dummy2',\n np.float32), ('min_pos_err', np.float32), ('min_vel_err', np.float32),\n ('min_bulkvel_err', np.float32)]"], {}), "([('id', np.int64), ('pos', np.float32, (6,)), ('corevel', np.\n float32, (3,)), ('bulkvel', np.float32, (3,)), ('m', np.float32), ('r',\n np.float32), ('child_r', np.float32), ('vmax_r', np.float32), ('mgrav',\n np.float32), ('vmax', np.float32), ('rvmax', np.float32), ('rs', np.\n float32), ('klypin_rs', np.float32), ('vrms', np.float32), ('J', np.\n float32, (3,)), ('energy', np.float32), ('spin', np.float32), ('alt_m',\n np.float32, (4,)), ('Xoff', np.float32), ('Voff', np.float32), (\n 'b_to_a', np.float32), ('c_to_a', np.float32), ('A', np.float32, (3,)),\n ('b_to_a2', np.float32), ('c_to_a2', np.float32), ('A2', np.float32, (3\n ,)), ('bullock_spin', np.float32), ('kin_to_pot', np.float32), (\n 'm_pe_b', np.float32), ('m_pe_d', np.float32), ('halfmass_radius', np.\n float32), ('num_p', np.int64), ('num_child_particles', np.int64), (\n 'p_start', np.int64), ('desc', np.int64), ('flags', np.int64), (\n 'n_core', np.int64), ('dummy2', np.float32), ('min_pos_err', np.float32\n ), ('min_vel_err', np.float32), ('min_bulkvel_err', np.float32)])\n", (2090, 3178), True, 'import numpy as np\n'), ((4191, 5423), 'numpy.dtype', 'np.dtype', (["[('id', np.int64), ('pos', np.float32, (6,)), ('corevel', np.float32, (3,)),\n ('bulkvel', np.float32, (3,)), ('m', np.float32), ('r', np.float32), (\n 'child_r', np.float32), ('vmax_r', np.float32), ('mgrav', np.float32),\n ('vmax', np.float32), ('rvmax', np.float32), ('rs', np.float32), (\n 'klypin_rs', np.float32), ('vrms', np.float32), ('J', np.float32, (3,)),\n ('energy', np.float32), ('spin', np.float32), ('alt_m', np.float32, (4,\n )), ('Xoff', np.float32), ('Voff', np.float32), ('b_to_a', np.float32),\n ('c_to_a', np.float32), ('A', np.float32, (3,)), ('b_to_a2', np.float32\n ), ('c_to_a2', np.float32), ('A2', np.float32, (3,)), ('bullock_spin',\n np.float32), ('kin_to_pot', np.float32), ('m_pe_b', np.float32), (\n 'm_pe_d', np.float32), ('dummy1', np.float32), ('num_p', np.int64), (\n 'num_child_particles', np.int64), ('p_start', np.int64), ('desc', np.\n int64), ('flags', np.int64), ('n_core', np.int64), ('dummy2', np.\n float32), ('min_pos_err', np.float32), ('min_vel_err', np.float32), (\n 'min_bulkvel_err', np.float32), ('type', np.int32), ('sm', np.float32),\n ('gas', np.float32), ('bh', np.float32), ('peak_density', np.float32),\n ('av_density', np.float32)]"], {}), "([('id', np.int64), ('pos', np.float32, (6,)), ('corevel', np.\n float32, (3,)), ('bulkvel', np.float32, (3,)), ('m', np.float32), ('r',\n np.float32), ('child_r', np.float32), ('vmax_r', np.float32), ('mgrav',\n np.float32), ('vmax', np.float32), ('rvmax', np.float32), ('rs', np.\n float32), ('klypin_rs', np.float32), ('vrms', np.float32), ('J', np.\n float32, (3,)), ('energy', np.float32), ('spin', np.float32), ('alt_m',\n np.float32, (4,)), ('Xoff', np.float32), ('Voff', np.float32), (\n 'b_to_a', np.float32), ('c_to_a', np.float32), ('A', np.float32, (3,)),\n ('b_to_a2', np.float32), ('c_to_a2', np.float32), ('A2', np.float32, (3\n ,)), ('bullock_spin', np.float32), ('kin_to_pot', np.float32), (\n 'm_pe_b', np.float32), ('m_pe_d', np.float32), ('dummy1', np.float32),\n ('num_p', np.int64), ('num_child_particles', np.int64), ('p_start', np.\n int64), ('desc', np.int64), ('flags', np.int64), ('n_core', np.int64),\n ('dummy2', np.float32), ('min_pos_err', np.float32), ('min_vel_err', np\n .float32), ('min_bulkvel_err', np.float32), ('type', np.int32), ('sm',\n np.float32), ('gas', np.float32), ('bh', np.float32), ('peak_density',\n np.float32), ('av_density', np.float32)])\n", (4199, 5423), True, 'import numpy as np\n'), ((6913, 6923), 'sys.exit', 'sys.exit', ([], {}), '()\n', (6921, 6923), False, 'import sys\n'), ((7489, 7499), 'sys.exit', 'sys.exit', ([], {}), '()\n', (7497, 7499), False, 'import sys\n'), ((7336, 7346), 'sys.exit', 'sys.exit', ([], {}), '()\n', (7344, 7346), False, 'import sys\n'), ((7784, 7794), 'sys.exit', 'sys.exit', ([], {}), '()\n', (7792, 7794), False, 'import sys\n')]
entropia/ics2entropiawiki
ics2entropiawiki.py
d77fa8073c2b18eade1c2b85feaccab8b6598c6b
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ics2entropiawiki Read an ics file with the entropia events and insert them in to the entropia homepage wiki. Example: $ ics2entropiawiki.py --config /etc/ics2entropiawiki/config.ini Inserts events not in the past to the "Termine" Wiki page and appends past events to the "Vergangene_Termine" Site """ import locale import configparser import re import requests from argparse import ArgumentParser from datetime import timedelta, datetime from ics import Calendar from mwclient import Site from dateutil.tz import tzlocal BOTWARNING = """ <!-- This text is automatically generated by the ics2entropiawiki bot, everything you write and everything you edit WILL BE OVERWRITTEN Dieser Text ist vom ics2entropiawiki bot automatisch generiert. Alles was hier manuell editiert, hinzugefügt wird WIRD ÜBERSCHRIEBEN --> """ TABLE_HEADER = """ {| class="termine" border="1" cellspacing="0" cellpadding="5" width="100%" style="border-collapse:collapse;" ! style="width:250px;" | Datum !! style="width:50px;" | Zeit !! Ort !! Beschreibung\ """ ARCHIVE_TABLE_HEADER = """ {| class="termine" border="1" cellspacing="0" cellpadding="5" style="border-collapse:collapse;" width="100%" |width=15%|'''Datum''' |width=6%|'''Zeit''' |width=15%|'''Ort''' |width=69%|'''Beschreibung''' """ TABLE_FOOTER = ( "|}", "\n", "Weitere Links: [[Vorlage:Termine|Termine]] ", "([https://entropia.de/index.php?title=Vorlage:Termine&action=edit Bearbeiten]),", " [[Vorlage:Vergangene_Termine|Vergangene Termine]], [[Anfahrt]]" ) LINE_SEPARATOR = "|-\n" try: locale.setlocale(locale.LC_ALL, 'de_DE.utf8') except locale.Error: pass class EntropiaEvent: """ Parses an ics Event and converts it to an entropia-wiki suitable form """ def __init__(self, event): """ :param event: The event to be evaluated :type event: ics.event.Event """ self.event = event self.begintime = event.begin.datetime.astimezone() self.endtime = event._end_time.datetime.astimezone() @property def location(self): """ Retrieve the location of an event :return: location :rtype: str """ locations = { "entropia": "[[Anfahrt|Entropia]]", } location = " " if self.event.location: location = self.event.location if location.lower() in locations.keys(): location = locations[location.lower()] return location @property def begin_date(self): """ :return: Entropia-Wiki formatted begin time :rtype: str """ return self.begintime.strftime("%a., %d.%m.%Y") @property def end_date(self): """ :return: Entropia-Wiki formatted end time :rtype: str """ end_date = "" if self.endtime - self.begintime > timedelta(days=1): end_date = " - " + self.endtime.strftime("%a., %d.%m.%Y") return end_date @property def days_to_event(self): """ :return: Days to the start of the event :rtype: datetime.timedelta """ return self.endtime - datetime.now(tz=tzlocal()) @property def is_past_event(self): """ :return: Check if the event lies in the past :rtype: bool """ return self.days_to_event < timedelta(days=0) @property def start_time(self): """ :return: The starting time of the event :rtype: str """ start_time = " " if not self.event.all_day: start_time = self.begintime.strftime("%H:%M") return start_time @property def description(self): """ :return: The event's description :rtype: str """ links = None wiki = None event = self.event if event.description: links = re.findall("^[Ll]ink:(.*)$", event.description) wiki = re.findall("^[Ww]iki:(.*)$", event.description) if links and event.name: description = "["+links[0]+" "+event.name+"]" elif wiki: description = wiki[0] elif not event.name: description = "N.A." else: description = event.name return description def __str__(self): """ :return: A wiki line describing the event :rtype: str """ return ("| " + self.begin_date + self.end_date + " || " + self.start_time + " || " + self.location + " || " + self.description ) def append_past_events(past_events, wiki_user, wiki_pw, wiki_archive): """ Append the "new" past events to the wiki archive page :param past_events: the past events that were not added to the events page :type past_events: list :param wiki_user: bot user for the wiki :type wiki_user: str :param wiki_pw: password for the wiki user :type wiki_pw: str :param wiki_archive: archive page :type wiki_archive: str :return: None :rtype: None """ site = Site('entropia.de', path='/') site.login(wiki_user, wiki_pw) page = site.pages[wiki_archive] text = page.text().split('\n') last_table_position = 0 for event in past_events: year_header = "== {} ==".format(event.endtime.strftime('%Y')) for index, txtline in enumerate(text): if txtline == '|}': last_table_position = index if str(event) in text: continue if year_header in text: append_list = ( '\n' + LINE_SEPARATOR + str(event) ) text = text[:last_table_position]+[append_list, ]+text[last_table_position:] else: append_list = ( 3 * '\n' + year_header + ARCHIVE_TABLE_HEADER + '\n' + LINE_SEPARATOR + '\n' + str(event) + '\n|}' ) text = text[:last_table_position+1]+[append_list, ]+text[last_table_position+1:] page.save("\n".join(text)) def get_args(): """ Retrieve arguments from the command line, the config file respectively :return: Parsed arguments from command line, config file :rtype: list """ parser = ArgumentParser() parser.add_argument( "-c", "--config", default="/etc/ics2entropiawiki/config.ini", dest="configfile", help="Configuration file path", metavar="CONFIG" ) parser.add_argument( "-u", "--url", dest="ics_url", help="The URL under which the ICS-file can be retrieved", metavar="URL", ) parser.add_argument( "-f", "--file", dest="local_file", help="Local ics file", metavar="FILE" ) parser.add_argument( "--wiki-user", dest="wiki_user", help="Wiki user", metavar="WIKIUSER" ) parser.add_argument( "--wiki-password", dest="wiki_pw", help="Wiki user's password", metavar="WIKIPW" ) parser.add_argument( "--wiki-page", dest="wiki_page", help='Wiki page', metavar='WIKIPAGE' ) parser.add_argument( "--wiki-archive", dest="wiki_archive", help='Wiki archive', metavar='WIKIARCHIVE' ) parser.add_argument( "-d", "--debug", dest="debug", action="store_true", default=False ) args = parser.parse_args() configfile = args.configfile ics_url = args.ics_url file = args.local_file wiki = { 'user': args.wiki_user, 'pass': args.wiki_pw, 'page': args.wiki_page, 'archive': args.wiki_archive, } debug = args.debug if configfile: config = configparser.ConfigParser() config.read(configfile) try: ics_url = config["default"]["url"] wiki = config["wiki"] except KeyError as error: print("Please have a look at the sample config provided with the package") raise error return ics_url, file, wiki, debug def deradicalise_ical(ics): """ :param ics: input file :type ics: str :return: file with remove radicale_headers """ deradicalised = "" for line in ics.splitlines(): if 'X-RADICALE-NAME:' not in line: deradicalised += "\n"+line return deradicalised def main(): """ :return: None :rtype: None """ ics_url, file, wiki, debug = get_args() event_strings = [] past_events = [] if file: calendar = Calendar(deradicalise_ical(open(file).read())) else: ics_result = requests.get(ics_url) ics_result.encoding = 'utf-8' calendar = Calendar(deradicalise_ical(ics_result.text)) for event in sorted(calendar.events, key=lambda ev: ev.begin): event = EntropiaEvent(event) if not event.is_past_event: event_strings.append( "\n" + LINE_SEPARATOR + str(event) ) else: past_events.append(event) append_past_events(past_events, wiki['user'], wiki['pass'], wiki['archive']) termine = BOTWARNING + "\n" + TABLE_HEADER + "\n" + "".join(event_strings) + "\n" + "".join(TABLE_FOOTER) if debug: print(termine) site = Site('entropia.de', path='/') site.login(wiki['user'], wiki['pass']) page = site.pages[wiki['page']] if termine: page.save(termine, "Terminbot was here") page.purge() if __name__ == '__main__': main()
