Datasets:
Tasks:
Visual Question Answering
Formats:
parquet
Sub-tasks:
visual-question-answering
Languages:
English
Size:
100K - 1M
ArXiv:
License:
File size: 14,970 Bytes
f6b96d5 e0c9133 1e853eb e0c9133 1e853eb 0d6df9f 1e853eb 0d6df9f 1e853eb 0d6df9f 2dfec17 1e853eb 2dfec17 1e853eb 0d6df9f 1e853eb 0d6df9f 2dfec17 1e853eb 2dfec17 0d6df9f 1e853eb 0d6df9f 2dfec17 1e853eb 2dfec17 1e853eb f6b96d5 127b25a f6b96d5 127b25a f6b96d5 13cb0d3 f6b96d5 00b0e4a 90da5b1 f6b96d5 13cb0d3 f6b96d5 00b0e4a f6b96d5 127b25a f6b96d5 13cb0d3 f6b96d5 13cb0d3 f6b96d5 13cb0d3 f6b96d5 90da5b1 f6b96d5 90da5b1 f6b96d5 13cb0d3 f6b96d5 127b25a f6b96d5 13cb0d3 f6b96d5 13cb0d3 f6b96d5 13cb0d3 f6b96d5 127b25a f6b96d5 13cb0d3 f6b96d5 127b25a f6b96d5 13cb0d3 f6b96d5 13cb0d3 f6b96d5 13cb0d3 f6b96d5 13cb0d3 f6b96d5 13cb0d3 f6b96d5 13cb0d3 f6b96d5 13cb0d3 f6b96d5 13cb0d3 f6b96d5 13cb0d3 f6b96d5 00b0e4a f6b96d5 0d6df9f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 |
---
annotations_creators:
- machine-generated
language_creators:
- found
language:
- en
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
source_datasets:
- extended|other-guesswhat
task_categories:
- visual-question-answering
task_ids:
- visual-question-answering
paperswithcode_id: compguesswhat
pretty_name: CompGuessWhat?!
dataset_info:
- config_name: compguesswhat-original
features:
- name: id
dtype: int32
- name: target_id
dtype: int32
- name: timestamp
dtype: string
- name: status
dtype: string
- name: image
struct:
- name: id
dtype: int32
- name: file_name
dtype: string
- name: flickr_url
dtype: string
- name: coco_url
dtype: string
- name: height
dtype: int32
- name: width
dtype: int32
- name: visual_genome
struct:
- name: width
dtype: int32
- name: height
dtype: int32
- name: url
dtype: string
- name: coco_id
dtype: int32
- name: flickr_id
dtype: string
- name: image_id
dtype: string
- name: qas
sequence:
- name: question
dtype: string
- name: answer
dtype: string
- name: id
dtype: int32
- name: objects
sequence:
- name: id
dtype: int32
- name: bbox
sequence: float32
length: 4
- name: category
dtype: string
- name: area
dtype: float32
- name: category_id
dtype: int32
- name: segment
sequence:
sequence: float32
splits:
- name: train
num_bytes: 123556580
num_examples: 46341
- name: validation
num_bytes: 25441428
num_examples: 9738
- name: test
num_bytes: 25369227
num_examples: 9621
download_size: 105349759
dataset_size: 174367235
- config_name: compguesswhat-zero_shot
features:
- name: id
dtype: int32
- name: target_id
dtype: string
- name: status
dtype: string
- name: image
struct:
- name: id
dtype: int32
- name: file_name
dtype: string
- name: coco_url
dtype: string
- name: height
dtype: int32
- name: width
dtype: int32
- name: license
dtype: int32
- name: open_images_id
dtype: string
- name: date_captured
dtype: string
- name: objects
sequence:
- name: id
dtype: string
- name: bbox
sequence: float32
length: 4
- name: category
dtype: string
- name: area
dtype: float32
- name: category_id
dtype: int32
- name: IsOccluded
dtype: int32
- name: IsTruncated
dtype: int32
- name: segment
sequence:
- name: MaskPath
dtype: string
- name: LabelName
dtype: string
- name: BoxID
dtype: string
- name: BoxXMin
dtype: string
- name: BoxXMax
dtype: string
- name: BoxYMin
dtype: string
- name: BoxYMax
dtype: string
- name: PredictedIoU
dtype: string
- name: Clicks
dtype: string
splits:
- name: nd_valid
num_bytes: 13510589
num_examples: 5343
- name: nd_test
num_bytes: 36228021
num_examples: 13836
- name: od_valid
num_bytes: 14051972
num_examples: 5372
- name: od_test
