repo_id
stringlengths
21
96
file_path
stringlengths
31
155
content
stringlengths
1
92.9M
__index_level_0__
int64
0
0
rapidsai_public_repos/deeplearning/champs-scalar-coupling/mpnn_model
rapidsai_public_repos/deeplearning/champs-scalar-coupling/mpnn_model/lib/include.py
import os from datetime import datetime PROJECT_PATH = os.path.dirname(os.path.realpath(__file__).replace('/lib','')) IDENTIFIER = datetime.now().strftime('%Y-%m-%d_%H-%M-%S') #numerical libs import math import numpy as np import random import PIL #import cv2 import matplotlib print('matplotlib.get_backend : ', matplotlib.get_backend()) # torch libs import torch from torch.utils.data.dataset import Dataset from torch.utils.data import DataLoader from torch.utils.data.sampler import * import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.nn.parallel.data_parallel import data_parallel from torch.nn.utils.rnn import * # std libs import collections import copy import numbers import inspect import shutil from timeit import default_timer as timer import itertools from collections import OrderedDict from multiprocessing import Pool import multiprocessing as mp #from pprintpp import pprint, pformat import json import zipfile import csv import pandas as pd import pickle import glob import sys from distutils.dir_util import copy_tree import time import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D # constant # PI = np.pi INF = np.inf EPS = 1e-12
0
rapidsai_public_repos/deeplearning/champs-scalar-coupling/mpnn_model/lib
rapidsai_public_repos/deeplearning/champs-scalar-coupling/mpnn_model/lib/net/rate.py
# learning rate schduler from mpnn_model.lib.include import * # http://elgoacademy.org/anatomy-matplotlib-part-1/ def plot_rates(fig, lrs, title=''): N = len(lrs) epoches = np.arange(0,N) #get limits max_lr = np.max(lrs) xmin=0 xmax=N dx=2 ymin=0 ymax=max_lr*1.2 dy=(ymax-ymin)/10 dy=10**math.ceil(math.log10(dy)) ax = fig.add_subplot(111) #ax = fig.gca() ax.set_axisbelow(True) ax.minorticks_on() ax.set_xticks(np.arange(xmin,xmax+0.0001, dx)) ax.set_yticks(np.arange(ymin,ymax+0.0001, dy)) ax.set_xlim(xmin,xmax+0.0001) ax.set_ylim(ymin,ymax+0.0001) ax.grid(b=True, which='minor', color='black', alpha=0.1, linestyle='dashed') ax.grid(b=True, which='major', color='black', alpha=0.4, linestyle='dashed') ax.set_xlabel('iter') ax.set_ylabel('learning rate') ax.set_title(title) ax.plot(epoches, lrs) ## simple stepping rates class StepScheduler(): def __init__(self, pairs): super(StepScheduler, self).__init__() N=len(pairs) rates=[] steps=[] for n in range(N): steps.append(pairs[n][0]) rates.append(pairs[n][1]) self.rates = rates self.steps = steps def __call__(self, epoch): N = len(self.steps) lr = -1 for n in range(N): if epoch >= self.steps[n]: lr = self.rates[n] return lr def __str__(self): string = 'Step Learning Rates\n' \ + 'rates=' + str(['%7.4f' % i for i in self.rates]) + '\n' \ + 'steps=' + str(['%7.0f' % i for i in self.steps]) + '' return string ## https://github.com/pytorch/tutorials/blob/master/beginner_source/transfer_learning_tutorial.py class DecayScheduler(): def __init__(self, base_lr, decay, step): super(DecayScheduler, self).__init__() self.step = step self.decay = decay self.base_lr = base_lr def get_rate(self, epoch): lr = self.base_lr * (self.decay**(epoch // self.step)) return lr def __str__(self): string = '(Exp) Decay Learning Rates\n' \ + 'base_lr=%0.3f, decay=%0.3f, step=%0.3f'%(self.base_lr, self.decay, self.step) return string # 'Cyclical Learning Rates for Training Neural Networks'- Leslie N. Smith, arxiv 2017 # https://arxiv.org/abs/1506.01186 # https://github.com/bckenstler/CLR class CyclicScheduler1(): def __init__(self, min_lr=0.001, max_lr=0.01, period=10 ): super(CyclicScheduler, self).__init__() self.min_lr = min_lr self.max_lr = max_lr self.period = period def __call__(self, time): #sawtooth #r = (1-(time%self.period)/self.period) #cosine time= time%self.period r = (np.cos(time/self.period *PI)+1)/2 lr = self.min_lr + r*(self.max_lr-self.min_lr) return lr def __str__(self): string = 'CyclicScheduler\n' \ + 'min_lr=%0.3f, max_lr=%0.3f, period=%8.1f'%(self.min_lr, self.max_lr, self.period) return string class CyclicScheduler2(): def __init__(self, min_lr=0.001, max_lr=0.01, period=10, max_decay=0.99, warm_start=0 ): super(CyclicScheduler, self).__init__() self.min_lr = min_lr self.max_lr = max_lr self.period = period self.max_decay = max_decay self.warm_start = warm_start self.cycle = -1 def __call__(self, time): if time<self.warm_start: return self.max_lr #cosine self.cycle = (time-self.warm_start)//self.period time = (time-self.warm_start)%self.period period = self.period min_lr = self.min_lr max_lr = self.max_lr *(self.max_decay**self.cycle) r = (np.cos(time/period *PI)+1)/2 lr = min_lr + r*(max_lr-min_lr) return lr def __str__(self): string = 'CyclicScheduler\n' \ + 'min_lr=%0.4f, max_lr=%0.4f, period=%8.1f'%(self.min_lr, self.max_lr, self.period) return string #tanh curve class CyclicScheduler3(): def __init__(self, min_lr=0.001, max_lr=0.01, period=10, max_decay=0.99, warm_start=0 ): super(CyclicScheduler, self).__init__() self.min_lr = min_lr self.max_lr = max_lr self.period = period self.max_decay = max_decay self.warm_start = warm_start self.cycle = -1 def __call__(self, time): if time<self.warm_start: return self.max_lr #cosine self.cycle = (time-self.warm_start)//self.period time = (time-self.warm_start)%self.period period = self.period min_lr = self.min_lr max_lr = self.max_lr *(self.max_decay**self.cycle) r = (np.tanh(-time/period *16 +8)+1)*0.5 lr = min_lr + r*(max_lr-min_lr) return lr def __str__(self): string = 'CyclicScheduler\n' \ + 'min_lr=%0.3f, max_lr=%0.3f, period=%8.1f'%(self.min_lr, self.max_lr, self.period) return string # # class CyclicScheduler(): # # def __init__(self, pairs, period=10, max_decay=1, warm_start=0 ): # super(CyclicScheduler, self).__init__() # # self.lrs=[] # self.steps=[] # for p in pairs: # self.steps.append(p[0]) # self.lrs.append(p[1]) # # # self.period = period # self.warm_start = warm_start # self.max_decay = max_decay # self.cycle = -1 # # def __call__(self, time): # if time<self.warm_start: return self.lrs[0] # # self.cycle = (time-self.warm_start)//self.period # time = (time-self.warm_start)%self.period # # rates = self.lrs.copy() # steps = self.steps # rates[0] = rates[0] *(self.max_decay**self.cycle) # lr = -1 # for rate,step in zip(rates,steps): # if time >= step: # lr = rate # # return lr # # # # def __str__(self): # string = 'CyclicScheduler\n' \ # + 'lrs =' + str(['%7.4f' % i for i in self.lrs]) + '\n' \ # + 'steps=' + str(['%7.0f' % i for i in self.steps]) + '\n' \ # + 'period=%8.1f'%(self.period) # return string class NullScheduler(): def __init__(self, lr=0.01 ): super(NullScheduler, self).__init__() self.lr = lr self.cycle = 0 def __call__(self, time): return self.lr def __str__(self): string = 'NullScheduler\n' \ + 'lr=%0.5f '%(self.lr) return string # net ------------------------------------ # https://github.com/pytorch/examples/blob/master/imagenet/main.py ############### def adjust_learning_rate(optimizer, lr): for param_group in optimizer.param_groups: param_group['lr'] = lr def get_learning_rate(optimizer): lr=[] for param_group in optimizer.param_groups: lr +=[ param_group['lr'] ] assert(len(lr)==1) #we support only one param_group lr = lr[0] return lr # main ################################################################# if __name__ == '__main__': print( '%s: calling main function ... ' % os.path.basename(__file__)) num_iters=125 scheduler = StepScheduler([ (0,0.1), (10,0.01), (25,0.005), (35,0.001), (40,0.0001), (43,-1)]) #scheduler = DecayScheduler(base_lr=0.1, decay=0.32, step=10) #scheduler = CyclicScheduler(min_lr=0.0001, max_lr=0.01, period=30., warm_start=5) ##exp_range ##triangular2 #scheduler = CyclicScheduler([ (0,0.1), (25,0.01), (45,0.005)], period=50., warm_start=5) ##exp_range ##triangular2 lrs = np.zeros((num_iters),np.float32) for iter in range(num_iters): lr = scheduler(iter) lrs[iter] = lr if lr<0: num_iters = iter break #print ('iter=%02d, lr=%f %d'%(iter,lr, scheduler.cycle)) #plot fig = plt.figure() plot_rates(fig, lrs, title=str(scheduler)) plt.show() # https://github.com/Jiaming-Liu/pytorch-lr-scheduler/blob/master/lr_scheduler.py # PVANET plateau lr policy
0
rapidsai_public_repos/deeplearning/champs-scalar-coupling/mpnn_model/lib
rapidsai_public_repos/deeplearning/champs-scalar-coupling/mpnn_model/lib/utility/draw.py
import os #qt bug ??? os.environ['QT_XKB_CONFIG_ROOT']='/usr/share/X11/xkb/' from mpnn_model.lib.include import * import matplotlib.cm # draw ----------------------------------- def image_show(name, image, resize=1): H,W = image.shape[0:2] cv2.namedWindow(name, cv2.WINDOW_GUI_NORMAL) #WINDOW_NORMAL #cv2.namedWindow(name, cv2.WINDOW_GUI_EXPANDED) #WINDOW_GUI_EXPANDED cv2.imshow(name, image.astype(np.uint8)) cv2.resizeWindow(name, round(resize*W), round(resize*H)) def image_show_norm(name, image, max=None, min=None, resize=1): if max is None: max=image.max() if min is None: min=image.min() H,W = image.shape[0:2] cv2.namedWindow(name, cv2.WINDOW_GUI_NORMAL) #WINDOW_NORMAL cv2.imshow(name, ((image-min)/(max-min)*255).astype(np.uint8)) cv2.resizeWindow(name, round(resize*W), round(resize*H)) def draw_shadow_text(img, text, pt, fontScale, color, thickness, color1=None, thickness1=None): if color1 is None: color1=(0,0,0) if thickness1 is None: thickness1 = thickness+2 font = cv2.FONT_HERSHEY_SIMPLEX cv2.putText(img, text, pt, font, fontScale, color1, thickness1, cv2.LINE_AA) cv2.putText(img, text, pt, font, fontScale, color, thickness, cv2.LINE_AA) def to_color_image(image, max=None): if max is None: max=image.max() image = (image/max*255).astype(np.uint8) image = cv2.cvtColor(image,cv2.COLOR_GRAY2BGR) return image ##http://stackoverflow.com/questions/26690932/opencv-rectangle-with-dotted-or-dashed-lines def draw_dotted_line(image, pt1, pt2, color, thickness=1, gap=20): dist =((pt1[0]-pt2[0])**2+(pt1[1]-pt2[1])**2)**.5 pts= [] for i in np.arange(0,dist,gap): r=i/dist x=int((pt1[0]*(1-r)+pt2[0]*r)+.5) y=int((pt1[1]*(1-r)+pt2[1]*r)+.5) p = (x,y) pts.append(p) if gap==1: for p in pts: cv2.circle(image,p,thickness,color,-1,cv2.LINE_AA) else: def pairwise(iterable): "s -> (s0, s1), (s2, s3), (s4, s5), ..." a = iter(iterable) return zip(a, a) for p, q in pairwise(pts): cv2.line(image,p, q, color,thickness,cv2.LINE_AA) def draw_dotted_poly(image, pts, color, thickness=1, gap=20): s=pts[0] e=pts[0] pts.append(pts.pop(0)) for p in pts: s=e e=p draw_dotted_line(image,s,e,color,thickness,gap) def draw_dotted_rect(image, pt1, pt2, color, thickness=1, gap=3): pts = [pt1,(pt2[0],pt1[1]),pt2,(pt1[0],pt2[1])] draw_dotted_poly(image, pts, color, thickness, gap) def draw_screen_rect(image, pt1, pt2, color, alpha=0.5): x1, y1 = pt1 x2, y2 = pt2 image[y1:y2,x1:x2,:] = (1-alpha)*image[y1:y2,x1:x2,:] + (alpha)*np.array(color, np.uint8) # def draw_mask(image, mask, color=(255,255,255), α=1, β=0.25, λ=0., threshold=32 ): # # image * α + mask * β + λ # # if threshold is None: # mask = mask/255 # else: # mask = clean_mask(mask,threshold,1) # # mask = np.dstack((color[0]*mask,color[1]*mask,color[2]*mask)).astype(np.uint8) # image[...] = cv2.addWeighted(image, α, mask, β, λ) # # def draw_contour(image, mask, color=(0,255,0), thickness=1, threshold=127): # ret, thresh = cv2.threshold(mask,threshold,255,0) # ret = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) # hierarchy = ret[0] # contours = ret[1] # #image[...]=image # cv2.drawContours(image, contours, -1, color, thickness, cv2.LINE_AA) # ## drawContours(image, contours, contourIdx, color, thickness=None, lineType=None, hierarchy=None, maxLevel=None, offset=None): # real signature unknown; restored from __doc__ # # def to_color(s, color=None): if type(color) in [str] or color is None: #https://matplotlib.org/xkcd/examples/color/colormaps_reference.html if color is None: color='cool' color = matplotlib.get_cmap(color)(s) b = int(255*color[2]) g = int(255*color[1]) r = int(255*color[0]) elif type(color) in [list,tuple]: b = int(s*color[0]) g = int(s*color[1]) r = int(s*color[2]) return b,g,r # main ################################################################# if __name__ == '__main__': print( '%s: calling main function ... ' % os.path.basename(__file__)) image = np.zeros((50,50,3), np.uint8) cv2.rectangle(image, (0,0),(49,49), (0,0,255),1) #inclusive image[8,8]=[255,255,255] image_show('image',image,10) cv2.waitKey(0) print('\nsucess!')
0
rapidsai_public_repos/deeplearning/champs-scalar-coupling/mpnn_model/lib
rapidsai_public_repos/deeplearning/champs-scalar-coupling/mpnn_model/lib/utility/file.py
from mpnn_model.lib.include import * import builtins import re class Struct(object): def __init__(self, is_copy=False, **kwargs): self.add(is_copy, **kwargs) def add(self, is_copy=False, **kwargs): #self.__dict__.update(kwargs) if is_copy == False: for key, value in kwargs.items(): setattr(self, key, value) else: for key, value in kwargs.items(): try: setattr(self, key, copy.deepcopy(value)) #setattr(self, key, value.copy()) except Exception: setattr(self, key, value) def __str__(self): return str(self.__dict__.keys()) # log ------------------------------------ def remove_comments(lines, token='#'): """ Generator. Strips comments and whitespace from input lines. """ l = [] for line in lines: s = line.split(token, 1)[0].strip() if s != '': l.append(s) return l def open(file, mode=None, encoding=None): if mode == None: mode = 'r' if '/' in file: if 'w' or 'a' in mode: dir = os.path.dirname(file) if not os.path.isdir(dir): os.makedirs(dir) f = builtins.open(file, mode=mode, encoding=encoding) return f def remove(file): if os.path.exists(file): os.remove(file) def empty(dir): if os.path.isdir(dir): shutil.rmtree(dir, ignore_errors=True) else: os.makedirs(dir) # http://stackoverflow.com/questions/34950201/pycharm-print-end-r-statement-not-working class Logger(object): def __init__(self): self.terminal = sys.stdout #stdout self.file = None def open(self, file, mode=None): if mode is None: mode ='w' self.file = open(file, mode) def write(self, message, is_terminal=1, is_file=1 ): if '\r' in message: is_file=0 if is_terminal == 1: self.terminal.write(message) self.terminal.flush() #time.sleep(1) if is_file == 1: self.file.write(message) self.file.flush() def flush(self): # this flush method is needed for python 3 compatibility. # this handles the flush command by doing nothing. # you might want to specify some extra behavior here. pass # io ------------------------------------ def write_list_to_file(list_file, strings): with open(list_file, 'w') as f: for s in strings: f.write('%s\n'%str(s)) pass def read_list_from_file(list_file, comment='#'): with open(list_file) as f: lines = f.readlines() strings=[] for line in lines: if comment is not None: s = line.split(comment, 1)[0].strip() else: s = line.strip() if s != '': strings.append(s) return strings def read_pickle_from_file(pickle_file): with open(pickle_file,'rb') as f: x = pickle.load(f) return x def write_pickle_to_file(pickle_file, x): with open(pickle_file, 'wb') as f: pickle.dump(x, f, pickle.HIGHEST_PROTOCOL) # backup ------------------------------------ #https://stackoverflow.com/questions/1855095/how-to-create-a-zip-archive-of-a-directory def backup_project_as_zip(project_dir, zip_file): assert(os.path.isdir(project_dir)) assert(os.path.isdir(os.path.dirname(zip_file))) shutil.make_archive(zip_file.replace('.zip',''), 'zip', project_dir) pass # etc ------------------------------------ def time_to_str(t, mode='min'): if mode=='min': t = int(t)/60 hr = t//60 min = t%60 return '%2d hr %02d min'%(hr,min) elif mode=='sec': t = int(t) min = t//60 sec = t%60 return '%2d min %02d sec'%(min,sec) else: raise NotImplementedError def np_float32_to_uint8(x, scale=255): return (x*scale).astype(np.uint8) def np_uint8_to_float32(x, scale=255): return (x/scale).astype(np.float32) def int_tuple(x): return tuple( [int(round(xx)) for xx in x] )
0
rapidsai_public_repos/deeplearning/champs-scalar-coupling
rapidsai_public_repos/deeplearning/champs-scalar-coupling/experiments/MPNN_RNN_PREDICT_TYPE_LMAE_WO_GAUSSRANK.yaml
dataset: input_path: /rapids/notebooks/srabhi/champs-2019/input output_path: /rapids/notebooks/srabhi/champs-2019/output/ script_path: /rapids/notebooks/srabhi/champs-2019/final_solution/mpnn_model/dataset.py normalize: False gaussrank: False model: script_path: /rapids/notebooks/srabhi/champs-2019/final_solution/mpnn_model/model.py num_type: 8 RNN: True y_range: [-36.2186, 204.8800] mpnn: T_steps: 4 node_encoder: encoding: label emb_sz: [[6,3], [3,3], [3, 3], [3,3], [5,3], [8, 4]] n_cont: 1 node_dim: 7 layers: [128, 128] activation: relu dropout: 0. edge_encoder: encoding: label emb_sz: [[5,3]] n_cont: 2 node_dim: 128 edge_dim: 3 layers: [256, 128] activation: relu dropout: 0. Set2Set: processing_step: 4 num_layer: 1 in_channel: 128 batch_size: 64 regression: num_output: 1 input_dim: 768 shared_layers: [1024, 512, 128] activation: relu dropout: 0. branch_layers: [512, 128] num_target: 8 predict_type: True node_seq: node_dim: 128 hidden_size: 256 num_layers: 1 dropout: 0.05 batch_first: True bidirectional: True rnn_model: 'LSTM' attention: True train: train_shape: 4658147 test_shape: 2505542 batch_size: 64 epochs: 1 max_lr: 0.005 loss_name: lmaeo2ceha callback_metric: LMAE pretrain: False predict_type: True model_name: mpnn_gauss_rank_MLMAE_2CE_RNN_V3_type_seq_v3_ device: cuda
0
rapidsai_public_repos/deeplearning/champs-scalar-coupling
rapidsai_public_repos/deeplearning/champs-scalar-coupling/experiments/MPNN_RNN_EMBED_TYPE_LMAE_GAUSSRANK.yaml
dataset: input_path: /rapids/notebooks/srabhi/champs-2019/input output_path: /rapids/notebooks/srabhi/champs-2019/output/ script_path: /rapids/notebooks/srabhi/champs-2019/final_solution/mpnn_model/dataset.py normalize: False gaussrank: True model: script_path: /rapids/notebooks/srabhi/champs-2019/final_solution/mpnn_model/model.py num_type: 8 RNN: True y_range: [-2.326753765513524, 2.3267537655135464] mpnn: T_steps: 4 node_encoder: encoding: label emb_sz: [[6,3], [3,3], [3, 3], [3,3], [5,3], [8, 4]] n_cont: 1 node_dim: 7 layers: [128, 128] activation: relu dropout: 0. edge_encoder: encoding: label emb_sz: [[5,3]] n_cont: 2 node_dim: 128 edge_dim: 3 layers: [256, 128] activation: relu dropout: 0. Set2Set: processing_step: 4 num_layer: 1 in_channel: 128 batch_size: 64 regression: num_output: 1 input_dim: 800 shared_layers: [1024, 512, 128] activation: relu dropout: 0. branch_layers: [512, 128] num_target: 1 predict_type: False node_seq: node_dim: 128 hidden_size: 256 num_layers: 1 dropout: 0.05 batch_first: True bidirectional: True rnn_model: 'LSTM' attention: True train: train_shape: 4658147 test_shape: 2505542 batch_size: 64 epochs: 90 max_lr: 0.005 loss_name: lmae_embed_type callback_metric: LMAE pretrain: False predict_type: False model_name: MPNN_RNN_EMBED_TYPE_GAUSSRANK_LMAE device: cuda
0
rapidsai_public_repos/deeplearning/champs-scalar-coupling
rapidsai_public_repos/deeplearning/champs-scalar-coupling/experiments/MPNN_PREDICT_TYPE_MLMAE_GAUSSRANK.yaml
dataset: input_path: /rapids/notebooks/srabhi/champs-2019/input output_path: /rapids/notebooks/srabhi/champs-2019/output/ script_path: /rapids/notebooks/srabhi/champs-2019/final_solution/mpnn_model/dataset.py normalize: False gaussrank: True model: script_path: /rapids/notebooks/srabhi/champs-2019/final_solution/mpnn_model/model.py num_type: 8 RNN: False y_range: [-2.326753765513524, 2.3267537655135464] mpnn: T_steps: 4 node_encoder: encoding: label emb_sz: [[6,3], [3,3], [3, 3], [3,3], [5,3], [8, 4]] n_cont: 1 node_dim: 7 layers: [128, 128] activation: relu dropout: 0. edge_encoder: encoding: label emb_sz: [[5,3]] n_cont: 2 node_dim: 128 edge_dim: 3 layers: [256, 128] activation: relu dropout: 0. Set2Set: processing_step: 4 num_layer: 1 in_channel: 128 batch_size: 64 regression: num_output: 1 input_dim: 768 shared_layers: [1024, 512, 128] activation: relu dropout: 0. branch_layers: [512, 128] num_target: 8 predict_type: True node_seq: node_dim: 128 hidden_size: 256 num_layers: 1 dropout: 0.05 batch_first: True bidirectional: True rnn_model: 'LSTM' attention: True train: train_shape: 4658147 test_shape: 2505542 batch_size: 64 epochs: 1 max_lr: 0.005 loss_name: mlmaeo2ceha callback_metric: LMAE pretrain: False predict_type: True model_name: MPNN_GAUSSRANK_PREDICT_TYPE_MLMAE_ device: cuda
0
rapidsai_public_repos/deeplearning/champs-scalar-coupling
rapidsai_public_repos/deeplearning/champs-scalar-coupling/experiments/MPNN_PREDICT_TYPE_LMAE_WO_GAUSSRANK.yaml
