Search is not available for this dataset
config_id
int64 0
255
| training_steps
int64 5k
10M
| performance
float64 -3,734.97
34.6k
| hp_config.buffer_batch_size
int64 16
256
| hp_config.buffer_prio_sampling
bool 2
classes | hp_config.buffer_size
int64 1.1k
1,000k
| hp_config.initial_epsilon
float64 0.5
1
| hp_config.learning_rate
float64 0
0.1
| hp_config.learning_starts
int64 1
32.7k
| hp_config.target_epsilon
float64 0
0.2
| hp_config.use_target_network
bool 2
classes | hp_config.buffer_alpha
float64 0.02
0.98
⌀ | hp_config.buffer_beta
float64 0.01
1
⌀ | hp_config.buffer_epsilon
float64 0
0
⌀ | hp_config.target_update_interval
float64 1
2k
⌀ | seed
int64 0
9
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1,000,000 | 0 | 32 | false | 603,170 | 0.772442 | 0.000131 | 21,527 | 0.08808 | false | null | null | null | null | 9 |
0 | 2,000,000 | 1,523.4375 | 32 | false | 603,170 | 0.772442 | 0.000131 | 21,527 | 0.08808 | false | null | null | null | null | 9 |
0 | 3,000,000 | 0 | 32 | false | 603,170 | 0.772442 | 0.000131 | 21,527 | 0.08808 | false | null | null | null | null | 9 |
0 | 4,000,000 | 0 | 32 | false | 603,170 | 0.772442 | 0.000131 | 21,527 | 0.08808 | false | null | null | null | null | 9 |
0 | 5,000,000 | 546.875 | 32 | false | 603,170 | 0.772442 | 0.000131 | 21,527 | 0.08808 | false | null | null | null | null | 9 |
0 | 6,000,000 | 2,000 | 32 | false | 603,170 | 0.772442 | 0.000131 | 21,527 | 0.08808 | false | null | null | null | null | 9 |
0 | 7,000,000 | 1,000 | 32 | false | 603,170 | 0.772442 | 0.000131 | 21,527 | 0.08808 | false | null | null | null | null | 9 |
0 | 8,000,000 | 0 | 32 | false | 603,170 | 0.772442 | 0.000131 | 21,527 | 0.08808 | false | null | null | null | null | 9 |
0 | 9,000,000 | 3,000 | 32 | false | 603,170 | 0.772442 | 0.000131 | 21,527 | 0.08808 | false | null | null | null | null | 9 |
0 | 10,000,000 | 3,000 | 32 | false | 603,170 | 0.772442 | 0.000131 | 21,527 | 0.08808 | false | null | null | null | null | 9 |
1 | 1,000,000 | 1,351.5625 | 32 | false | 71,987 | 0.543565 | 0.000001 | 27,455 | 0.155853 | false | null | null | null | null | 9 |
1 | 2,000,000 | 3,632.8125 | 32 | false | 71,987 | 0.543565 | 0.000001 | 27,455 | 0.155853 | false | null | null | null | null | 9 |
1 | 3,000,000 | 2,117.1875 | 32 | false | 71,987 | 0.543565 | 0.000001 | 27,455 | 0.155853 | false | null | null | null | null | 9 |
1 | 4,000,000 | 2,351.5625 | 32 | false | 71,987 | 0.543565 | 0.000001 | 27,455 | 0.155853 | false | null | null | null | null | 9 |
1 | 5,000,000 | 7,984.375 | 32 | false | 71,987 | 0.543565 | 0.000001 | 27,455 | 0.155853 | false | null | null | null | null | 9 |
1 | 6,000,000 | 4,171.875 | 32 | false | 71,987 | 0.543565 | 0.000001 | 27,455 | 0.155853 | false | null | null | null | null | 9 |
1 | 7,000,000 | 4,828.125 | 32 | false | 71,987 | 0.543565 | 0.000001 | 27,455 | 0.155853 | false | null | null | null | null | 9 |
1 | 8,000,000 | 7,226.5625 | 32 | false | 71,987 | 0.543565 | 0.000001 | 27,455 | 0.155853 | false | null | null | null | null | 9 |