[((1649, 1694), 'locale.setlocale', 'locale.setlocale', (['locale.LC_ALL', '"""de_DE.utf8"""'], {}), "(locale.LC_ALL, 'de_DE.utf8')\n", (1665, 1694), False, 'import locale\n'), ((5330, 5359), 'mwclient.Site', 'Site', (['"""entropia.de"""'], {'path': '"""/"""'}), "('entropia.de', path='/')\n", (5334, 5359), False, 'from mwclient import Site\n'), ((6626, 6642), 'argparse.ArgumentParser', 'ArgumentParser', ([], {}), '()\n', (6640, 6642), False, 'from argparse import ArgumentParser\n'), ((9755, 9784), 'mwclient.Site', 'Site', (['"""entropia.de"""'], {'path': '"""/"""'}), "('entropia.de', path='/')\n", (9759, 9784), False, 'from mwclient import Site\n'), ((8161, 8188), 'configparser.ConfigParser', 'configparser.ConfigParser', ([], {}), '()\n', (8186, 8188), False, 'import configparser\n'), ((9067, 9088), 'requests.get', 'requests.get', (['ics_url'], {}), '(ics_url)\n', (9079, 9088), False, 'import requests\n'), ((2981, 2998), 'datetime.timedelta', 'timedelta', ([], {'days': '(1)'}), '(days=1)\n', (2990, 2998), False, 'from datetime import timedelta, datetime\n'), ((3481, 3498), 'datetime.timedelta', 'timedelta', ([], {'days': '(0)'}), '(days=0)\n', (3490, 3498), False, 'from datetime import timedelta, datetime\n'), ((4024, 4071), 're.findall', 're.findall', (['"""^[Ll]ink:(.*)$"""', 'event.description'], {}), "('^[Ll]ink:(.*)$', event.description)\n", (4034, 4071), False, 'import re\n'), ((4091, 4138), 're.findall', 're.findall', (['"""^[Ww]iki:(.*)$"""', 'event.description'], {}), "('^[Ww]iki:(.*)$', event.description)\n", (4101, 4138), False, 'import re\n'), ((3292, 3301), 'dateutil.tz.tzlocal', 'tzlocal', ([], {}), '()\n', (3299, 3301), False, 'from dateutil.tz import tzlocal\n')]
anand722000/algo_ds_101
Arrays/LeftRotation.py
b3e25ce2b2e47e53024f8d349232b04de2837ce3
#!/bin/python3 import math import os import random import re import sys # Complete the rotLeft function below. def rotLeft(a, d): alist = list(a) b = alist[d:]+alist[:d] return b if __name__ == '__main__': fptr = open(os.environ['OUTPUT_PATH'], 'w') nd = input().split() n = int(nd[0]) d = int(nd[1]) a = list(map(int, input().rstrip().split())) result = rotLeft(a, d) fptr.write(' '.join(map(str, result))) fptr.write('\n') fptr.close()
[]
SaizhuoWang/carefree-learn
tests/unittests/test_zoo.py
3bf7b00286cdef556cc00fa2fcba5c390b5b9d20
import os import cflearn import platform import unittest from cfdata.tabular import TabularDataset num_jobs = 0 if platform.system() == "Linux" else 2 logging_folder = "__test_zoo__" class TestZoo(unittest.TestCase): @staticmethod def _test_zoo_core(model: str) -> None: x, y = TabularDataset.iris().xy zoo_folder = os.path.join(logging_folder, f"__{model}__") zoo = cflearn.Zoo(model) for key, config in zoo.benchmarks.items(): local_logging_folder = os.path.join(zoo_folder, key) config["logging_folder"] = local_logging_folder m = cflearn.make(model, **config).fit(x, y) cflearn.evaluate(x, y, pipelines=m) cflearn._rmtree(logging_folder) def test_fcnn_zoo(self) -> None: self._test_zoo_core("fcnn") def test_tree_dnn_zoo(self) -> None: self._test_zoo_core("tree_dnn") if __name__ == "__main__": unittest.main()
[((931, 946), 'unittest.main', 'unittest.main', ([], {}), '()\n', (944, 946), False, 'import unittest\n'), ((117, 134), 'platform.system', 'platform.system', ([], {}), '()\n', (132, 134), False, 'import platform\n'), ((344, 388), 'os.path.join', 'os.path.join', (['logging_folder', 'f"""__{model}__"""'], {}), "(logging_folder, f'__{model}__')\n", (356, 388), False, 'import os\n'), ((403, 421), 'cflearn.Zoo', 'cflearn.Zoo', (['model'], {}), '(model)\n', (414, 421), False, 'import cflearn\n'), ((710, 741), 'cflearn._rmtree', 'cflearn._rmtree', (['logging_folder'], {}), '(logging_folder)\n', (725, 741), False, 'import cflearn\n'), ((298, 319), 'cfdata.tabular.TabularDataset.iris', 'TabularDataset.iris', ([], {}), '()\n', (317, 319), False, 'from cfdata.tabular import TabularDataset\n'), ((508, 537), 'os.path.join', 'os.path.join', (['zoo_folder', 'key'], {}), '(zoo_folder, key)\n', (520, 537), False, 'import os\n'), ((666, 701), 'cflearn.evaluate', 'cflearn.evaluate', (['x', 'y'], {'pipelines': 'm'}), '(x, y, pipelines=m)\n', (682, 701), False, 'import cflearn\n'), ((614, 643), 'cflearn.make', 'cflearn.make', (['model'], {}), '(model, **config)\n', (626, 643), False, 'import cflearn\n')]
duliodenis/python_master_degree
unit_13/26-Data_Structures/4_Merge_Sort_and_Linked_Lists/3_linked_list_merge_sort.py
3ab76838ce2fc1606f28e988a3273dd27122a621
# # Data Structures: Linked List Merge Sort: The Conquer Step # Python Techdegree # # Created by Dulio Denis on 3/24/19. # Copyright (c) 2019 ddApps. All rights reserved. # ------------------------------------------------ from linked_list import Node, LinkedList def merge_sort(linked_list): ''' Sorts a linked list in ascending order. - Recuresively divide the linked list into sublists containing a single node - Repeatedly merge the sublists to produce sorted swublists until one remains Returns a sorted linked list. Runs in O(kn log n) time. ''' if linked_list.size() == 1: return linked_list elif linked_list.is_empty(): return linked_list left_half, right_half = split(linked_list) left = merge_sort(left_half) right = merge_sort(right_half) return merge(left, right) def split(linked_list): ''' Divide the unsorted list at the midpoint into sublists. Takes O(k log n) quasilinear time. ''' if linked_list == None or linked_list.head == None: left_half = linked_list right_half = None return left_half, right_half else: # non-empty linked lists size = linked_list.size() midpoint = size // 2 mid_node = linked_list.node_at_index(midpoint-1) left_half = linked_list right_half = LinkedList() right_half = mid_node.next_node mid_node.next_node = None return left_half, right_half def merge(left, right): ''' Merges two linked lists, sorting by data in nodes. Returns a new, merged list. Runs in O(n) linear time. ''' # Create a new linked list that contains nodes from # merging left and right merged = LinkedList() # Add a fake head that is discarded later to simplify code merged.add(0) # Set current to the head of the linked list current = merged.head # Obtain head nodes for left and right linked lists left_head = left.head right_head = right.head # Iterate over left and right until we reach the tail node # of either while left_head or right_head: # If the head node of the left is None, we're past the tail # Add the node from right to merged linkned list if left_head is None: current.next_node = right_head # Call next on right to set loop condition to False right_head = right_head.next_node # If the head node of right is None, we're past the tail # Add the tail node from left to merged linked list elif right_head is None: current.next_node = left_head # Call next on left to set loop condition to False left_head = left_head.next_node else: # Not at either tail node # Obtain node data to perform comparison operations left_data = left_head.data right_data = right_head.data # If data on left is less than right, set current to left node if left_data < right_data: current.next_node = left_head # Move left head to next node left_head = left_head.next_node # If data on left is greater than right, set current to right node else: current.next_node = right_head # Move right head to next node right_head = right_head.next_node # Move current to next node current = current.next_node # Discard fake head and set first merged node as head head = merged.head.next_node merged.head = head return merged l = LinkedList() l.add(10) l.add(2) l.add(44) l.add(15) l.add(200) print(l) sorted_linked_list = merge_sort(l) print(sorted_linked_list)
[((3677, 3689), 'linked_list.LinkedList', 'LinkedList', ([], {}), '()\n', (3687, 3689), False, 'from linked_list import Node, LinkedList\n'), ((1737, 1749), 'linked_list.LinkedList', 'LinkedList', ([], {}), '()\n', (1747, 1749), False, 'from linked_list import Node, LinkedList\n'), ((1355, 1367), 'linked_list.LinkedList', 'LinkedList', ([], {}), '()\n', (1365, 1367), False, 'from linked_list import Node, LinkedList\n')]
samyoo78/NearPy
nearpy/examples/example2.py
1b534b864d320d875508e95cd2b76b6d8c07a90b