dataset: input_path: /rapids/notebooks/srabhi/champs-2019/input output_path: /rapids/notebooks/srabhi/champs-2019/output/ script_path: /rapids/notebooks/srabhi/champs-2019/final_solution/mpnn_model/dataset.py normalize: False gaussrank: False model: script_path: /rapids/notebooks/srabhi/champs-2019/final_solution/mpnn_model/model.py num_type: 8 RNN: False y_range: [-2.326753765513524, 2.3267537655135464] mpnn: T_steps: 4 node_encoder: encoding: label emb_sz: [[6,3], [3,3], [3, 3], [3,3], [5,3], [8, 4]] n_cont: 1 node_dim: 7 layers: [128, 128] activation: relu dropout: 0. edge_encoder: encoding: label emb_sz: [[5,3]] n_cont: 2 node_dim: 128 edge_dim: 3 layers: [256, 128] activation: relu dropout: 0. Set2Set: processing_step: 4 num_layer: 1 in_channel: 128 batch_size: 64 regression: num_output: 1 input_dim: 768 shared_layers: [1024, 512, 128] activation: relu dropout: 0. branch_layers: [512, 128] num_target: 8 predict_type: True node_seq: node_dim: 128 hidden_size: 256 num_layers: 1 dropout: 0.05 batch_first: True bidirectional: True rnn_model: 'LSTM' attention: True train: train_shape: 4658147 test_shape: 2505542 batch_size: 64 epochs: 1 max_lr: 0.005 loss_name: lmaeo2ceha callback_metric: LMAE pretrain: False predict_type: True model_name: MPNN_WO_GAUSSRANK_PREDICT_TYPE_LMAE_ device: cuda
0
rapidsai_public_repos/deeplearning/champs-scalar-coupling
rapidsai_public_repos/deeplearning/champs-scalar-coupling/experiments/MPNN_EMBED_TYPE_LMAE_GAUSSRANK.yaml
dataset: input_path: /rapids/notebooks/srabhi/champs-2019/input output_path: /rapids/notebooks/srabhi/champs-2019/output/ script_path: /rapids/notebooks/srabhi/champs-2019/final_solution/mpnn_model/dataset.py normalize: False gaussrank: True model: script_path: /rapids/notebooks/srabhi/champs-2019/final_solution/mpnn_model/model.py num_type: 8 RNN: False y_range: [-2.326753765513524, 2.3267537655135464] mpnn: T_steps: 4 node_encoder: encoding: label emb_sz: [[6,3], [3,3], [3, 3], [3,3], [5,3], [8, 4]] n_cont: 1 node_dim: 7 layers: [128, 128] activation: relu dropout: 0. edge_encoder: encoding: label emb_sz: [[5,3]] n_cont: 2 node_dim: 128 edge_dim: 3 layers: [256, 128] activation: relu dropout: 0. Set2Set: processing_step: 4 num_layer: 1 in_channel: 128 batch_size: 64 regression: num_output: 1 input_dim: 512 shared_layers: [1024, 512, 128] activation: relu dropout: 0. branch_layers: [512, 128] num_target: 1 predict_type: False node_seq: node_dim: 128 hidden_size: 256 num_layers: 1 dropout: 0.05 batch_first: True bidirectional: True rnn_model: 'LSTM' attention: True train: train_shape: 4658147 test_shape: 2505542 batch_size: 64 epochs: 90 max_lr: 0.005 loss_name: lmae_embed_type callback_metric: LMAE pretrain: False predict_type: False model_name: MPNN_EMBED_TYPE_GAUSSRANK_LMAE device: cuda
0
rapidsai_public_repos/deeplearning/champs-scalar-coupling
rapidsai_public_repos/deeplearning/champs-scalar-coupling/experiments/MPNN_PREDICT_TYPE_MLMAE_GAUSSRANK_BOOTSTRAP.yaml
dataset: input_path: /rapids/notebooks/srabhi/champs-2019/input output_path: /rapids/notebooks/srabhi/champs-2019/output/ script_path: /rapids/notebooks/srabhi/champs-2019/final_solution/mpnn_model/dataset.py normalize: False gaussrank: True model: script_path: /rapids/notebooks/srabhi/champs-2019/final_solution/mpnn_model/model.py num_type: 8 RNN: False y_range: [-2.326753765513524, 2.3267537655135464] mpnn: T_steps: 4 node_encoder: encoding: label emb_sz: [[6,3], [3,3], [3, 3], [3,3], [5,3], [8, 4]] n_cont: 1 node_dim: 7 layers: [128, 128] activation: relu dropout: 0. edge_encoder: encoding: label emb_sz: [[5,3]] n_cont: 2 node_dim: 128 edge_dim: 3 layers: [256, 128] activation: relu dropout: 0. Set2Set: processing_step: 4 num_layer: 1 in_channel: 128 batch_size: 64 regression: num_output: 1 input_dim: 768 shared_layers: [1024, 512, 128] activation: relu dropout: 0. branch_layers: [512, 128] num_target: 8 predict_type: True node_seq: node_dim: 128 hidden_size: 256 num_layers: 1 dropout: 0.05 batch_first: True bidirectional: True rnn_model: 'LSTM' attention: True train: train_shape: 4658147 test_shape: 2505542 batch_size: 64 epochs: 1 max_lr: 0.005 loss_name: mlmaeo2ceha callback_metric: LMAE pretrain: False predict_type: True model_name: MPNN_GAUSSRANK_PREDICT_TYPE_MLMAE_BOOTSTRAP_ device: cuda
0
rapidsai_public_repos/deeplearning/champs-scalar-coupling
rapidsai_public_repos/deeplearning/champs-scalar-coupling/experiments/MPNN_RNN_PREDICT_TYPE_MLMAE_GAUSSRANK.yaml
dataset: input_path: /rapids/notebooks/srabhi/champs-2019/input output_path: /rapids/notebooks/srabhi/champs-2019/output/ script_path: /rapids/notebooks/srabhi/champs-2019/final_solution/mpnn_model/dataset.py normalize: False gaussrank: True model: script_path: /rapids/notebooks/srabhi/champs-2019/final_solution/mpnn_model/model.py num_type: 8 RNN: True y_range: [-2.326753765513524, 2.3267537655135464] mpnn: T_steps: 4 node_encoder: encoding: label emb_sz: [[6,3], [3,3], [3, 3], [3,3], [5,3], [8, 4]] n_cont: 1 node_dim: 7 layers: [128, 128] activation: relu dropout: 0. edge_encoder: encoding: label emb_sz: [[5,3]] n_cont: 2 node_dim: 128 edge_dim: 3 layers: [256, 128] activation: relu dropout: 0. Set2Set: processing_step: 4 num_layer: 1 in_channel: 128 batch_size: 64 regression: num_output: 1 input_dim: 768 shared_layers: [1024, 512, 128] activation: relu dropout: 0. branch_layers: [512, 128] num_target: 8 predict_type: True node_seq: node_dim: 128 hidden_size: 256 num_layers: 1 dropout: 0.05 batch_first: True bidirectional: True rnn_model: 'LSTM' attention: True train: train_shape: 4658147 test_shape: 2505542 batch_size: 64 epochs: 1 max_lr: 0.005 loss_name: mlmaeo2ceha callback_metric: LMAE pretrain: False predict_type: True model_name: MPNN_RNN_PREDICT_TYPE_MLMAE_GAUSSRANK device: cuda
0
rapidsai_public_repos/deeplearning/champs-scalar-coupling
rapidsai_public_repos/deeplearning/champs-scalar-coupling/experiments/MPNN_EMBED_TYPE_LMAE_WO_GAUSSRANK.yaml
dataset: input_path: /rapids/notebooks/srabhi/champs-2019/input output_path: /rapids/notebooks/srabhi/champs-2019/output/ script_path: /rapids/notebooks/srabhi/champs-2019/final_solution/mpnn_model/dataset.py normalize: False gaussrank: False model: script_path: /rapids/notebooks/srabhi/champs-2019/final_solution/mpnn_model/model.py num_type: 8 RNN: False y_range: [-36.2186, 204.8800] mpnn: T_steps: 4 node_encoder: encoding: label emb_sz: [[6,3], [3,3], [3, 3], [3,3], [5,3], [8, 4]] n_cont: 1 node_dim: 7 layers: [128, 128] activation: relu dropout: 0. edge_encoder: encoding: label emb_sz: [[5,3]] n_cont: 2 node_dim: 128 edge_dim: 3 layers: [256, 128] activation: relu dropout: 0. Set2Set: processing_step: 4 num_layer: 1 in_channel: 128 batch_size: 64 regression: num_output: 1 input_dim: 512 shared_layers: [1024, 512, 128] activation: relu dropout: 0. branch_layers: [512, 128] num_target: 1 predict_type: False node_seq: node_dim: 128 hidden_size: 256 num_layers: 1 dropout: 0.05 batch_first: True bidirectional: True rnn_model: 'LSTM' attention: True train: train_shape: 4658147 test_shape: 2505542 batch_size: 64 epochs: 90 max_lr: 0.005 loss_name: lmae_embed_type callback_metric: LMAE pretrain: False predict_type: False model_name: MPNN_RNN_EMBED_TYPE_WO_GAUSSRANK_LMAE device: cuda
0
rapidsai_public_repos/deeplearning/champs-scalar-coupling
rapidsai_public_repos/deeplearning/champs-scalar-coupling/experiments/MPNN_RNN_PREDICT_TYPE_LMAE_GAUSSRANK_BOOTSTRAP.yaml
dataset: input_path: /rapids/notebooks/srabhi/champs-2019/input output_path: /rapids/notebooks/srabhi/champs-2019/output/ script_path: /rapids/notebooks/srabhi/champs-2019/final_solution/mpnn_model/dataset.py normalize: False gaussrank: True model: script_path: /rapids/notebooks/srabhi/champs-2019/final_solution/mpnn_model/model.py num_type: 8 RNN: True y_range: [-2.326753765513524, 2.3267537655135464] mpnn: T_steps: 4 node_encoder: encoding: label emb_sz: [[6,3], [3,3], [3, 3], [3,3], [5,3], [8, 4]] n_cont: 1 node_dim: 7 layers: [128, 128] activation: relu dropout: 0. edge_encoder: encoding: label emb_sz: [[5,3]] n_cont: 2 node_dim: 128 edge_dim: 3 layers: [256, 128] activation: relu dropout: 0. Set2Set: processing_step: 4 num_layer: 1 in_channel: 128 batch_size: 64 regression: num_output: 1 input_dim: 768 shared_layers: [1024, 512, 128] activation: relu dropout: 0. branch_layers: [512, 128] num_target: 8 predict_type: True node_seq: node_dim: 128 hidden_size: 256 num_layers: 1 dropout: 0.05 batch_first: True bidirectional: True rnn_model: 'LSTM' attention: True train: train_shape: 4658147 test_shape: 2505542 batch_size: 64 epochs: 1 max_lr: 0.005 loss_name: lmaeo2ceha callback_metric: LMAE pretrain: False predict_type: True model_name: MPNN_RNN_GAUSSRANK_PREDICT_TYPE_LMAE_BOOTSTRAP_ device: cuda
0
rapidsai_public_repos/deeplearning/champs-scalar-coupling
rapidsai_public_repos/deeplearning/champs-scalar-coupling/experiments/.nfs0000000001371b7a000004c5
dataset: input_path: /rapids/notebooks/srabhi/champs-2019/input output_path: /rapids/notebooks/srabhi/champs-2019/output script_path: /rapids/notebooks/srabhi/champs-2019/CherKeng_solution/fastai_code/dataset.py graph_path: /rapids/notebooks/srabhi/champs-2019/input/structure/graph4 normalize: False model: script_path: /rapids/notebooks/srabhi/champs-2019/CherKeng_solution/fastai_code/model.py num_target : 8 mpnn: T_steps: 6 node_encoder: encoding: label emb_sz: [[6,3], [3,3], [3, 3], [3,3], [5,3], [8, 4]] n_cont: 1 node_dim: 7 layers: [128, 128] activation: relu dropout: 0. edge_encoder: encoding: label emb_sz: [[5,3]] n_cont: 2 node_dim: 128 edge_dim: 3 layers: [256, 256, 128] activation: relu dropout: 0. Set2Set: processing_step: 6 num_layer: 1 in_channel: 128 batch_size: 64 y_range: [-2.326753765513524, 2.3267537655135464] regression: num_output: 1 node_dim: 128 shared_layers: [1024, 512] activation: relu dropout: 0. branch_layers: [512, 128] num_target: 8 predict_type: True Classif: y_range: [-2.326753765513524, 2.3267537655135464] train: train_shape: 4658147 test_shape: 2505542 batch_size: 64 epochs: 180 max_lr: 0.005 loss_name: lmae callback_metric: LMAE pretrain: False predict_type: True model_name: mpnn_gauss_rank_predict_type_180epochs_
0
rapidsai_public_repos/deeplearning/champs-scalar-coupling
rapidsai_public_repos/deeplearning/champs-scalar-coupling/experiments/MPNN_RNN_PREDICT_TYPE_MLMAE_GAUSSRANK_BOOTSTRAP.yaml
dataset: input_path: /rapids/notebooks/srabhi/champs-2019/input output_path: /rapids/notebooks/srabhi/champs-2019/output/ script_path: /rapids/notebooks/srabhi/champs-2019/final_solution/mpnn_model/dataset.py normalize: False gaussrank: True model: script_path: /rapids/notebooks/srabhi/champs-2019/final_solution/mpnn_model/model.py num_type: 8 RNN: True y_range: [-2.326753765513524, 2.3267537655135464] mpnn: T_steps: 4 node_encoder: encoding: label emb_sz: [[6,3], [3,3], [3, 3], [3,3], [5,3], [8, 4]] n_cont: 1 node_dim: 7 layers: [128, 128] activation: relu dropout: 0. edge_encoder: encoding: label emb_sz: [[5,3]] n_cont: 2 node_dim: 128 edge_dim: 3 layers: [256, 128] activation: relu dropout: 0. Set2Set: processing_step: 4 num_layer: 1 in_channel: 128 batch_size: 64 regression: num_output: 1 input_dim: 768 shared_layers: [1024, 512, 128] activation: relu dropout: 0. branch_layers: [512, 128] num_target: 8 predict_type: True node_seq: node_dim: 128 hidden_size: 256 num_layers: 1 dropout: 0.05 batch_first: True bidirectional: True rnn_model: 'LSTM' attention: True train: train_shape: 4658147 test_shape: 2505542 batch_size: 64 epochs: 1 max_lr: 0.005 loss_name: mlmaeo2ceha callback_metric: LMAE pretrain: False predict_type: True model_name: MPNN_RNN_GAUSSRANK_PREDICT_TYPE_MLMAE_BOOTSTRAP_ device: cuda
0
rapidsai_public_repos/deeplearning/champs-scalar-coupling
rapidsai_public_repos/deeplearning/champs-scalar-coupling/experiments/MPNN_RNN_MAE_GAUSSRANK_SINGLE_TYPE.yaml
dataset: input_path: /rapids/notebooks/srabhi/champs-2019/input output_path: /rapids/notebooks/srabhi/champs-2019/output/ script_path: /rapids/notebooks/srabhi/champs-2019/final_solution/mpnn_model/dataset.py normalize: False gaussrank: True model: script_path: /rapids/notebooks/srabhi/champs-2019/final_solution/mpnn_model/model.py num_type: 1 RNN : True mpnn: T_steps: 4 node_encoder: encoding: label emb_sz: [[6,3], [3,3], [3, 3], [3,3], [5,3], [8, 4]] n_cont: 1 node_dim: 7 layers: [128, 128] activation: relu dropout: 0. edge_encoder: encoding: label emb_sz: [[5,3]] n_cont: 2 node_dim: 128 edge_dim: 3 layers: [128, 64] activation: relu dropout: 0. Set2Set: processing_step: 4 num_layer: 1 in_channel: 128 batch_size: 64 regression: num_output: 1 input_dim: 768 shared_layers: [1024, 512, 128] activation: relu dropout: 0. num_target: 1 predict_type: False node_seq: node_dim: 128 hidden_size: 256 num_layers: 1 dropout: 0.05 batch_first: True bidirectional: True rnn_model: 'LSTM' attention: True train: train_shape: 4658147 test_shape: 2505542 batch_size: 64 epochs: 1 max_lr: 0.001 loss_name: lmaeo2ceha callback_metric: LMAE pretrain: False predict_type: False model_name: MPNN_RNN_SINGLE_TYPE_GAUSSRANK_ device: cuda
0
rapidsai_public_repos/deeplearning/champs-scalar-coupling
rapidsai_public_repos/deeplearning/champs-scalar-coupling/experiments/MPNN_RNN_MAE_WO_GAUSSRANK_SINGLE_TYPE.yaml
dataset: input_path: /rapids/notebooks/srabhi/champs-2019/input output_path: /rapids/notebooks/srabhi/champs-2019/output/ script_path: /rapids/notebooks/srabhi/champs-2019/final_solution/mpnn_model/dataset.py normalize: False gaussrank: False model: script_path: /rapids/notebooks/srabhi/champs-2019/final_solution/mpnn_model/model.py num_type: 1 RNN : True mpnn: T_steps: 4 node_encoder: encoding: label emb_sz: [[6,3], [3,3], [3, 3], [3,3], [5,3], [8, 4]] n_cont: 1 node_dim: 7 layers: [128, 128] activation: relu dropout: 0. edge_encoder: encoding: label emb_sz: [[5,3]] n_cont: 2 node_dim: 128 edge_dim: 3 layers: [128, 64] activation: relu dropout: 0. Set2Set: processing_step: 4 num_layer: 1 in_channel: 128 batch_size: 64 regression: num_output: 1 input_dim: 768 shared_layers: [1024, 512, 128] activation: relu dropout: 0. num_target: 1 predict_type: False node_seq: node_dim: 128 hidden_size: 256 num_layers: 1 dropout: 0.05 batch_first: True bidirectional: True rnn_model: 'LSTM' attention: True train: train_shape: 4658147 test_shape: 2505542 batch_size: 64 epochs: 1 max_lr: 0.001 loss_name: lmaeo2ceha callback_metric: LMAE pretrain: False predict_type: False model_name: MPNN_RNN_SINGLE_TYPE_WO_GAUSSRANK_ device: cuda
0
rapidsai_public_repos/deeplearning/champs-scalar-coupling
rapidsai_public_repos/deeplearning/champs-scalar-coupling/experiments/MPNN_RNN_EMBED_TYPE_LMAE_WO_GAUSSRANK.yaml
dataset: input_path: /rapids/notebooks/srabhi/champs-2019/input output_path: /rapids/notebooks/srabhi/champs-2019/output/ script_path: /rapids/notebooks/srabhi/champs-2019/final_solution/mpnn_model/dataset.py normalize: False gaussrank: False model: script_path: /rapids/notebooks/srabhi/champs-2019/final_solution/mpnn_model/model.py num_type: 8 RNN: True y_range: [-36.2186, 204.8800] mpnn: T_steps: 4 node_encoder: encoding: label emb_sz: [[6,3], [3,3], [3, 3], [3,3], [5,3], [8, 4]] n_cont: 1 node_dim: 7 layers: [128, 128] activation: relu dropout: 0. edge_encoder: encoding: label emb_sz: [[5,3]] n_cont: 2 node_dim: 128 edge_dim: 3 layers: [256, 128] activation: relu dropout: 0. Set2Set: processing_step: 4 num_layer: 1 in_channel: 128 batch_size: 64 regression: num_output: 1 input_dim: 800 shared_layers: [1024, 512, 128] activation: relu dropout: 0. branch_layers: [512, 128] num_target: 1 predict_type: False node_seq: node_dim: 128 hidden_size: 256 num_layers: 1 dropout: 0.05 batch_first: True bidirectional: True rnn_model: 'LSTM' attention: True train: train_shape: 4658147 test_shape: 2505542 batch_size: 64 epochs: 90 max_lr: 0.005 loss_name: lmae_embed_type callback_metric: LMAE pretrain: False predict_type: False model_name: MPNN_RNN_EMBED_TYPE_WO_GAUSSRANK_LMAE device: cuda
0
rapidsai_public_repos/deeplearning/champs-scalar-coupling
rapidsai_public_repos/deeplearning/champs-scalar-coupling/experiments/MPNN_PREDICT_TYPE_LMAE_GAUSSRANK_BOOTSTRAP.yaml
dataset: input_path: /rapids/notebooks/srabhi/champs-2019/input output_path: /rapids/notebooks/srabhi/champs-2019/output/ script_path: /rapids/notebooks/srabhi/champs-2019/final_solution/mpnn_model/dataset.py normalize: False gaussrank: True model: script_path: /rapids/notebooks/srabhi/champs-2019/final_solution/mpnn_model/model.py num_type: 8 RNN: False y_range: [-2.326753765513524, 2.3267537655135464] mpnn: T_steps: 4 node_encoder: encoding: label emb_sz: [[6,3], [3,3], [3, 3], [3,3], [5,3], [8, 4]] n_cont: 1 node_dim: 7 layers: [128, 128] activation: relu dropout: 0. edge_encoder: encoding: label emb_sz: [[5,3]] n_cont: 2 node_dim: 128 edge_dim: 3 layers: [256, 128] activation: relu dropout: 0. Set2Set: processing_step: 4 num_layer: 1 in_channel: 128 batch_size: 64 regression: num_output: 1 input_dim: 768 shared_layers: [1024, 512, 128] activation: relu dropout: 0. branch_layers: [512, 128] num_target: 8 predict_type: True node_seq: node_dim: 128 hidden_size: 256 num_layers: 1 dropout: 0.05 batch_first: True bidirectional: True rnn_model: 'LSTM' attention: True train: train_shape: 4658147 test_shape: 2505542 batch_size: 64 epochs: 1 max_lr: 0.005 loss_name: lmaeo2ceha callback_metric: LMAE pretrain: False predict_type: True model_name: MPNN_GAUSSRANK_PREDICT_TYPE_LMAE_BOOTSTRAP_ device: cuda
0
rapidsai_public_repos/deeplearning/champs-scalar-coupling
rapidsai_public_repos/deeplearning/champs-scalar-coupling/experiments/MPNN_RNN_PREDICT_TYPE_LMAE_GAUSSRANK.yaml
dataset: input_path: /rapids/notebooks/srabhi/champs-2019/input output_path: /rapids/notebooks/srabhi/champs-2019/output/ script_path: /rapids/notebooks/srabhi/champs-2019/final_solution/mpnn_model/dataset.py normalize: False gaussrank: True model: script_path: /rapids/notebooks/srabhi/champs-2019/final_solution/mpnn_model/model.py num_type: 8 RNN: True y_range: [-2.326753765513524, 2.3267537655135464] mpnn: T_steps: 4 node_encoder: encoding: label emb_sz: [[6,3], [3,3], [3, 3], [3,3], [5,3], [8, 4]] n_cont: 1 node_dim: 7 layers: [128, 128] activation: relu dropout: 0. edge_encoder: encoding: label emb_sz: [[5,3]] n_cont: 2 node_dim: 128 edge_dim: 3 layers: [256, 128] activation: relu dropout: 0. Set2Set: processing_step: 4 num_layer: 1 in_channel: 128 batch_size: 64 regression: num_output: 1 input_dim: 768 shared_layers: [1024, 512, 128] activation: relu dropout: 0. branch_layers: [512, 128] num_target: 8 predict_type: True node_seq: node_dim: 128 hidden_size: 256 num_layers: 1 dropout: 0.05 batch_first: True bidirectional: True rnn_model: 'LSTM' attention: True train: train_shape: 4658147 test_shape: 2505542 batch_size: 64 epochs: 1 max_lr: 0.005 loss_name: lmaeo2ceha callback_metric: LMAE pretrain: False predict_type: True model_name: MPNN_RNN_PREDICT_TYPE_LMAE_GAUSSRANK device: cuda
0
rapidsai_public_repos/deeplearning/champs-scalar-coupling
rapidsai_public_repos/deeplearning/champs-scalar-coupling/experiments/MPNN_PREDICT_TYPE_LMAE_GAUSSRANK.yaml
dataset: input_path: /rapids/notebooks/srabhi/champs-2019/input output_path: /rapids/notebooks/srabhi/champs-2019/output/ script_path: /rapids/notebooks/srabhi/champs-2019/CherKeng_solution/fastai_code/dataset.py normalize: False gaussrank: True model: script_path: /rapids/notebooks/srabhi/champs-2019/CherKeng_solution/fastai_code/model.py num_type: 8 RNN: False y_range: [-2.326753765513524, 2.3267537655135464] mpnn: T_steps: 4 node_encoder: encoding: label emb_sz: [[6,3], [3,3], [3, 3], [3,3], [5,3], [8, 4]] n_cont: 1 node_dim: 7 layers: [128, 128] activation: relu dropout: 0. edge_encoder: encoding: label emb_sz: [[5,3]] n_cont: 2 node_dim: 128 edge_dim: 3 layers: [256, 128] activation: relu dropout: 0. Set2Set: processing_step: 4 num_layer: 1 in_channel: 128 batch_size: 64 regression: num_output: 1 input_dim: 768 shared_layers: [1024, 512, 128] activation: relu dropout: 0. branch_layers: [512, 128] num_target: 8 predict_type: True node_seq: node_dim: 128 hidden_size: 256 num_layers: 1 dropout: 0.05 batch_first: True bidirectional: True rnn_model: 'LSTM' attention: True train: train_shape: 4658147 test_shape: 2505542 batch_size: 64 epochs: 1 max_lr: 0.005 loss_name: lmaeo2ceha callback_metric: LMAE pretrain: False predict_type: True model_name: MPNN_GAUSSRANK_PREDICT_TYPE_LMAE_ device: cuda
0
rapidsai_public_repos/deeplearning
rapidsai_public_repos/deeplearning/RecSys2020/README.md
## GPU Accelerated Feature Engineering and Training for Recommender Systems (source) This content was moved to a new [competition repository](https://github.com/NVIDIA-Merlin/competitions).
0
rapidsai_public_repos/deeplearning
rapidsai_public_repos/deeplearning/pytorch/README.md
[PyTorch](https://pytorch.org/) is an open source machine learning framework designed to accelerate the path from research prototyping to production deployment. RAPIDS is an active contributor to PyTorch, developing preprocessing functionality and dataloading on the GPU, along with improvements to kernels and optimizers critical to deep learning on tabular data.