1 | 9,000,000 | 3,703.125 | 32 | false | 71,987 | 0.543565 | 0.000001 | 27,455 | 0.155853 | false | null | null | null | null | 9 |
1 | 10,000,000 | 10,210.9375 | 32 | false | 71,987 | 0.543565 | 0.000001 | 27,455 | 0.155853 | false | null | null | null | null | 9 |
2 | 1,000,000 | 257.8125 | 16 | false | 144,230 | 0.972334 | 0.000407 | 14,187 | 0.053647 | false | null | null | null | null | 9 |
2 | 2,000,000 | 2,937.5 | 16 | false | 144,230 | 0.972334 | 0.000407 | 14,187 | 0.053647 | false | null | null | null | null | 9 |
2 | 3,000,000 | 4,187.5 | 16 | false | 144,230 | 0.972334 | 0.000407 | 14,187 | 0.053647 | false | null | null | null | null | 9 |
2 | 4,000,000 | 4,453.125 | 16 | false | 144,230 | 0.972334 | 0.000407 | 14,187 | 0.053647 | false | null | null | null | null | 9 |
2 | 5,000,000 | 1,453.125 | 16 | false | 144,230 | 0.972334 | 0.000407 | 14,187 | 0.053647 | false | null | null | null | null | 9 |
2 | 6,000,000 | 0 | 16 | false | 144,230 | 0.972334 | 0.000407 | 14,187 | 0.053647 | false | null | null | null | null | 9 |
2 | 7,000,000 | 2,507.8125 | 16 | false | 144,230 | 0.972334 | 0.000407 | 14,187 | 0.053647 | false | null | null | null | null | 9 |
2 | 8,000,000 | 3,000 | 16 | false | 144,230 | 0.972334 | 0.000407 | 14,187 | 0.053647 | false | null | null | null | null | 9 |
2 | 9,000,000 | 1,421.875 | 16 | false | 144,230 | 0.972334 | 0.000407 | 14,187 | 0.053647 | false | null | null | null | null | 9 |
2 | 10,000,000 | 0 | 16 | false | 144,230 | 0.972334 | 0.000407 | 14,187 | 0.053647 | false | null | null | null | null | 9 |
3 | 1,000,000 | 4,289.0625 | 32 | false | 943,806 | 0.84091 | 0.000063 | 14,897 | 0.139829 | true | null | null | null | 258 | 9 |
3 | 2,000,000 | 8,835.9375 | 32 | false | 943,806 | 0.84091 | 0.000063 | 14,897 | 0.139829 | true | null | null | null | 258 | 9 |
3 | 3,000,000 | 5,578.125 | 32 | false | 943,806 | 0.84091 | 0.000063 | 14,897 | 0.139829 | true | null | null | null | 258 | 9 |
3 | 4,000,000 | 2,960.9375 | 32 | false | 943,806 | 0.84091 | 0.000063 | 14,897 | 0.139829 | true | null | null | null | 258 | 9 |
3 | 5,000,000 | 9,132.8125 | 32 | false | 943,806 | 0.84091 | 0.000063 | 14,897 | 0.139829 | true | null | null | null | 258 | 9 |
3 | 6,000,000 | 12,875 | 32 | false | 943,806 | 0.84091 | 0.000063 | 14,897 | 0.139829 | true | null | null | null | 258 | 9 |
3 | 7,000,000 | 14,265.625 | 32 | false | 943,806 | 0.84091 | 0.000063 | 14,897 | 0.139829 | true | null | null | null | 258 | 9 |
3 | 8,000,000 | 16,570.312 | 32 | false | 943,806 | 0.84091 | 0.000063 | 14,897 | 0.139829 | true | null | null | null | 258 | 9 |
3 | 9,000,000 | 8,593.75 | 32 | false | 943,806 | 0.84091 | 0.000063 | 14,897 | 0.139829 | true | null | null | null | 258 | 9 |
3 | 10,000,000 | 20,132.812 | 32 | false | 943,806 | 0.84091 | 0.000063 | 14,897 | 0.139829 | true | null | null | null | 258 | 9 |
4 | 1,000,000 | 554.6875 | 16 | true | 570,637 | 0.719301 | 0.087472 | 4,263 | 0.042566 | true | 0.656577 | 0.260759 | 0.000007 | 489 | 9 |
4 | 2,000,000 | 2,000 | 16 | true | 570,637 | 0.719301 | 0.087472 | 4,263 | 0.042566 | true | 0.656577 | 0.260759 | 0.000007 | 489 | 9 |