# -*- coding: utf-8 -*- # Copyright (c) 2013 Ole Krause-Sparmann # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import numpy import scipy import unittest import time from nearpy import Engine from nearpy.distances import CosineDistance from nearpy.hashes import RandomBinaryProjections, HashPermutations, HashPermutationMapper def example2(): # Dimension of feature space DIM = 100 # Number of data points (dont do too much because of exact search) POINTS = 20000 ########################################################## print('Performing indexing with HashPermutations...') t0 = time.time() # Create permutations meta-hash permutations = HashPermutations('permut') # Create binary hash as child hash rbp_perm = RandomBinaryProjections('rbp_perm', 14) rbp_conf = {'num_permutation':50,'beam_size':10,'num_neighbour':100} # Add rbp as child hash of permutations hash permutations.add_child_hash(rbp_perm, rbp_conf) # Create engine engine_perm = Engine(DIM, lshashes=[permutations], distance=CosineDistance()) # First index some random vectors matrix = numpy.zeros((POINTS,DIM)) for i in range(POINTS): v = numpy.random.randn(DIM) matrix[i] = v engine_perm.store_vector(v) # Then update permuted index permutations.build_permuted_index() t1 = time.time() print('Indexing took %f seconds' % (t1-t0)) # Get random query vector query = numpy.random.randn(DIM) # Do random query on engine 3 print('\nNeighbour distances with HashPermutations:') print(' -> Candidate count is %d' % engine_perm.candidate_count(query)) results = engine_perm.neighbours(query) dists = [x[2] for x in results] print(dists) # Real neighbours print('\nReal neighbour distances:') query = query.reshape((DIM)) dists = CosineDistance().distance(matrix, query) dists = dists.reshape((-1,)) dists = sorted(dists) print(dists[:10]) ########################################################## print('\nPerforming indexing with HashPermutationMapper...') t0 = time.time() # Create permutations meta-hash permutations2 = HashPermutationMapper('permut2') # Create binary hash as child hash rbp_perm2 = RandomBinaryProjections('rbp_perm2', 14) # Add rbp as child hash of permutations hash permutations2.add_child_hash(rbp_perm2) # Create engine engine_perm2 = Engine(DIM, lshashes=[permutations2], distance=CosineDistance()) # First index some random vectors matrix = numpy.zeros((POINTS,DIM)) for i in range(POINTS): v = numpy.random.randn(DIM) matrix[i] = v engine_perm2.store_vector(v) t1 = time.time() print('Indexing took %f seconds' % (t1-t0)) # Get random query vector query = numpy.random.randn(DIM) # Do random query on engine 4 print('\nNeighbour distances with HashPermutationMapper:') print(' -> Candidate count is %d' % engine_perm2.candidate_count(query)) results = engine_perm2.neighbours(query) dists = [x[2] for x in results] print(dists) # Real neighbours print('\nReal neighbour distances:') query = query.reshape((DIM)) dists = CosineDistance().distance(matrix,query) dists = dists.reshape((-1,)) dists = sorted(dists) print(dists[:10]) ########################################################## print('\nPerforming indexing with multiple binary hashes...') t0 = time.time() hashes = [] for k in range(20): hashes.append(RandomBinaryProjections('rbp_%d' % k, 10)) # Create engine engine_rbps = Engine(DIM, lshashes=hashes, distance=CosineDistance()) # First index some random vectors matrix = numpy.zeros((POINTS,DIM)) for i in range(POINTS): v = numpy.random.randn(DIM) matrix[i] = v engine_rbps.store_vector(v) t1 = time.time() print('Indexing took %f seconds' % (t1-t0)) # Get random query vector query = numpy.random.randn(DIM) # Do random query on engine 4 print('\nNeighbour distances with multiple binary hashes:') print(' -> Candidate count is %d' % engine_rbps.candidate_count(query)) results = engine_rbps.neighbours(query) dists = [x[2] for x in results] print(dists) # Real neighbours print('\nReal neighbour distances:') query = query.reshape((DIM)) dists = CosineDistance().distance(matrix,query) dists = dists.reshape((-1,)) dists = sorted(dists) print(dists[:10]) ##########################################################
[((1626, 1637), 'time.time', 'time.time', ([], {}), '()\n', (1635, 1637), False, 'import time\n'), ((1694, 1720), 'nearpy.hashes.HashPermutations', 'HashPermutations', (['"""permut"""'], {}), "('permut')\n", (1710, 1720), False, 'from nearpy.hashes import RandomBinaryProjections, HashPermutations, HashPermutationMapper\n'), ((1776, 1815), 'nearpy.hashes.RandomBinaryProjections', 'RandomBinaryProjections', (['"""rbp_perm"""', '(14)'], {}), "('rbp_perm', 14)\n", (1799, 1815), False, 'from nearpy.hashes import RandomBinaryProjections, HashPermutations, HashPermutationMapper\n'), ((2146, 2172), 'numpy.zeros', 'numpy.zeros', (['(POINTS, DIM)'], {}), '((POINTS, DIM))\n', (2157, 2172), False, 'import numpy\n'), ((2378, 2389), 'time.time', 'time.time', ([], {}), '()\n', (2387, 2389), False, 'import time\n'), ((2481, 2504), 'numpy.random.randn', 'numpy.random.randn', (['DIM'], {}), '(DIM)\n', (2499, 2504), False, 'import numpy\n'), ((3142, 3153), 'time.time', 'time.time', ([], {}), '()\n', (3151, 3153), False, 'import time\n'), ((3211, 3243), 'nearpy.hashes.HashPermutationMapper', 'HashPermutationMapper', (['"""permut2"""'], {}), "('permut2')\n", (3232, 3243), False, 'from nearpy.hashes import RandomBinaryProjections, HashPermutations, HashPermutationMapper\n'), ((3300, 3340), 'nearpy.hashes.RandomBinaryProjections', 'RandomBinaryProjections', (['"""rbp_perm2"""', '(14)'], {}), "('rbp_perm2', 14)\n", (3323, 3340), False, 'from nearpy.hashes import RandomBinaryProjections, HashPermutations, HashPermutationMapper\n'), ((3592, 3618), 'numpy.zeros', 'numpy.zeros', (['(POINTS, DIM)'], {}), '((POINTS, DIM))\n', (3603, 3618), False, 'import numpy\n'), ((3751, 3762), 'time.time', 'time.time', ([], {}), '()\n', (3760, 3762), False, 'import time\n'), ((3854, 3877), 'numpy.random.randn', 'numpy.random.randn', (['DIM'], {}), '(DIM)\n', (3872, 3877), False, 'import numpy\n'), ((4522, 4533), 'time.time', 'time.time', ([], {}), '()\n', (4531, 4533), False, 'import time\n'), ((4787, 4813), 'numpy.zeros', 'numpy.zeros', (['(POINTS, DIM)'], {}), '((POINTS, DIM))\n', (4798, 4813), False, 'import numpy\n'), ((4945, 4956), 'time.time', 'time.time', ([], {}), '()\n', (4954, 4956), False, 'import time\n'), ((5048, 5071), 'numpy.random.randn', 'numpy.random.randn', (['DIM'], {}), '(DIM)\n', (5066, 5071), False, 'import numpy\n'), ((2212, 2235), 'numpy.random.randn', 'numpy.random.randn', (['DIM'], {}), '(DIM)\n', (2230, 2235), False, 'import numpy\n'), ((3658, 3681), 'numpy.random.randn', 'numpy.random.randn', (['DIM'], {}), '(DIM)\n', (3676, 3681), False, 'import numpy\n'), ((4853, 4876), 'numpy.random.randn', 'numpy.random.randn', (['DIM'], {}), '(DIM)\n', (4871, 4876), False, 'import numpy\n'), ((2076, 2092), 'nearpy.distances.CosineDistance', 'CosineDistance', ([], {}), '()\n', (2090, 2092), False, 'from nearpy.distances import CosineDistance\n'), ((2881, 2897), 'nearpy.distances.CosineDistance', 'CosineDistance', ([], {}), '()\n', (2895, 2897), False, 'from nearpy.distances import CosineDistance\n'), ((3522, 3538), 'nearpy.distances.CosineDistance', 'CosineDistance', ([], {}), '()\n', (3536, 3538), False, 'from nearpy.distances import CosineDistance\n'), ((4261, 4277), 'nearpy.distances.CosineDistance', 'CosineDistance', ([], {}), '()\n', (4275, 4277), False, 'from nearpy.distances import CosineDistance\n'), ((4597, 4638), 'nearpy.hashes.RandomBinaryProjections', 'RandomBinaryProjections', (["('rbp_%d' % k)", '(10)'], {}), "('rbp_%d' % k, 10)\n", (4620, 4638), False, 'from nearpy.hashes import RandomBinaryProjections, HashPermutations, HashPermutationMapper\n'), ((4717, 4733), 'nearpy.distances.CosineDistance', 'CosineDistance', ([], {}), '()\n', (4731, 4733), False, 'from nearpy.distances import CosineDistance\n'), ((5454, 5470), 'nearpy.distances.CosineDistance', 'CosineDistance', ([], {}), '()\n', (5468, 5470), False, 'from nearpy.distances import CosineDistance\n')]
8ka1alu/heroku-global-py
discordbot.py
7968ff6c215d6d86149221c246b4aaa5cd04df59
from discord.ext import commands, tasks # Bot Commands Frameworkをインポート import traceback # エラー表示のためにインポート import os import discord import r TOKEN = os.environ['DISCORD_BOT_TOKEN'] prefix = os.environ['DISCORD_BOT_PREFIX'] #プレフィックス # 読み込むコグの名前を格納しておく。 INITIAL_EXTENSIONS = [ 'cogs.eval', 'cogs.glchat', 'cogs.gladd', 'cogs.gldel' ] # クラスの定義。ClientのサブクラスであるBotクラスを継承。 class MyBot(commands.Bot): # MyBotのコンストラクタ。 def __init__(self, command_prefix, help_command): # スーパークラスのコンストラクタに値を渡して実行。 super().__init__(command_prefix,help_command) # INITIAL_COGSに格納されている名前から、コグを読み込む。 # エラーが発生した場合は、エラー内容を表示。 for cog in INITIAL_EXTENSIONS: try: self.load_extension(cog) except Exception: traceback.print_exc() # Botの準備完了時に呼び出されるイベント async def on_ready(self): print(self.user.name) # ボットの名前 print(self.user.id) # ボットのID print(discord.__version__) # discord.pyのバージョン print('----------------') print('Hello World !!') await self.change_presence(status=discord.Status.idle,activity=discord.Game(name=f'Ping:{self.ws.latency * 1000:.0f}ms')) conn=r.connect() ky=conn.keys() global_ch="gloch" count=0 for i in ky: i=str(i) if i == global_ch: count+=1 if count>0: smsd=conn.smembers(global_ch) count=0 for q in smsd: q=str(q) if q=="0": count+=1 if count>0: p=conn.srem(global_ch,"0") if p==True: print("正常起動") else: print("異常発生") else: print(ky) else: p=conn.sadd(global_ch,"0") if p==True: print("正常起動") else: print("異常発生") class JapaneseHelpCommand(commands.DefaultHelpCommand): def __init__(self): super().__init__() self.commands_heading = "コマンド:" self.no_category = "その他" self.command_attrs["help"] = "コマンド一覧と簡単な説明を表示" def get_ending_note(self): return (f"各コマンドの説明: {prefix}help <コマンド名>\n" f"各カテゴリの説明: {prefix}help <カテゴリ名>\n") #MyBotのインスタンス化及び起動処理。 if __name__ == '__main__': bot = MyBot(command_prefix=prefix,help_command=JapaneseHelpCommand()) # command_prefixはコマンドの最初の文字として使うもの。 e.g. !ping bot.run(TOKEN) # Botのトークン
[((1218, 1229), 'r.connect', 'r.connect', ([], {}), '()\n', (1227, 1229), False, 'import r\n'), ((795, 816), 'traceback.print_exc', 'traceback.print_exc', ([], {}), '()\n', (814, 816), False, 'import traceback\n'), ((1145, 1202), 'discord.Game', 'discord.Game', ([], {'name': 'f"""Ping:{self.ws.latency * 1000:.0f}ms"""'}), "(name=f'Ping:{self.ws.latency * 1000:.0f}ms')\n", (1157, 1202), False, 'import discord\n')]
ealopez/pycroscopy
examples/plot_spectral_unmixing.py
9f7c0543b67eaa0668296295fc5f492360c130a0