0
rapidsai_public_repos/deeplearning/pytorch
rapidsai_public_repos/deeplearning/pytorch/optimizers/adamw.py
import math import os from distutils.util import strtobool import torch from torch.optim.optimizer import Optimizer from torch.hub import _check_module_exists NUMBA_CUDA_EXIST = False NUMBA_CUDA_THREAD_PER_BLOCK = 512 if not strtobool(os.environ.get('NO_NUMBA', 'n')) and _check_module_exists("numba.cuda"): import numba.cuda NUMBA_CUDA_EXIST = numba.cuda.is_available() @numba.cuda.jit() def numba_cuda_kernel(param, grad, exp_avg, exp_avg_sq, beta1, beta2, step_size, bias_correction2, eps, weight_decay): i = numba.cuda.grid(1) if i >= param.size: return exp_avg[i] = exp_avg[i] * beta1 + (1 - beta1) * grad[i] exp_avg_sq[i] = exp_avg_sq[i] * beta2 + (1 - beta2) * grad[i] * grad[i] denom = math.sqrt(exp_avg_sq[i]) / bias_correction2 + eps param[i] *= weight_decay param[i] = param[i] + (-step_size) * (exp_avg[i] / denom) class AdamW(Optimizer): r"""Implements AdamW algorithm. The original Adam algorithm was proposed in `Adam: A Method for Stochastic Optimization`_. The AdamW variant was proposed in `Decoupled Weight Decay Regularization`_. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay coefficient (default: 1e-2) amsgrad (boolean, optional): whether to use the AMSGrad variant of this algorithm from the paper `On the Convergence of Adam and Beyond`_ (default: False) .. _Adam\: A Method for Stochastic Optimization: https://arxiv.org/abs/1412.6980 .. _Decoupled Weight Decay Regularization: https://arxiv.org/abs/1711.05101 .. _On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ """ def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, amsgrad=amsgrad) super(AdamW, self).__init__(params, defaults) def __setstate__(self, state): super(AdamW, self).__setstate__(state) for group in self.param_groups: group.setdefault('amsgrad', False) def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ # In order to reduce Numba overhead, we save the device arrays # between calls to `step()` in `_nbstate`. self._nbstate = getattr(self, '_nbstate', {}) loss = None if closure is not None: loss = closure() for group in self.param_groups: for param in group['params']: if param.grad is None: continue # Perform optimization step grad = param.grad.data p = param.data if grad.is_sparse: raise RuntimeError('Adam does not support sparse gradients,' 'please consider SparseAdam instead') amsgrad = group['amsgrad'] state = self.state[param] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p) if amsgrad: # Maintains max of all exp. moving avg. of sq. grad. values state['max_exp_avg_sq'] = torch.zeros_like(p) elif NUMBA_CUDA_EXIST and numba.cuda.is_cuda_array(p.data): self._nbstate[param] = { 'param': numba.cuda.as_cuda_array(p.data.flatten()), 'grad': numba.cuda.as_cuda_array(grad.flatten()), 'exp_avg': numba.cuda.as_cuda_array(state['exp_avg'].data.flatten()), 'exp_avg_sq': numba.cuda.as_cuda_array(state['exp_avg_sq'] .data.flatten()), 'blockspergrid': math.ceil(p.data.numel() / NUMBA_CUDA_THREAD_PER_BLOCK) } weight_decay = 1 - group['lr'] * group['weight_decay'] eps = group['eps'] beta1, beta2 = group['betas'] state['step'] += 1 bias_correction1 = 1 - beta1 ** state['step'] bias_correction2 = math.sqrt(1 - beta2 ** state['step']) step_size = group['lr'] / bias_correction1 if param in self._nbstate: s = self._nbstate[param] numba_cuda_kernel[s['blockspergrid'], NUMBA_CUDA_THREAD_PER_BLOCK](s['param'], s['grad'], s['exp_avg'], s['exp_avg_sq'], beta1, beta2, step_size, bias_correction2, eps, weight_decay) else: exp_avg = state['exp_avg'].data exp_avg_sq = state['exp_avg_sq'].data # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(1 - beta1, grad) exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) if amsgrad: max_exp_avg_sq = state['max_exp_avg_sq'] # Maintains the maximum of all 2nd moment running avg. till now torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) # Use the max. for normalizing running avg. of gradient denom = (max_exp_avg_sq.sqrt() / bias_correction2).add_(eps) else: denom = (exp_avg_sq.sqrt() / bias_correction2).add_(eps) # Perform stepweight decay p.data.mul_(weight_decay) p.data.addcdiv_(-step_size, exp_avg, denom) return loss
0
rapidsai_public_repos/deeplearning/pytorch
rapidsai_public_repos/deeplearning/pytorch/optimizers/README.md
# pytorch-optimizers Numba accelerated PyTorch Optimizers
0
rapidsai_public_repos/deeplearning/pytorch
rapidsai_public_repos/deeplearning/pytorch/optimizers/adam.py
import math import os from distutils.util import strtobool import torch from torch.optim.optimizer import Optimizer from torch.hub import _check_module_exists NUMBA_CUDA_EXIST = False NUMBA_CUDA_THREAD_PER_BLOCK = 512 if not strtobool(os.environ.get('NO_NUMBA', 'n')) and _check_module_exists("numba.cuda"): import numba.cuda NUMBA_CUDA_EXIST = numba.cuda.is_available() @numba.cuda.jit() def numba_cuda_kernel(param, grad, exp_avg, exp_avg_sq, beta1, beta2, step_size, bias_correction2, eps, weight_decay): i = numba.cuda.grid(1) if i >= param.size: return if weight_decay != 0: grad[i] += weight_decay * param[i] exp_avg[i] = exp_avg[i] * beta1 + (1 - beta1) * grad[i] exp_avg_sq[i] = exp_avg_sq[i] * beta2 + (1 - beta2) * grad[i] * grad[i] denom = math.sqrt(exp_avg_sq[i]) / bias_correction2 + eps param[i] = param[i] + (-step_size) * (exp_avg[i] / denom) class Adam(Optimizer): r"""Implements Adam algorithm. It has been proposed in `Adam: A Method for Stochastic Optimization`_. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) amsgrad (boolean, optional): whether to use the AMSGrad variant of this algorithm from the paper `On the Convergence of Adam and Beyond`_ (default: False) .. _Adam\: A Method for Stochastic Optimization: https://arxiv.org/abs/1412.6980 .. _On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ """ def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, amsgrad=amsgrad) super(Adam, self).__init__(params, defaults) def __setstate__(self, state): super(Adam, self).__setstate__(state) for group in self.param_groups: group.setdefault('amsgrad', False) def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ # In order to reduce Numba overhead, we save the device arrays # between calls to `step()` in `_nbstate`. self._nbstate = getattr(self, '_nbstate', {}) loss = None if closure is not None: loss = closure() for group in self.param_groups: for param in group['params']: if param.grad is None: continue # Perform optimization step grad = param.grad.data p = param.data if grad.is_sparse: raise RuntimeError('Adam does not support sparse gradients,' 'please consider SparseAdam instead') amsgrad = group['amsgrad'] state = self.state[param] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p) if amsgrad: # Maintains max of all exp. moving avg. of sq. grad. values state['max_exp_avg_sq'] = torch.zeros_like(p) elif NUMBA_CUDA_EXIST and numba.cuda.is_cuda_array(p.data): self._nbstate[param] = { 'param': numba.cuda.as_cuda_array(p.data.flatten()), 'grad': numba.cuda.as_cuda_array(grad.flatten()), 'exp_avg': numba.cuda.as_cuda_array(state['exp_avg'].data.flatten()), 'exp_avg_sq': numba.cuda.as_cuda_array(state['exp_avg_sq']. data.flatten()), 'blockspergrid': math.ceil(p.data.numel() / NUMBA_CUDA_THREAD_PER_BLOCK) } weight_decay = group['weight_decay'] eps = group['eps'] beta1, beta2 = group['betas'] state['step'] += 1 bias_correction1 = 1 - beta1 ** state['step'] bias_correction2 = math.sqrt(1 - beta2 ** state['step']) step_size = group['lr'] / bias_correction1 if param in self._nbstate: s = self._nbstate[param] numba_cuda_kernel[s['blockspergrid'], NUMBA_CUDA_THREAD_PER_BLOCK](s['param'], s['grad'], s['exp_avg'], s['exp_avg_sq'], beta1, beta2, step_size, bias_correction2, eps, weight_decay) else: if weight_decay != 0: grad.add_(weight_decay, p.data) exp_avg = state['exp_avg'].data exp_avg_sq = state['exp_avg_sq'].data # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(1 - beta1, grad) exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) if amsgrad: max_exp_avg_sq = state['max_exp_avg_sq'] # Maintains the maximum of all 2nd moment running avg. till now torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) # Use the max. for normalizing running avg. of gradient denom = (max_exp_avg_sq.sqrt() / bias_correction2).add_(eps) else: denom = (exp_avg_sq.sqrt() / bias_correction2).add_(eps) p.data.addcdiv_(-step_size, exp_avg, denom) return loss
0
rapidsai_public_repos/deeplearning/pytorch
rapidsai_public_repos/deeplearning/pytorch/optimizers/radam.py
import math import os import torch from torch.optim.optimizer import Optimizer, required from distutils.util import strtobool from torch.hub import _check_module_exists class RAdam(Optimizer): def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0): defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) self.buffer = [[None, None, None] for ind in range(10)] super(RAdam, self).__init__(params, defaults) def __setstate__(self, state): super(RAdam, self).__setstate__(state) def step(self, closure=None): loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data.float() if grad.is_sparse: raise RuntimeError('RAdam does not support sparse gradients') p_data_fp32 = p.data.float() state = self.state[p] if len(state) == 0: state['step'] = 0 state['exp_avg'] = torch.zeros_like(p_data_fp32) state['exp_avg_sq'] = torch.zeros_like(p_data_fp32) else: state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32) state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] beta1, beta2 = group['betas'] exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) exp_avg.mul_(beta1).add_(1 - beta1, grad) state['step'] += 1 buffered = self.buffer[int(state['step'] % 10)] if state['step'] == buffered[0]: N_sma, step_size = buffered[1], buffered[2] else: buffered[0] = state['step'] beta2_t = beta2 ** state['step'] N_sma_max = 2 / (1 - beta2) - 1 N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t) buffered[1] = N_sma # more conservative since it's an approximated value if N_sma >= 5: step_size = math.sqrt((1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / (N_sma_max - 2)) / (1 - beta1 ** state['step']) else: step_size = 1.0 / (1 - beta1 ** state['step']) buffered[2] = step_size if group['weight_decay'] != 0: p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32) # more conservative since it's an approximated value if N_sma >= 5: denom = exp_avg_sq.sqrt().add_(group['eps']) p_data_fp32.addcdiv_(-step_size * group['lr'], exp_avg, denom) else: p_data_fp32.add_(-step_size * group['lr'], exp_avg) p.data.copy_(p_data_fp32) return loss class PlainRAdam(Optimizer): def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0): defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) super(PlainRAdam, self).__init__(params, defaults) def __setstate__(self, state): super(PlainRAdam, self).__setstate__(state) def step(self, closure=None): loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data.float() if grad.is_sparse: raise RuntimeError('RAdam does not support sparse gradients') p_data_fp32 = p.data.float() state = self.state[p] if len(state) == 0: state['step'] = 0 state['exp_avg'] = torch.zeros_like(p_data_fp32) state['exp_avg_sq'] = torch.zeros_like(p_data_fp32) else: state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32) state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] beta1, beta2 = group['betas'] exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) exp_avg.mul_(beta1).add_(1 - beta1, grad) state['step'] += 1 beta2_t = beta2 ** state['step'] N_sma_max = 2 / (1 - beta2) - 1 N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t) if group['weight_decay'] != 0: p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32) # more conservative since it's an approximated value if N_sma >= 5: step_size = group['lr'] * math.sqrt((1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / (N_sma_max - 2)) / (1 - beta1 ** state['step']) denom = exp_avg_sq.sqrt().add_(group['eps']) p_data_fp32.addcdiv_(-step_size, exp_avg, denom) else: step_size = group['lr'] / (1 - beta1 ** state['step']) p_data_fp32.add_(-step_size, exp_avg) p.data.copy_(p_data_fp32) return loss class AdamW(Optimizer): def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, warmup = 0): defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, warmup = warmup) super(AdamW, self).__init__(params, defaults) def __setstate__(self, state): super(AdamW, self).__setstate__(state) def step(self, closure=None): loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data.float() if grad.is_sparse: raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead') p_data_fp32 = p.data.float() state = self.state[p] if len(state) == 0: state['step'] = 0 state['exp_avg'] = torch.zeros_like(p_data_fp32) state['exp_avg_sq'] = torch.zeros_like(p_data_fp32) else: state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32) state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] beta1, beta2 = group['betas'] state['step'] += 1 exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) exp_avg.mul_(beta1).add_(1 - beta1, grad) denom = exp_avg_sq.sqrt().add_(group['eps']) bias_correction1 = 1 - beta1 ** state['step'] bias_correction2 = 1 - beta2 ** state['step'] if group['warmup'] > state['step']: scheduled_lr = 1e-8 + state['step'] * group['lr'] / group['warmup'] else: scheduled_lr = group['lr'] step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1 if group['weight_decay'] != 0: p_data_fp32.add_(-group['weight_decay'] * scheduled_lr, p_data_fp32) p_data_fp32.addcdiv_(-step_size, exp_avg, denom) p.data.copy_(p_data_fp32) return loss NUMBA_CUDA_EXIST = False NUMBA_CUDA_THREAD_PER_BLOCK = 512 if not strtobool(os.environ.get('NO_NUMBA', 'n')) and _check_module_exists("numba.cuda"): import numba.cuda NUMBA_CUDA_EXIST = numba.cuda.is_available() @numba.cuda.jit() def numba_cuda_kernel(param, grad, exp_avg, exp_avg_sq, beta1, beta2, step_size, eps, weight_decay, N_sma): i = numba.cuda.grid(1) if i >= param.size: return exp_avg[i] = exp_avg[i] * beta1 + (1 - beta1) * grad[i] exp_avg_sq[i] = exp_avg_sq[i] * beta2 + (1 - beta2) * grad[i] * grad[i] if weight_decay != 0: grad[i] += weight_decay * param[i] if N_sma >= 5: denom = math.sqrt(exp_avg_sq[i]) + eps param[i] = param[i] + (-step_size) * (exp_avg[i] / denom) else: param[i] = param[i] + (-step_size) * exp_avg[i] class FusedRAdam(Optimizer): r"""Implements RAdam algorithm. It has been proposed in `Adam: A Method for Stochastic Optimization`_. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) amsgrad (boolean, optional): whether to use the AMSGrad variant of this algorithm from the paper `On the Convergence of Adam and Beyond`_ (default: False) .. _Adam\: A Method for Stochastic Optimization: https://arxiv.org/abs/1412.6980 .. _On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ """ def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, amsgrad=amsgrad) super(FusedRAdam, self).__init__(params, defaults) def __setstate__(self, state): super(FusedRAdam, self).__setstate__(state) for group in self.param_groups: group.setdefault('amsgrad', False) def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ # In order to reduce Numba overhead, we save the device arrays # between calls to `step()` in `_nbstate`. self._nbstate = getattr(self, '_nbstate', {}) loss = None if closure is not None: loss = closure() for group in self.param_groups: for param in group['params']: if param.grad is None: continue # Perform optimization step grad = param.grad.data p = param.data if grad.is_sparse: raise RuntimeError('Adam does not support sparse gradients,' 'please consider SparseAdam instead') state = self.state[param] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p) if NUMBA_CUDA_EXIST and numba.cuda.is_cuda_array(p.data): self._nbstate[param] = { 'param': numba.cuda.as_cuda_array(p.data.flatten()), 'grad': numba.cuda.as_cuda_array(grad.flatten()), 'exp_avg': numba.cuda.as_cuda_array(state['exp_avg'].data.flatten()), 'exp_avg_sq': numba.cuda.as_cuda_array(state['exp_avg_sq']. data.flatten()), 'blockspergrid': math.ceil(p.data.numel() / NUMBA_CUDA_THREAD_PER_BLOCK) } weight_decay = group['weight_decay'] eps = group['eps'] beta1, beta2 = group['betas'] exp_avg = state['exp_avg'].data exp_avg_sq = state['exp_avg_sq'].data state['step'] += 1 beta2_t = beta2 ** state['step'] N_sma_max = 2 / (1 - beta2) - 1 N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t) # more conservative since it's an approximated value if N_sma >= 5: step_size = group['lr'] * math.sqrt((1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / (N_sma_max - 2)) / (1 - beta1 ** state['step']) else: step_size = group['lr'] / (1 - beta1 ** state['step']) if param in self._nbstate: s = self._nbstate[param] numba_cuda_kernel[s['blockspergrid'], NUMBA_CUDA_THREAD_PER_BLOCK](s['param'], s['grad'], s['exp_avg'], s['exp_avg_sq'], beta1, beta2, step_size, eps, weight_decay, N_sma) else: exp_avg.mul_(beta1).add_(1 - beta1, grad) exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) if weight_decay != 0: grad.add_(-weight_decay * group['lr'], p.data) # more conservative since it's an approximated value if N_sma >= 5: denom = exp_avg_sq.sqrt().add_(group['eps']) p.addcdiv_(-step_size, exp_avg, denom) else: p.add_(-step_size, exp_avg) p.data.copy_(p.data) return loss
0
rapidsai_public_repos/deeplearning/pytorch
rapidsai_public_repos/deeplearning/pytorch/optimizers/__init__.py
from .adam import Adam from .adamw import AdamW from .radam import RAdam, PlainRAdam, FusedRAdam
0
rapidsai_public_repos/deeplearning/pytorch
rapidsai_public_repos/deeplearning/pytorch/optimizers/setup.py
#!/usr/bin/env python from setuptools import setup, find_packages setup( name='pytorch_optimizers', version='0.0.1', description='Numba accelerated PyTorch Optimizers', # The project's main homepage. url='https://github.com/madsbk/pytorch-optimizers', # Author details author='Mads R. B. Kristensen', author_email='madsbk@gmail.com', # Choose your license license='Apache 2.0', # See https://pypi.python.org/pypi?%3Aaction=list_classifiers classifiers=[ 'Development Status :: 3 - Alpha', 'License :: OSI Approved :: Apache License 2.0', 'Programming Language :: Python :: 3', ], # What does your project relate to? keywords='PyTorch', # You can just specify the packages manually here if your project is # simple. Or you can use find_packages(). packages=find_packages(exclude=['contrib', 'docs', 'tests']), install_requires=[ 'torch', ], )
0
rapidsai_public_repos/deeplearning/pytorch
rapidsai_public_repos/deeplearning/pytorch/optimizers/LICENSE
Apache License Version 2.0, January 2004 http://www.apache.org/licenses/ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 1. Definitions. "License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document. "Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License. "Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity. "You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License. "Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types. "Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below). "Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof. "Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution." "Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work. 2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form. 3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed. 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions: (a) You must give any other recipients of the Work or Derivative Works a copy of this License; and (b) You must cause any modified files to carry prominent notices stating that You changed the files; and (c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and (d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License. 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions. 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file. 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License. 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages. 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability. END OF TERMS AND CONDITIONS APPENDIX: How to apply the Apache License to your work. To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets "[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the appropriate comment syntax for the file format. We also recommend that a file or class name and description of purpose be included on the same "printed page" as the copyright notice for easier identification within third-party archives. Copyright [yyyy] [name of copyright owner] Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
0
rapidsai_public_repos/deeplearning/pytorch
rapidsai_public_repos/deeplearning/pytorch/batch_dataloader/batch_dataset.py
import torch class BatchDataset(object): """An abstract class representing a Batch Dataset. All other datasets should subclass this. All subclasses should override ``__len__``, which provides the size of the dataset, ``__getitem__``, supporting integer indexing of batches in range from 0 to len(self)//batchsize exclusive, and ``shuffle`` which randomly shuffles the data, generally called per epoch. Batch datasets are meant to be iterated over in order rather than randomly accessed so the randomization has to happen first. """ def __getitem__(self, index): raise NotImplementedError def __len__(self): raise NotImplementedError def __add__(self): raise NotImplementedError def shuffle(self): raise NotImplementedError class TensorBatchDataset(BatchDataset): """Batch Dataset wrapping Tensors. Arguments: *tensors (Tensor): tensors that have the same size of the first dimension. batch_size: The size of the batch to return pin_memory (bool, optional): If ``True``, the dataset will be pinned memory for faster copy to GPU. I saw no performance improvement to doing so but results may vary. """ def __init__(self, tensors, batch_size=1, pin_memory=False): assert all(tensors[0].size(0) == tensor.size(0) for tensor in tensors) self.tensors = tensors self.batch_size=batch_size self.num_samples = tensors[0].size(0) if pin_memory: for tensor in self.tensors: tensor.pin_memory() def __len__(self): if self.num_samples%self.batch_size == 0: return self.num_samples // self.batch_size else: return self.num_samples // self.batch_size + 1 def __getitem__(self, item): idx = item*self.batch_size #Need to handle odd sized batches if data isn't divisible by batchsize if idx < self.num_samples and (idx + self.batch_size < self.num_samples or self.num_samples%self.batch_size == 0): return [tensor[idx:idx+self.batch_size] for tensor in self.tensors] elif idx < self.num_samples and idx + self.batch_size> self.num_samples : return [tensor[idx:] for tensor in self.tensors] else: raise IndexError def __add__(self, tensors): assert all(tensors[0].size(0) == tensor.size(0) for tensor in tensors) assert len(self.tensors) == len(tensors) assert all(self_tensor[0].shape == tensor[0].shape for self_tensor, tensor in zip(self.tensors, tensors)) num_add_samples = tensors[0].size(0) self.num_samples = self.num_samples + num_add_samples self.tensors = [torch.cat((self_tensor, tensor)) for self_tensor, tensor in zip(self.tensors, tensors)] def shuffle(self): idx = torch.randperm(self.num_samples, dtype=torch.int64) self.tensors = [tensor[idx] for tensor in self.tensors]
0
rapidsai_public_repos/deeplearning/pytorch
rapidsai_public_repos/deeplearning/pytorch/batch_dataloader/README.md
### Pytorch Batch Dataloader ## 🚀 Feature A dataloader and dataset that operate at the batch level, rather than the item level, pulling batches from contiguous blocks of memory and avoiding random access patterns in the dataloader. ## Motivation Loading data item by item and coallating into a batch is very inefficient, particularly in the case of tabular or text data where the items are small. This is compounded further when you want to use large batch sizes. By pre shuffling the data each epoch (when required) we can grab each batch as a single read from contiguous memory. This much faster and scales better with batch size, removing the necessity of multiprocessing, which adds complexity in the form of bus errors when not enough shared memory is available (https://github.com/pytorch/pytorch/issues/5040), CUDA init issues when forking (https://github.com/pytorch/pytorch/issues/4377), etc. This forking issue was one of my original motivations as it solves the issue of using the dataloader in conjunction with RAPIDS or any other code that calls CUDA before the dataloader workers are forked. It should also solve the issue on windows with the speed of dataloaders, at least for tabular and text data, (https://github.com/pytorch/pytorch/issues/12831) as spawning is not necessary. Using the proposed method results in better GPU utilization, and better throughput when training in the tests on tabular data that I've run. With no multiprocessing I've measured a 5-15% improvement* in throughput over an 8 worker vanilla dataloader (more were tried but it maxed out at 8). I've also been able to increase batch sizes for tabular data into the 800K+ range with no loss of accuracy and get a 2x performance improvement over the best multiprocessor dataloader I could run without running into bus error issues that cropped up with large batch sizes. *depends on tensor and batch size ## Pitch I've created source for a batch dataloader and batch dataset modelled after their vanilla counterparts and would love to see it integrated into the PyTorch repo. Usage is similar, and I've tried to stick to the pytorch variable naming and formatting. Code can be found here: https://github.com/rapidsai/dataloaders/tree/main/pytorch/batch_dataloader It should hopefully be ready to go; I've tested it with both base pytorch and with ignite, but more eyes on it would definitely be beneficial, particularly in use cases beyond tabular like text or small images. It should be applicable to anyone who isn't doing large images or a lot of image augmentation. It's undergone an internal (NVidia) review of @ptrblck who was immensely helpful in refining it and @ngimel who reviewed the codebase and had helpful suggestions regarding memory pinning. I'm happy to work with the team to create test cases similar to those for dataset and dataloader and would love feedback on it. ## Alternatives One possible solution to the CUDA Init before fork issue is to spawn, however as seen in windows this is significantly slower and I had trouble getting it working. ## Additional context I'm also working on versions of this that work with larger than CPU memory datasets and on a version that works in GPU memory doing a 0-copy transform of a rapids cudf dataframe via dlpack.
0
rapidsai_public_repos/deeplearning/pytorch
rapidsai_public_repos/deeplearning/pytorch/batch_dataloader/batch_dataloader.py
import torch from torch import _utils class BatchDataLoader(object): """Batch Data loader. Takes in a batch dataset and returns iterators that return whole batches of data. Arguments: batchdataset (BatchDataset): dataset from which to load the data. shuffle (bool, optional): set to ``True`` to have the data reshuffled at every epoch (default: ``False``). pin_memory (bool, optional): If ``True``, the data loader will copy tensors into CUDA pinned memory before returning them. drop_last (bool, optional): set to ``True`` to drop the last incomplete batch, if the dataset size is not divisible by the batch size. If ``False`` and the size of dataset is not divisible by the batch size, then the last batch will be smaller. (default: ``False``) """ def __init__(self, batchdataset, shuffle=False, pin_memory=False, drop_last=False): self.batchdataset = batchdataset self.batch_size = batchdataset.batch_size self.shuffle = shuffle self.pin_memory = pin_memory self.drop_last = drop_last def __iter__(self): return _BatchDataLoaderIter(self) def __len__(self): if self.drop_last and self.batchdataset.num_samples%self.batch_size != 0: return len(self.batchdataset)-1 else: return len(self.batchdataset) class _BatchDataLoaderIter(object): """Iterates once over the BatchDataLoader's batchdataset, shuffling if requested""" def __init__(self, loader): self.batchdataset = loader.batchdataset self.batch_size = loader.batch_size self.pin_memory = loader.pin_memory and torch.cuda.is_available() self.drop_last = loader.drop_last if loader.shuffle: self.batchdataset.shuffle() self.idx = 0 def __len__(self): if self.drop_last and self.batchdataset.num_samples%self.batch_size != 0: return len(self.batchdataset)-1 else: return len(self.batchdataset) def __next__(self): if self.idx >= len(self): raise StopIteration batch = self.batchdataset[self.idx] # Note Pinning memory was ~10% _slower_ for the test examples I explored if self.pin_memory: batch = _utils.pin_memory.pin_memory_batch(batch) self.idx = self.idx+1 return batch next = __next__ # Python 2 compatibility def __iter__(self): return self
0
rapidsai_public_repos/deeplearning
rapidsai_public_repos/deeplearning/WSDM2021/README.md
# Using Deep Learning to Win the Booking.com WSDM WebTour21 Challenge on Sequential Recommendations This content was moved to a new [competition repository](https://github.com/NVIDIA-Merlin/competitions).