4 | 3,000,000 | 609.375 | 16 | true | 570,637 | 0.719301 | 0.087472 | 4,263 | 0.042566 | true | 0.656577 | 0.260759 | 0.000007 | 489 | 9 |
4 | 4,000,000 | 3,000 | 16 | true | 570,637 | 0.719301 | 0.087472 | 4,263 | 0.042566 | true | 0.656577 | 0.260759 | 0.000007 | 489 | 9 |
4 | 5,000,000 | 2,000 | 16 | true | 570,637 | 0.719301 | 0.087472 | 4,263 | 0.042566 | true | 0.656577 | 0.260759 | 0.000007 | 489 | 9 |
4 | 6,000,000 | 0 | 16 | true | 570,637 | 0.719301 | 0.087472 | 4,263 | 0.042566 | true | 0.656577 | 0.260759 | 0.000007 | 489 | 9 |
4 | 7,000,000 | 0 | 16 | true | 570,637 | 0.719301 | 0.087472 | 4,263 | 0.042566 | true | 0.656577 | 0.260759 | 0.000007 | 489 | 9 |
4 | 8,000,000 | 0 | 16 | true | 570,637 | 0.719301 | 0.087472 | 4,263 | 0.042566 | true | 0.656577 | 0.260759 | 0.000007 | 489 | 9 |
4 | 9,000,000 | 593.75 | 16 | true | 570,637 | 0.719301 | 0.087472 | 4,263 | 0.042566 | true | 0.656577 | 0.260759 | 0.000007 | 489 | 9 |
4 | 10,000,000 | 531.25 | 16 | true | 570,637 | 0.719301 | 0.087472 | 4,263 | 0.042566 | true | 0.656577 | 0.260759 | 0.000007 | 489 | 9 |
5 | 1,000,000 | 2,945.3125 | 16 | true | 656,682 | 0.569091 | 0.00001 | 12,729 | 0.164378 | true | 0.839565 | 0.105137 | 0.000805 | 938 | 9 |
5 | 2,000,000 | 5,531.25 | 16 | true | 656,682 | 0.569091 | 0.00001 | 12,729 | 0.164378 | true | 0.839565 | 0.105137 | 0.000805 | 938 | 9 |
5 | 3,000,000 | 8,726.5625 | 16 | true | 656,682 | 0.569091 | 0.00001 | 12,729 | 0.164378 | true | 0.839565 | 0.105137 | 0.000805 | 938 | 9 |
5 | 4,000,000 | 5,031.25 | 16 | true | 656,682 | 0.569091 | 0.00001 | 12,729 | 0.164378 | true | 0.839565 | 0.105137 | 0.000805 | 938 | 9 |
5 | 5,000,000 | 3,914.0625 | 16 | true | 656,682 | 0.569091 | 0.00001 | 12,729 | 0.164378 | true | 0.839565 | 0.105137 | 0.000805 | 938 | 9 |
5 | 6,000,000 | 2,335.9375 | 16 | true | 656,682 | 0.569091 | 0.00001 | 12,729 | 0.164378 | true | 0.839565 | 0.105137 | 0.000805 | 938 | 9 |
5 | 7,000,000 | 8,414.0625 | 16 | true | 656,682 | 0.569091 | 0.00001 | 12,729 | 0.164378 | true | 0.839565 | 0.105137 | 0.000805 | 938 | 9 |
5 | 8,000,000 | 7,921.875 | 16 | true | 656,682 | 0.569091 | 0.00001 | 12,729 | 0.164378 | true | 0.839565 | 0.105137 | 0.000805 | 938 | 9 |
5 | 9,000,000 | 11,320.3125 | 16 | true | 656,682 | 0.569091 | 0.00001 | 12,729 | 0.164378 | true | 0.839565 | 0.105137 | 0.000805 | 938 | 9 |
5 | 10,000,000 | 11,765.625 | 16 | true | 656,682 | 0.569091 | 0.00001 | 12,729 | 0.164378 | true | 0.839565 | 0.105137 | 0.000805 | 938 | 9 |
6 | 1,000,000 | 2,953.125 | 64 | false | 739,531 | 0.519594 | 0.000026 | 4,839 | 0.059932 | true | null | null | null | 1,385 | 9 |
6 | 2,000,000 | 7,429.6875 | 64 | false | 739,531 | 0.519594 | 0.000026 | 4,839 | 0.059932 | true | null | null | null | 1,385 | 9 |
6 | 3,000,000 | 5,515.625 | 64 | false | 739,531 | 0.519594 | 0.000026 | 4,839 | 0.059932 | true | null | null | null | 1,385 | 9 |
6 | 4,000,000 | 6,171.875 | 64 | false | 739,531 | 0.519594 | 0.000026 | 4,839 | 0.059932 | true | null | null | null | 1,385 | 9 |