""" ================================================================= Spectral Unmixing ================================================================= Suhas Somnath, Rama K. Vasudevan, Stephen Jesse * Institute for Functional Imaging of Materials * Center for Nanophase Materials Sciences Oak Ridge National Laboratory, Oak Ridge TN 37831, USA In this notebook we load some spectral data, and perform basic data analysis, including: ======================================================================================== * KMeans Clustering * Non-negative Matrix Factorization * Principal Component Analysis Software Prerequisites: ======================= * Standard distribution of **Anaconda** (includes numpy, scipy, matplotlib and sci-kit learn) * **pycroscopy** : Though pycroscopy is mainly used here for plotting purposes only, it's true capabilities are realized through the ability to seamlessly perform these analyses on any imaging dataset (regardless of origin, size, complexity) and storing the results back into the same dataset among other things """ # Import packages # Ensure that this code works on both python 2 and python 3 from __future__ import division, print_function, absolute_import, unicode_literals # basic numeric computation: import numpy as np # The package used for creating and manipulating HDF5 files: import h5py # Plotting and visualization: import matplotlib.pyplot as plt # for downloading files: import wget import os # multivariate analysis: from sklearn.cluster import KMeans from sklearn.decomposition import NMF import subprocess import sys def install(package): subprocess.call([sys.executable, "-m", "pip", "install", package]) # Package for downloading online files: # finally import pycroscopy: try: import pycroscopy as px except ImportError: print('pycroscopy not found. Will install with pip.') import pip install('pycroscopy') import pycroscopy as px from pycroscopy.viz import cluster_utils ##################################################################################### # The Data # ======== # # In this example, we will work on a **Band Excitation Piezoresponse Force Microscopy (BE-PFM)** imaging dataset # acquired from advanced atomic force microscopes. In this dataset, a spectra was collected for each position in a two # dimensional grid of spatial locations. Thus, this is a three dimensional dataset that has been flattened to a two # dimensional matrix in accordance with the pycroscopy data format. # # Fortunately, all statistical analysis, machine learning, spectral unmixing algorithms, etc. only accept data that is # formatted in the same manner of [position x spectra] in a two dimensional matrix. # # We will be using an data file available on our GitHub project page by default. You are encouraged # to download this document as a Jupyter Notebook (button at the bottom of the page) and use your own data instead. # When using your own data, you can skip this cell and provide the path to your data using the variable - data_file_path data_file_path = 'temp_um.h5' # download the data file from Github: url = 'https://raw.githubusercontent.com/pycroscopy/pycroscopy/master/data/BELine_0004.h5' data_file_path = wget.download(url, data_file_path, bar=None) h5_file = h5py.File(data_file_path, mode='r+') print('Contents of data file:') print('----------------------') px.hdf_utils.print_tree(h5_file) print('----------------------') h5_meas_grp = h5_file['Measurement_000'] # Extracting some basic parameters: num_rows = px.hdf_utils.get_attr(h5_meas_grp, 'grid_num_rows') num_cols = px.hdf_utils.get_attr(h5_meas_grp, 'grid_num_cols') # Getting a reference to the main dataset: h5_main = px.PycroDataset(h5_meas_grp['Channel_000/Raw_Data']) px.hdf_utils.write_simple_attrs(h5_main, {'quantity': 'Deflection', 'units': 'V'}) # Extracting the X axis - vector of frequencies h5_spec_vals = px.hdf_utils.get_auxiliary_datasets(h5_main, 'Spectroscopic_Values')[-1] freq_vec = np.squeeze(h5_spec_vals.value) * 1E-3 print('Data currently of shape:', h5_main.shape) x_label = 'Frequency (kHz)' y_label = 'Amplitude (a.u.)' ##################################################################################### # 1. Singular Value Decomposition (SVD) # ===================================== # # SVD is an eigenvector decomposition that is defined statistically, and therefore typically produces # non-physical eigenvectors. Consequently, the interpretation of eigenvectors and abundance maps from # SVD requires care and caution in interpretation. Nonetheless, it is a good method for quickly # visualizing the major trends in the dataset since the resultant eigenvectors are sorted in descending # order of variance or importance. Furthermore, SVD is also very well suited for data cleaning through # the reconstruction of the dataset using only the first N (most significant) components. # # SVD results in three matrices: # # * V - Eigenvectors sorted by variance in descending order # * U - corresponding abundance maps # * S - Variance or importance of each of these components # # Advantage of pycroscopy: # ------------------------ # Notice that we are working with a complex valued dataset. Passing the complex values as is to SVD would result in # complex valued eigenvectors / endmembers as well as abundance maps. Complex valued abundance maps are not physical. # Thus, one would need to restructure the data such that it is real-valued only. # # One solution is to stack the real value followed by the magnitude of the imaginary component before passing to SVD. # After SVD, the real-valued eigenvectors would need to be treated as the concatenation of the real and imaginary # components. So, the eigenvectors would need to be restructured to get back the complex valued eigenvectors. # # **Pycroscopy handles all these data transformations (both for the source dataset and the eigenvectors) # automatically.** In general, pycroscopy handles compound / complex valued datasets everywhere possible # # Furthermore, while it is not discussed in this example, pycroscopy also writes back the results from SVD back to # the same source h5 file including all relevant links to the source dataset and other ancillary datasets decomposer = px.processing.svd_utils.SVD(h5_main, num_components=100) h5_svd_group = decomposer.compute() h5_u = h5_svd_group['U'] h5_v = h5_svd_group['V'] h5_s = h5_svd_group['S'] # Since the two spatial dimensions (x, y) have been collapsed to one, we need to reshape the abundance maps: abun_maps = np.reshape(h5_u[:, :25], (num_rows, num_cols, -1)) px.plot_utils.plot_map_stack(abun_maps, num_comps=9, title='SVD Abundance Maps', reverse_dims=True, color_bar_mode='single', cmap='inferno', title_yoffset=0.95) # Visualize the variance / statistical importance of each component: px.plot_utils.plot_scree(h5_s, title='Note the exponential drop of variance with number of components') # Visualize the eigenvectors: _ = px.plot_utils.plot_complex_spectra(h5_v[:9, :], x_label=x_label, y_label=y_label, title='SVD Eigenvectors', evenly_spaced=False) ##################################################################################### # 2. KMeans Clustering # ==================== # # KMeans clustering is a quick and easy method to determine the types of spectral responses present in the # data. It is not a decomposition method, but a basic clustering method. The user inputs the number of # clusters (sets) to partition the data into. The algorithm proceeds to find the optimal labeling # (ie., assignment of each spectra as belonging to the k<sup>th</sup> set) such that the within-cluster # sum of squares is minimized. # # Set the number of clusters below num_clusters = 4 estimator = px.processing.Cluster(h5_main, KMeans(n_clusters=num_clusters)) h5_kmeans_grp = estimator.compute(h5_main) h5_kmeans_labels = h5_kmeans_grp['Labels'] h5_kmeans_mean_resp = h5_kmeans_grp['Mean_Response'] cluster_utils.plot_cluster_h5_group(h5_kmeans_grp) ##################################################################################### # 3. Non-negative Matrix Factorization (NMF) # =========================================== # # NMF, or non-negative matrix factorization, is a method that is useful towards unmixing of spectral # data. It only works on data with positive real values. It operates by approximate determination of # factors (matrices) W and H, given a matrix V, as shown below # # .. image:: https://upload.wikimedia.org/wikipedia/commons/f/f9/NMF.png # # Unlike SVD and k-Means that can be applied to complex-valued datasets, NMF only works on non-negative datasets. # For illustrative purposes, we will only take the amplitude component of the spectral data num_comps = 4 # get the non-negative portion of the dataset data_mat = np.abs(h5_main) model = NMF(n_components=num_comps, init='random', random_state=0) model.fit(data_mat) fig, axis = plt.subplots(figsize=(5.5, 5)) px.plot_utils.plot_line_family(axis, freq_vec, model.components_, label_prefix='NMF Component #') axis.set_xlabel(x_label, fontsize=12) axis.set_ylabel(y_label, fontsize=12) axis.set_title('NMF Components', fontsize=14) axis.legend(bbox_to_anchor=[1.0, 1.0], fontsize=12) ##################################################################################### # Close and delete the h5_file h5_file.close() os.remove(data_file_path)
[((3238, 3282), 'wget.download', 'wget.download', (['url', 'data_file_path'], {'bar': 'None'}), '(url, data_file_path, bar=None)\n', (3251, 3282), False, 'import wget\n'), ((3294, 3330), 'h5py.File', 'h5py.File', (['data_file_path'], {'mode': '"""r+"""'}), "(data_file_path, mode='r+')\n", (3303, 3330), False, 'import h5py\n'), ((3396, 3428), 'pycroscopy.hdf_utils.print_tree', 'px.hdf_utils.print_tree', (['h5_file'], {}), '(h5_file)\n', (3419, 3428), True, 'import pycroscopy as px\n'), ((3551, 3602), 'pycroscopy.hdf_utils.get_attr', 'px.hdf_utils.get_attr', (['h5_meas_grp', '"""grid_num_rows"""'], {}), "(h5_meas_grp, 'grid_num_rows')\n", (3572, 3602), True, 'import pycroscopy as px\n'), ((3614, 3665), 'pycroscopy.hdf_utils.get_attr', 'px.hdf_utils.get_attr', (['h5_meas_grp', '"""grid_num_cols"""'], {}), "(h5_meas_grp, 'grid_num_cols')\n", (3635, 3665), True, 'import pycroscopy as px\n'), ((3720, 3772), 'pycroscopy.PycroDataset', 'px.PycroDataset', (["h5_meas_grp['Channel_000/Raw_Data']"], {}), "(h5_meas_grp['Channel_000/Raw_Data'])\n", (3735, 3772), True, 'import pycroscopy as px\n'), ((3773, 3859), 'pycroscopy.hdf_utils.write_simple_attrs', 'px.hdf_utils.write_simple_attrs', (['h5_main', "{'quantity': 'Deflection', 'units': 'V'}"], {}), "(h5_main, {'quantity': 'Deflection', 'units':\n 'V'})\n", (3804, 3859), True, 'import pycroscopy as px\n'), ((6274, 6330), 'pycroscopy.processing.svd_utils.SVD', 'px.processing.svd_utils.SVD', (['h5_main'], {'num_components': '(100)'}), '(h5_main, num_components=100)\n', (6301, 6330), True, 'import pycroscopy as px\n'), ((6565, 6615), 'numpy.reshape', 'np.reshape', (['h5_u[:, :25]', '(num_rows, num_cols, -1)'], {}), '(h5_u[:, :25], (num_rows, num_cols, -1))\n', (6575, 6615), True, 'import numpy as np\n'), ((6617, 6787), 'pycroscopy.plot_utils.plot_map_stack', 'px.plot_utils.plot_map_stack', (['abun_maps'], {'num_comps': '(9)', 'title': '"""SVD Abundance Maps"""', 'reverse_dims': '(True)', 'color_bar_mode': '"""single"""', 'cmap': '"""inferno"""', 'title_yoffset': '(0.95)'}), "(abun_maps, num_comps=9, title=\n 'SVD Abundance Maps', reverse_dims=True, color_bar_mode='single', cmap=\n 'inferno', title_yoffset=0.95)\n", (6645, 6787), True, 'import pycroscopy