0
rapidsai_public_repos
rapidsai_public_repos/rapids-cmake/cmake-format-rapids-cmake.json
{ "parse": { "additional_commands": { "rapids_cmake_build_type": { "pargs": { "nargs": 1 } }, "rapids_cmake_install_lib_dir": { "pargs": { "nargs": 1, "flags": ["MODIFY_INSTALL_LIBDIR"] } }, "rapids_cmake_make_global": { "pargs": { "nargs": 1 } }, "rapids_cmake_parse_version": { "pargs": { "nargs": 3 } }, "rapids_cmake_policy": { "pargs": { "nargs": 0 }, "kwargs": { "DEPRECATED_IN": 1, "REMOVED_IN": 1, "MESSAGE": 1 } }, "rapids_cmake_support_conda_env": { "pargs": { "nargs": 1, "flags": ["MODIFY_PREFIX_PATH"] } }, "rapids_cmake_write_git_revision_file": { "pargs": { "nargs": 2 }, "kwargs": { "PREFIX": 1 } }, "rapids_cmake_write_version_file": { "pargs": { "nargs": 1 }, "kwargs": { "PREFIX": 1 } }, "rapids_cpm_find": { "pargs": { "nargs": "2+" }, "kwargs": { "BUILD_EXPORT_SET": 1, "INSTALL_EXPORT_SET": 1, "GLOBAL_TARGETS": "+", "CPM_ARGS": "+", "DOWNLOAD_ONLY": "1", "EXCLUDE_FROM_ALL": "1", "GIT_REPOSITORY": "1", "GIT_TAG": "1", "GIT_SHALLOW": "1", "OPTIONS": "+", "PATCH_COMMAND": "1" } }, "rapids_cpm_init": { "pargs": { "nargs": 0 }, "kwargs": { "OVERRIDE": 1 } }, "rapids_cpm_package_override": { "pargs": { "nargs": 1 } }, "rapids_cpm_cuco": { "pargs": { "nargs": 0 }, "kwargs": { "BUILD_EXPORT_SET": 1, "INSTALL_EXPORT_SET": 1 } }, "rapids_cpm_fmt": { "pargs": { "nargs": 0 }, "kwargs": { "BUILD_EXPORT_SET": 1, "INSTALL_EXPORT_SET": 1 } }, "rapids_cpm_gbench": { "pargs": { "nargs": 0, "flags": ["BUILD_STATIC"] }, "kwargs": { "BUILD_EXPORT_SET": 1, "INSTALL_EXPORT_SET": 1 } }, "rapids_cpm_gtest": { "pargs": { "nargs": 0 }, "kwargs": { "BUILD_EXPORT_SET": 1, "INSTALL_EXPORT_SET": 1 } }, "rapids_cpm_libcudacxx": { "pargs": { "nargs": 0 }, "kwargs": { "BUILD_EXPORT_SET": 1, "INSTALL_EXPORT_SET": 1 } }, "rapids_cpm_nvbench": { "pargs": { "nargs": 0, "flags": ["BUILD_STATIC"] }, "kwargs": { "BUILD_EXPORT_SET": 1, "INSTALL_EXPORT_SET": 1 } }, "rapids_cpm_nvcomp": { "pargs": { "nargs": 0 }, "kwargs": { "BUILD_EXPORT_SET": 1, "INSTALL_EXPORT_SET": 1, "USE_PROPRIETARY_BINARY": 1 } }, "rapids_cpm_rmm": { "pargs": { "nargs": 0 }, "kwargs": { "BUILD_EXPORT_SET": 1, "INSTALL_EXPORT_SET": 1 } }, "rapids_cpm_spdlog": { "pargs": { "nargs": 0 }, "kwargs": { "BUILD_EXPORT_SET": 1, "FMT_OPTION": 1, "INSTALL_EXPORT_SET": 1 } }, "rapids_cpm_thrust": { "pargs": { "nargs": 2 }, "kwargs": { "BUILD_EXPORT_SET": 1, "INSTALL_EXPORT_SET": 1 } }, "rapids_cuda_init_architectures": { "pargs": { "nargs": 1 } }, "rapids_cuda_init_runtime": { "pargs": { "nargs": 2 } }, "rapids_cuda_set_architectures": { "pargs": { "nargs": 1 } }, "rapids_cuda_set_runtime": { "pargs": { "nargs": 3 } }, "rapids_export_cpm": { "pargs": { "nargs": "3+", "flags": ["INSTALL", "BUILD"] }, "kwargs": { "GLOBAL_TARGETS": "+", "CPM_ARGS": "+" } }, "rapids_export": { "pargs": { "nargs": "2+", "flags": ["INSTALL", "BUILD"] }, "kwargs": { "EXPORT_SET": 1, "NAMESPACE": 1, "DOCUMENTATION": 1, "FINAL_CODE_BLOCK": 1, "VERSION": 1, "GLOBAL_TARGETS": "+", "COMPONENTS": "+", "COMPONENTS_EXPORT_SET": "+", "LANGUAGES": "+" } }, "rapids_export_find_package_file": { "pargs": { "nargs": "3+", "flags": ["INSTALL", "BUILD"] }, "kwargs": { "EXPORT_SET": 1, "CONDITION": 1 } }, "rapids_export_find_package_root": { "pargs": { "nargs": "3+", "flags": ["INSTALL", "BUILD"] }, "kwargs": { "EXPORT_SET": 1, "CONDITION": 1 } }, "rapids_export_package": { "pargs": { "nargs": "1+" }, "kwargs": { "GLOBAL_TARGETS": "+", "INSTALL": 2, "BUILD": 2 } }, "rapids_export_write_dependencies": { "pargs": { "nargs": 3, "flags": ["INSTALL", "BUILD"] } }, "rapids_export_write_language": { "pargs": { "nargs": 3, "flags": ["INSTALL", "BUILD"] } }, "rapids_find_generate_module": { "pargs": { "nargs": "1+", "flags": [ "NO_CONFIG" ] }, "kwargs": { "VERSION": 1, "BUILD_EXPORT_SET": 1, "INSTALL_EXPORT_SET": 1, "HEADER_NAMES": "+", "LIBRARY_NAMES": "+", "INCLUDE_SUFFIXES": "+" } }, "rapids_find_package": { "pargs": { "nargs": "1+", "flags": [ "REQUIRED" ] }, "kwargs": { "BUILD_EXPORT_SET": 1, "INSTALL_EXPORT_SET": 1, "GLOBAL_TARGETS": "+", "FIND_ARGS": "+" } }, "rapids_cython_init": { "pargs": { "nargs": "0" } }, "rapids_cython_create_modules": { "pargs": { "nargs": "0" }, "kwargs": { "SOURCE_FILES": "*", "LINKED_LIBRARIES": "*", "INSTALL_DIR": "1" } }, "rapids_cython_add_rpath_entries": { "pargs": { "nargs": "0" }, "kwargs": { "PATHS": "+", "TARGET": "1", "ROOT_DIRECTORY": "1" } }, "rapids_test_init": { "pargs": { "nargs": "0" } }, "rapids_test_add": { "pargs": { "nargs": "0" }, "kwargs": { "NAME": "1", "COMMAND": "*", "INSTALL_COMPONENT_SET": "1", "GPUS": "1", "PERCENT": "1", "WORKING_DIRECTORY": "1" } }, "rapids_test_gpu_requirements": { "pargs": { "nargs": "1" }, "kwargs": { "GPUS": "1", "PERCENT": "1" } }, "rapids_test_generate_resource_spec": { "pargs": { "nargs": "2" } }, "rapids_test_install_relocatable": { "pargs": { "nargs": "0", "flags": ["INCLUDE_IN_ALL"] }, "kwargs": { "INSTALL_COMPONENT_SET": "1", "DESTINATION": "1" } } } } }
0
rapidsai_public_repos
rapidsai_public_repos/rapids-cmake/.pre-commit-config.yaml
# Copyright (c) 2023, NVIDIA CORPORATION. repos: - repo: https://github.com/pre-commit/pre-commit-hooks rev: v4.4.0 hooks: - id: trailing-whitespace exclude: | (?x)^( ^rapids-cmake/cpm/patches/.* ) - id: end-of-file-fixer exclude: | (?x)^( ^rapids-cmake/cpm/patches/.* ) - id: check-json - repo: https://github.com/pre-commit/mirrors-clang-format rev: v16.0.6 hooks: - id: clang-format types_or: [c, c++, cuda] args: ["-fallback-style=none", "-style=file", "-i"] - repo: https://github.com/codespell-project/codespell rev: v2.2.2 hooks: - id: codespell - repo: local hooks: - id: copyright-check name: copyright-check entry: python ./ci/checks/copyright.py --git-modified-only --update-current-year language: python pass_filenames: false additional_dependencies: [gitpython] - id: cmake-format name: cmake-format entry: ./ci/checks/run-cmake-format.sh cmake-format language: python types: [cmake] # Note that pre-commit autoupdate does not update the versions # of dependencies, so we'll have to update this manually. additional_dependencies: - cmakelang==0.6.13 verbose: true require_serial: true files: | (?x)^( ^rapids-cmake/.*$ ) - id: cmake-lint name: cmake-lint entry: ./ci/checks/run-cmake-format.sh cmake-lint language: python types: [cmake] # Note that pre-commit autoupdate does not update the versions # of dependencies, so we'll have to update this manually. additional_dependencies: - cmakelang==0.6.13 verbose: true require_serial: true files: | (?x)^( ^rapids-cmake/.*$ ) default_language_version: python: python3
0
rapidsai_public_repos
rapidsai_public_repos/rapids-cmake/setup.cfg
# Copyright (c) 2023, NVIDIA CORPORATION. [codespell] # note: pre-commit passes explicit lists of files here, which this skip file list doesn't override - # this is only to allow you to run codespell interactively skip = ./.git,./.github # ignore short words, and typename parameters like OffsetT ignore-regex = \b(.{1,4}|[A-Z]\w*T)\b builtin = clear quiet-level = 3
0
rapidsai_public_repos
rapidsai_public_repos/rapids-cmake/CMakeLists.txt
#============================================================================= # Copyright (c) 2021-2023, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #============================================================================= # # This is the legacy entry point for projects using rapids-cmake. # # This will setup the following variables in the parent directory # - CMAKE_MODULE_PATH # - rapids-cmake-dir # # This is considered legacy as it has issues when multiple projects # use rapids-cmake via CPM inside the same global project. In those # cases it can fail due to CMAKE_MODULE_PREFIX not being exported properly # Enforce the minimum required CMake version for all users cmake_minimum_required(VERSION 3.23.1 FATAL_ERROR) set(rapids-cmake-dir "${CMAKE_CURRENT_LIST_DIR}/rapids-cmake") if(NOT DEFINED CACHE{rapids-cmake-dir}) set(rapids-cmake-dir "${rapids-cmake-dir}" CACHE INTERNAL "" FORCE) endif() if(NOT "${rapids-cmake-dir}" IN_LIST CMAKE_MODULE_PATH) list(APPEND CMAKE_MODULE_PATH "${rapids-cmake-dir}") endif() # Propagate up the rapids-cmake version include("${rapids-cmake-dir}/rapids-version.cmake") set(rapids-cmake-version ${rapids-cmake-version} PARENT_SCOPE) # install a hook that sets up `rapids-cmake-dir` and `CMAKE_MODULE_PATH` all the way up the # call-stack cmake_language(DEFER DIRECTORY ${CMAKE_CURRENT_LIST_DIR} CALL include "${rapids-cmake-dir}/../init.cmake")
0
rapidsai_public_repos
rapidsai_public_repos/rapids-cmake/RAPIDS.cmake
#============================================================================= # Copyright (c) 2021-2023, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #============================================================================= # # This is the preferred entry point for projects using rapids-cmake # # Allow users to control which version is used if(NOT rapids-cmake-version) # Define a default version if the user doesn't set one set(rapids-cmake-version 24.02) endif() # Allow users to control which GitHub repo is fetched if(NOT rapids-cmake-repo) # Define a default repo if the user doesn't set one set(rapids-cmake-repo rapidsai/rapids-cmake) endif() # Allow users to control which branch is fetched if(NOT rapids-cmake-branch) # Define a default branch if the user doesn't set one set(rapids-cmake-branch "branch-${rapids-cmake-version}") endif() # Allow users to control the exact URL passed to FetchContent if(NOT rapids-cmake-url) # Construct a default URL if the user doesn't set one set(rapids-cmake-url "https://github.com/${rapids-cmake-repo}/") # In order of specificity if(rapids-cmake-sha) # An exact git SHA takes precedence over anything string(APPEND rapids-cmake-url "archive/${rapids-cmake-sha}.zip") elseif(rapids-cmake-tag) # Followed by a git tag name string(APPEND rapids-cmake-url "archive/refs/tags/${rapids-cmake-tag}.zip") else() # Or if neither of the above two were defined, use a branch string(APPEND rapids-cmake-url "archive/refs/heads/${rapids-cmake-branch}.zip") endif() endif() if(POLICY CMP0135) cmake_policy(PUSH) cmake_policy(SET CMP0135 NEW) endif() include(FetchContent) FetchContent_Declare(rapids-cmake URL "${rapids-cmake-url}") if(POLICY CMP0135) cmake_policy(POP) endif() FetchContent_GetProperties(rapids-cmake) if(rapids-cmake_POPULATED) # Something else has already populated rapids-cmake, only thing # we need to do is setup the CMAKE_MODULE_PATH if(NOT "${rapids-cmake-dir}" IN_LIST CMAKE_MODULE_PATH) list(APPEND CMAKE_MODULE_PATH "${rapids-cmake-dir}") endif() else() FetchContent_MakeAvailable(rapids-cmake) endif()
0
rapidsai_public_repos
rapidsai_public_repos/rapids-cmake/README.md
# <div align="left"><img src="https://rapids.ai/assets/images/rapids_logo.png" width="90px"/>&nbsp;rapids-cmake</div> **NOTE:** For the latest stable [README.md](https://github.com/rapidsai/rapids-cmake/blob/main/README.md) ensure you are on the `main` branch. ## Overview This is a collection of CMake modules that are useful for all CUDA RAPIDS projects. By sharing the code in a single place it makes rolling out CMake fixes easier. ## Installation The `rapids-cmake` module is designed to be acquired via CMake's [Fetch Content](https://cmake.org/cmake/help/latest/module/FetchContent.html) into your project. ```cmake cmake_minimum_required(...) if(NOT EXISTS ${CMAKE_CURRENT_BINARY_DIR}/<PROJECT>_RAPIDS.cmake) file(DOWNLOAD https://raw.githubusercontent.com/rapidsai/rapids-cmake/branch-<VERSION_MAJOR>.<VERSION_MINOR>/RAPIDS.cmake ${CMAKE_CURRENT_BINARY_DIR}/<PROJECT>_RAPIDS.cmake) endif() include(${CMAKE_CURRENT_BINARY_DIR}/<PROJECT>_RAPIDS.cmake) include(rapids-cmake) include(rapids-cpm) include(rapids-cuda) include(rapids-export) include(rapids-find) project(....) ``` Note that we recommend you install `rapids-cmake` into the root `CMakeLists.txt` of your project before the first `project` call. This allows us to offer features such as `rapids_cuda_architectures()` ## Usage `rapids-cmake` provides a collection of useful CMake settings that any RAPIDS project may use. While they maybe common, we know that they aren't universal and might need to be composed in different ways. To use function provided by `rapids-cmake` projects have two options: - Call `include(rapids-<component>)` as that imports all commonly used functions for that component - Load each function independently via `include(${rapids-cmake-dir}/<component>/<function_name>.cmake)` ## Components Complete online documentation for all components can be found at: https://docs.rapids.ai/api/rapids-cmake/nightly/api.html ### cmake The `rapids-cmake` module contains helpful general CMake functionality - `rapids_cmake_build_type( )` handles initialization of `CMAKE_BUILD_TYPE` - `rapids_cmake_support_conda_env( target [MODIFY_PREFIX_PATH])` Establish a target that holds the CONDA environment include and link directories. - `rapids_cmake_write_version_file( <file> )` Write a C++ header with a projects MAJOR, MINOR, and PATCH defines ### cpm The `rapids-cpm` module contains CPM functionality to allow projects to acquire dependencies consistently. For consistentcy All targets brought in via `rapids-cpm` are GLOBAL targets. - `rapids_cpm_init()` handles initialization of the CPM module. - `raipds_cpm_find(<project> name BUILD_EXPORT_SET <name> INSTALL_EXPORT_SET <name>)` Will search for a module and fall back to installing via CPM. Offers support to track dependencies for easy package exporting ### cuda The `rapids-cuda` module contains core functionality to allow projects to build CUDA code robustly. The most commonly used function are: - `rapids_cuda_init_architectures(<project_name>)` handles initialization of `CMAKE_CUDA_ARCHITECTURE`. MUST BE CALLED BEFORE `PROJECT()` - `rapids_cuda_init_runtime(<mode>)` handles initialization of `CMAKE_CUDA_RUNTIME_LIBRARY`. - `rapids_cuda_patch_toolkit()` corrects bugs in the CUDAToolkit module that are being upstreamed. ### cython The `rapids_cython` functions allow projects to easily build cython modules using [scikit-build](https://scikit-build.readthedocs.io/en/latest/). - `rapids_cython_init()` handles initialization of scikit-build and cython. - `rapids_create_modules([CXX] [SOURCE_FILES <src1> <src2> ...] [LINKED_LIBRARIES <lib1> <lib2> ... ] [INSTALL_DIR <install_path>] [MODULE_PREFIX <module_prefix>] )` will create cython modules for each provided source file ### export The `rapids-export` module contains core functionality to allow projects to easily record and write out build and install dependencies, that come from `find_package` or `cpm` - `rapids_export(<type> <project> EXPORT_SET <name>)` write out all the require components of a projects config module so that the `install` or `build` directory can be imported via `find_package`. See `rapids_export` documentation for full documentation ### find The `rapids-find` module contains core functionality to allow projects to easily generate FindModule or export `find_package` calls: The most commonly used function are: - `rapids_find_package(<project_name> BUILD_EXPORT_SET <name> INSTALL_EXPORT_SET <name> )` Combines `find_package` and support to track dependencies for easy package exporting - `rapids_generate_module(<PackageName> HEADER_NAMES <paths...> LIBRARY_NAMES <names...> )` Generate a FindModule for the given package. Allows association to export sets so the generated FindModule can be shipped with the project ### test The `rapids_test` functions simplify CTest resource allocation, allowing for tests to run in parallel without overallocating GPU resources. The most commonly used functions are: - `rapids_test_add(NAME <test_name> GPUS <N> PERCENT <N>)`: State how many GPU resources a single test requires ## Overriding RAPIDS.cmake At times projects or developers will need to verify ``rapids-cmake`` branches. To do this you can set variables that control which repository ``RAPIDS.cmake`` downloads, which should be done like this: ```cmake # To override the version that is pulled: set(rapids-cmake-version "<version>") # To override the GitHub repository: set(rapids-cmake-repo "<my_fork>") # To use an exact Git SHA: set(rapids-cmake-sha "<my_git_sha>") # To use a Git tag: set(rapids-cmake-tag "<my_git_tag>") # To override the repository branch: set(rapids-cmake-branch "<my_feature_branch>") # Or to override the entire repository URL (e.g. to use a GitLab repo): set(rapids-cmake-url "https://gitlab.com/<my_user>/<my_fork>/-/archive/<my_branch>/<my_fork>-<my_branch>.zip") file(DOWNLOAD https://raw.githubusercontent.com/rapidsai/rapids-cmake/branch-22.10/RAPIDS.cmake ${CMAKE_CURRENT_BINARY_DIR}/RAPIDS.cmake) include(${CMAKE_CURRENT_BINARY_DIR}/RAPIDS.cmake) ``` A few notes: - An explicitly defined ``rapids-cmake-url`` will always be used - `rapids-cmake-sha` takes precedence over `rapids-cmake-tag` - `rapids-cmake-tag` takes precedence over `rapids-cmake-branch` - It is advised to always set `rapids-cmake-version` to the version expected by the repo your modifications will pull ## Contributing Review the [CONTRIBUTING.md](https://github.com/rapidsai/rapids-cmake/blob/main/CONTRIBUTING.md) file for information on how to contribute code and issues to the project.
0
rapidsai_public_repos
rapidsai_public_repos/rapids-cmake/CHANGELOG.md
# rapids-cmake 23.10.00 (11 Oct 2023) ## 🐛 Bug Fixes - Quote the list of patch files in case they have spaces in their paths ([#463](https://github.com/rapidsai/rapids-cmake/pull/463)) [@ericniebler](https://github.com/ericniebler) - cpm overrides don&#39;t occur when `CPM_&lt;pkg&gt;_SOURCE` exists ([#458](https://github.com/rapidsai/rapids-cmake/pull/458)) [@robertmaynard](https://github.com/robertmaynard) - Use `conda mambabuild` not `mamba mambabuild` ([#457](https://github.com/rapidsai/rapids-cmake/pull/457)) [@bdice](https://github.com/bdice) - Support fmt use in debug builds ([#456](https://github.com/rapidsai/rapids-cmake/pull/456)) [@robertmaynard](https://github.com/robertmaynard) ## 📖 Documentation - Move rapids_cpm_package_override to CPM section of docs ([#462](https://github.com/rapidsai/rapids-cmake/pull/462)) [@robertmaynard](https://github.com/robertmaynard) - Improve docs around fetch content and rapids-cmake overrides ([#444](https://github.com/rapidsai/rapids-cmake/pull/444)) [@robertmaynard](https://github.com/robertmaynard) ## 🚀 New Features - Bump cuco version ([#452](https://github.com/rapidsai/rapids-cmake/pull/452)) [@PointKernel](https://github.com/PointKernel) ## 🛠️ Improvements - Update image names ([#461](https://github.com/rapidsai/rapids-cmake/pull/461)) [@AyodeAwe](https://github.com/AyodeAwe) - Update to CPM v0.38.5 ([#460](https://github.com/rapidsai/rapids-cmake/pull/460)) [@trxcllnt](https://github.com/trxcllnt) - Update to clang 16.0.6. ([#459](https://github.com/rapidsai/rapids-cmake/pull/459)) [@bdice](https://github.com/bdice) - Use `copy-pr-bot` ([#455](https://github.com/rapidsai/rapids-cmake/pull/455)) [@ajschmidt8](https://github.com/ajschmidt8) # rapids-cmake 23.08.00 (9 Aug 2023) ## 🐛 Bug Fixes - Use &lt; gcc-11 with cuda 11.5 to avoid nvbench compile failures ([#448](https://github.com/rapidsai/rapids-cmake/pull/448)) [@robertmaynard](https://github.com/robertmaynard) - Ensure tests the modify same git repo don&#39;t execute at the same time ([#446](https://github.com/rapidsai/rapids-cmake/pull/446)) [@robertmaynard](https://github.com/robertmaynard) - Fix CUDA 11.5 tests by adding dependencies entries. ([#443](https://github.com/rapidsai/rapids-cmake/pull/443)) [@bdice](https://github.com/bdice) - Remove trailing comma and add pre-commit hook for JSON validation. ([#440](https://github.com/rapidsai/rapids-cmake/pull/440)) [@bdice](https://github.com/bdice) - When nvcomp is found locally print where it is on disk ([#434](https://github.com/rapidsai/rapids-cmake/pull/434)) [@robertmaynard](https://github.com/robertmaynard) - Correct two issues found when testing CMake 3.27 rc2 ([#432](https://github.com/rapidsai/rapids-cmake/pull/432)) [@robertmaynard](https://github.com/robertmaynard) - Correct re-root controls from conda-forge with thrust/cub/etc ([#431](https://github.com/rapidsai/rapids-cmake/pull/431)) [@robertmaynard](https://github.com/robertmaynard) - Bug/proprietary binary obeys `always_download` ([#430](https://github.com/rapidsai/rapids-cmake/pull/430)) [@robertmaynard](https://github.com/robertmaynard) - Correct install_relocatable issues found by libcudf ([#423](https://github.com/rapidsai/rapids-cmake/pull/423)) [@robertmaynard](https://github.com/robertmaynard) - test_install_relocatable correct run_gpu_test.cmake location ([#420](https://github.com/rapidsai/rapids-cmake/pull/420)) [@robertmaynard](https://github.com/robertmaynard) - Fea/move to latest nvbench ([#417](https://github.com/rapidsai/rapids-cmake/pull/417)) [@robertmaynard](https://github.com/robertmaynard) - Use [@loader_path instead of $ORIGIN on MacOS ([#403](https://github.com/rapidsai/rapids-cmake/pull/403)) @manopapad](https://github.com/loader_path instead of $ORIGIN on MacOS ([#403](https://github.com/rapidsai/rapids-cmake/pull/403)) @manopapad) - Make NAMESPACE property truly optional in rapids_export ([#358](https://github.com/rapidsai/rapids-cmake/pull/358)) [@agirault](https://github.com/agirault) ## 🚀 New Features - Update rapids-cmake ci to support conda-forge CUDA 12 ([#437](https://github.com/rapidsai/rapids-cmake/pull/437)) [@robertmaynard](https://github.com/robertmaynard) - Bump cuco version ([#435](https://github.com/rapidsai/rapids-cmake/pull/435)) [@PointKernel](https://github.com/PointKernel) - Add rapids_cuda_set_runtime ([#429](https://github.com/rapidsai/rapids-cmake/pull/429)) [@robertmaynard](https://github.com/robertmaynard) - support_conda_env support host and build CTK 12 locations ([#428](https://github.com/rapidsai/rapids-cmake/pull/428)) [@robertmaynard](https://github.com/robertmaynard) - rapids_find_generate_module Support user code blocks ([#415](https://github.com/rapidsai/rapids-cmake/pull/415)) [@robertmaynard](https://github.com/robertmaynard) - Rewrite of rapids_test_install_relocatable to support genex expressions ([#410](https://github.com/rapidsai/rapids-cmake/pull/410)) [@robertmaynard](https://github.com/robertmaynard) ## 🛠️ Improvements - Conditionally modify envvar vs. global CMAKE_PREFIX_PATH in `rapids_cmake_support_conda_env` ([#439](https://github.com/rapidsai/rapids-cmake/pull/439)) [@trxcllnt](https://github.com/trxcllnt) - Migrate to updated shared-action-workflows name for CUDA 12 CI ([#438](https://github.com/rapidsai/rapids-cmake/pull/438)) [@bdice](https://github.com/bdice) - Fix google benchmark name and update version ([#425](https://github.com/rapidsai/rapids-cmake/pull/425)) [@vyasr](https://github.com/vyasr) - use rapids-upload-docs script ([#419](https://github.com/rapidsai/rapids-cmake/pull/419)) [@AyodeAwe](https://github.com/AyodeAwe) - Remove documentation build scripts for Jenkins ([#418](https://github.com/rapidsai/rapids-cmake/pull/418)) [@ajschmidt8](https://github.com/ajschmidt8) - Upload conda packages for rapids_core_dependencies. ([#414](https://github.com/rapidsai/rapids-cmake/pull/414)) [@bdice](https://github.com/bdice) # rapids-cmake 23.06.00 (7 Jun 2023) ## 🚨 Breaking Changes - Using deprecated CUDA_ARCHITECTURE values now produces an error. ([#397](https://github.com/rapidsai/rapids-cmake/pull/397)) [@robertmaynard](https://github.com/robertmaynard) - rapids_cpm cccl packages cmake files are now relocated to not clash with upstream ([#393](https://github.com/rapidsai/rapids-cmake/pull/393)) [@robertmaynard](https://github.com/robertmaynard) ## 🐛 Bug Fixes - Revert &quot;Define Cython language_level explicitly. ([#394)&quot; (#396](https://github.com/rapidsai/rapids-cmake/pull/394)&quot; (#396)) [@vyasr](https://github.com/vyasr) - rapids_cpm cccl packages cmake files are now relocated to not clash with upstream ([#393](https://github.com/rapidsai/rapids-cmake/pull/393)) [@robertmaynard](https://github.com/robertmaynard) ## 📖 Documentation - Correct basics to api cross refs ([#405](https://github.com/rapidsai/rapids-cmake/pull/405)) [@robertmaynard](https://github.com/robertmaynard) ## 🚀 New Features - Update cuco git tag to support `cuco::static_set` ([#407](https://github.com/rapidsai/rapids-cmake/pull/407)) [@PointKernel](https://github.com/PointKernel) - Upgrade GTest version to 1.13 ([#401](https://github.com/rapidsai/rapids-cmake/pull/401)) [@robertmaynard](https://github.com/robertmaynard) - Using deprecated CUDA_ARCHITECTURE values now produces an error. ([#397](https://github.com/rapidsai/rapids-cmake/pull/397)) [@robertmaynard](https://github.com/robertmaynard) ## 🛠️ Improvements - run docs nightly too ([#413](https://github.com/rapidsai/rapids-cmake/pull/413)) [@AyodeAwe](https://github.com/AyodeAwe) - Update cuco git tag to fetch several bug fixes ([#412](https://github.com/rapidsai/rapids-cmake/pull/412)) [@PointKernel](https://github.com/PointKernel) - Revert shared workflows branch ([#406](https://github.com/rapidsai/rapids-cmake/pull/406)) [@ajschmidt8](https://github.com/ajschmidt8) - Upgrade to Python 3.9 (drop Python 