6 | 5,000,000 | 4,859.375 | 64 | false | 739,531 | 0.519594 | 0.000026 | 4,839 | 0.059932 | true | null | null | null | 1,385 | 9 |
6 | 6,000,000 | 10,953.125 | 64 | false | 739,531 | 0.519594 | 0.000026 | 4,839 | 0.059932 | true | null | null | null | 1,385 | 9 |
6 | 7,000,000 | 7,367.1875 | 64 | false | 739,531 | 0.519594 | 0.000026 | 4,839 | 0.059932 | true | null | null | null | 1,385 | 9 |
6 | 8,000,000 | 17,015.625 | 64 | false | 739,531 | 0.519594 | 0.000026 | 4,839 | 0.059932 | true | null | null | null | 1,385 | 9 |
6 | 9,000,000 | 13,718.75 | 64 | false | 739,531 | 0.519594 | 0.000026 | 4,839 | 0.059932 | true | null | null | null | 1,385 | 9 |
6 | 10,000,000 | 16,390.625 | 64 | false | 739,531 | 0.519594 | 0.000026 | 4,839 | 0.059932 | true | null | null | null | 1,385 | 9 |
7 | 1,000,000 | 1,000 | 32 | true | 523,736 | 0.54697 | 0.000758 | 30,524 | 0.064395 | false | 0.14048 | 0.719164 | 0.000001 | null | 9 |
7 | 2,000,000 | 1,000 | 32 | true | 523,736 | 0.54697 | 0.000758 | 30,524 | 0.064395 | false | 0.14048 | 0.719164 | 0.000001 | null | 9 |
7 | 3,000,000 | 1,000 | 32 | true | 523,736 | 0.54697 | 0.000758 | 30,524 | 0.064395 | false | 0.14048 | 0.719164 | 0.000001 | null | 9 |
7 | 4,000,000 | 1,000 | 32 | true | 523,736 | 0.54697 | 0.000758 | 30,524 | 0.064395 | false | 0.14048 | 0.719164 | 0.000001 | null | 9 |
7 | 5,000,000 | 531.25 | 32 | true | 523,736 | 0.54697 | 0.000758 | 30,524 | 0.064395 | false | 0.14048 | 0.719164 | 0.000001 | null | 9 |
7 | 6,000,000 | 2,000 | 32 | true | 523,736 | 0.54697 | 0.000758 | 30,524 | 0.064395 | false | 0.14048 | 0.719164 | 0.000001 | null | 9 |
7 | 7,000,000 | 2,000 | 32 | true | 523,736 | 0.54697 | 0.000758 | 30,524 | 0.064395 | false | 0.14048 | 0.719164 | 0.000001 | null | 9 |
7 | 8,000,000 | 2,000 | 32 | true | 523,736 | 0.54697 | 0.000758 | 30,524 | 0.064395 | false | 0.14048 | 0.719164 | 0.000001 | null | 9 |
7 | 9,000,000 | 671.875 | 32 | true | 523,736 | 0.54697 | 0.000758 | 30,524 | 0.064395 | false | 0.14048 | 0.719164 | 0.000001 | null | 9 |
7 | 10,000,000 | 1,000 | 32 | true | 523,736 | 0.54697 | 0.000758 | 30,524 | 0.064395 | false | 0.14048 | 0.719164 | 0.000001 | null | 9 |
8 | 1,000,000 | 554.6875 | 32 | true | 829,116 | 0.502348 | 0.00245 | 9,595 | 0.147304 | false | 0.256266 | 0.580396 | 0.000023 | null | 9 |
8 | 2,000,000 | 0 | 32 | true | 829,116 | 0.502348 | 0.00245 | 9,595 | 0.147304 | false | 0.256266 | 0.580396 | 0.000023 | null | 9 |
8 | 3,000,000 | 0 | 32 | true | 829,116 | 0.502348 | 0.00245 | 9,595 | 0.147304 | false | 0.256266 | 0.580396 | 0.000023 | null | 9 |
8 | 4,000,000 | 0 | 32 | true | 829,116 | 0.502348 | 0.00245 | 9,595 | 0.147304 | false | 0.256266 | 0.580396 | 0.000023 | null | 9 |
8 | 5,000,000 | 0 | 32 | true | 829,116 | 0.502348 | 0.00245 | 9,595 | 0.147304 | false | 0.256266 | 0.580396 | 0.000023 | null | 9 |
8 | 6,000,000 | 1,812.5 | 32 | true | 829,116 | 0.502348 | 0.00245 | 9,595 | 0.147304 | false | 0.256266 | 0.580396 | 0.000023 | null | 9 |
8 | 7,000,000 | 0 | 32 | true | 829,116 | 0.502348 | 0.00245 | 9,595 | 0.147304 | false | 0.256266 | 0.580396 | 0.000023 | null | 9 |