as px\n'), ((6878, 6986), 'pycroscopy.plot_utils.plot_scree', 'px.plot_utils.plot_scree', (['h5_s'], {'title': '"""Note the exponential drop of variance with number of components"""'}), "(h5_s, title=\n 'Note the exponential drop of variance with number of components')\n", (6902, 6986), True, 'import pycroscopy as px\n'), ((7017, 7150), 'pycroscopy.plot_utils.plot_complex_spectra', 'px.plot_utils.plot_complex_spectra', (['h5_v[:9, :]'], {'x_label': 'x_label', 'y_label': 'y_label', 'title': '"""SVD Eigenvectors"""', 'evenly_spaced': '(False)'}), "(h5_v[:9, :], x_label=x_label, y_label=\n y_label, title='SVD Eigenvectors', evenly_spaced=False)\n", (7051, 7150), True, 'import pycroscopy as px\n'), ((8035, 8085), 'pycroscopy.viz.cluster_utils.plot_cluster_h5_group', 'cluster_utils.plot_cluster_h5_group', (['h5_kmeans_grp'], {}), '(h5_kmeans_grp)\n', (8070, 8085), False, 'from pycroscopy.viz import cluster_utils\n'), ((8887, 8902), 'numpy.abs', 'np.abs', (['h5_main'], {}), '(h5_main)\n', (8893, 8902), True, 'import numpy as np\n'), ((8912, 8970), 'sklearn.decomposition.NMF', 'NMF', ([], {'n_components': 'num_comps', 'init': '"""random"""', 'random_state': '(0)'}), "(n_components=num_comps, init='random', random_state=0)\n", (8915, 8970), False, 'from sklearn.decomposition import NMF\n'), ((9004, 9034), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(5.5, 5)'}), '(figsize=(5.5, 5))\n', (9016, 9034), True, 'import matplotlib.pyplot as plt\n'), ((9035, 9136), 'pycroscopy.plot_utils.plot_line_family', 'px.plot_utils.plot_line_family', (['axis', 'freq_vec', 'model.components_'], {'label_prefix': '"""NMF Component #"""'}), "(axis, freq_vec, model.components_,\n label_prefix='NMF Component #')\n", (9065, 9136), True, 'import pycroscopy as px\n'), ((9442, 9467), 'os.remove', 'os.remove', (['data_file_path'], {}), '(data_file_path)\n', (9451, 9467), False, 'import os\n'), ((1632, 1698), 'subprocess.call', 'subprocess.call', (["[sys.executable, '-m', 'pip', 'install', package]"], {}), "([sys.executable, '-m', 'pip', 'install', package])\n", (1647, 1698), False, 'import subprocess\n'), ((3920, 3988), 'pycroscopy.hdf_utils.get_auxiliary_datasets', 'px.hdf_utils.get_auxiliary_datasets', (['h5_main', '"""Spectroscopic_Values"""'], {}), "(h5_main, 'Spectroscopic_Values')\n", (3955, 3988), True, 'import pycroscopy as px\n'), ((4004, 4034), 'numpy.squeeze', 'np.squeeze', (['h5_spec_vals.value'], {}), '(h5_spec_vals.value)\n', (4014, 4034), True, 'import numpy as np\n'), ((7862, 7893), 'sklearn.cluster.KMeans', 'KMeans', ([], {'n_clusters': 'num_clusters'}), '(n_clusters=num_clusters)\n', (7868, 7893), False, 'from sklearn.cluster import KMeans\n')]
foliant-docs/foliantcontrib.downloadfile
test/test_downloadfile.py
1af9481f9bc9142d8b1ac1eff93fa0c5577ccaec
import shutil from pathlib import Path from unittest import TestCase from unittest.mock import Mock from unittest.mock import patch from foliant.config.downloadfile import download_file from foliant.config.downloadfile import get_file_ext_from_url from foliant.config.downloadfile import get_file_name_from_url class TestDownloadFile(TestCase): def setUp(self): self.project_dir = (Path(__file__).parent / 'project_dir').resolve() self.project_dir.mkdir(exist_ok=True) def tearDown(self): shutil.rmtree(self.project_dir, ignore_errors=True) @patch('foliant.config.downloadfile.urlopen', autospec=True) def test_only_url(self, urlopen): mock_response = Mock() mock_response.read.return_value = b'File content' urlopen.return_value = mock_response url = 'http://example.com/myfile.txt' download_file(root_dir=self.project_dir, url=url) request = urlopen.call_args.args[0] context = urlopen.call_args.kwargs['context'] self.assertEqual(request.headers, {}) self.assertIsNone(context) with open(self.project_dir / 'myfile.txt') as f: self.assertEqual(f.read(), 'File content') @patch('foliant.config.downloadfile.urlopen', autospec=True) def test_save_to(self, urlopen): mock_response = Mock() mock_response.read.return_value = b'File content' urlopen.return_value = mock_response url = 'http://example.com/myfile.txt' save_to = 'subdir1/subdir2/downloaded.txt' download_file(root_dir=self.project_dir, url=url, save_to=save_to) request = urlopen.call_args.args[0] context = urlopen.call_args.kwargs['context'] self.assertEqual(request.headers, {}) self.assertIsNone(context) with open(self.project_dir / save_to) as f: self.assertEqual(f.read(), 'File content') @patch('foliant.config.downloadfile.urlopen', autospec=True) def test_with_auth(self, urlopen): mock_response = Mock() mock_response.read.return_value = b'File content' urlopen.return_value = mock_response url = 'http://example.com/myfile.txt' download_file( root_dir=self.project_dir, url=url, login='john', password='qwerty1234' ) request = urlopen.call_args.args[0] context = urlopen.call_args.kwargs['context'] self.assertIn('Authorization', request.headers) self.assertIsNone(context) with open(self.project_dir / 'myfile.txt') as f: self.assertEqual(f.read(), 'File content') class TestGetFileNameFromURL(TestCase): def test_with_ext(self): url = 'http://example.com/sub/myfile.txt' name = get_file_name_from_url(url) self.assertEqual(name, 'myfile.txt') def test_no_ext(self): url = 'http://example.com/sub/myfile' name = get_file_name_from_url(url) self.assertEqual(name, 'myfile') def test_with_clutter(self): url = 'http://example.com/sub/myfile.txt?param=val&foo=bar' name = get_file_name_from_url(url) self.assertEqual(name, 'myfile.txt') class TestGetFileExtFromURL(TestCase): def test_with_ext(self): url = 'http://example.com/sub/myfile.txt' ext = get_file_ext_from_url(url) self.assertEqual(ext, '.txt') def test_no_ext(self): url = 'http://example.com/sub/myfile' ext = get_file_ext_from_url(url) self.assertEqual(ext, '') def test_with_clutter(self): url = 'http://example.com/sub/myfile.txt?param=val&foo=bar' ext = get_file_ext_from_url(url) self.assertEqual(ext, '.txt')
[((584, 643), 'unittest.mock.patch', 'patch', (['"""foliant.config.downloadfile.urlopen"""'], {'autospec': '(True)'}), "('foliant.config.downloadfile.urlopen', autospec=True)\n", (589, 643), False, 'from unittest.mock import patch\n'), ((1221, 1280), 'unittest.mock.patch', 'patch', (['"""foliant.config.downloadfile.urlopen"""'], {'autospec': '(True)'}), "('foliant.config.downloadfile.urlopen', autospec=True)\n", (1226, 1280), False, 'from unittest.mock import patch\n'), ((1920, 1979), 'unittest.mock.patch', 'patch', (['"""foliant.config.downloadfile.urlopen"""'], {'autospec': '(True)'}), "('foliant.config.downloadfile.urlopen', autospec=True)\n", (1925, 1979), False, 'from unittest.mock import patch\n'), ((526, 577), 'shutil.rmtree', 'shutil.rmtree', (['self.project_dir'], {'ignore_errors': '(True)'}), '(self.project_dir, ignore_errors=True)\n', (539, 577), False, 'import shutil\n'), ((706, 712), 'unittest.mock.Mock', 'Mock', ([], {}), '()\n', (710, 712), False, 'from unittest.mock import Mock\n'), ((872, 921), 'foliant.config.downloadfile.download_file', 'download_file', ([], {'root_dir': 'self.project_dir', 'url': 'url'}), '(root_dir=self.project_dir, url=url)\n', (885, 921), False, 'from foliant.config.downloadfile import download_file\n'), ((1342, 1348), 'unittest.mock.Mock', 'Mock', ([], {}), '()\n', (1346, 1348), False, 'from unittest.mock import Mock\n'), ((1559, 1625), 'foliant.config.downloadfile.download_file', 'download_file', ([], {'root_dir': 'self.project_dir', 'url': 'url', 'save_to': 'save_to'}), '(root_dir=self.project_dir, url=url, save_to=save_to)\n', (1572, 1625), False, 'from foliant.config.downloadfile import download_file\n'), ((2043, 2049), 'unittest.mock.Mock', 'Mock', ([], {}), '()\n', (2047, 2049), False, 'from unittest.mock import Mock\n'), ((2209, 2300), 'foliant.config.downloadfile.download_file', 'download_file', ([], {'root_dir': 'self.project_dir', 'url': 'url', 'login': '"""john"""', 'password': '"""qwerty1234"""'}), "(root_dir=self.project_dir, url=url, login='john', password=\n 'qwerty1234')\n", (2222, 2300), False, 'from foliant.config.downloadfile import download_file\n'), ((2793, 2820), 'foliant.config.downloadfile.get_file_name_from_url', 'get_file_name_from_url', (['url'], {}), '(url)\n', (2815, 2820), False, 'from foliant.config.downloadfile import get_file_name_from_url\n'), ((2955, 2982), 'foliant.config.downloadfile.get_file_name_from_url', 'get_file_name_from_url', (['url'], {}), '(url)\n', (2977, 2982), False, 'from foliant.config.downloadfile import get_file_name_from_url\n'), ((3141, 3168), 'foliant.config.downloadfile.get_file_name_from_url', 'get_file_name_from_url', (['url'], {}), '(url)\n', (3163, 3168), False, 'from foliant.config.downloadfile import get_file_name_from_url\n'), ((3348, 3374), 'foliant.config.downloadfile.get_file_ext_from_url', 'get_file_ext_from_url', (['url'], {}), '(url)\n', (3369, 3374), False, 'from foliant.config.downloadfile import get_file_ext_from_url\n'), ((3501, 3527), 'foliant.config.downloadfile.get_file_ext_from_url', 'get_file_ext_from_url', (['url'], {}), '(url)\n', (3522, 3527), False, 'from foliant.config.downloadfile import get_file_ext_from_url\n'), ((3678, 3704), 'foliant.config.downloadfile.get_file_ext_from_url', 'get_file_ext_from_url', (['url'], {}), '(url)\n', (3699, 3704), False, 'from foliant.config.downloadfile import get_file_ext_from_url\n'), ((398, 412), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (402, 412), False, 'from pathlib import Path\n')]
Lilium765/momoko
question.py
c84b37cbe280055fedaac4ee9195d6410b234aba
import discord client = discord.Client() # 接続に使用するオブジェクト # 起動時 @client.event async def on_ready(): print('ログイン成功') # メッセージを監視 @client.event async def on_message(message): # 「/box」が頭についたメッセージならオウム返しする if message.content.startswith('/box'): # 文字から「/box」を抜く question = message.content[len('/box'):].strip() # 質問させたいチャンネルのid target_channel_id = getTargetChannelId() # id=0なら質問者にエラー報告DM # idが0以外なら匿名質問する if target_channel_id == 0: dm = await message.author.create_dm() # 質問者へDM作成 await dm.send( 'Sorry, メッセージを送信できませんでした.' 'もう1度試してみてください.\n' '【質問文】' + question) else: # 匿名質問させたいチャンネル target_channel = client.get_channel(target_channel_id) # チャンネルに質問メッセージ送信 await target_channel.send(question) # 匿名質問させたいチャンネルのidを取得 # 指定したカテゴリにある最初のTextチャンネル=質問させたいチャンネルとみなす # ただしカテゴリにチャンネルが無い時は0を返す def getTargetChannelId() -> int: # 質問させたいチャンネル(対象チャンネル) target_channel = {'id': 0, 'position': 99999999} # *********************************************************** # 指定カテゴリ(対象チャンネルが含まれたカテゴリ)の名前 category_id = 711238137598181396 # カテゴリidを指定 target_category_name = client.get_channel(category_id).name # *********************************************************** # 指定したサーバにある全てのTextチャンネル一覧 all_channels = client.get_guild(602423784946925568).text_channels # 全てのTextチャンネルから「指定カテゴリに属する最初のチャンネル」を探す for channel in all_channels: # 指定カテゴリに属する場合だけ対象チャンネル候補とみなす if str(channel.category) == target_category_name: # positionが小さいほうを「より対象チャンネルに近い」として交換 # 初期値はpositionが大きい(99999999)ので,必ず入れ替わる想定 # 繰り返せば,最後にはpositionが最も小さいチャンネルを代入できる if target_channel['position'] > int(channel.position): target_channel['id'] = int(channel.id) target_channel['position'] = int(channel.position) # 最終的に代入されたidを返す return target_channel['id'] # botとしてDiscordに接続(botのトークンを指定) client.run('605042341715378176')