3.9) ([#404](https://github.com/rapidsai/rapids-cmake/pull/404)) [@shwina](https://github.com/shwina) - Remove usage of rapids-get-rapids-version-from-git ([#402](https://github.com/rapidsai/rapids-cmake/pull/402)) [@jjacobelli](https://github.com/jjacobelli) - Update clang-format ([#398](https://github.com/rapidsai/rapids-cmake/pull/398)) [@bdice](https://github.com/bdice) - Define Cython language_level explicitly. ([#394](https://github.com/rapidsai/rapids-cmake/pull/394)) [@bdice](https://github.com/bdice) # rapids-cmake 23.04.00 (6 Apr 2023) ## 🐛 Bug Fixes - install_relocatable only installs files that exist ([#392](https://github.com/rapidsai/rapids-cmake/pull/392)) [@robertmaynard](https://github.com/robertmaynard) - Revert &quot;install tests environment properties ([#390)&quot; (#391](https://github.com/rapidsai/rapids-cmake/pull/390)&quot; (#391)) [@robertmaynard](https://github.com/robertmaynard) - Add `COMPONENT` arguments for rapids_export to formatting file. ([#389](https://github.com/rapidsai/rapids-cmake/pull/389)) [@robertmaynard](https://github.com/robertmaynard) - install_relocatable generate correct installed RESOURCE_SPEC_FILE ([#386](https://github.com/rapidsai/rapids-cmake/pull/386)) [@robertmaynard](https://github.com/robertmaynard) - support_conda_env only add rpath-link flag to linkers that support it. ([#384](https://github.com/rapidsai/rapids-cmake/pull/384)) [@robertmaynard](https://github.com/robertmaynard) - rapids_cpm_nvbench properly specify usage of external fmt library ([#376](https://github.com/rapidsai/rapids-cmake/pull/376)) [@robertmaynard](https://github.com/robertmaynard) - rapids_cpm_spdlog properly specify usage of external fmt library ([#375](https://github.com/rapidsai/rapids-cmake/pull/375)) [@robertmaynard](https://github.com/robertmaynard) - Patch nvbench to allow usage of external fmt ([#373](https://github.com/rapidsai/rapids-cmake/pull/373)) [@robertmaynard](https://github.com/robertmaynard) - Support static builds of fmt ([#372](https://github.com/rapidsai/rapids-cmake/pull/372)) [@robertmaynard](https://github.com/robertmaynard) - Update to latest nvbench ([#371](https://github.com/rapidsai/rapids-cmake/pull/371)) [@vyasr](https://github.com/vyasr) ## 📖 Documentation - Fix misspelling of rapids_cpm_init ([#385](https://github.com/rapidsai/rapids-cmake/pull/385)) [@dagardner-nv](https://github.com/dagardner-nv) ## 🚀 New Features - rapids_test_install_relocatable tracks tests environment properties ([#390](https://github.com/rapidsai/rapids-cmake/pull/390)) [@robertmaynard](https://github.com/robertmaynard) - rapids_test_install_relocatable EXCLUDE_FROM_ALL is now the default ([#388](https://github.com/rapidsai/rapids-cmake/pull/388)) [@robertmaynard](https://github.com/robertmaynard) - Support downloading nvcomp CTK 11 or 12 binaries ([#381](https://github.com/rapidsai/rapids-cmake/pull/381)) [@robertmaynard](https://github.com/robertmaynard) - Introduce clang-format to rapids-cmake to format C++ code examples ([#378](https://github.com/rapidsai/rapids-cmake/pull/378)) [@robertmaynard](https://github.com/robertmaynard) - proprietary_binary now supports cuda toolkit version placeholders ([#377](https://github.com/rapidsai/rapids-cmake/pull/377)) [@robertmaynard](https://github.com/robertmaynard) - Add `rapids_test` allowing projects to run gpu tests in parallel ([#328](https://github.com/rapidsai/rapids-cmake/pull/328)) [@robertmaynard](https://github.com/robertmaynard) - Extend rapids_export to support the concept of optional COMPONENTS ([#154](https://github.com/rapidsai/rapids-cmake/pull/154)) [@robertmaynard](https://github.com/robertmaynard) ## 🛠️ Improvements - Update to GCC 11 ([#382](https://github.com/rapidsai/rapids-cmake/pull/382)) [@bdice](https://github.com/bdice) - Make docs builds less verbose ([#380](https://github.com/rapidsai/rapids-cmake/pull/380)) [@AyodeAwe](https://github.com/AyodeAwe) - Update GHAs Workflows ([#374](https://github.com/rapidsai/rapids-cmake/pull/374)) [@ajschmidt8](https://github.com/ajschmidt8) - Use trap to handle errors in test scripts ([#370](https://github.com/rapidsai/rapids-cmake/pull/370)) [@AjayThorve](https://github.com/AjayThorve) - Bump spdlog to 1.11, add fmt as dependency for spdlog ([#368](https://github.com/rapidsai/rapids-cmake/pull/368)) [@kkraus14](https://github.com/kkraus14) - Clean up and sort CPM packages. ([#366](https://github.com/rapidsai/rapids-cmake/pull/366)) [@bdice](https://github.com/bdice) - Update shared workflow branches ([#365](https://github.com/rapidsai/rapids-cmake/pull/365)) [@ajschmidt8](https://github.com/ajschmidt8) - Add fmt 9.1.0 ([#364](https://github.com/rapidsai/rapids-cmake/pull/364)) [@kkraus14](https://github.com/kkraus14) - Move date to build string in `conda` recipe ([#359](https://github.com/rapidsai/rapids-cmake/pull/359)) [@ajschmidt8](https://github.com/ajschmidt8) - Add docs build job ([#347](https://github.com/rapidsai/rapids-cmake/pull/347)) [@AyodeAwe](https://github.com/AyodeAwe) # rapids-cmake 23.02.00 (9 Feb 2023) ## 🐛 Bug Fixes - Remove incorrect deprecation for CMAKE_CUDA_ARCHITECTURES=&quot;NATIVE&quot; ([#355](https://github.com/rapidsai/rapids-cmake/pull/355)) [@robertmaynard](https://github.com/robertmaynard) - cpm: `always_download` now considers `patches` json entry ([#353](https://github.com/rapidsai/rapids-cmake/pull/353)) [@robertmaynard](https://github.com/robertmaynard) - Use string literals for policy test messages so no escaping needed ([#351](https://github.com/rapidsai/rapids-cmake/pull/351)) [@robertmaynard](https://github.com/robertmaynard) - Revert &quot;Update spdlog to 1.11 ( latest version ) ([#342)&quot; (#346](https://github.com/rapidsai/rapids-cmake/pull/342)&quot; (#346)) [@bdice](https://github.com/bdice) - Revert update of libcudacxx 1.9 ([#337](https://github.com/rapidsai/rapids-cmake/pull/337)) [@robertmaynard](https://github.com/robertmaynard) - rapids_cuda_patch_toolkit: Better handle non-standard toolkits ([#324](https://github.com/rapidsai/rapids-cmake/pull/324)) [@robertmaynard](https://github.com/robertmaynard) - Revert &quot;Upgrade spdlog to 1.10.0 ([#312)&quot; (#323](https://github.com/rapidsai/rapids-cmake/pull/312)&quot; (#323)) [@bdice](https://github.com/bdice) - rapids_cuda_init_architectures now supports CUDAARCHS env variable ([#322](https://github.com/rapidsai/rapids-cmake/pull/322)) [@robertmaynard](https://github.com/robertmaynard) - Remove usage of FetchContent from tests to improve perf ([#303](https://github.com/rapidsai/rapids-cmake/pull/303)) [@robertmaynard](https://github.com/robertmaynard) ## 🚀 New Features - Update nvCOMP version to 2.6.1 ([#360](https://github.com/rapidsai/rapids-cmake/pull/360)) [@vuule](https://github.com/vuule) - cpm: Rework `always_download` rules to be smarter ([#348](https://github.com/rapidsai/rapids-cmake/pull/348)) [@robertmaynard](https://github.com/robertmaynard) - Add deprecation notice to passing &quot;&quot; to CMAKE_CUDA_ARCHITECTURES ([#345](https://github.com/rapidsai/rapids-cmake/pull/345)) [@robertmaynard](https://github.com/robertmaynard) - Update to libcudacxx 1.9.1 to have a version &gt;= CUDA Toolkit 12 ([#343](https://github.com/rapidsai/rapids-cmake/pull/343)) [@robertmaynard](https://github.com/robertmaynard) - Update spdlog to 1.11 ( latest version ) ([#342](https://github.com/rapidsai/rapids-cmake/pull/342)) [@robertmaynard](https://github.com/robertmaynard) - Update to nvcomp 2.6 ([#341](https://github.com/rapidsai/rapids-cmake/pull/341)) [@robertmaynard](https://github.com/robertmaynard) - Add deprecation warnings for usage of `ALL` ([#339](https://github.com/rapidsai/rapids-cmake/pull/339)) [@robertmaynard](https://github.com/robertmaynard) - rapids-cmake now errors out when CPM can&#39;t be downloaded ([#335](https://github.com/rapidsai/rapids-cmake/pull/335)) [@robertmaynard](https://github.com/robertmaynard) - Update to nvcomp 2.5 ([#333](https://github.com/rapidsai/rapids-cmake/pull/333)) [@robertmaynard](https://github.com/robertmaynard) - Update to libcudacxx 1.9 to match version found in CUDA Toolkit 12 ([#332](https://github.com/rapidsai/rapids-cmake/pull/332)) [@robertmaynard](https://github.com/robertmaynard) - Update cuco git tag to fetch bug fixes and cleanups ([#329](https://github.com/rapidsai/rapids-cmake/pull/329)) [@PointKernel](https://github.com/PointKernel) - Fea/support cmake cuda architectures rapids value ([#327](https://github.com/rapidsai/rapids-cmake/pull/327)) [@robertmaynard](https://github.com/robertmaynard) - Upgrade spdlog to 1.10.0 ([#312](https://github.com/rapidsai/rapids-cmake/pull/312)) [@kkraus14](https://github.com/kkraus14) ## 🛠️ Improvements - Update shared workflow branches ([#361](https://github.com/rapidsai/rapids-cmake/pull/361)) [@ajschmidt8](https://github.com/ajschmidt8) - Build against CUDA `11.8` ([#344](https://github.com/rapidsai/rapids-cmake/pull/344)) [@ajschmidt8](https://github.com/ajschmidt8) - Make generated find module targets global ([#340](https://github.com/rapidsai/rapids-cmake/pull/340)) [@vyasr](https://github.com/vyasr) - Add codespell and whitespace linters to pre-commit hooks. ([#338](https://github.com/rapidsai/rapids-cmake/pull/338)) [@bdice](https://github.com/bdice) - Use pre-commit for style checks ([#336](https://github.com/rapidsai/rapids-cmake/pull/336)) [@bdice](https://github.com/bdice) - Branch 23.02 merge 22.12 ([#331](https://github.com/rapidsai/rapids-cmake/pull/331)) [@vyasr](https://github.com/vyasr) - Update conda recipes. ([#330](https://github.com/rapidsai/rapids-cmake/pull/330)) [@bdice](https://github.com/bdice) - Fix typo. ([#311](https://github.com/rapidsai/rapids-cmake/pull/311)) [@vyasr](https://github.com/vyasr) # rapids-cmake 22.12.00 (8 Dec 2022) ## 🐛 Bug Fixes - Don&#39;t use CMake 3.25.0 as it has a show stopping FindCUDAToolkit bug ([#308](https://github.com/rapidsai/rapids-cmake/pull/308)) [@robertmaynard](https://github.com/robertmaynard) - Add missing CPM_ARGS to gbench ([#294](https://github.com/rapidsai/rapids-cmake/pull/294)) [@vyasr](https://github.com/vyasr) - Patch results are only displayed once per invocation of CMake ([#292](https://github.com/rapidsai/rapids-cmake/pull/292)) [@robertmaynard](https://github.com/robertmaynard) - Add thrust output iterator fix to rapids-cmake thrust patches ([#291](https://github.com/rapidsai/rapids-cmake/pull/291)) [@robertmaynard](https://github.com/robertmaynard) ## 📖 Documentation - Update pull request template to match rest of RAPIDS ([#280](https://github.com/rapidsai/rapids-cmake/pull/280)) [@robertmaynard](https://github.com/robertmaynard) - Clarify rapids_cuda_init_architectures behavior ([#279](https://github.com/rapidsai/rapids-cmake/pull/279)) [@robertmaynard](https://github.com/robertmaynard) ## 🚀 New Features - Update cuco git tag ([#302](https://github.com/rapidsai/rapids-cmake/pull/302)) [@PointKernel](https://github.com/PointKernel) - Remove old CI files ([#300](https://github.com/rapidsai/rapids-cmake/pull/300)) [@robertmaynard](https://github.com/robertmaynard) - Update cuco to version that supports Ada and Hopper ([#299](https://github.com/rapidsai/rapids-cmake/pull/299)) [@robertmaynard](https://github.com/robertmaynard) - Move libcudacxx 1.8.1 so we support sm90 ([#296](https://github.com/rapidsai/rapids-cmake/pull/296)) [@robertmaynard](https://github.com/robertmaynard) - Add ability to specify library directories for target rpaths ([#295](https://github.com/rapidsai/rapids-cmake/pull/295)) [@vyasr](https://github.com/vyasr) - Add support for cloning Google benchmark ([#293](https://github.com/rapidsai/rapids-cmake/pull/293)) [@vyasr](https://github.com/vyasr) - Add `current_json_dir` placeholder in json patch file values ([#289](https://github.com/rapidsai/rapids-cmake/pull/289)) [@robertmaynard](https://github.com/robertmaynard) - Add sm90 ( Hopper ) to rapids-cmake &quot;ALL&quot; mode ([#285](https://github.com/rapidsai/rapids-cmake/pull/285)) [@robertmaynard](https://github.com/robertmaynard) - Enable copy_prs ops-bot config ([#284](https://github.com/rapidsai/rapids-cmake/pull/284)) [@robertmaynard](https://github.com/robertmaynard) - Add GitHub action workflow to rapids-cmake ([#283](https://github.com/rapidsai/rapids-cmake/pull/283)) [@robertmaynard](https://github.com/robertmaynard) - Create conda package of patched dependencies ([#275](https://github.com/rapidsai/rapids-cmake/pull/275)) [@robertmaynard](https://github.com/robertmaynard) - Switch thrust over to use rapids-cmake patches ([#265](https://github.com/rapidsai/rapids-cmake/pull/265)) [@robertmaynard](https://github.com/robertmaynard) ## 🛠️ Improvements - Remove `rapids-dependency-file-generator` `FIXME` ([#305](https://github.com/rapidsai/rapids-cmake/pull/305)) [@ajschmidt8](https://github.com/ajschmidt8) - Add `ninja` as build dependency ([#301](https://github.com/rapidsai/rapids-cmake/pull/301)) [@ajschmidt8](https://github.com/ajschmidt8) - Forward merge 22.10 into 22.12 ([#297](https://github.com/rapidsai/rapids-cmake/pull/297)) [@vyasr](https://github.com/vyasr) # rapids-cmake 22.10.00 (12 Oct 2022) ## 🚨 Breaking Changes - Update rapids-cmake to require cmake 3.23.1 (#227) @robertmaynard - put $PREFIX before $BUILD_PREFIX in conda build (#182) @kkraus14 ## 🐛 Bug Fixes - Update to nvcomp 2.4.1 to fix zstd decompression (#286) @robertmaynard - Restore rapids_cython_create_modules output variable name (#276) @robertmaynard - rapids_cuda_init_architectures now obeys CUDAARCHS env variable (#270) @robertmaynard - Update to Thrust 1.17.2 to fix cub ODR issues (#269) @robertmaynard - conda_env: pass conda prefix as a rpath-link directory (#263) @robertmaynard - Update cuCollections to fix issue with INSTALL_CUCO set to OFF. (#261) @bdice - rapids_cpm_libcudacxx correct location of libcudacxx-config (#258) @robertmaynard - Update rapids_find_generate_module to cmake 3.23 (#256) @robertmaynard - Handle reconfiguring with USE_PROPRIETARY_BINARY value differing (#255) @robertmaynard - rapids_cpm_thrust record build directory location of thrust-config (#254) @robertmaynard - disable cuco install rules when no INSTALL_EXPORT_SET (#250) @robertmaynard - Patch thrust and cub install rules to have proper header searches (#244) @robertmaynard - Ensure that we install Thrust and Cub correctly. (#243) @robertmaynard - Revert &quot;Update to CPM v0.35.4 for URL downloads... (#236)&quot; (#242) @robertmaynard - put $PREFIX before $BUILD_PREFIX in conda build (#182) @kkraus14 ## 📖 Documentation - Correct broken patch_toolkit API docs, and CMake API cross references (#271) @robertmaynard - Provide suggestions when encountering an incomplete GTest package (#247) @robertmaynard - Docs: RAPIDS.cmake should be placed in current bin dir (#241) @robertmaynard - Remove incorrect install location note on rapids_export (#232) @robertmaynard ## 🚀 New Features - Update to CPM 0.35.6 as it has needed changes for cpm patching support. (#273) @robertmaynard - Update to nvcomp 2.4 which now offers aarch64 binaries! (#272) @robertmaynard - Support the concept of a patches to apply to a project built via CPM (#264) @robertmaynard - Branch 22.10 merge 22.08 (#262) @robertmaynard - Introduce rapids_cuda_patch_toolkit (#260) @robertmaynard - Update libcudacxx to 1.8 (#253) @robertmaynard - Update to CPM version 0.35.5 (#249) @robertmaynard - Update to CPM v0.35.4 for URL downloads match the download time (#236) @robertmaynard - rapids-cmake dependency tracking now understands COMPONENTS (#234) @robertmaynard - Update to thrust 1.17 (#231) @robertmaynard - Update to CPM v0.35.3 to support symlink build directories (#230) @robertmaynard - Update rapids-cmake to require cmake 3.23.1 (#227) @robertmaynard - Improve GPU detection by doing less subsequent executions (#222) @robertmaynard ## 🛠️ Improvements - Fix typo in `rapids-cmake-url` (#267) @trxcllnt - Ensure `&lt;pkg&gt;_FOUND` is set in the generated `Find&lt;pkg&gt;.cmake` file (#266) @trxcllnt - Set `CUDA_USE_STATIC_CUDA_RUNTIME` to control legacy `FindCUDA.cmake`behavior (#259) @trxcllnt - Use the GitHub `.zip` URI instead of `GIT_REPOSITORY` and `GIT_BRANCH` (#257) @trxcllnt - Update nvcomp to 2.3.3 (#221) @vyasr # rapids-cmake 22.08.00 (17 Aug 2022) ## 🐛 Bug Fixes - json exclude flag behaves as expected libcudacx//thrust/nvcomp ([#223](https://github.com/rapidsai/rapids-cmake/pull/223)) [@robertmaynard](https://github.com/robertmaynard) - Remove nvcomp dependency on CUDA::cudart_static ([#218](https://github.com/rapidsai/rapids-cmake/pull/218)) [@robertmaynard](https://github.com/robertmaynard) - Timestamps for URL downloads match the download time ([#215](https://github.com/rapidsai/rapids-cmake/pull/215)) [@robertmaynard](https://github.com/robertmaynard) - Revert &quot;Update nvcomp to 2.3.2 ([#209)&quot; (#210](https://github.com/rapidsai/rapids-cmake/pull/209)&quot; (#210)) [@vyasr](https://github.com/vyasr) - rapids-cmake won&#39;t ever use an existing variable starting with RAPIDS_ ([#203](https://github.com/rapidsai/rapids-cmake/pull/203)) [@robertmaynard](https://github.com/robertmaynard) ## 📖 Documentation - Docs now provide rapids_find_package examples ([#220](https://github.com/rapidsai/rapids-cmake/pull/220)) [@robertmaynard](https://github.com/robertmaynard) - Minor typo fix in api.rst ([#207](https://github.com/rapidsai/rapids-cmake/pull/207)) [@vyasr](https://github.com/vyasr) - rapids_cpm_&lt;pkgs&gt; document handling of unparsed args ([#206](https://github.com/rapidsai/rapids-cmake/pull/206)) [@robertmaynard](https://github.com/robertmaynard) - Docs/remove doc warnings ([#205](https://github.com/rapidsai/rapids-cmake/pull/205)) [@robertmaynard](https://github.com/robertmaynard) - Fix docs: default behavior is to use a shallow git clone. ([#204](https://github.com/rapidsai/rapids-cmake/pull/204)) [@bdice](https://github.com/bdice) - Add rapids_cython to the html docs ([#197](https://github.com/rapidsai/rapids-cmake/pull/197)) [@robertmaynard](https://github.com/robertmaynard) ## 🚀 New Features - More robust solution of CMake policy 135 ([#224](https://github.com/rapidsai/rapids-cmake/pull/224)) [@robertmaynard](https://github.com/robertmaynard) - Update cuco git tag ([#213](https://github.com/rapidsai/rapids-cmake/pull/213)) [@PointKernel](https://github.com/PointKernel) - Revert &quot;Revert &quot;Update nvcomp to 2.3.2 ([#209)&quot; (#210)&quot; (#211](https://github.com/rapidsai/rapids-cmake/pull/209)&quot; (#210)&quot; (#211)) [@vyasr](https://github.com/vyasr) - Update nvcomp to 2.3.2 ([#209](https://github.com/rapidsai/rapids-cmake/pull/209)) [@robertmaynard](https://github.com/robertmaynard) - rapids_cpm_rmm no longer install when no INSTALL_EXPORT_SET listed ([#202](https://github.com/rapidsai/rapids-cmake/pull/202)) [@robertmaynard](https://github.com/robertmaynard) - Adds support for pulling cuCollections using rapids-cmake ([#201](https://github.com/rapidsai/rapids-cmake/pull/201)) [@vyasr](https://github.com/vyasr) - Add support for a prefix in Cython module targets ([#198](https://github.com/rapidsai/rapids-cmake/pull/198)) [@vyasr](https://github.com/vyasr) ## 🛠️ Improvements - `rapids_find_package()` called with explicit version and REQUIRED should fail ([#214](https://github.com/rapidsai/rapids-cmake/pull/214)) [@trxcllnt](https://github.com/trxcllnt) # rapids-cmake 22.06.00 (7 June 2022) ## 🐛 Bug Fixes - nvcomp install rules need to match the pre-built layout (#194) @robertmaynard - Use target name variable. (#187) @bdice - Remove unneeded message from rapids_export_package (#183) @robertmaynard - rapids_cpm_thrust: Correctly find version 1.15.0 (#181) @robertmaynard - rapids_cpm_thrust: Correctly find version 1.15.0 (#180) @robertmaynard ## 📖 Documentation - Correct spelling mistake in cpm package docs (#188) @robertmaynard ## 🚀 New Features - Add rapids_cpm_nvcomp with prebuilt binary support (#190) @robertmaynard - Default Cython module RUNPATH to $ORIGIN and return the list of created targets (#189) @vyasr - Add rapids-cython component for scikit-build based Python package builds (#184) @vyasr - Add more exhaustive set of tests are version values of 0 (#178) @robertmaynard - rapids_cpm_package_override now hooks into FetchContent (#164) @robertmaynard ## 🛠️ Improvements - Update nvbench tag (#193) @PointKernel # rapids-cmake 22.04.00 (6 Apr 2022) ## 🐛 Bug Fixes - rapids_export now handles explicit version values of 0 correctly (#174) @robertmaynard - rapids_export now internally uses better named variables (#172) @robertmaynard - rapids_cpm_gtest will properly find GTest 1.10 packages (#168) @robertmaynard - CMAKE_CUDA_ARCHITECTURES `ALL` will not insert 62 or 72 (#161) @robertmaynard - Tracked package versions are now not required, but preferred. (#160) @robertmaynard - cpm_thrust would fail when provided only an install export set (#155) @robertmaynard - rapids_export generated config.cmake no longer leaks variables (#149) @robertmaynard ## 📖 Documentation - Docs use intersphinx correctly to link to CMake command docs (#159) @robertmaynard - Example explains when you should use `rapids_find_generate_module` (#153) @robertmaynard - Add CMake intersphinx support (#147) @bdice ## 🚀 New Features - Bump CPM 0.35 for per package CPM_DOWNLOAD controls (#158) @robertmaynard - Track package versions to the generated `find_dependency` calls (#156) @robertmaynard - Update to latest nvbench (#150) @robertmaynard ## 🛠️ Improvements - Temporarily disable new `ops-bot` functionality (#170) @ajschmidt8 - Use exact gtest version (#165) @trxcllnt - Add `.github/ops-bot.yaml` config file (#163) @ajschmidt8 # rapids-cmake 22.02.00 (2 Feb 2022) ## 🐛 Bug Fixes - Ensure that nvbench doesn&#39;t require nvml when `CUDA::nvml` doesn&#39;t exist (#146) @robertmaynard - rapids_cpm_libcudacxx handle CPM already finding libcudacxx before being called (#130) @robertmaynard ## 📖 Documentation - Fix typos (#142) @ajschmidt8 - Fix type-o in docs `&lt;PackageName&gt;_BINARY_DIR` instead of `&lt;PackageName&gt;_BINAR_DIR` (#140) @dagardner-nv - Set the `always_download` value in versions.json to the common case (#135) @robertmaynard - Update Changelog to capture all 21.08 and 21.10 changes (#134) @robertmaynard - Correct minor formatting issues (#132) @robertmaynard - Document how to control the git rep/tag that RAPIDS.cmake uses (#131) @robertmaynard ## 🚀 New Features - rapids-cmake now supports an empty package entry in the override file (#145) @robertmaynard - Update NVBench for 22.02 to be the latest version (#144) @robertmaynard - Update rapids-cmake packages to libcudacxx 1.7 (#143) @robertmaynard - Update rapids-cmake packages to Thrust 1.15 (#138) @robertmaynard - add exclude_from_all flag to version.json (#137) @robertmaynard - Add `PREFIX` option to write_version_file / write_git_revision_file (#118) @robertmaynard ## 🛠️ Improvements - Remove rapids_cmake_install_lib_dir unstable side effect checks (#136) @robertmaynard # rapids-cmake 21.12.00 (9 Dec 2021) ## 🐛 Bug Fixes - rapids_cpm_libcudacxx install logic is safe for multiple inclusion (#124) @robertmaynard - rapids_cpm_libcudacxx ensures CMAKE_INSTALL_INCLUDEDIR exists (#122) @robertmaynard - rapids_cpm_find restores CPM variables when project was already added (#121) @robertmaynard - rapids_cpm_thrust doesn&#39;t place temp file in a searched location (#120) @robertmaynard - Require the exact version of Thrust in the versions.json file (#119) @trxcllnt - CMake option second parameter is the help string, not the default value (#114) @robertmaynard - Make sure we don&#39;t do a shallow clone on nvbench (#113) @robertmaynard - Pin NVBench to a known working SHA1 (#112) @robertmaynard - Build directory config.cmake now sets the correct targets to global (#110) @robertmaynard - rapids_cpm_thrust installs to a location that won&#39;t be marked system (#98) @robertmaynard - find_package now will find modules that CPM has downloaded. (#96) @robertmaynard - rapids_cpm_thrust dont export namespaced thrust target (#93) @robertmaynard - rapids_cpm_spdlog specifies the correct install variable (#91) @robertmaynard - rapids_cpm_init: `CPM_SOURCE_CACHE` doesn&#39;t mean the CPM file exists (#87) @robertmaynard ## 📖 Documentation - Better document that rapids_cpm_find supports arbitrary projects (#108) @robertmaynard - Update the example to showcase rapids-cmake 21.12 (#107) @robertmaynard - Properly generate rapids_cuda_init_runtime docs (#106) @robertmaynard ## 🚀 New Features - Introduce rapids_cpm_libcudacxx (#111) @robertmaynard - Record formatting rules for rapids_cpm_find DOWNLOAD_ONLY option (#94) @robertmaynard - rapids_cmake_install_lib_dir now aware of GNUInstallDirs improvements in CMake 3.22 (#85) @robertmaynard - rapids-cmake defaults to always download overridden packages (#83) @robertmaynard ## 🛠️ Improvements - Prefer `CPM_&lt;pkg&gt;_SOURCE` dirs over `find_package()` in `rapids_cpm_find` (#92) @trxcllnt # rapids-cmake 21.10.00 (7 Oct 2021) ## 🐛 Bug Fixes - Remove unneeded inclusions of the old setup_cpm_cache.cmake (#82) @robertmaynard - Make sure rapids-cmake doesn&#39;t produce CMake syntax warnings (#80) @robertmaynard - rapids_export verify DOCUMENTATION and FINAL_CODE_BLOCK exist (#75) @robertmaynard - Make sure rapids_cpm_spdlog specifies the correct spdlog global targets (#71) @robertmaynard - rapids_cpm_thrust specifies the correct install variable (#70) @robertmaynard - FIX Install sphinxcontrib-moderncmakedomain in docs script (#69) @dillon-cullinan - rapids_export_cpm(BUILD) captures location of locally found packages (#65) @robertmaynard - Introduce rapids_cmake_install_lib_dir (#61) @robertmaynard - rapids_export(BUILD) only creates alias targets to existing targets (#55) @robertmaynard - rapids_find_package propagates variables from find_package (#54) @robertmaynard - rapids_cpm_find is more invariant as one would expect (#51) @robertmaynard - rapids-cmake tests properly state what C++ std levels they require (#46) @robertmaynard - rapids-cmake always generates GLOBAL_TARGETS names correctly (#36) @robertmaynard ## 📖 Documentation - Update update-version.sh (#84) @raydouglass - Add rapids_export_find_package_root to api doc page (#76) @robertmaynard - README.md now references online docs (#72) @robertmaynard - Copyright year range now matches when rapids-cmake existed (#67) @robertmaynard - cmake-format: Now aware of `rapids_cmake_support_conda_env` flags (#62) @robertmaynard - Bug/correct invalid generate module doc layout (#47) @robertmaynard ## 🚀 New Features - rapids-cmake SHOULD_FAIL tests verify the CMake Error string (#79) @robertmaynard - Introduce rapids_cmake_write_git_revision_file (#77) @robertmaynard - Allow projects to override version.json information (#74) @robertmaynard - rapids_export_package(BUILD) captures location of locally found packages (#68) @robertmaynard - Introduce rapids_export_find_package_root command (#64) @robertmaynard - Introduce rapids_cpm_&lt;preset&gt; (#52) @robertmaynard - Tests now can be SERIAL and use FetchContent to get rapids-cmake (#48) @robertmaynard - rapids_export version support expanded to handle more use-cases (#37) @robertmaynard ## 🛠️ Improvements - cpm tests now download less components and can be run in parallel. (#81) @robertmaynard - Ensure that all rapids-cmake files have include guards (#63) @robertmaynard - Introduce RAPIDS.cmake a better way to fetch rapids-cmake (#45) @robertmaynard - ENH Replace gpuci_conda_retry with gpuci_mamba_retry (#44) @dillon-cullinan # rapids-cmake 21.08.00 (4 Aug 2021) ## 🚀 New Features - Introduce `rapids_cmake_write_version_file` to generate a C++ version header ([#23](https://github.com/rapidsai/rapids-cmake/pull/23)) [@robertmaynard](https://github.com/robertmaynard) - Introduce `cmake-format-rapids-cmake` to allow `cmake-format` to understand rapdids-cmake custom functions ([#29](https://github.com/rapidsai/rapids-cmake/pull/29)) [@robertmaynard](https://github.com/robertmaynard) ## 🛠️ Improvements ## 🐛 Bug Fixes - ci/gpu/build.sh uses git tags to properly compute conda env (#43) @robertmaynard - Make sure that rapids-cmake-dir cache variable is hidden (#40) @robertmaynard - Correct regression specify rapids-cmake-dir as a cache variable (#39) @robertmaynard - rapids-cmake add entries to CMAKE_MODULE_PATH on first config (#34) @robertmaynard - Add tests that verify all paths in each rapids-<component>.cmake file ([#24](https://github.com/rapidsai/rapids-cmake/pull/24)) [@robertmaynard](https://github.com/robertmaynard) - Correct issue where `rapids_export(DOCUMENTATION` content was being ignored([#30](https://github.com/rapidsai/rapids-cmake/pull/30)) [@robertmaynard](https://github.com/robertmaynard) - rapids-cmake can now be correctly used by multiple adjacent directories ([#33](https://github.com/rapidsai/rapids-cmake/pull/33)) [@robertmaynard](https://github.com/robertmaynard) # rapids-cmake 21.06.00 (Date TBD) Please see https://github.com/rapidsai/rapids-cmake/releases/tag/v21.06.0a for the latest changes to this development branch. ## 🚀 New Features - Introduce `rapids_cmake_parse_version` for better version extraction ([#20](https://github.com/rapidsai/rapids-cmake/pull/20)) [@robertmaynard](https://github.com/robertmaynard) ## 🛠️ Improvements - Verify that rapids-cmake always preserves CPM arguments ([#18](https://github.com/rapidsai/rapids-cmake/pull/18)) [@robertmaynard](https://github.com/robertmaynard) - Add Sphinx based documentation for the project ([#14](https://github.com/rapidsai/rapids-cmake/pull/14)) [@robertmaynard](https://github.com/robertmaynard) - `rapids_export` places the build export files in a location CPM can find. ([#3](https://github.com/rapidsai/rapids-cmake/pull/3)) [@robertmaynard](https://github.com/robertmaynard) ## 🐛 Bug Fixes - Make sure we properly quote all CPM args ([#17](https://github.com/rapidsai/rapids-cmake/pull/17)) [@robertmaynard](https://github.com/robertmaynard) - `rapids_export` correctly handles version strings with leading zeroes ([#12](https://github.com/rapidsai/rapids-cmake/pull/12)) [@robertmaynard](https://github.com/robertmaynard) - `rapids_export_write_language` properly executes each time CMake is run ([#10](https://github.com/rapidsai/rapids-cmake/pull/10)) [@robertmaynard](https://github.com/robertmaynard) - `rapids_export` properly sets version variables ([#9](https://github.com/rapidsai/rapids-cmake/pull/9)) [@robertmaynard](https://github.com/robertmaynard) - `rapids_export` now obeys CMake config file naming convention ([#8](https://github.com/rapidsai/rapids-cmake/pull/8)) [@robertmaynard](https://github.com/robertmaynard) - Refactor layout to enable adding CI and Documentation ([#5](https://github.com/rapidsai/rapids-cmake/pull/5)) [@robertmaynard](https://github.com/robertmaynard)
0
rapidsai_public_repos
rapidsai_public_repos/rapids-cmake/init.cmake
#============================================================================= # Copyright (c) 2021-2023, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #============================================================================= # # This is NOT an entry point for other projects using rapids-cmake # # Nothing but rapids-cmake/CMakeLists.txt should include this file # if(NOT CMAKE_CURRENT_SOURCE_DIR STREQUAL CMAKE_SOURCE_DIR) # Be defensive of other projects over-writing CMAKE_MODULE_PATH on us! set(rapids-cmake-dir "${rapids-cmake-dir}" PARENT_SCOPE) if(NOT "${rapids-cmake-dir}" IN_LIST CMAKE_MODULE_PATH) list(APPEND CMAKE_MODULE_PATH "${rapids-cmake-dir}") endif() set(CMAKE_MODULE_PATH "${CMAKE_MODULE_PATH}" PARENT_SCOPE) # Don't install this hook if another rapids project has already done so get_directory_property(parent_dir PARENT_DIRECTORY) cmake_language(DEFER DIRECTORY "${parent_dir}" GET_CALL_IDS rapids_existing_calls) if(NOT rapids_init_hook IN_LIST rapids_existing_calls) cmake_language(DEFER DIRECTORY "${parent_dir}" ID rapids_init_hook CALL include "${rapids-cmake-dir}/../init.cmake") endif() endif()
0
rapidsai_public_repos
rapidsai_public_repos/rapids-cmake/dependencies.yaml
# Dependency list for https://github.com/rapidsai/dependency-file-generator files: test: output: none includes: - build - cudatoolkit - docs - py_version - test checks: output: none includes: - build - style_checks - py_version docs: output: none includes: - cudatoolkit - docs channels: - rapidsai - conda-forge dependencies: build: common: - output_types: [conda, requirements] packages: - cmake>=3.23.1,!=3.25.0 - ninja - output_types: conda packages: - c-compiler - cxx-compiler - make specific: - output_types: conda matrices: - matrix: arch: x86_64 cuda: "11.2" packages: - nvcc_linux-64=11.2 - matrix: arch: aarch64 cuda: "11.2" packages: - nvcc_linux-aarch64=11.2 - matrix: arch: x86_64 cuda: "11.4" packages: - nvcc_linux-64=11.4 - matrix: arch: aarch64 cuda: "11.4" packages: - nvcc_linux-aarch64=11.4 - matrix: arch: x86_64 cuda: "11.5" packages: - nvcc_linux-64=11.5 - matrix: arch: aarch64 cuda: "11.5" packages: - nvcc_linux-aarch64=11.5 - matrix: arch: x86_64 cuda: "11.8" packages: - nvcc_linux-64=11.8 - matrix: arch: aarch64 cuda: "11.8" packages: - nvcc_linux-aarch64=11.8 - matrix: cuda: "12.0" packages: - cuda-version=12.0 - cuda-nvcc cudatoolkit: specific: - output_types: conda matrices: - matrix: cuda: "11.2" packages: - cuda-version=11.2 - cudatoolkit - gcc<11.0.0 - sysroot_linux-64==2.17 - matrix: cuda: "11.4" packages: - cuda-version=11.4 - cudatoolkit - gcc<11.0.0 - sysroot_linux-64==2.17 - matrix: cuda: "11.5" packages: - cuda-version=11.5 - cudatoolkit - gcc<11.0.0 - sysroot_linux-64==2.17 - matrix: cuda: "11.6" packages: - cuda-version=11.6 - cudatoolkit - gcc<12.0.0 - sysroot_linux-64==2.17 - matrix: cuda: "11.8" packages: - cuda-version=11.8 - cudatoolkit - gcc<12.0.0 - sysroot_linux-64==2.17 - matrix: cuda: "12.0" packages: - cuda-version=12.0 - cuda-cupti-dev - gcc<13.0.0 - sysroot_linux-64==2.17 docs: common: - output_types: [conda] packages: - pip - pip: - sphinxcontrib-moderncmakedomain - sphinx - sphinx-copybutton - sphinx_rtd_theme test: common: - output_types: [conda, requirements] packages: - cython>=0.29,<0.30 - scikit-build>=0.13.1 - libpng - zlib - output_types: [conda] packages: - fmt==9.1.0 py_version: specific: - output_types: conda matrices: - matrix: py: "3.9" packages: - python=3.9 - matrix: py: "3.10" packages: - python=3.10 - matrix: packages: - python>=3.9,<3.11 style_checks: common: - output_types: [conda, requirements] packages: - pre-commit
0
rapidsai_public_repos
rapidsai_public_repos/rapids-cmake/CONTRIBUTING.md
# Contributing to rapids-cmake If you are interested in contributing to rapids-cmake, your contributions will fall into three categories: 1. You want to report a bug, feature request, or documentation issue - File an [issue](https://github.com/rapidsai/rapids-cmake/issues/new/choose) describing what you encountered or what you want to see changed. - The RAPIDS team will evaluate the issues and triage them, scheduling them for a release. If you believe the issue needs priority attention comment on the issue to notify the team. 2. You want to propose a new Feature and implement it - Post about your intended feature, and we shall discuss the design and implementation. - Once we agree that the plan looks good, go ahead and implement it, using the [code contributions](#code-contributions) guide below. 3. You want to implement a feature or bug-fix for an outstanding issue - Follow the [code contributions](#code-contributions) guide below. - If you need more context on a particular issue, please ask and we shall provide. ## Code contributions While RAPIDS core provides commonly used scripts we know that they aren't universal and might need to be composed in different ways. This means that the code we are developing should be designed for composability, and all side-effects or CMake behavior changes should be explicitly opt-in. So when writing new rapids-cmake features make sure to think about how users might want to opt-in, and provide the necessary function decomposition. For example lets look at an example of wanting to have an easy wrapper around creating libraries and setting properties. ``` [=[ BAD ]=] function(rapids_add_library target ) add_library(${target} ${ARGN}) set_target_properties(cudf PROPERTIES CUDA_STANDARD 17 CUDA_STANDARD_REQUIRED ON ) endfunction() rapids_add_library(example SHARED ...) [=[ GOOD ]=] function(rapids_cmake_setup_target target ) set_target_properties(${target} PROPERTIES CUDA_STANDARD 17 CUDA_STANDARD_REQUIRED ON ) endfunction() function(rapids_add_library target) add_library(example ${ARGN}) rapids_cmake_setup_target( example ) endfunction() rapids_add_library(example SHARED ...) ``` Here we can see that breaking out `rapids_cmake_setup_target` is important as it allows users that don't/can't use `rapids_add_library` to still opt-in to other features. Please ensure that when you are creating new features you follow the following guidelines: - Each function should follow the `rapids_<component>_<file_name>` naming pattern - Each function should go into a separate `.cmake` file in the appropriate directory - Each user facing `.cmake` file should have include guards (`include_guard(GLOBAL)`) - Each user facing `.cmake` file should be documented following the rst structure - Each user facing function should be added to the `cmake-format.json` document - Run `cmake-genparsers -f json` on the `.cmake` file as a starting point - Each function first line should be `list(APPEND CMAKE_MESSAGE_CONTEXT "rapids.<component>.<function>")` - A file should not modify any state simply by being included. State modification should only occur inside functions unless absolutely necessary due to restrictions of the CMake language. - Any files that do need to break this rule can't be part of `rapids-<component>.cmake`. ### Your first issue 1. Read the project's [README.md](https://github.com/rapidsai/rapids-cmake/blob/main/README.md) to learn how to setup the development environment 2. Find an issue to work on. The best way is to look for the [good first issue](https://github.com/rapidsai/rapids-cmake/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22) or [help wanted](https://github.com/rapidsai/rapids-cmake/issues?q=is%3Aissue+is%3Aopen+label%3A%22help+wanted%22) labels 3. Comment on the issue saying you are going to work on it 4. Code! Make sure to update unit tests! 5. When done, [create your pull request](https://github.com/rapidsai/rapids-cmake/compare) 6. Verify that CI passes all [status checks](https://help.github.com/articles/about-status-checks/). Fix if needed 7. Wait for other developers to review your code and update code as needed 8. Once reviewed and approved, a RAPIDS developer will merge your pull request Remember, if you are unsure about anything, don't hesitate to comment on issues and ask for clarifications! ### Seasoned developers Once you have gotten your feet wet and are more comfortable with the code, you can look at the prioritized issues of our next release in our [project boards](https://github.com/rapidsai/rapids-cmake/projects). > **Pro Tip:** Always look at the release board with the highest number for issues to work on. This is where RAPIDS developers also focus their efforts. Look at the unassigned issues, and find an issue you are comfortable with contributing to. Start with _Step 3_ from above, commenting on the issue to let others know you are working on it. If you have any questions related to the implementation of the issue, ask them in the issue instead of the PR. ## Attribution Portions adopted from https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md
0
rapidsai_public_repos
rapidsai_public_repos/rapids-cmake/LICENSE
Apache License Version 2.0, January 2004 http://www.apache.org/licenses/ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 1. Definitions. "License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document. "Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License. "Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity. "You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License. "Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types. "Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below). "Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof. "Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution." "Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work. 2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form. 3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed. 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions: (a) You must give any other recipients of the Work or Derivative Works a copy of this License; and (b) You must cause any modified files to carry prominent notices stating that You changed the files; and (c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and (d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License. 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions. 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file. 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License. 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages. 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability. END OF TERMS AND CONDITIONS APPENDIX: How to apply the Apache License to your work. To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets "{}" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the appropriate comment syntax for the file format. We also recommend that a file or class name and description of purpose be included on the same "printed page" as the copyright notice for easier identification within third-party archives. Copyright 2021 NVIDIA Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
0
rapidsai_public_repos
rapidsai_public_repos/rapids-cmake/.clang-format
--- # Refer to the following link for the explanation of each params: # http://releases.llvm.org/8.0.0/tools/clang/docs/ClangFormatStyleOptions.html Language: Cpp # BasedOnStyle: Google AccessModifierOffset: -1 AlignAfterOpenBracket: Align AlignConsecutiveAssignments: true AlignConsecutiveBitFields: true AlignConsecutiveDeclarations: false AlignConsecutiveMacros: true AlignEscapedNewlines: Left AlignOperands: true AlignTrailingComments: true AllowAllArgumentsOnNextLine: true AllowAllConstructorInitializersOnNextLine: true AllowAllParametersOfDeclarationOnNextLine: true AllowShortBlocksOnASingleLine: true AllowShortCaseLabelsOnASingleLine: true AllowShortEnumsOnASingleLine: true AllowShortFunctionsOnASingleLine: All AllowShortIfStatementsOnASingleLine: true AllowShortLambdasOnASingleLine: true AllowShortLoopsOnASingleLine: false # This is deprecated AlwaysBreakAfterDefinitionReturnType: None AlwaysBreakAfterReturnType: None AlwaysBreakBeforeMultilineStrings: true AlwaysBreakTemplateDeclarations: Yes BinPackArguments: false BinPackParameters: false BraceWrapping: AfterClass: false AfterControlStatement: false AfterEnum: false AfterFunction: false AfterNamespace: false AfterObjCDeclaration: false AfterStruct: false AfterUnion: false AfterExternBlock: false BeforeCatch: false BeforeElse: false IndentBraces: false # disabling the below splits, else, they'll just add to the vertical length of source files! SplitEmptyFunction: false SplitEmptyRecord: false SplitEmptyNamespace: false BreakAfterJavaFieldAnnotations: false BreakBeforeBinaryOperators: None BreakBeforeBraces: WebKit BreakBeforeInheritanceComma: false BreakBeforeTernaryOperators: true BreakConstructorInitializersBeforeComma: false BreakConstructorInitializers: BeforeColon BreakInheritanceList: BeforeColon BreakStringLiterals: true ColumnLimit: 100 CommentPragmas: '^ IWYU pragma:' CompactNamespaces: false ConstructorInitializerAllOnOneLineOrOnePerLine: true # Kept the below 2 to be the same as `IndentWidth` to keep everything uniform ConstructorInitializerIndentWidth: 2 ContinuationIndentWidth: 2 Cpp11BracedListStyle: true DerivePointerAlignment: false DisableFormat: false ExperimentalAutoDetectBinPacking: false FixNamespaceComments: true ForEachMacros: - foreach - Q_FOREACH - BOOST_FOREACH IncludeBlocks: Preserve IncludeIsMainRegex: '([-_](test|unittest))?$' IndentCaseLabels: true IndentPPDirectives: None IndentWidth: 2 IndentWrappedFunctionNames: false JavaScriptQuotes: Leave JavaScriptWrapImports: true KeepEmptyLinesAtTheStartOfBlocks: false MacroBlockBegin: '' MacroBlockEnd: '' MaxEmptyLinesToKeep: 1 NamespaceIndentation: None ObjCBinPackProtocolList: Never ObjCBlockIndentWidth: 2 ObjCSpaceAfterProperty: false ObjCSpaceBeforeProtocolList: true PenaltyBreakAssignment: 2 PenaltyBreakBeforeFirstCallParameter: 1 PenaltyBreakComment: 300 PenaltyBreakFirstLessLess: 120 PenaltyBreakString: 1000 PenaltyBreakTemplateDeclaration: 10 PenaltyExcessCharacter: 1000000 PenaltyReturnTypeOnItsOwnLine: 200 PointerAlignment: Left RawStringFormats: - Language: Cpp Delimiters: - cc - CC - cpp - Cpp - CPP - 'c++' - 'C++' CanonicalDelimiter: '' - Language: TextProto Delimiters: - pb - PB - proto - PROTO EnclosingFunctions: - EqualsProto - EquivToProto - PARSE_PARTIAL_TEXT_PROTO - PARSE_TEST_PROTO - PARSE_TEXT_PROTO - ParseTextOrDie - ParseTextProtoOrDie CanonicalDelimiter: '' BasedOnStyle: google # Enabling comment reflow causes doxygen comments to be messed up in their formats! ReflowComments: true SortIncludes: true SortUsingDeclarations: true SpaceAfterCStyleCast: false SpaceAfterTemplateKeyword: true SpaceBeforeAssignmentOperators: true SpaceBeforeCpp11BracedList: false SpaceBeforeCtorInitializerColon: true SpaceBeforeInheritanceColon: true SpaceBeforeParens: ControlStatements SpaceBeforeRangeBasedForLoopColon: true SpaceBeforeSquareBrackets: false SpaceInEmptyBlock: false SpaceInEmptyParentheses: false SpacesBeforeTrailingComments: 2 SpacesInAngles: false SpacesInConditionalStatement: false SpacesInContainerLiterals: true SpacesInCStyleCastParentheses: false SpacesInParentheses: false SpacesInSquareBrackets: false Standard: c++17 StatementMacros: - Q_UNUSED - QT_REQUIRE_VERSION # Be consistent with indent-width, even for people who use tab for indentation! TabWidth: 2 UseTab: Never
0
rapidsai_public_repos/rapids-cmake
rapidsai_public_repos/rapids-cmake/rapids-cmake/rapids-export.cmake
#============================================================================= # Copyright (c) 2021, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #============================================================================= include_guard(GLOBAL) include(${CMAKE_CURRENT_LIST_DIR}/export/package.cmake) include(${CMAKE_CURRENT_LIST_DIR}/export/cpm.cmake) include(${CMAKE_CURRENT_LIST_DIR}/export/export.cmake)
0
rapidsai_public_repos/rapids-cmake
rapidsai_public_repos/rapids-cmake/rapids-cmake/rapids-cuda.cmake
#============================================================================= # Copyright (c) 2021, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #============================================================================= include_guard(GLOBAL) include(${CMAKE_CURRENT_LIST_DIR}/cuda/init_architectures.cmake) include(${CMAKE_CURRENT_LIST_DIR}/cuda/init_runtime.cmake) include(${CMAKE_CURRENT_LIST_DIR}/cuda/set_architectures.cmake)
0
rapidsai_public_repos/rapids-cmake
rapidsai_public_repos/rapids-cmake/rapids-cmake/rapids-find.cmake
#============================================================================= # Copyright (c) 2021, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #============================================================================= include_guard(GLOBAL) include(${CMAKE_CURRENT_LIST_DIR}/find/generate_module.cmake) include(${CMAKE_CURRENT_LIST_DIR}/find/package.cmake)
0
rapidsai_public_repos/rapids-cmake
rapidsai_public_repos/rapids-cmake/rapids-cmake/rapids-cpm.cmake
#============================================================================= # Copyright (c) 2021, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #============================================================================= include_guard(GLOBAL) include(${CMAKE_CURRENT_LIST_DIR}/cpm/init.cmake) include(${CMAKE_CURRENT_LIST_DIR}/cpm/find.cmake)
0
rapidsai_public_repos/rapids-cmake
rapidsai_public_repos/rapids-cmake/rapids-cmake/rapids-test.cmake
#============================================================================= # Copyright (c) 2022-2023, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #============================================================================= include_guard(GLOBAL) include(${CMAKE_CURRENT_LIST_DIR}/test/init.cmake) include(${CMAKE_CURRENT_LIST_DIR}/test/add.cmake) include(${CMAKE_CURRENT_LIST_DIR}/test/generate_resource_spec.cmake) include(${CMAKE_CURRENT_LIST_DIR}/test/gpu_requirements.cmake) include(${CMAKE_CURRENT_LIST_DIR}/test/install_relocatable.cmake)
0
rapidsai_public_repos/rapids-cmake
rapidsai_public_repos/rapids-cmake/rapids-cmake/rapids-cython.cmake
#============================================================================= # Copyright (c) 2022, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #============================================================================= include_guard(GLOBAL) include(${CMAKE_CURRENT_LIST_DIR}/cython/init.cmake) include(${CMAKE_CURRENT_LIST_DIR}/cython/create_modules.cmake) include(${CMAKE_CURRENT_LIST_DIR}/cython/add_rpath_entries.cmake)
0
rapidsai_public_repos/rapids-cmake
rapidsai_public_repos/rapids-cmake/rapids-cmake/rapids-version.cmake
#============================================================================= # Copyright (c) 2021-2023, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #============================================================================= # can't have an include guard on this file # that breaks its usage by cpm/detail/package_details if(NOT DEFINED rapids-cmake-version) set(rapids-cmake-version 24.02) endif()
0
rapidsai_public_repos/rapids-cmake
rapidsai_public_repos/rapids-cmake/rapids-cmake/rapids-cmake.cmake
#============================================================================= # Copyright (c) 2021, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #============================================================================= include_guard(GLOBAL) include(${CMAKE_CURRENT_LIST_DIR}/cmake/build_type.cmake) include(${CMAKE_CURRENT_LIST_DIR}/cmake/install_lib_dir.cmake) include(${CMAKE_CURRENT_LIST_DIR}/cmake/parse_version.cmake) include(${CMAKE_CURRENT_LIST_DIR}/cmake/support_conda_env.cmake) include(${CMAKE_CURRENT_LIST_DIR}/cmake/write_git_revision_file.cmake) include(${CMAKE_CURRENT_LIST_DIR}/cmake/write_version_file.cmake)
