You need to agree to share your contact information to access this dataset

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this dataset content.

Dataset Card for aeroBERT-NER

Dataset Summary

This dataset contains sentences from the aerospace requirements domain. The sentences are tagged for five NER categories (SYS, VAL, ORG, DATETIME, and RES) using the BIO tagging scheme. There are a total of 1432 sentences. The creation of this dataset is aimed at -
(1) Making available an open-source dataset for aerospace requirements which are often proprietary
(2) Fine-tuning language models for token identification (NER) specific to the aerospace domain

This dataset can be used for training or fine-tuning language models for the identification of mentioned Named-Entities in aerospace texts.

Dataset Structure

The dataset is of the format: Sentence-Number * WordPiece-Token * NER-tag

"*" is used as a delimiter to avoid confusion with commas (",") that occur in the text. The following example shows the dataset structure for Sentence #1431.

1431*the*O
1431*airplane*B-SYS
1431*takeoff*O
1431*performance*O
1431*must*O
1431*be*O
1431*determined*O
1431*for*O
1431*climb*O
1431*gradients*O
1431*.*O

Dataset Creation

Source Data

Two types of aerospace texts are used to create the aerospace corpus for fine-tuning BERT:
(1) general aerospace texts such as publications by the National Academy of Space Studies Board, and
(2) certification requirements from Title 14 CFR. A total of 1432 sentences from the aerospace domain were included in the corpus.

Importing dataset into Python environment

Use the following code chunk to import the dataset into Python environment as a DataFrame.

from datasets import load_dataset
import pandas as pd

dataset = load_dataset("archanatikayatray/aeroBERT-NER")

#Converting the dataset into a pandas DataFrame
dataset = pd.DataFrame(dataset["train"]["text"])
dataset = dataset[0].str.split('*', expand = True)

#Getting the headers from the first row
header = dataset.iloc[0]

#Excluding the first row since it contains the headers
dataset = dataset[1:]

#Assigning the header to the DataFrame
dataset.columns = header

#Viewing the last 10 rows of the annotated dataset
dataset.tail(10)

Annotations

Annotation process

A Subject Matter Expert (SME) was consulted for deciding on the annotation categories. The BIO Tagging scheme was used for annotating the dataset.

B - Beginning of entity
I - Inside an entity
O - Outside an entity

Category NER Tags Example
System B-SYS, I-SYS exhaust heat exchangers, powerplant, auxiliary power unit
Value B-VAL, I-VAL 1.2 percent, 400 feet, 10 to 19 passengers
Date time B-DATETIME, I-DATETIME 2013, 2019, May 11,1991
Organization B-ORG, I-ORG DOD, Ames Research Center, NOAA
Resource B-RES, I-RES Section 25-341, Sections 25-173 through 25-177, Part 23 subpart B

The distribution of the various entities in the corpus is shown below -

NER Tag Description Count
O Tokens that are not identified as any NE 37686
B-SYS Beginning of a system NE 1915
I-SYS Inside a system NE 1104
B-VAL Beginning of a value NE 659
I-VAL Inside a value NE 507
B-DATETIME Beginning of a date time NE 147
I-DATETIME Inside a date time NE 63
B-ORG Beginning of an organization NE 302
I-ORG Inside a organization NE 227
B-RES Beginning of a resource NE 390
I-RES Inside a resource NE 1033

Limitations

(1)The dataset is an imbalanced dataset, given that's how language is (not every word is a Named-Entity). Hence, using Accuracy as a metric for the model performance is NOT a good idea. The use of Precision, Recall, and F1 scores are suggested for model performance evaluation.

(2)This dataset does not contain a test set. Hence, it is suggested that the user split the dataset into training/validation/testing after importing the data into a Python environment. Please refer to the Appendix of the paper for information on the test set.

Citation Information

@Article{aeroBERT-NER,
AUTHOR = {Tikayat Ray, Archana and Pinon Fischer, Olivia J. and Mavris, Dimitri N. and White, Ryan T. and Cole, Bjorn F.},
TITLE = {aeroBERT-NER: Named-Entity Recognition for Aerospace Requirements Engineering using BERT},
JOURNAL = {AIAA SCITECH 2023 Forum},
YEAR = {2023},
URL = {https://arc.aiaa.org/doi/10.2514/6.2023-2583},
DOI = {10.2514/6.2023-2583}
}

@phdthesis{tikayatray_thesis,
  author  = {Tikayat Ray, Archana},
  title   = {Standardization of Engineering Requirements Using Large Language Models},
  school  = {Georgia Institute of Technology},
  year    = {2023},
  doi = {10.13140/RG.2.2.17792.40961},
  URL = {https://repository.gatech.edu/items/964c73e3-f0a8-487d-a3fa-a0988c840d04}
}
Downloads last month
63