[((25, 41), 'discord.Client', 'discord.Client', ([], {}), '()\n', (39, 41), False, 'import discord\n')]
DavisWeaver/fears
figure_code/rate_of_change_tc.py
857cb959a3a111a41df4cf62c4c6a19d3abd33c0
import matplotlib.pyplot as plt import numpy as np from fears.utils import results_manager, plotter, dir_manager import os suffix = '07212021_0001' data_folder = 'results_' + suffix exp_info_file = 'experiment_info_' + suffix + '.p' exp_folders,exp_info = results_manager.get_experiment_results(data_folder, exp_info_file) max_cells = exp_info.populations[0].max_cells n_sims = exp_info.n_sims k_abs = exp_info.slopes exp_folders.reverse() k_abs = np.flip(k_abs) fig,ax = plt.subplots(nrows=2,ncols=2,figsize=(4,4)) pop = exp_info.populations[0] ax = ax.reshape((len(k_abs),)) axnum = 0 tc_axes=[] drug_axes=[] for exp in exp_folders: k_abs_t = exp[exp.find('=')+1:] k_abs_t = float(k_abs_t) num = np.argwhere(k_abs == k_abs_t) num = num[0,0] # generate timecourse axes tcax = ax[axnum] # da = tcax.twinx() sim_files = os.listdir(path=exp) sim_files = sorted(sim_files) survive_count = 0 counts_total = None k=0 while k < len(sim_files): # for sim in sim_files: sim = sim_files[k] sim = exp + os.sep + sim data = results_manager.get_data(sim) dc = data[:,-1] data = data[:,0:-1] # data = data/np.max(data) data_t = data[-1,:] # check to see if any genotypes are at least 10% of the max cell count if any(data_t >= 1): survive_count += 1 if counts_total is None: counts_total = data else: counts_total += data # data = data/np.max(data) # exp_info.populations[num].counts_log_scale = True data = data/max_cells if k==0: drug_kwargs = {'alpha':0.7, 'color':'black', 'linewidth':2, 'label':'Drug Concentration ($\u03BC$M)' } tcax,drug_ax = plotter.plot_timecourse_to_axes(exp_info.populations[num], data, tcax, drug_curve=dc, drug_ax_sci_notation=True, drug_kwargs=drug_kwargs, legend_labels=False, grayscale=True, color='gray', linewidth=1, labelsize=12, alpha=0.7 ) drug_ax.set_ylabel('') drug_axes.append( drug_ax ) else: tcax,da = plotter.plot_timecourse_to_axes(exp_info.populations[num], data, tcax, grayscale=True, color='gray', legend_labels=False, linewidth=2, labelsize=12, alpha=0.2 ) # drug_ax.set_ylim(0,10**4) k+=1 if survive_count > 0: counts_avg = counts_total/survive_count # counts_avg = counts_avg/np.max(counts_avg) # counts_avg = counts_total counts_avg = counts_avg/np.max(counts_avg) tcax,temp = plotter.plot_timecourse_to_axes(exp_info.populations[num], counts_avg, tcax, labelsize=12) # t = np.arange(len(dc)) # t = t*exp_info.populations[0].timestep_scale/24 # da.plot(t,dc) tc_axes.append( tcax ) axnum+=1
[((258, 324), 'fears.utils.results_manager.get_experiment_results', 'results_manager.get_experiment_results', (['data_folder', 'exp_info_file'], {}), '(data_folder, exp_info_file)\n', (296, 324), False, 'from fears.utils import results_manager, plotter, dir_manager\n'), ((512, 526), 'numpy.flip', 'np.flip', (['k_abs'], {}), '(k_abs)\n', (519, 526), True, 'import numpy as np\n'), ((537, 583), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'nrows': '(2)', 'ncols': '(2)', 'figsize': '(4, 4)'}), '(nrows=2, ncols=2, figsize=(4, 4))\n', (549, 583), True, 'import matplotlib.pyplot as plt\n'), ((779, 808), 'numpy.argwhere', 'np.argwhere', (['(k_abs == k_abs_t)'], {}), '(k_abs == k_abs_t)\n', (790, 808), True, 'import numpy as np\n'), ((935, 955), 'os.listdir', 'os.listdir', ([], {'path': 'exp'}), '(path=exp)\n', (945, 955), False, 'import os\n'), ((1182, 1211), 'fears.utils.results_manager.get_data', 'results_manager.get_data', (['sim'], {}), '(sim)\n', (1206, 1211), False, 'from fears.utils import results_manager, plotter, dir_manager\n'), ((3986, 4080), 'fears.utils.plotter.plot_timecourse_to_axes', 'plotter.plot_timecourse_to_axes', (['exp_info.populations[num]', 'counts_avg', 'tcax'], {'labelsize': '(12)'}), '(exp_info.populations[num], counts_avg, tcax,\n labelsize=12)\n', (4017, 4080), False, 'from fears.utils import results_manager, plotter, dir_manager\n'), ((2004, 2242), 'fears.utils.plotter.plot_timecourse_to_axes', 'plotter.plot_timecourse_to_axes', (['exp_info.populations[num]', 'data', 'tcax'], {'drug_curve': 'dc', 'drug_ax_sci_notation': '(True)', 'drug_kwargs': 'drug_kwargs', 'legend_labels': '(False)', 'grayscale': '(True)', 'color': '"""gray"""', 'linewidth': '(1)', 'labelsize': '(12)', 'alpha': '(0.7)'}), "(exp_info.populations[num], data, tcax,\n drug_curve=dc, drug_ax_sci_notation=True, drug_kwargs=drug_kwargs,\n legend_labels=False, grayscale=True, color='gray', linewidth=1,\n labelsize=12, alpha=0.7)\n", (2035, 2242), False, 'from fears.utils import results_manager, plotter, dir_manager\n'), ((3016, 3183), 'fears.utils.plotter.plot_timecourse_to_axes', 'plotter.plot_timecourse_to_axes', (['exp_info.populations[num]', 'data', 'tcax'], {'grayscale': '(True)', 'color': '"""gray"""', 'legend_labels': '(False)', 'linewidth': '(2)', 'labelsize': '(12)', 'alpha': '(0.2)'}), "(exp_info.populations[num], data, tcax,\n grayscale=True, color='gray', legend_labels=False, linewidth=2,\n labelsize=12, alpha=0.2)\n", (3047, 3183), False, 'from fears.utils import results_manager, plotter, dir_manager\n'), ((3947, 3965), 'numpy.max', 'np.max', (['counts_avg'], {}), '(counts_avg)\n', (3953, 3965), True, 'import numpy as np\n')]
microvm/pypy-mu
rpython/annotator/annrpython.py
6b03fbe93052d0eb3a4c67152c987c16837b3484
from __future__ import absolute_import import types from collections import defaultdict from rpython.tool.ansi_print import AnsiLogger from rpython.tool.pairtype import pair from rpython.tool.error import (format_blocked_annotation_error, gather_error, source_lines) from rpython.flowspace.model import Variable, Constant, checkgraph from rpython.translator import simplify, transform from rpython.annotator import model as annmodel, signature from rpython.annotator.model import ( typeof, s_ImpossibleValue, SomeInstance, intersection, difference) from rpython.annotator.bookkeeper import Bookkeeper from rpython.rtyper.normalizecalls import perform_normalizations log = AnsiLogger("annrpython") class RPythonAnnotator(object): """Block annotator for RPython. See description in doc/translation.txt.""" def __init__(self, translator=None, policy=None, bookkeeper=None): import rpython.rtyper.extfuncregistry # has side effects if translator is None: # interface for tests from rpython.translator.translator import TranslationContext translator = TranslationContext() translator.annotator = self self.translator = translator self.pendingblocks = {} # map {block: graph-containing-it} self.annotated = {} # set of blocks already seen self.added_blocks = None # see processblock() below self.links_followed = {} # set of links that have ever been followed self.notify = {} # {block: {positions-to-reflow-from-when-done}} self.fixed_graphs = {} # set of graphs not to annotate again self.blocked_blocks = {} # set of {blocked_block: (graph, index)} # --- the following information is recorded for debugging --- self.blocked_graphs = {} # set of graphs that have blocked blocks # --- end of debugging information --- self.frozen = False if policy is None: from rpython.annotator.policy import AnnotatorPolicy self.policy = AnnotatorPolicy() else: self.policy = policy if bookkeeper is None: bookkeeper = Bookkeeper(self) self.bookkeeper = bookkeeper def __getstate__(self): attrs = """translator pendingblocks annotated links_followed notify bookkeeper frozen policy added_blocks""".split() ret = self.__dict__.copy() for key, value in ret.items(): if key not in attrs: assert type(value) is dict, ( "%r is not dict. please update %s.__getstate__" % (key, self.__class__.__name__)) ret[key] = {} return ret #___ convenience high-level interface __________________ def build_types(self, function, input_arg_types, complete_now=True, main_entry_point=False): """Recursively build annotations about the specific entry point.""" assert isinstance(function, types.FunctionType), "fix that!" from rpython.annotator.policy import AnnotatorPolicy policy = AnnotatorPolicy() # make input arguments and set their type args_s = [self.typeannotation(t) for t in input_arg_types] # XXX hack annmodel.TLS.check_str_without_nul = ( self.translator.config.translation.check_str_without_nul) flowgraph, inputs_s = self.get_call_parameters(function, args_s, policy) if main_entry_point: self.translator.entry_point_graph = flowgraph return self.build_graph_types(flowgraph, inputs_s, complete_now=complete_now) def get_call_parameters(self, function, args_s, policy): desc = self.bookkeeper.getdesc(function) prevpolicy = self.policy self.policy = policy self.bookkeeper.enter(None) try: return desc.get_call_parameters(args_s) finally: self.bookkeeper.leave() self.policy = prevpolicy def annotate_helper(self, function, args_s, policy=None): if policy is None: from rpython.annotator.policy import AnnotatorPolicy policy = AnnotatorPolicy() # XXX hack annmodel.TLS.check_str_without_nul = ( self.translator.config.translation.check_str_without_nul) graph, inputcells = self.get_call_parameters(function, args_s, policy) self.build_graph_types(graph, inputcells, complete_now=False) self.complete_helpers(policy) return graph def complete_helpers(self, policy): saved = self.policy, self.added_blocks self.policy = policy try: self.added_blocks = {} self.complete() # invoke annotation simplifications for the new blocks self.simplify(block_subset=self.added_blocks) finally: self.policy, self.added_blocks = saved def build_graph_types(self, flowgraph, inputcells, complete_now=True): checkgraph(flowgraph) nbarg = len(flowgraph.getargs()) assert len(inputcells) == nbarg # wrong number of args # register the entry point self.addpendinggraph(flowgraph, inputcells) # recursively proceed until no more pending block is left if complete_now: self.complete() return