num_bytes: 32950869
num_examples: 13300
download_size: 6548812
dataset_size: 96741451
configs:
- config_name: compguesswhat-original
data_files:
- split: train
path: compguesswhat-original/train-*
- split: validation
path: compguesswhat-original/validation-*
- split: test
path: compguesswhat-original/test-*
- config_name: compguesswhat-zero_shot
data_files:
- split: nd_valid
path: compguesswhat-zero_shot/nd_valid-*
- split: nd_test
path: compguesswhat-zero_shot/nd_test-*
- split: od_valid
path: compguesswhat-zero_shot/od_valid-*
- split: od_test
path: compguesswhat-zero_shot/od_test-*
---
# Dataset Card for "compguesswhat"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://compguesswhat.github.io/](https://compguesswhat.github.io/)
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Paper:** https://arxiv.org/abs/2006.02174
- **Paper:** https://doi.org/10.18653/v1/2020.acl-main.682
- **Point of Contact:** [Alessandro Suglia](mailto:alessandro.suglia@gmail.com)
- **Size of downloaded dataset files:** 112.05 MB
- **Size of the generated dataset:** 271.11 MB
- **Total amount of disk used:** 383.16 MB
### Dataset Summary
CompGuessWhat?! is an instance of a multi-task framework for evaluating the quality of learned neural representations,
in particular concerning attribute grounding. Use this dataset if you want to use the set of games whose reference
scene is an image in VisualGenome. Visit the website for more details: https://compguesswhat.github.io
### Supported Tasks and Leaderboards
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Dataset Structure
### Data Instances
#### compguesswhat-original
- **Size of downloaded dataset files:** 107.21 MB
- **Size of the generated dataset:** 174.37 MB
- **Total amount of disk used:** 281.57 MB
An example of 'validation' looks as follows.
```
This example was too long and was cropped:
{
"id": 2424,
"image": "{\"coco_url\": \"http://mscoco.org/images/270512\", \"file_name\": \"COCO_train2014_000000270512.jpg\", \"flickr_url\": \"http://farm6.stat...",
"objects": "{\"area\": [1723.5133056640625, 4838.5361328125, 287.44476318359375, 44918.7109375, 3688.09375, 522.1935424804688], \"bbox\": [[5.61...",
"qas": {
"answer": ["Yes", "No", "No", "Yes"],
"id": [4983, 4996, 5006, 5017],
"question": ["Is it in the foreground?", "Does it have wings?", "Is it a person?", "Is it a vehicle?"]
},
"status": "success",
"target_id": 1197044,
"timestamp": "2016-07-08 15:07:38"
}
```
#### compguesswhat-zero_shot
- **Size of downloaded dataset files:** 4.84 MB
- **Size of the generated dataset:** 96.74 MB
- **Total amount of disk used:** 101.59 MB
An example of 'nd_valid' looks as follows.
```
This example was too long and was cropped:
{
"id": 0,
"image": {
"coco_url": "https://s3.amazonaws.com/nocaps/val/004e21eb2e686f40.jpg",
"date_captured": "2018-11-06 11:04:33",
"file_name": "004e21eb2e686f40.jpg",
"height": 1024,
"id": 6,
"license": 0,
"open_images_id": "004e21eb2e686f40",
"width": 768
},
"objects": "{\"IsOccluded\": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], \"IsTruncated\": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], \"area\": [3...",
"status": "incomplete",
"target_id": "004e21eb2e686f40_30"
}
```
### Data Fields
The data fields are the same among all splits.
#### compguesswhat-original
- `id`: a `int32` feature.
- `target_id`: a `int32` feature.
- `timestamp`: a `string` feature.
- `status`: a `string` feature.
- `id`: a `int32` feature.
- `file_name`: a `string` feature.
- `flickr_url`: a `string` feature.
- `coco_url`: a `string` feature.