8 | 8,000,000 | 0 | 32 | true | 829,116 | 0.502348 | 0.00245 | 9,595 | 0.147304 | false | 0.256266 | 0.580396 | 0.000023 | null | 9 |
8 | 9,000,000 | 0 | 32 | true | 829,116 | 0.502348 | 0.00245 | 9,595 | 0.147304 | false | 0.256266 | 0.580396 | 0.000023 | null | 9 |
8 | 10,000,000 | 0 | 32 | true | 829,116 | 0.502348 | 0.00245 | 9,595 | 0.147304 | false | 0.256266 | 0.580396 | 0.000023 | null | 9 |
9 | 1,000,000 | 890.625 | 16 | false | 447,691 | 0.923204 | 0.003143 | 10,466 | 0.162946 | true | null | null | null | 1,386 | 9 |
9 | 2,000,000 | 4,000 | 16 | false | 447,691 | 0.923204 | 0.003143 | 10,466 | 0.162946 | true | null | null | null | 1,386 | 9 |
9 | 3,000,000 | 3,000 | 16 | false | 447,691 | 0.923204 | 0.003143 | 10,466 | 0.162946 | true | null | null | null | 1,386 | 9 |
9 | 4,000,000 | 0 | 16 | false | 447,691 | 0.923204 | 0.003143 | 10,466 | 0.162946 | true | null | null | null | 1,386 | 9 |
9 | 5,000,000 | 1,460.9375 | 16 | false | 447,691 | 0.923204 | 0.003143 | 10,466 | 0.162946 | true | null | null | null | 1,386 | 9 |
9 | 6,000,000 | 0 | 16 | false | 447,691 | 0.923204 | 0.003143 | 10,466 | 0.162946 | true | null | null | null | 1,386 | 9 |
9 | 7,000,000 | 0 | 16 | false | 447,691 | 0.923204 | 0.003143 | 10,466 | 0.162946 | true | null | null | null | 1,386 | 9 |
9 | 8,000,000 | 546.875 | 16 | false | 447,691 | 0.923204 | 0.003143 | 10,466 | 0.162946 | true | null | null | null | 1,386 | 9 |
9 | 9,000,000 | 1,429.6875 | 16 | false | 447,691 | 0.923204 | 0.003143 | 10,466 | 0.162946 | true | null | null | null | 1,386 | 9 |
9 | 10,000,000 | 1,398.4375 | 16 | false | 447,691 | 0.923204 | 0.003143 | 10,466 | 0.162946 | true | null | null | null | 1,386 | 9 |
End of preview. Expand
in Dataset Viewer.
The ARLBench Performance Dataset
ARLBench is a benchmark designed for hyperparameter optimization (HPO) in Reinforcement Learning (RL). Given that we conducted several thousand runs to identify meaningful HPO test settings for RL, we have compiled these results into a dataset for future research and applications.
This dataset can be leveraged to:
- Meta-learn insights about the hyperparameter landscape in RL.
- Warm-start HPO tools by utilizing previously explored configurations.
Dataset Details
The dataset includes:
- Landscape data: 10 runs each for PPO, DQN, and SAC across:
- Atari-5 environments
- Four XLand gridworlds
- Four Brax walkers
- Five classic control environments
- Two Box2D environments
- Optimization data: 3 runs per optimization algorithm for each algorithm-environment combination, covering:
- Population-Based Training (PBT)
- SMAC
- SMAC with Multi-Fidelity
- Random Search
Dataset Mapping
The dataset follows this mapping:
For optimization runs, it additionally includes:
- Optimization seed: Differentiates between the five optimization runs per algorithm-environment pair.
- Optimization step: Tracks configurations evaluated at different steps.
Example Usage
You can find example notebooks demonstrating how to use:
For more details, refer to the ARLBench paper.
- Downloads last month
- 620