self.annotation(flowgraph.getreturnvar()) def gettype(self, variable): """Return the known type of a control flow graph variable, defaulting to 'object'.""" if isinstance(variable, Constant): return type(variable.value) elif isinstance(variable, Variable): s_variable = variable.annotation if s_variable: return s_variable.knowntype else: return object else: raise TypeError("Variable or Constant instance expected, " "got %r" % (variable,)) def getuserclassdefinitions(self): """Return a list of ClassDefs.""" return self.bookkeeper.classdefs #___ medium-level interface ____________________________ def addpendinggraph(self, flowgraph, inputcells): self.addpendingblock(flowgraph, flowgraph.startblock, inputcells) def addpendingblock(self, graph, block, cells): """Register an entry point into block with the given input cells.""" if graph in self.fixed_graphs: # special case for annotating/rtyping in several phases: calling # a graph that has already been rtyped. Safety-check the new # annotations that are passed in, and don't annotate the old # graph -- it's already low-level operations! for a, s_newarg in zip(block.inputargs, cells): s_oldarg = self.binding(a) assert annmodel.unionof(s_oldarg, s_newarg) == s_oldarg else: assert not self.frozen if block not in self.annotated: self.bindinputargs(graph, block, cells) else: self.mergeinputargs(graph, block, cells) if not self.annotated[block]: self.pendingblocks[block] = graph def complete_pending_blocks(self): while self.pendingblocks: block, graph = self.pendingblocks.popitem() self.processblock(graph, block) def complete(self): """Process pending blocks until none is left.""" while True: self.complete_pending_blocks() self.policy.no_more_blocks_to_annotate(self) if not self.pendingblocks: break # finished # make sure that the return variables of all graphs is annotated if self.added_blocks is not None: newgraphs = [self.annotated[block] for block in self.added_blocks] newgraphs = dict.fromkeys(newgraphs) got_blocked_blocks = False in newgraphs else: newgraphs = self.translator.graphs #all of them got_blocked_blocks = False in self.annotated.values() if got_blocked_blocks: for graph in self.blocked_graphs.values(): self.blocked_graphs[graph] = True blocked_blocks = [block for block, done in self.annotated.items() if done is False] assert len(blocked_blocks) == len(self.blocked_blocks) text = format_blocked_annotation_error(self, self.blocked_blocks) #raise SystemExit() raise annmodel.AnnotatorError(text) for graph in newgraphs: v = graph.getreturnvar() if v.annotation is None: self.setbinding(v, s_ImpossibleValue) def validate(self): """Check that the annotation results are valid""" self.bookkeeper.check_no_flags_on_instances() def annotation(self, arg): "Gives the SomeValue corresponding to the given Variable or Constant." if isinstance(arg, Variable): return arg.annotation elif isinstance(arg, Constant): return self.bookkeeper.immutablevalue(arg.value) else: raise TypeError('Variable or Constant expected, got %r' % (arg,)) def binding(self, arg): "Gives the SomeValue corresponding to the given Variable or Constant." s_arg = self.annotation(arg) if s_arg is None: raise KeyError return s_arg def typeannotation(self, t): return signature.annotation(t, self.bookkeeper) def setbinding(self, arg, s_value): s_old = arg.annotation if s_old is not None: if not s_value.contains(s_old): log.WARNING("%s does not contain %s" % (s_value, s_old)) log.WARNING("%s" % annmodel.unionof(s_value, s_old)) assert False arg.annotation = s_value def warning(self, msg, pos=None): if pos is None: try: pos = self.bookkeeper.position_key except AttributeError: pos = '?' if pos != '?': pos = self.whereami(pos) log.WARNING("%s/ %s" % (pos, msg)) #___ interface for annotator.bookkeeper _______ def recursivecall(self, graph, whence, inputcells): if isinstance(whence, tuple): parent_graph, parent_block, parent_index = whence tag = parent_block, parent_index self.translator.update_call_graph(parent_graph, graph, tag) # self.notify[graph.returnblock] is a dictionary of call # points to this func which triggers a reflow whenever the # return block of this graph has been analysed. callpositions = self.notify.setdefault(graph.returnblock, {}) if whence is not None: if callable(whence): def callback(): whence(self, graph) else: callback = whence callpositions[callback] = True # generalize the function's input arguments self.addpendingblock(graph, graph.startblock, inputcells) # get the (current) return value v = graph.getreturnvar() try: return self.binding(v) except KeyError: # the function didn't reach any return statement so far. # (some functions actually never do, they always raise exceptions) return s_ImpossibleValue def reflowfromposition(self, position_key): graph, block, index = position_key self.reflowpendingblock(graph, block) def call_sites(self): newblocks = self.added_blocks if newblocks is None: newblocks = self.annotated # all of them for block in newblocks: for op in block.operations: if op.opname in ('simple_call', 'call_args'): yield op # some blocks are partially annotated if op.result.annotation is None: break # ignore the unannotated part #___ simplification (should be moved elsewhere?) _______ def simplify(self, block_subset=None, extra_passes=None): # Generic simplifications transform.transform_graph(self, block_subset=block_subset, extra_passes=extra_passes) if block_subset is None: graphs = self.translator.graphs else: graphs = {} for block in block_subset: graph = self.annotated.get(block) if graph: graphs[graph] = True for graph in graphs: simplify.eliminate_empty_blocks(graph) self.bookkeeper.compute_at_fixpoint() if block_subset is None: perform_normalizations(self) #___ flowing annotations in blocks _____________________ def processblock(self, graph, block): # Important: this is not called recursively. # self.flowin() can only issue calls to self.addpendingblock(). # The analysis of a block can be in three states: # * block not in self.annotated: # never seen the block. # * self.annotated[block] == False: # the input variables of the block have bindings but we # still have to consider all the operations in the block. # * self.annotated[block] == graph-containing-block: # analysis done (at least until we find we must generalize the # input variables). #print '* processblock', block, cells self.annotated[block] = graph if block in self.blocked_blocks: del self.blocked_blocks[block] try: self.flowin(graph, block) except BlockedInference as e: self.annotated[block] = False # failed, hopefully temporarily self.blocked_blocks[block] = (graph, e.opindex) except Exception as e: # hack for debug tools only if not hasattr(e, '__annotator_block'): setattr(e, '__annotator_block', block) raise # The dict 'added_blocks' is used by rpython.annlowlevel to # detect which are the new blocks that annotating an additional # small helper creates. if self.added_blocks is not None: self.added_blocks[block] = True def reflowpendingblock(self, graph, block): assert not self.frozen assert graph not in self.fixed_graphs self.pendingblocks[block] = graph assert block in self.annotated self.annotated[block] = False # must re-flow self.blocked_blocks[block] = (graph, None) def bindinputargs(self, graph, block, inputcells): # Create the initial bindings for the input args of a block. assert len(block.inputargs) == len(inputcells) for a, cell in zip(block.inputargs, inputcells): self.setbinding(a, cell) self.annotated[block] = False # must flowin. self.blocked_blocks[block] = (graph, None) def mergeinputargs(self, graph, block, inputcells): # Merge the new 'cells' with each of the block's existing input # variables. oldcells = [self.binding(a) for a in block.inputargs] try: unions = [annmodel.unionof(c1,c2) for c1, c2 in zip(oldcells,inputcells)] except annmodel.UnionError as e: # Add source code to the UnionError e.source = '\n'.join(source_lines(graph, block, None, long=True)) raise # if the merged cells changed, we must redo the analysis if unions != oldcells: self.bindinputargs(graph, block, unions) def apply_renaming(self, s_out, renaming): if hasattr(s_out, 'is_type_of'): renamed_is_type_of = [] for v in s_out.is_type_of: renamed_is_type_of += renaming[v] assert s_out.knowntype is type newcell = typeof(renamed_is_type_of) if s_out.is_constant(): newcell.const = s_out.const s_out = newcell if hasattr(s_out, 'knowntypedata'): renamed_knowntypedata = {} for value, constraints in s_out.knowntypedata.items(): renamed_knowntypedata[value] = {} for v, s in constraints.items(): new_vs = renaming.get(v, []) for new_v in new_vs: renamed_knowntypedata[value][new_v] = s assert isinstance(s_out, annmodel.SomeBool) newcell = annmodel.SomeBool() if s_out.is_constant(): newcell.const = s_out.const s_out = newcell s_out.set_knowntypedata(renamed_knowntypedata) return s_out def whereami(self, position_key): graph, block, i = position_key blk = "" if block: at = block.at() if at: blk = " block"+at opid="" if i is not None: opid = " op=%d" % i return repr(graph) + blk + opid def flowin(self, graph, block): try: i = 0 while i < len(block.operations): op = block.operations[i] with self.bookkeeper.at_position((graph, block, i)): new_ops = op.transform(self) if new_ops is not None: block.operations[i:i+1] = new_ops if not new_ops: continue new_ops[-1].result = op.result op = new_ops[0] self.consider_op(op) i += 1 except BlockedInference as e: if e.op is block.raising_op: # this is the case where the last operation of the block will # always raise an exception which is immediately caught by # an exception handler. We then only follow the exceptional # branches. exits = [link for link in block.exits if link.exitcase is not None] elif e.op.opname in ('simple_call', 'call_args', 'next'): # XXX warning, keep the name of the call operations in sync # with the flow object space. These are the operations for # which it is fine to always raise an exception. We then # swallow the BlockedInference and that's it. # About 'next': see test_annotate_iter_empty_container(). return else: # other cases are problematic (but will hopefully be solved # later by reflowing). Throw the BlockedInference up to # processblock(). e.opindex = i raise except annmodel.HarmlesslyBlocked: return except annmodel.AnnotatorError as e: # note that UnionError is a subclass e.source = gather_error(self, graph, block, i) raise else: # dead code removal: don't follow all exits if the exitswitch # is known exits = block.exits if isinstance(block.exitswitch, Variable): s_exitswitch = self.binding(block.exitswitch) if