0
rapidsai_public_repos/rapids-cmake/rapids-cmake
rapidsai_public_repos/rapids-cmake/rapids-cmake/cuda/set_runtime.cmake
#============================================================================= # Copyright (c) 2023, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #============================================================================= include_guard(GLOBAL) #[=======================================================================[.rst: rapids_cuda_set_runtime ------------------------------- .. versionadded:: v23.08.00 Establish what CUDA runtime library should be used by a single target .. code-block:: cmake rapids_cuda_set_runtime( target USE_STATIC (TRUE|FALSE) ) Establishes what CUDA runtime will be used for a target, via the :cmake:prop_tgt:`CUDA_RUNTIME_LIBRARY <cmake:prop_tgt:CUDA_RUNTIME_LIBRARY>` and by linking to `CUDA::cudart` or `CUDA::cudart_static` if the :cmake:module:`find_package(CUDAToolkit) <cmake:module:FindCUDAToolkit>` has been called. The linking to the `CUDA::cudart` or `CUDA::cudart_static` will have the following usage behavior: - For `INTERFACE` targets the linking will be `INTERFACE` - For all other targets the linking will be `PRIVATE` .. note:: If using the deprecated `FindCUDA.cmake` you must use the :cmake:command:`rapids_cuda_init_runtime` method to properly establish the default mode. When `USE_STATIC TRUE` is provided the target will link to a statically-linked CUDA runtime library. When `USE_STATIC FALSE` is provided the target will link to a shared-linked CUDA runtime library. #]=======================================================================] function(rapids_cuda_set_runtime target use_static value) list(APPEND CMAKE_MESSAGE_CONTEXT "rapids.cuda.set_runtime") get_target_property(type ${target} TYPE) if(type STREQUAL "INTERFACE_LIBRARY") set(mode INTERFACE) else() set(mode PRIVATE) endif() if(${value}) set_target_properties(${target} PROPERTIES CUDA_RUNTIME_LIBRARY STATIC) target_link_libraries(${target} ${mode} $<TARGET_NAME_IF_EXISTS:CUDA::cudart_static>) else() set_target_properties(${target} PROPERTIES CUDA_RUNTIME_LIBRARY SHARED) target_link_libraries(${target} ${mode} $<TARGET_NAME_IF_EXISTS:CUDA::cudart>) endif() endfunction()
0
rapidsai_public_repos/rapids-cmake/rapids-cmake
rapidsai_public_repos/rapids-cmake/rapids-cmake/cuda/init_architectures.cmake
#============================================================================= # Copyright (c) 2021-2023, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #============================================================================= include_guard(GLOBAL) #[=======================================================================[.rst: rapids_cuda_init_architectures ------------------------------- .. versionadded:: v21.06.00 Extends :cmake:variable:`CMAKE_CUDA_ARCHITECTURES <cmake:variable:CMAKE_CUDA_ARCHITECTURES>` to include support for `RAPIDS` and `NATIVE` to make CUDA architecture compilation easier. .. code-block:: cmake rapids_cuda_init_architectures(<project_name>) Used before enabling the CUDA language either via :cmake:command:`project() <cmake:command:project>` to establish the CUDA architectures to be compiled for. Parses the :cmake:envvar:`ENV{CUDAARCHS} <cmake:envvar:CUDAARCHS>`, and :cmake:variable:`CMAKE_CUDA_ARCHITECTURES <cmake:variable:CMAKE_CUDA_ARCHITECTURES>` for special values `RAPIDS`, and `NATIVE`. .. note:: Required to be called before the first :cmake:command:`project() <cmake:command:project>` call. Will automatically call :cmake:command:`rapids_cuda_set_architectures` immediately after :cmake:command:`project() <cmake:command:project>` with the same project name establishing the correct values for :cmake:variable:`CMAKE_CUDA_ARCHITECTURES <cmake:variable:CMAKE_CUDA_ARCHITECTURES>`. ``project_name`` Name of the project in the subsequent :cmake:command:`project() <cmake:command:project>` call. .. include:: supported_cuda_architectures_values.txt Example on how to properly use :cmake:command:`rapids_cuda_init_architectures`: .. code-block:: cmake cmake_minimum_required(...) if(NOT EXISTS ${CMAKE_CURRENT_BINARY_DIR}/EXAMPLE_RAPIDS.cmake) file(DOWNLOAD https://raw.githubusercontent.com/rapidsai/rapids-cmake/branch-<VERSION_MAJOR>.<VERSION_MINOR>/RAPIDS.cmake ${CMAKE_CURRENT_BINARY_DIR}/EXAMPLE_RAPIDS.cmake) endif() include(${CMAKE_CURRENT_BINARY_DIR}/EXAMPLE_RAPIDS.cmake) include(rapids-cuda) rapids_cuda_init_architectures(ExampleProject) project(ExampleProject ...) #]=======================================================================] # cmake-lint: disable=W0105 function(rapids_cuda_init_architectures project_name) list(APPEND CMAKE_MESSAGE_CONTEXT "rapids.cuda.init_architectures") include(${CMAKE_CURRENT_FUNCTION_LIST_DIR}/detail/architectures_policy.cmake) # If `CMAKE_CUDA_ARCHITECTURES` is not defined, build for all supported architectures. If # `CMAKE_CUDA_ARCHITECTURES` is set to an empty string (""), build for only the current # architecture. If `CMAKE_CUDA_ARCHITECTURES` is specified by the user, use user setting. if(DEFINED ENV{CUDAARCHS} AND ("$ENV{CUDAARCHS}" STREQUAL "RAPIDS" OR "$ENV{CUDAARCHS}" STREQUAL "ALL")) set(cuda_arch_mode "$ENV{CUDAARCHS}") rapids_cuda_architectures_policy(FROM_INIT cuda_arch_mode) elseif(DEFINED ENV{CUDAARCHS} AND "$ENV{CUDAARCHS}" STREQUAL "NATIVE") set(cuda_arch_mode "NATIVE") elseif(CMAKE_CUDA_ARCHITECTURES STREQUAL "RAPIDS" OR CMAKE_CUDA_ARCHITECTURES STREQUAL "ALL") set(cuda_arch_mode "${CMAKE_CUDA_ARCHITECTURES}") rapids_cuda_architectures_policy(FROM_INIT cuda_arch_mode) elseif(CMAKE_CUDA_ARCHITECTURES STREQUAL "") set(cuda_arch_mode "NATIVE") set(deprecated_cuda_arch_mode "EMPTY_STR") rapids_cuda_architectures_policy(FROM_INIT deprecated_cuda_arch_mode) elseif(CMAKE_CUDA_ARCHITECTURES STREQUAL "NATIVE") set(cuda_arch_mode "NATIVE") elseif(NOT (DEFINED ENV{CUDAARCHS} OR DEFINED CMAKE_CUDA_ARCHITECTURES)) set(cuda_arch_mode "RAPIDS") endif() # This needs to be run before enabling the CUDA language since RAPIDS supports magic values like # `RAPIDS`, `ALL`, and `NATIVE` which if propagated cause CMake to fail to determine the CUDA # compiler if(cuda_arch_mode STREQUAL "RAPIDS") set(CMAKE_CUDA_ARCHITECTURES OFF PARENT_SCOPE) set(load_file "${CMAKE_CURRENT_FUNCTION_LIST_DIR}/detail/invoke_set_all_architectures.cmake") elseif(cuda_arch_mode STREQUAL "NATIVE") set(CMAKE_CUDA_ARCHITECTURES OFF PARENT_SCOPE) set(load_file "${CMAKE_CURRENT_FUNCTION_LIST_DIR}/detail/invoke_set_native_architectures.cmake") endif() if(load_file) include("${CMAKE_CURRENT_FUNCTION_LIST_DIR}/set_architectures.cmake") # Setup to call to set CMAKE_CUDA_ARCHITECTURES values to occur right after the project call # https://cmake.org/cmake/help/latest/command/project.html#code-injection # # If an existing file was specified for loading post `project` we will chain include them if(DEFINED CMAKE_PROJECT_${project_name}_INCLUDE) set(_RAPIDS_PREVIOUS_CMAKE_PROJECT_INCLUDE "${CMAKE_PROJECT_${project_name}_INCLUDE}" PARENT_SCOPE) endif() set(CMAKE_PROJECT_${project_name}_INCLUDE "${load_file}" PARENT_SCOPE) endif() endfunction()
0
rapidsai_public_repos/rapids-cmake/rapids-cmake
rapidsai_public_repos/rapids-cmake/rapids-cmake/cuda/set_architectures.cmake
#============================================================================= # Copyright (c) 2021-2023, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #============================================================================= include_guard(GLOBAL) #[=======================================================================[.rst: rapids_cuda_set_architectures ------------------------------- .. versionadded:: v21.06.00 Sets up :cmake:variable:`CMAKE_CUDA_ARCHITECTURES` based on the requested mode .. code-block:: cmake rapids_cuda_set_architectures( (NATIVE|RAPIDS) ) Establishes what CUDA architectures that will be compiled for, overriding any existing :cmake:variable:`CMAKE_CUDA_ARCHITECTURES` value. This function should rarely be used, as :cmake:command:`rapids_cuda_init_architectures` allows for the expected workflow of using :cmake:variable:`CMAKE_CUDA_ARCHITECTURES` when configuring a project. If for some reason your project can't use :cmake:command:`rapids_cuda_init_architectures` than you can use :cmake:command:`rapids_cuda_set_architectures` directly. .. note:: This is automatically called by :cmake:command:`rapids_cuda_init_architectures` .. include:: supported_cuda_architectures_values.txt Result Variables ^^^^^^^^^^^^^^^^ ``CMAKE_CUDA_ARCHITECTURES`` will exist and set to the list of architectures that should be compiled for. Will overwrite any existing values. #]=======================================================================] function(rapids_cuda_set_architectures mode) list(APPEND CMAKE_MESSAGE_CONTEXT "rapids.cuda.set_architectures") set(supported_archs "70" "75" "80" "86" "90") if(CMAKE_CUDA_COMPILER_ID STREQUAL "NVIDIA" AND CMAKE_CUDA_COMPILER_VERSION VERSION_LESS 11.1.0) list(REMOVE_ITEM supported_archs "86") endif() if(CMAKE_CUDA_COMPILER_ID STREQUAL "NVIDIA" AND CMAKE_CUDA_COMPILER_VERSION VERSION_LESS 11.8.0) list(REMOVE_ITEM supported_archs "90") endif() include(${CMAKE_CURRENT_FUNCTION_LIST_DIR}/detail/architectures_policy.cmake) rapids_cuda_architectures_policy(FROM_SET mode) if(${mode} STREQUAL "RAPIDS") # CMake architecture list entry of "80" means to build compute and sm. What we want is for the # newest arch only to build that way while the rest built only for sm. list(POP_BACK supported_archs latest_arch) list(TRANSFORM supported_archs APPEND "-real") list(APPEND supported_archs ${latest_arch}) set(CMAKE_CUDA_ARCHITECTURES ${supported_archs} PARENT_SCOPE) elseif(${mode} STREQUAL "NATIVE") include(${CMAKE_CURRENT_FUNCTION_LIST_DIR}/detail/detect_architectures.cmake) rapids_cuda_detect_architectures(supported_archs CMAKE_CUDA_ARCHITECTURES) list(TRANSFORM CMAKE_CUDA_ARCHITECTURES APPEND "-real") set(CMAKE_CUDA_ARCHITECTURES ${CMAKE_CUDA_ARCHITECTURES} PARENT_SCOPE) endif() endfunction()
0
rapidsai_public_repos/rapids-cmake/rapids-cmake
rapidsai_public_repos/rapids-cmake/rapids-cmake/cuda/init_runtime.cmake
#============================================================================= # Copyright (c) 2021, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #============================================================================= include_guard(GLOBAL) #[=======================================================================[.rst: rapids_cuda_init_runtime ------------------------------- .. versionadded:: v21.06.00 Establish what CUDA runtime library should be propagated .. code-block:: cmake rapids_cuda_init_runtime( USE_STATIC (TRUE|FALSE) ) Establishes what CUDA runtime will be used, if not already explicitly specified, via the :cmake:variable:`CMAKE_CUDA_RUNTIME_LIBRARY <cmake:variable:CMAKE_CUDA_RUNTIME_LIBRARY>` variable. We also set :cmake:variable:`CUDA_USE_STATIC_CUDA_RUNTIME <cmake:module:FindCUDA>` to control targets using the legacy `FindCUDA.cmake` When `USE_STATIC TRUE` is provided all targets will link to a statically-linked CUDA runtime library. When `USE_STATIC FALSE` is provided all targets will link to a shared-linked CUDA runtime library. #]=======================================================================] function(rapids_cuda_init_runtime use_static value) list(APPEND CMAKE_MESSAGE_CONTEXT "rapids.cuda.init_runtime") if(NOT DEFINED CMAKE_CUDA_RUNTIME_LIBRARY) if(${value}) set(CMAKE_CUDA_RUNTIME_LIBRARY STATIC PARENT_SCOPE) else() set(CMAKE_CUDA_RUNTIME_LIBRARY SHARED PARENT_SCOPE) endif() endif() # Control legacy FindCUDA.cmake behavior too if(NOT DEFINED CUDA_USE_STATIC_CUDA_RUNTIME) if(${value}) set(CUDA_USE_STATIC_CUDA_RUNTIME ON PARENT_SCOPE) else() set(CUDA_USE_STATIC_CUDA_RUNTIME OFF PARENT_SCOPE) endif() endif() endfunction()
0
rapidsai_public_repos/rapids-cmake/rapids-cmake
rapidsai_public_repos/rapids-cmake/rapids-cmake/cuda/patch_toolkit.cmake
#============================================================================= # Copyright (c) 2022, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #============================================================================= include_guard(GLOBAL) #[=======================================================================[.rst: rapids_cuda_patch_toolkit --------------------------------- .. versionadded:: v22.10.00 Corrects missing dependencies in the CUDA toolkit .. code-block:: cmake rapids_cuda_patch_toolkit( ) For CMake versions 3.23.1-3, and 3.24.1 the dependencies of cublas and cusolver targets are incorrect. This module must be called from the same CMakeLists.txt as the first `find_project(CUDAToolkit)` to patch the targets. .. note:: :cmake:command:`rapids_cpm_find` will automatically call this module when asked to find the CUDAToolkit. #]=======================================================================] function(rapids_cuda_patch_toolkit) list(APPEND CMAKE_MESSAGE_CONTEXT "rapids.cuda.patch_toolkit") get_directory_property(itargets IMPORTED_TARGETS) if(CMAKE_VERSION VERSION_LESS 3.24.2) if(CUDA::cublas IN_LIST itargets) target_link_libraries(CUDA::cublas INTERFACE CUDA::cublasLt) endif() if(CUDA::cublas_static IN_LIST itargets) target_link_libraries(CUDA::cublas_static INTERFACE CUDA::cublasLt_static) endif() if(CUDA::cusolver_static IN_LIST itargets) target_link_libraries(CUDA::cusolver_static INTERFACE CUDA::cusolver_lapack_static) endif() endif() endfunction()
0
rapidsai_public_repos/rapids-cmake/rapids-cmake/cuda
rapidsai_public_repos/rapids-cmake/rapids-cmake/cuda/detail/invoke_set_all_architectures.cmake
#============================================================================= # Copyright (c) 2021-2023, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #============================================================================= # # RAPIDS detected something use requested a file to be # called after `project()`, so chain call them. if(DEFINED _RAPIDS_PREVIOUS_CMAKE_PROJECT_INCLUDE) include("${_RAPIDS_PREVIOUS_CMAKE_PROJECT_INCLUDE}") endif() # # Used by rapids_cuda_init_architectures to allow the `project()` call to invoke the # rapids_cuda_set_architectures function after compiler detection # rapids_cuda_set_architectures(RAPIDS)
0
rapidsai_public_repos/rapids-cmake/rapids-cmake/cuda
rapidsai_public_repos/rapids-cmake/rapids-cmake/cuda/detail/architectures_policy.cmake
#============================================================================= # Copyright (c) 2023, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #============================================================================= include_guard(GLOBAL) #[=======================================================================[.rst: rapids_cuda_architectures_policy -------------------------------- .. versionadded:: v23.02.00 Maps deprecated mode values to new supported values and outputs rapids-cmake deprecation warnings. .. versionchanged:: v23.06.00 Now errors on deprecated mode values and outputs guidance on how to upgrade .. code-block:: cmake rapids_cuda_architectures_policy( (FROM_INIT|FROM_SET) mode_variable ) #]=======================================================================] function(rapids_cuda_architectures_policy called_from mode_variable) list(APPEND CMAKE_MESSAGE_CONTEXT "rapids.cuda.architectures_policy") include("${rapids-cmake-dir}/cmake/detail/policy.cmake") set(value ${${mode_variable}}) set(new_value ${value}) if(value STREQUAL "ALL") set(new_value "RAPIDS") if(called_from STREQUAL "FROM_INIT") rapids_cmake_policy(DEPRECATED_IN 23.02 REMOVED_IN 23.06 MESSAGE [=[Usage of `ALL` as value for `CMAKE_CUDA_ARCHITECTURES` or the env variable `CUDAARCHS` has been deprecated, use `RAPIDS` instead.]=] ) elseif(called_from STREQUAL "FROM_SET") rapids_cmake_policy(DEPRECATED_IN 23.02 REMOVED_IN 23.06 MESSAGE [=[Usage of `ALL` as value passed to `rapids_cuda_set_architectures` has been deprecated, use `RAPIDS` instead.]=] ) endif() endif() if(value STREQUAL "EMPTY_STR") set(new_value "NATIVE") rapids_cmake_policy(DEPRECATED_IN 23.02 REMOVED_IN 23.06 MESSAGE [=[Usage of `""` as value for `CMAKE_CUDA_ARCHITECTURES` has been deprecated, use `NATIVE` instead.]=] ) endif() set(${mode_variable} ${new_value} PARENT_SCOPE) endfunction()
0
rapidsai_public_repos/rapids-cmake/rapids-cmake/cuda
rapidsai_public_repos/rapids-cmake/rapids-cmake/cuda/detail/detect_architectures.cmake
#============================================================================= # Copyright (c) 2021, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #============================================================================= include_guard(GLOBAL) # Function uses the CUDA runtime API to query the compute capability of the device, so if a user # doesn't pass any architecture options to CMake we only build the current architecture function(rapids_cuda_detect_architectures possible_archs_var gpu_archs) list(APPEND CMAKE_MESSAGE_CONTEXT "rapids.cuda.detect_architectures") # Unset this first in case it's set to <empty_string> Which can happen inside rapids set(CMAKE_CUDA_ARCHITECTURES OFF) set(__gpu_archs ${${possible_archs_var}}) set(eval_file ${PROJECT_BINARY_DIR}/eval_gpu_archs.cu) set(eval_exe ${PROJECT_BINARY_DIR}/eval_gpu_archs) set(error_file ${PROJECT_BINARY_DIR}/eval_gpu_archs.stderr.log) if(NOT DEFINED CMAKE_CUDA_COMPILER) message(FATAL_ERROR "No CUDA compiler specified, unable to determine machine's GPUs.") endif() if(NOT EXISTS "${eval_exe}") file(WRITE ${eval_file} " #include <cstdio> #include <set> #include <string> using namespace std; int main(int argc, char** argv) { set<string> archs; int nDevices; if((cudaGetDeviceCount(&nDevices) == cudaSuccess) && (nDevices > 0)) { for(int dev=0;dev<nDevices;++dev) { char buff[32]; cudaDeviceProp prop; if(cudaGetDeviceProperties(&prop, dev) != cudaSuccess) continue; sprintf(buff, \"%d%d\", prop.major, prop.minor); archs.insert(buff); } } if(archs.empty()) { printf(\"${__gpu_archs}\"); } else { bool first = true; for(const auto& arch : archs) { printf(first? \"%s\" : \";%s\", arch.c_str()); first = false; } } printf(\"\\n\"); return 0; } ") execute_process(COMMAND ${CMAKE_CUDA_COMPILER} -std=c++11 -o "${eval_exe}" "${eval_file}" ERROR_FILE "${error_file}") endif() if(EXISTS "${eval_exe}") execute_process(COMMAND "${eval_exe}" OUTPUT_VARIABLE __gpu_archs OUTPUT_STRIP_TRAILING_WHITESPACE ERROR_FILE "${error_file}") message(STATUS "Auto detection of gpu-archs: ${__gpu_archs}") else() message(STATUS "Failed auto detection of gpu-archs. Falling back to using ${__gpu_archs}.") endif() set(${gpu_archs} ${__gpu_archs} PARENT_SCOPE) endfunction()
0
rapidsai_public_repos/rapids-cmake/rapids-cmake/cuda
rapidsai_public_repos/rapids-cmake/rapids-cmake/cuda/detail/invoke_set_native_architectures.cmake
#============================================================================= # Copyright (c) 2021, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #============================================================================= # # RAPIDS detected something use requested a file to be # called after `project()`, so chain call them. if(DEFINED _RAPIDS_PREVIOUS_CMAKE_PROJECT_INCLUDE) include("${_RAPIDS_PREVIOUS_CMAKE_PROJECT_INCLUDE}") endif() # # Used by rapids_cuda_init_architectures to allow the `project()` call to invoke the # rapids_cuda_set_architectures function after compiler detection # rapids_cuda_set_architectures(NATIVE)
0
rapidsai_public_repos/rapids-cmake/rapids-cmake
rapidsai_public_repos/rapids-cmake/rapids-cmake/cython/add_rpath_entries.cmake
# ============================================================================= # Copyright (c) 2022-2023, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under the License # is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express # or implied. See the License for the specific language governing permissions and limitations under # the License. # ============================================================================= include_guard(GLOBAL) #[=======================================================================[.rst: rapids_cython_add_rpath_entries ------------------------------- .. versionadded:: v22.12.00 Set the RPATH entries for all targets associated with a provided associated target. .. code-block:: cmake rapids_cython_add_rpath_entries( TARGET <associated_target> PATHS <path1> <path2> ... [ROOT_DIRECTORY <root-dir>] ) This function will affect all targets created up to the point of this call. It will have no effect on targets created afterwards. ``TARGET`` The associated target for which we are setting RPATH entries. Any target created using :cmake:command:`rapids_cython_create_modules` with the argument `ASSOCIATED_TARGET associated_target` will have its RPATH entries updated. ``PATHS`` The paths to add to the RPATH. Paths may either be absolute or relative to the ROOT_DIRECTORY. The paths are always converted to be relative to the current directory i.e relative to $ORIGIN in the RPATH. ``ROOT_DIRECTORY`` The ROOT_DIRECTORY for the provided paths. Defaults to ${PROJECT_SOURCE_DIR}. Has no effect on absolute paths. If the ROOT_DIRECTORY is a relative path, it is assumed to be relative to the directory from which `rapids_cython_add_rpath_entries` is called. #]=======================================================================] function(rapids_cython_add_rpath_entries) list(APPEND CMAKE_MESSAGE_CONTEXT "rapids.cython.add_rpath_entries") set(options) set(one_value ROOT_DIRECTORY TARGET) set(multi_value PATHS) cmake_parse_arguments(_RAPIDS_CYTHON "${options}" "${one_value}" "${multi_value}" ${ARGN}) # By default paths are relative to the current project root. if(NOT _RAPIDS_CYTHON_ROOT_DIRECTORY) set(_RAPIDS_CYTHON_ROOT_DIRECTORY "${PROJECT_SOURCE_DIR}") endif() # Transform all paths to paths relative to the current directory. set(cleaned_paths) cmake_path(ABSOLUTE_PATH _RAPIDS_CYTHON_ROOT_DIRECTORY) foreach(path IN LISTS _RAPIDS_CYTHON_PATHS) if(NOT IS_ABSOLUTE path) cmake_path(ABSOLUTE_PATH path BASE_DIRECTORY "${_RAPIDS_CYTHON_ROOT_DIRECTORY}") endif() list(APPEND cleaned_paths "${path}") endforeach() if(CMAKE_SYSTEM_NAME STREQUAL "Darwin") set(platform_rpath_origin "@loader_path") else() set(platform_rpath_origin "$ORIGIN") endif() get_property(targets GLOBAL PROPERTY "rapids_cython_associations_${_RAPIDS_CYTHON_TARGET}") foreach(target IN LISTS targets) # Compute the path relative to the current target. set(target_paths) get_target_property(target_source_dir ${target} SOURCE_DIR) foreach(target_path IN LISTS cleaned_paths) cmake_path(RELATIVE_PATH target_path BASE_DIRECTORY "${target_source_dir}") list(APPEND target_paths "${platform_rpath_origin}/${target_path}") endforeach() list(JOIN target_paths ";" target_paths) set_property(TARGET ${target} APPEND PROPERTY INSTALL_RPATH "${target_paths}") endforeach() endfunction()
0
rapidsai_public_repos/rapids-cmake/rapids-cmake
rapidsai_public_repos/rapids-cmake/rapids-cmake/cython/init.cmake
# ============================================================================= # Copyright (c) 2022-2023, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under the License # is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express # or implied. See the License for the specific language governing permissions and limitations under # the License. # ============================================================================= include_guard(GLOBAL) #[=======================================================================[.rst: rapids_cython_init ------------------ .. versionadded:: v22.06.00 Perform standard initialization of any CMake build using scikit-build to create Python extension modules with Cython. .. code-block:: cmake rapids_cython_init() .. note:: Use of the rapids-cython component of rapids-cmake requires scikit-build. The behavior of the functions provided by this component is undefined if they are invoked outside of a build managed by scikit-build. Result Variables ^^^^^^^^^^^^^^^^ :cmake:variable:`RAPIDS_CYTHON_INITIALIZED` will be set to TRUE. :cmake:variable:`CYTHON_FLAGS` will be set to a standard set of a flags to pass to the command line cython invocation. #]=======================================================================] macro(rapids_cython_init) list(APPEND CMAKE_MESSAGE_CONTEXT "rapids.cython.init") # Only initialize once. if(NOT DEFINED RAPIDS_CYTHON_INITIALIZED) # Verify that we are using scikit-build. if(NOT DEFINED SKBUILD) message(WARNING "rapids-cython expects scikit-build to be active before being used. \ The SKBUILD variable is not currently set, indicating that scikit-build \ is not active, so builds may behave unexpectedly.") else() # Access the variable to avoid unused variable warnings." message(TRACE "Accessing SKBUILD variable ${SKBUILD}") endif() find_package(PythonExtensions REQUIRED) find_package(Cython REQUIRED) # Incorporate scikit-build patches. include("${rapids-cmake-dir}/cython/detail/skbuild_patches.cmake") if(NOT CYTHON_FLAGS) set(CYTHON_FLAGS "--directive binding=True,embedsignature=True,always_allow_keywords=True") endif() # Flag set(RAPIDS_CYTHON_INITIALIZED TRUE) endif() endmacro()
0