- `height`: a `int32` feature.
- `width`: a `int32` feature.
- `width`: a `int32` feature.
- `height`: a `int32` feature.
- `url`: a `string` feature.
- `coco_id`: a `int32` feature.
- `flickr_id`: a `string` feature.
- `image_id`: a `string` feature.
- `qas`: a dictionary feature containing:
- `question`: a `string` feature.
- `answer`: a `string` feature.
- `id`: a `int32` feature.
- `objects`: a dictionary feature containing:
- `id`: a `int32` feature.
- `bbox`: a `list` of `float32` features.
- `category`: a `string` feature.
- `area`: a `float32` feature.
- `category_id`: a `int32` feature.
- `segment`: a dictionary feature containing:
- `feature`: a `float32` feature.
#### compguesswhat-zero_shot
- `id`: a `int32` feature.
- `target_id`: a `string` feature.
- `status`: a `string` feature.
- `id`: a `int32` feature.
- `file_name`: a `string` feature.
- `coco_url`: a `string` feature.
- `height`: a `int32` feature.
- `width`: a `int32` feature.
- `license`: a `int32` feature.
- `open_images_id`: a `string` feature.
- `date_captured`: a `string` feature.
- `objects`: a dictionary feature containing:
- `id`: a `string` feature.
- `bbox`: a `list` of `float32` features.
- `category`: a `string` feature.
- `area`: a `float32` feature.
- `category_id`: a `int32` feature.
- `IsOccluded`: a `int32` feature.
- `IsTruncated`: a `int32` feature.
- `segment`: a dictionary feature containing:
- `MaskPath`: a `string` feature.
- `LabelName`: a `string` feature.
- `BoxID`: a `string` feature.
- `BoxXMin`: a `string` feature.
- `BoxXMax`: a `string` feature.
- `BoxYMin`: a `string` feature.
- `BoxYMax`: a `string` feature.
- `PredictedIoU`: a `string` feature.
- `Clicks`: a `string` feature.
### Data Splits
#### compguesswhat-original
| |train|validation|test|
|----------------------|----:|---------:|---:|
|compguesswhat-original|46341| 9738|9621|
#### compguesswhat-zero_shot
| |nd_valid|od_valid|nd_test|od_test|
|-----------------------|-------:|-------:|------:|------:|
|compguesswhat-zero_shot| 5343| 5372| 13836| 13300|
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Citation Information
```
@inproceedings{suglia-etal-2020-compguesswhat,
title = "{C}omp{G}uess{W}hat?!: A Multi-task Evaluation Framework for Grounded Language Learning",
author = "Suglia, Alessandro and
Konstas, Ioannis and
Vanzo, Andrea and
Bastianelli, Emanuele and
Elliott, Desmond and
Frank, Stella and
Lemon, Oliver",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.acl-main.682",
pages = "7625--7641",
abstract = "Approaches to Grounded Language Learning are commonly focused on a single task-based final performance measure which may not depend on desirable properties of the learned hidden representations, such as their ability to predict object attributes or generalize to unseen situations. To remedy this, we present GroLLA, an evaluation framework for Grounded Language Learning with Attributes based on three sub-tasks: 1) Goal-oriented evaluation; 2) Object attribute prediction evaluation; and 3) Zero-shot evaluation. We also propose a new dataset CompGuessWhat?! as an instance of this framework for evaluating the quality of learned neural representations, in particular with respect to attribute grounding. To this end, we extend the original GuessWhat?! dataset by including a semantic layer on top of the perceptual one. Specifically, we enrich the VisualGenome scene graphs associated with the GuessWhat?! images with several attributes from resources such as VISA and ImSitu. We then compare several hidden state representations from current state-of-the-art approaches to Grounded Language Learning. By using diagnostic classifiers, we show that current models{'} learned representations are not expressive enough to encode object attributes (average F1 of 44.27). In addition, they do not learn strategies nor representations that are robust enough to perform well when novel scenes or objects are involved in gameplay (zero-shot best accuracy 50.06{\%}).",
}
```
### Contributions
Thanks to [@thomwolf](https://github.com/thomwolf), [@aleSuglia](https://github.com/aleSuglia), [@lhoestq](https://github.com/lhoestq) for adding this dataset. |