s_exitswitch.is_constant(): exits = [link for link in exits if link.exitcase == s_exitswitch.const] if block.canraise: op = block.raising_op s_exception = self.get_exception(op) for link in exits: case = link.exitcase if case is None: self.follow_link(graph, link, {}) continue if s_exception == s_ImpossibleValue: break s_case = SomeInstance(self.bookkeeper.getuniqueclassdef(case)) s_matching_exc = intersection(s_exception, s_case) if s_matching_exc != s_ImpossibleValue: self.follow_raise_link(graph, link, s_matching_exc) s_exception = difference(s_exception, s_case) else: if isinstance(block.exitswitch, Variable): knowntypedata = getattr( block.exitswitch.annotation, "knowntypedata", {}) else: knowntypedata = {} for link in exits: constraints = knowntypedata.get(link.exitcase, {}) self.follow_link(graph, link, constraints) if block in self.notify: # reflow from certain positions when this block is done for callback in self.notify[block]: if isinstance(callback, tuple): self.reflowfromposition(callback) # callback is a position else: callback() def follow_link(self, graph, link, constraints): assert not (isinstance(link.exitcase, (types.ClassType, type)) and issubclass(link.exitcase, BaseException)) ignore_link = False inputs_s = [] renaming = defaultdict(list) for v_out, v_input in zip(link.args, link.target.inputargs): renaming[v_out].append(v_input) for v_out in link.args: s_out = self.annotation(v_out) if v_out in constraints: s_constraint = constraints[v_out] s_out = pair(s_out, s_constraint).improve() # ignore links that try to pass impossible values if s_out == s_ImpossibleValue: ignore_link = True s_out = self.apply_renaming(s_out, renaming) inputs_s.append(s_out) if ignore_link: return self.links_followed[link] = True self.addpendingblock(graph, link.target, inputs_s) def follow_raise_link(self, graph, link, s_last_exc_value): v_last_exc_type = link.last_exception v_last_exc_value = link.last_exc_value assert (isinstance(link.exitcase, (types.ClassType, type)) and issubclass(link.exitcase, BaseException)) assert v_last_exc_type and v_last_exc_value if isinstance(v_last_exc_value, Variable): self.setbinding(v_last_exc_value, s_last_exc_value) if isinstance(v_last_exc_type, Variable): self.setbinding(v_last_exc_type, typeof([v_last_exc_value])) inputs_s = [] renaming = defaultdict(list) for v_out, v_input in zip(link.args, link.target.inputargs): renaming[v_out].append(v_input) for v_out, v_input in zip(link.args, link.target.inputargs): if v_out == v_last_exc_type: s_out = typeof(renaming[v_last_exc_value]) if isinstance(v_last_exc_type, Constant): s_out.const = v_last_exc_type.value elif v_last_exc_type.annotation.is_constant(): s_out.const = v_last_exc_type.annotation.const inputs_s.append(s_out) else: s_out = self.annotation(v_out) s_out = self.apply_renaming(s_out, renaming) inputs_s.append(s_out) self.links_followed[link] = True self.addpendingblock(graph, link.target, inputs_s) #___ creating the annotations based on operations ______ def consider_op(self, op): # let's be careful about avoiding propagated SomeImpossibleValues # to enter an op; the latter can result in violations of the # more general results invariant: e.g. if SomeImpossibleValue enters is_ # is_(SomeImpossibleValue, None) -> SomeBool # is_(SomeInstance(not None), None) -> SomeBool(const=False) ... # boom -- in the assert of setbinding() for arg in op.args: if isinstance(self.annotation(arg), annmodel.SomeImpossibleValue): raise BlockedInference(self, op, -1) resultcell = op.consider(self) if resultcell is None: resultcell = s_ImpossibleValue elif resultcell == s_ImpossibleValue: raise BlockedInference(self, op, -1) # the operation cannot succeed assert isinstance(resultcell, annmodel.SomeObject) assert isinstance(op.result, Variable) self.setbinding(op.result, resultcell) # bind resultcell to op.result def get_exception(self, operation): """ Return the annotation for all exceptions that `operation` may raise. """ can_only_throw = operation.get_can_only_throw(self) if can_only_throw is None: return SomeInstance(self.bookkeeper.getuniqueclassdef(Exception)) else: return self.bookkeeper.new_exception(can_only_throw) class BlockedInference(Exception): """This exception signals the type inference engine that the situation is currently blocked, and that it should try to progress elsewhere.""" def __init__(self, annotator, op, opindex): self.annotator = annotator try: self.break_at = annotator.bookkeeper.position_key except AttributeError: self.break_at = None self.op = op self.opindex = opindex def __repr__(self): if not self.break_at: break_at = "?" else: break_at = self.annotator.whereami(self.break_at) return "<BlockedInference break_at %s [%s]>" %(break_at, self.op) __str__ = __repr__
[((708, 732), 'rpython.tool.ansi_print.AnsiLogger', 'AnsiLogger', (['"""annrpython"""'], {}), "('annrpython')\n", (718, 732), False, 'from rpython.tool.ansi_print import AnsiLogger\n'), ((3142, 3159), 'rpython.annotator.policy.AnnotatorPolicy', 'AnnotatorPolicy', ([], {}), '()\n', (3157, 3159), False, 'from rpython.annotator.policy import AnnotatorPolicy\n'), ((5054, 5075), 'rpython.flowspace.model.checkgraph', 'checkgraph', (['flowgraph'], {}), '(flowgraph)\n', (5064, 5075), False, 'from rpython.flowspace.model import Variable, Constant, checkgraph\n'), ((9590, 9630), 'rpython.annotator.signature.annotation', 'signature.annotation', (['t', 'self.bookkeeper'], {}), '(t, self.bookkeeper)\n', (9610, 9630), False, 'from rpython.annotator import model as annmodel, signature\n'), ((12325, 12415), 'rpython.translator.transform.transform_graph', 'transform.transform_graph', (['self'], {'block_subset': 'block_subset', 'extra_passes': 'extra_passes'}), '(self, block_subset=block_subset, extra_passes=\n extra_passes)\n', (12350, 12415), False, 'from rpython.translator import simplify, transform\n'), ((21355, 21372), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (21366, 21372), False, 'from collections import defaultdict\n'), ((22720, 22737), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (22731, 22737), False, 'from collections import defaultdict\n'), ((1151, 1171), 'rpython.translator.translator.TranslationContext', 'TranslationContext', ([], {}), '()\n', (1169, 1171), False, 'from rpython.translator.translator import TranslationContext\n'), ((2077, 2094), 'rpython.annotator.policy.AnnotatorPolicy', 'AnnotatorPolicy', ([], {}), '()\n', (2092, 2094), False, 'from rpython.annotator.policy import AnnotatorPolicy\n'), ((2198, 2214), 'rpython.annotator.bookkeeper.Bookkeeper', 'Bookkeeper', (['self'], {}), '(self)\n', (2208, 2214), False, 'from rpython.annotator.bookkeeper import Bookkeeper\n'), ((4210, 4227), 'rpython.annotator.policy.AnnotatorPolicy', 'AnnotatorPolicy', ([], {}), '()\n', (4225, 4227), False, 'from rpython.annotator.policy import AnnotatorPolicy\n'), ((8510, 8568), 'rpython.tool.error.format_blocked_annotation_error', 'format_blocked_annotation_error', (['self', 'self.blocked_blocks'], {}), '(self, self.blocked_blocks)\n', (8541, 8568), False, 'from rpython.tool.error import format_blocked_annotation_error, gather_error, source_lines\n'), ((8619, 8648), 'rpython.annotator.model.AnnotatorError', 'annmodel.AnnotatorError', (['text'], {}), '(text)\n', (8642, 8648), True, 'from rpython.annotator import model as annmodel, signature\n'), ((12757, 12795), 'rpython.translator.simplify.eliminate_empty_blocks', 'simplify.eliminate_empty_blocks', (['graph'], {}), '(graph)\n', (12788, 12795), False, 'from rpython.translator import simplify, transform\n'), ((12887, 12915), 'rpython.rtyper.normalizecalls.perform_normalizations', 'perform_normalizations', (['self'], {}), '(self)\n', (12909, 12915), False, 'from rpython.rtyper.normalizecalls import perform_normalizations\n'), ((16104, 16130), 'rpython.annotator.model.typeof', 'typeof', (['renamed_is_type_of'], {}), '(renamed_is_type_of)\n', (16110, 16130), False, 'from rpython.annotator.model import typeof, s_ImpossibleValue, SomeInstance, intersection, difference\n'), ((16721, 16740), 'rpython.annotator.model.SomeBool', 'annmodel.SomeBool', ([], {}), '()\n', (16738, 16740), True, 'from rpython.annotator import model as annmodel, signature\n'), ((15427, 15451), 'rpython.annotator.model.unionof', 'annmodel.unionof', (['c1', 'c2'], {}), '(c1, c2)\n', (15443, 15451), True, 'from rpython.annotator import model as annmodel, signature\n'), ((19179, 19214), 'rpython.tool.error.gather_error', 'gather_error', (['self', 'graph', 'block', 'i'], {}), '(self, graph, block, i)\n', (19191, 19214), False, 'from rpython.tool.error import format_blocked_annotation_error, gather_error, source_lines\n'), ((20153, 20186), 'rpython.annotator.model.intersection', 'intersection', (['s_exception', 's_case'], {}), '(s_exception, s_case)\n', (20165, 20186), False, 'from rpython.annotator.model import typeof, s_ImpossibleValue, SomeInstance, intersection, difference\n'), ((20345, 20376), 'rpython.annotator.model.difference', 'difference', (['s_exception', 's_case'], {}), '(s_exception, s_case)\n', (20355, 20376), False, 'from rpython.annotator.model import typeof, s_ImpossibleValue, SomeInstance, intersection, difference\n'), ((22650, 22676), 'rpython.annotator.model.typeof', 'typeof', (['[v_last_exc_value]'], {}), '([v_last_exc_value])\n', (22656, 22676), False, 'from rpython.annotator.model import typeof, s_ImpossibleValue, SomeInstance, intersection, difference\n'), ((22986, 23020), 'rpython.annotator.model.typeof', 'typeof', (['renaming[v_last_exc_value]'], {}), '(renaming[v_last_exc_value])\n', (22992, 23020), False, 'from rpython.annotator.model import typeof, s_ImpossibleValue, SomeInstance, intersection, difference\n'), ((6903, 6939), 'rpython.annotator.model.unionof', 'annmodel.unionof', (['s_oldarg', 's_newarg'], {}), '(s_oldarg, s_newarg)\n', (6919, 6939), True, 'from rpython.annotator import model as annmodel, signature\n'), ((15613, 15656), 'rpython.tool.error.source_lines', 'source_lines', (['graph', 'block', 'None'], {'long': '(True)'}), '(graph, block, None, long=True)\n', (15625, 15656), False, 'from rpython.tool.error import format_blocked_annotation_error, gather_error, source_lines\n'), ((9885, 9917), 'rpython.annotator.model.unionof', 'annmodel.unionof', (['s_value', 's_old'], {}), '(s_value, s_old)\n', (9901, 9917), True, 'from rpython.annotator import model as annmodel, signature\n'), ((21673, 21698), 'rpython.tool.pairtype.pair', 'pair', (['s_out', 's_constraint'], {}), '(s_out, s_constraint)\n', (21677, 21698), False, 'from rpython.tool.pairtype import pair\n')]