rapidsai_public_repos/rapids-cmake/rapids-cmake
rapidsai_public_repos/rapids-cmake/rapids-cmake/cython/create_modules.cmake
# ============================================================================= # Copyright (c) 2022-2023, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under the License # is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express # or implied. See the License for the specific language governing permissions and limitations under # the License. # ============================================================================= include_guard(GLOBAL) #[=======================================================================[.rst: rapids_cython_create_modules ---------------------------- .. versionadded:: v22.06.00 Generate C(++) from Cython and create Python modules. .. code-block:: cmake rapids_cython_create_modules([CXX] [SOURCE_FILES <src1> <src2> ...] [LINKED_LIBRARIES <lib1> <lib2> ... ] [INSTALL_DIR <install_path>] [MODULE_PREFIX <module_prefix>] ) Creates a Cython target for each provided source file, then adds a corresponding Python extension module. Each built library has its RPATH set to $ORIGIN. .. note:: Requires :cmake:command:`rapids_cython_init` to be called before usage. ``CXX`` Flag indicating that the Cython files need to generate C++ rather than C. ``SOURCE_FILES`` The list of Cython source files to be built into Python extension modules. Note that this function assumes that Cython source files have a one-one correspondence with extension modules to build, i.e. for every `<Name>.pyx` in SOURCE_FILES we assume that `<Name>.pyx` is a Cython source file for which an extension module `<Name>` should be built. ``LINKED_LIBRARIES`` The list of libraries that need to be linked into all modules. In RAPIDS, this list usually contains (at minimum) the corresponding C++ libraries. ``INSTALL_DIR`` The path relative to the installation prefix so that it can be converted to an absolute path in a relocatable way. If not provided, defaults to the path to CMAKE_CURRENT_SOURCE_DIR relative to PROJECT_SOURCE_DIR. ``MODULE_PREFIX`` A prefix used to name the generated library targets. This functionality is useful when multiple Cython modules in different subpackages of the the same project have the same name. The default prefix is the empty string. ``ASSOCIATED_TARGETS`` A list of targets that are associated with the Cython targets created in this function. The target<-->associated target mapping is stored and may be leveraged by the following functions: - :cmake:command:`rapids_cython_add_rpath_entries` accepts a path for an associated target and updates the RPATH of each target with which that associated target is associated. Result Variables ^^^^^^^^^^^^^^^^ :cmake:variable:`RAPIDS_CYTHON_CREATED_TARGETS` will be set to a list of targets created by this function. #]=======================================================================] function(rapids_cython_create_modules) include(${CMAKE_CURRENT_FUNCTION_LIST_DIR}/detail/verify_init.cmake) rapids_cython_verify_init() list(APPEND CMAKE_MESSAGE_CONTEXT "rapids.cython.create_modules") set(_rapids_cython_options CXX) set(_rapids_cython_one_value INSTALL_DIR MODULE_PREFIX) set(_rapids_cython_multi_value SOURCE_FILES LINKED_LIBRARIES ASSOCIATED_TARGETS) cmake_parse_arguments(_RAPIDS_CYTHON "${_rapids_cython_options}" "${_rapids_cython_one_value}" "${_rapids_cython_multi_value}" ${ARGN}) set(language "C") if(_RAPIDS_CYTHON_CXX) set(language "CXX") endif() set(CREATED_TARGETS "") if(NOT DEFINED _RAPIDS_CYTHON_MODULE_PREFIX) set(_RAPIDS_CYTHON_MODULE_PREFIX "") endif() foreach(cython_filename IN LISTS _RAPIDS_CYTHON_SOURCE_FILES) # Generate a reasonable module name. cmake_path(GET cython_filename FILENAME cython_module) cmake_path(REMOVE_EXTENSION cython_module) # Save the name of the module without the provided prefix so that we can control the output. set(cython_module_filename "${cython_module}") string(PREPEND cython_module ${_RAPIDS_CYTHON_MODULE_PREFIX}) # Generate C++ from Cython and create a library for the resulting extension module to compile. add_cython_target(${cython_module_filename} "${cython_filename}" ${language} PY3 OUTPUT_VAR cythonized_file) add_library(${cython_module} MODULE ${cythonized_file}) python_extension_module(${cython_module}) # The final library name must match the original filename and must ignore the prefix. set_target_properties(${cython_module} PROPERTIES LIBRARY_OUTPUT_NAME ${cython_module_filename}) # Link the module to the requested libraries if(DEFINED _RAPIDS_CYTHON_LINKED_LIBRARIES) target_link_libraries(${cython_module} ${_RAPIDS_CYTHON_LINKED_LIBRARIES}) endif() # Compute the install directory relative to the source and rely on installs being relative to # the CMAKE_PREFIX_PATH for e.g. editable installs. if(NOT DEFINED _RAPIDS_CYTHON_INSTALL_DIR) cmake_path(RELATIVE_PATH CMAKE_CURRENT_SOURCE_DIR BASE_DIRECTORY "${PROJECT_SOURCE_DIR}" OUTPUT_VARIABLE _RAPIDS_CYTHON_INSTALL_DIR) endif() install(TARGETS ${cython_module} DESTINATION ${_RAPIDS_CYTHON_INSTALL_DIR}) # Default the INSTALL_RPATH for all modules to $ORIGIN. if(CMAKE_SYSTEM_NAME STREQUAL "Darwin") set(platform_rpath_origin "@loader_path") else() set(platform_rpath_origin "$ORIGIN") endif() set_target_properties(${cython_module} PROPERTIES INSTALL_RPATH "${platform_rpath_origin}") # Store any provided associated targets in a global list foreach(associated_target IN LISTS _RAPIDS_CYTHON_ASSOCIATED_TARGETS) set_property(GLOBAL PROPERTY "rapids_cython_associations_${associated_target}" "${cython_module}" APPEND) endforeach() list(APPEND CREATED_TARGETS "${cython_module}") endforeach() set(RAPIDS_CYTHON_CREATED_TARGETS ${CREATED_TARGETS} PARENT_SCOPE) endfunction()
0
rapidsai_public_repos/rapids-cmake/rapids-cmake/cython
rapidsai_public_repos/rapids-cmake/rapids-cmake/cython/detail/verify_init.cmake
# ============================================================================= # Copyright (c) 2022, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under the License # is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express # or implied. See the License for the specific language governing permissions and limitations under # the License. # ============================================================================= include_guard(GLOBAL) #[=======================================================================[.rst: rapids_cython_verify_init ------------------------- .. versionadded:: v22.06.00 Simple helper function for rapids-cython components to verify that rapids_cython_init has been called before they proceed. .. code-block:: cmake rapids_cython_verify_init() #]=======================================================================] function(rapids_cython_verify_init) if(NOT DEFINED RAPIDS_CYTHON_INITIALIZED) message(FATAL_ERROR "You must call rapids_cython_init before calling this function") endif() endfunction()
0
rapidsai_public_repos/rapids-cmake/rapids-cmake/cython
rapidsai_public_repos/rapids-cmake/rapids-cmake/cython/detail/skbuild_patches.cmake
# ============================================================================= # Copyright (c) 2022, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under the License # is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express # or implied. See the License for the specific language governing permissions and limitations under # the License. # ============================================================================= include_guard(GLOBAL) #[=======================================================================[.rst: _set_python_extension_symbol_visibility --------------------------------------- .. versionadded:: v22.06.00 The original version of this function in scikit-build runs a linker script to modify the visibility of symbols. This version is a patch to avoid overwriting the visibility of symbols because otherwise any library that exports symbols with external linkage will have the visibility of those symbols changed undesirably. We can remove this function once this issue is resolved in scikit-build. Issue: https://github.com/scikit-build/scikit-build/issues/668 PR: https://github.com/scikit-build/scikit-build/pull/703 #]=======================================================================] function(_set_python_extension_symbol_visibility _target) include(${CMAKE_CURRENT_FUNCTION_LIST_DIR}/verify_init.cmake) rapids_cython_verify_init() if(PYTHON_VERSION_MAJOR VERSION_GREATER 2) set(_modinit_prefix "PyInit_") else() set(_modinit_prefix "init") endif() message("_modinit_prefix:${_modinit_prefix}") if("${CMAKE_C_COMPILER_ID}" STREQUAL "MSVC") set_target_properties(${_target} PROPERTIES LINK_FLAGS "/EXPORT:${_modinit_prefix}${_target}") elseif("${CMAKE_C_COMPILER_ID}" STREQUAL "GNU" AND NOT ${CMAKE_SYSTEM_NAME} MATCHES "Darwin") set(_script_path ${CMAKE_CURRENT_BINARY_DIR}/CMakeFiles/${_target}-version-script.map) file(WRITE ${_script_path} # Note: The change is to this script, which does not indiscriminately # mark all non PyInit symbols as local. "{global: ${_modinit_prefix}${_target}; };") set_property(TARGET ${_target} APPEND_STRING PROPERTY LINK_FLAGS " -Wl,--version-script=\"${_script_path}\"") endif() endfunction()
0
rapidsai_public_repos/rapids-cmake/rapids-cmake
rapidsai_public_repos/rapids-cmake/rapids-cmake/cmake/write_version_file.cmake
#============================================================================= # Copyright (c) 2021, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #============================================================================= include_guard(GLOBAL) #[=======================================================================[.rst: rapids_cmake_write_version_file ------------------------------- .. versionadded:: v21.08.00 Generate a C++ header file that hold the version (`X.Y.Z`) information of the calling project. .. code-block:: cmake rapids_cmake_write_version_file(file_path [PREFIX <prefix>]) The file generated by :cmake:command:`rapids_cmake_write_version_file` holds the separate components of the `X.Y.Z` version string set by the CMake :cmake:command:`project <cmake:command:project>` call as C++ defines. ``PREFIX`` Prefix for all the C++ macros. By default if not explicitly specified it will be equal to the projects name ( CMake variable :cmake:variable:`PROJECT_NAME <cmake:variable:PROJECT_NAME>` ). The generated file will be contain the following unconditionally defines: - #define <PREFIX>_VERSION_MAJOR # CMake's PROJECT_VERSION_MAJOR (X) - #define <PREFIX>_VERSION_MINOR # CMake's PROJECT_VERSION_MINOR (Y) - #define <PREFIX>_VERSION_PATCH # CMake's PROJECT_VERSION_PATCH (Z) Each of the components will have all leading zeroes removed as we presume all components of the version can be represented as decimal values. .. note:: If a component doesn't exist, zero will be used as a placeholder value. For example version 2.4 the PATCH value will become 0. ``file_path`` Either an absolute or relative path. When a relative path, the absolute location will be computed from :cmake:variable:`CMAKE_CURRENT_BINARY_DIR <cmake:variable:CMAKE_CURRENT_BINARY_DIR>` #]=======================================================================] function(rapids_cmake_write_version_file file_path) list(APPEND CMAKE_MESSAGE_CONTEXT "rapids.cmake.write_version_file") set(options "") set(one_value PREFIX) set(multi_value "") cmake_parse_arguments(_RAPIDS "${options}" "${one_value}" "${multi_value}" ${ARGN}) cmake_path(IS_RELATIVE file_path is_relative) if(is_relative) cmake_path(APPEND CMAKE_CURRENT_BINARY_DIR ${file_path} OUTPUT_VARIABLE output_path) else() set(output_path "${file_path}") endif() if(NOT _RAPIDS_PREFIX) set(_RAPIDS_PREFIX "${PROJECT_NAME}") endif() if(PROJECT_VERSION_MAJOR) math(EXPR _RAPIDS_WRITE_MAJOR "${PROJECT_VERSION_MAJOR} + 0" OUTPUT_FORMAT DECIMAL) else() set(_RAPIDS_WRITE_MAJOR 0) endif() if(PROJECT_VERSION_MINOR) math(EXPR _RAPIDS_WRITE_MINOR "${PROJECT_VERSION_MINOR} + 0" OUTPUT_FORMAT DECIMAL) else() set(_RAPIDS_WRITE_MINOR 0) endif() if(PROJECT_VERSION_PATCH) math(EXPR _RAPIDS_WRITE_PATCH "${PROJECT_VERSION_PATCH} + 0" OUTPUT_FORMAT DECIMAL) else() set(_RAPIDS_WRITE_PATCH 0) endif() configure_file("${CMAKE_CURRENT_FUNCTION_LIST_DIR}/template/version.hpp.in" "${output_path}" @ONLY) endfunction()
0
rapidsai_public_repos/rapids-cmake/rapids-cmake
rapidsai_public_repos/rapids-cmake/rapids-cmake/cmake/install_lib_dir.cmake
#============================================================================= # Copyright (c) 2021-2023, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #============================================================================= include_guard(GLOBAL) #[=======================================================================[.rst: rapids_cmake_install_lib_dir ------------------------------ .. versionadded:: v21.10.00 Establish a variable that holds the library installation directory. .. code-block:: cmake rapids_cmake_install_lib_dir( out_variable_name [MODIFY_INSTALL_LIBDIR] ) Establishes a variable that holds the correct library installation directory ( lib or lib64 or lib/<multiarch-tuple> ). This function is CONDA aware and will return `lib` when it detects a project is installing in the CONDA_PREFIX Also offers the ability to modify :cmake:command:`CMAKE_INSTALL_LIBDIR <cmake:command:install>` to be the computed installation directory. Result Variables ^^^^^^^^^^^^^^^^ :cmake:command:`CMAKE_INSTALL_LIBDIR <cmake:command:install>` will be modified to be the computed relative directory (lib or lib64 or lib/<multiarch-tuple>) when `MODIFY_INSTALL_LIBDIR` is provided #]=======================================================================] function(rapids_cmake_install_lib_dir out_variable_name) list(APPEND CMAKE_MESSAGE_CONTEXT "rapids.cmake.install_lib_dir") set(modify_install_libdir FALSE) if(ARGV1 STREQUAL "MODIFY_INSTALL_LIBDIR") set(modify_install_libdir TRUE) endif() set(install_prefix "${CMAKE_INSTALL_PREFIX}") cmake_path(ABSOLUTE_PATH install_prefix NORMALIZE) set(use_conda_lib_dir FALSE) set(computed_path) # We need to defer to GNUInstallDirs but not allow it to set CMAKE_INSTALL_LIBDIR set(remove_install_dir TRUE) if(DEFINED CMAKE_INSTALL_LIBDIR) set(remove_install_dir FALSE) endif() include(GNUInstallDirs) set(computed_path "${CMAKE_INSTALL_LIBDIR}") if(modify_install_libdir) # GNUInstallDirs will have set `CMAKE_INSTALL_LIBDIR` as a cache path so we only need to make # sure our path overrides any local variable set(CMAKE_INSTALL_LIBDIR ${computed_path} PARENT_SCOPE) endif() if(remove_install_dir) unset(CMAKE_INSTALL_LIBDIR CACHE) endif() set(${out_variable_name} ${computed_path} PARENT_SCOPE) endfunction()
0
rapidsai_public_repos/rapids-cmake/rapids-cmake
rapidsai_public_repos/rapids-cmake/rapids-cmake/cmake/parse_version.cmake
#============================================================================= # Copyright (c) 2021-2023, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #============================================================================= include_guard(GLOBAL) #[=======================================================================[.rst: rapids_cmake_parse_version -------------------------- .. versionadded:: v21.06.00 Extract components of a `X.Y.Z` or `X.Y` version string in a consistent manner .. code-block:: cmake rapids_cmake_parse_version( [MAJOR|MINOR|PATCH|MAJOR_MINOR] version out_variable_name) Offers the ability to extract components of any 2 or 3 component version string without having to write complex regular expressions. ``MAJOR`` Extract the first component (`X`) from `version` and place it in the variable named in `out_variable_name` ``MINOR`` Extract the second component (`Y`) from `version` and place it in the variable named in `out_variable_name` ``PATCH`` Extract the third component (`Z`) from `version` and place it in the variable named in `out_variable_name`. If no `Z` component exists for `version` nothing will happen. ``MAJOR_MINOR`` Extract the first and second component (`X.Y`) from `version` and place it in the variable named in `out_variable_name` using the pattern `X.Y`. Example on how to properly use :cmake:command:`rapids_cmake_parse_version`: .. code-block:: cmake project(Example VERSION 43.01.0) rapids_cmake_parse_version(MAJOR_MINOR ${PROJECT_VERSION} major_minor) message(STATUS "The major.minor version is: ${major_minor}") Result Variables ^^^^^^^^^^^^^^^^ The variable `out_variable_name` will be created/modified only when the version extraction is successful #]=======================================================================] function(rapids_cmake_parse_version mode version_value out_variable_name) list(APPEND CMAKE_MESSAGE_CONTEXT "rapids.cmake.parse_version") # target exists early terminate string(TOUPPER ${mode} mode) string(REPLACE "." ";" version_as_list "${version_value}") list(LENGTH version_as_list len) # Extract each component and make sure they aren't empty before setting. Enforces the rule that a # value/character must exist between each `.` if(mode STREQUAL "MAJOR" AND len GREATER_EQUAL 1) list(GET version_as_list 0 extracted_component) if(NOT extracted_component STREQUAL "") set(${out_variable_name} ${extracted_component} PARENT_SCOPE) endif() elseif(mode STREQUAL "MINOR" AND len GREATER_EQUAL 2) list(GET version_as_list 1 extracted_component) if(NOT extracted_component STREQUAL "") set(${out_variable_name} ${extracted_component} PARENT_SCOPE) endif() elseif(mode STREQUAL "PATCH" AND len GREATER_EQUAL 3) list(GET version_as_list 2 extracted_component) if(NOT extracted_component STREQUAL "") set(${out_variable_name} ${extracted_component} PARENT_SCOPE) endif() elseif(mode STREQUAL "MAJOR_MINOR" AND len GREATER_EQUAL 2) list(GET version_as_list 0 extracted_major) list(GET version_as_list 1 extracted_minor) if(NOT extracted_major STREQUAL "" AND NOT extracted_minor STREQUAL "") set(${out_variable_name} "${extracted_major}.${extracted_minor}" PARENT_SCOPE) endif() endif() endfunction()
0
rapidsai_public_repos/rapids-cmake/rapids-cmake
rapidsai_public_repos/rapids-cmake/rapids-cmake/cmake/make_global.cmake
#============================================================================= # Copyright (c) 2021, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #============================================================================= include_guard(GLOBAL) #[=======================================================================[.rst: rapids_cmake_make_global ------------------------ .. versionadded:: v21.06.00 Make sure all provided targets have global visibility no matter how they are constructed. .. code-block:: cmake rapids_cmake_make_global(target_var) CMake targets have visibility or scope where they can be referenced by name. Any built-in target such as those created by :cmake:command:`add_library <cmake:command:add_library>` have global visibility. Targets created with :cmake:command:`add_library(IMPORTED) <cmake:command:add_library>` by default have directory visibility. This causes problems when trying to reason about targets created by `CPM`, as they could be either of the above. This function promotes the set of targets provided to have global visibility. This makes it easier for users to reason about when/where they can reference the targets. ``target_var`` Holds the variable that lists all targets that should be promoted to GLOBAL scope #]=======================================================================] function(rapids_cmake_make_global target_var) list(APPEND CMAKE_MESSAGE_CONTEXT "rapids.cmake.make_global") foreach(target IN LISTS ${target_var}) if(TARGET ${target}) get_target_property(aliased_target ${target} ALIASED_TARGET) if(aliased_target) continue() endif() get_target_property(is_imported ${target} IMPORTED) get_target_property(already_global ${target} IMPORTED_GLOBAL) if(is_imported AND NOT already_global) set_target_properties(${target} PROPERTIES IMPORTED_GLOBAL TRUE) endif() endif() endforeach() endfunction()
0
rapidsai_public_repos/rapids-cmake/rapids-cmake
rapidsai_public_repos/rapids-cmake/rapids-cmake/cmake/build_type.cmake
#============================================================================= # Copyright (c) 2021, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #============================================================================= include_guard(GLOBAL) #[=======================================================================[.rst: rapids_cmake_build_type ----------------------- .. versionadded:: v21.06.00 Establish the :cmake:variable:`CMAKE_BUILD_TYPE <cmake:variable:CMAKE_BUILD_TYPE>` default value. .. code-block:: cmake rapids_cmake_build_type(default_type) If the generator is `Ninja` or `Makefile` the :cmake:variable:`CMAKE_BUILD_TYPE <cmake:variable:CMAKE_BUILD_TYPE>` variable will be established if not explicitly set by the user either by the env variable `CMAKE_BUILD_TYPE` or by passing `-DCMAKE_BUILD_TYPE=`. This removes situations where the `No-Config` / `Empty` build type is used. ``default_type`` The default build type to use if one doesn't already exist Result Variables ^^^^^^^^^^^^^^^^ :cmake:variable:`CMAKE_BUILD_TYPE <cmake:variable:CMAKE_BUILD_TYPE>` will be set to ``default_type`` if not already set #]=======================================================================] function(rapids_cmake_build_type default_type) list(APPEND CMAKE_MESSAGE_CONTEXT "rapids.cmake.build_type") if(NOT CMAKE_BUILD_TYPE AND NOT CMAKE_CONFIGURATION_TYPES) message(VERBOSE "Setting build type to '${default_type}' since none specified.") set(CMAKE_BUILD_TYPE "${default_type}" CACHE STRING "Choose the type of build." FORCE) # Set the possible values of build type for cmake-gui set_property(CACHE CMAKE_BUILD_TYPE PROPERTY STRINGS "Debug" "Release" "MinSizeRel" "RelWithDebInfo") endif() endfunction()
0
rapidsai_public_repos/rapids-cmake/rapids-cmake
rapidsai_public_repos/rapids-cmake/rapids-cmake/cmake/support_conda_env.cmake
#============================================================================= # Copyright (c) 2021-2023, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #============================================================================= include_guard(GLOBAL) #[=======================================================================[.rst: rapids_cmake_support_conda_env ------------------------------ .. versionadded:: v21.06.00 Establish a target that holds the CONDA include and link directories. .. code-block:: cmake rapids_cmake_support_conda_env( <target_name> [MODIFY_PREFIX_PATH] ) Creates a global interface target called `target_name` that holds the CONDA include and link directories, when executed. Also offers the ability to modify :cmake:variable:`CMAKE_PREFIX_PATH <cmake:variable:CMAKE_PREFIX_PATH>` to include the following paths based on the current conda environment: - `PREFIX` - `BUILD_PREFIX` - `CONDA_PREFIX` .. versionadded:: v23.08.00 - `PREFIX`/targets/<cuda_target_platform>/ ``MODIFY_PREFIX_PATH`` When in a conda build environment the contents of `$ENV{PREFIX}`, `$ENV{PREFIX}`/targets/<cuda_target_platform>/`, and `$ENV{BUILD_PREFIX}` will be inserted to the front of :cmake:variable:`CMAKE_PREFIX_PATH <cmake:variable:CMAKE_PREFIX_PATH>`. When in a conda environment the contents of `$ENV{CONDA_PREFIX}` will be inserted to the front of :cmake:variable:`CMAKE_PREFIX_PATH <cmake:variable:CMAKE_PREFIX_PATH>`. Result Variables ^^^^^^^^^^^^^^^^ :cmake:variable:`CMAKE_PREFIX_PATH <cmake:variable:CMAKE_PREFIX_PATH>` will be modified when `MODIFY_PREFIX_PATH` is provided and called from a conda environment. Result Targets ^^^^^^^^^^^^^^^^ `target_name` target will be created only if called from a conda environment. #]=======================================================================] # cmake-lint: disable=R0912,R0915,W0106 function(rapids_cmake_support_conda_env target) list(APPEND CMAKE_MESSAGE_CONTEXT "rapids.cmake.support_conda_env") # target exists early terminate if(TARGET ${target}) return() endif() if("$ENV{CONDA_BUILD}" STREQUAL "1") set(in_conda_build True) elseif(DEFINED ENV{CONDA_PREFIX}) set(in_conda_prefix True) endif() if(in_conda_build OR in_conda_prefix) # comment needed here due to cmake-lint bug macro(modify_cmake_prefix_path_global) cmake_parse_arguments(_RAPIDS "" "" "PATHS" ${ARGN}) if(DEFINED ENV{CMAKE_PREFIX_PATH}) # If both CMAKE_PREFIX_PATH cmake and environment variables are populated, ensure the # environment variable's paths are preserved in the cmake variable cmake_path(CONVERT "$ENV{CMAKE_PREFIX_PATH}" TO_CMAKE_PATH_LIST _paths NORMALIZE) list(PREPEND _RAPIDS_PATHS ${_paths}) endif() list(APPEND CMAKE_PREFIX_PATH ${_RAPIDS_PATHS}) list(REMOVE_DUPLICATES CMAKE_PREFIX_PATH) set(CMAKE_PREFIX_PATH ${CMAKE_PREFIX_PATH} PARENT_SCOPE) message(VERBOSE "CMAKE_PREFIX_PATH set to: ${CMAKE_PREFIX_PATH}") endmacro() # comment needed here due to cmake-lint bug macro(modify_cmake_prefix_path_envvar) cmake_parse_arguments(_RAPIDS "" "" "PATHS" ${ARGN}) cmake_path(CONVERT "$ENV{CMAKE_PREFIX_PATH}" TO_CMAKE_PATH_LIST _paths NORMALIZE) list(APPEND _paths ${_RAPIDS_PATHS}) list(REMOVE_DUPLICATES _paths) cmake_path(CONVERT "${_paths}" TO_NATIVE_PATH_LIST _paths NORMALIZE) # cmake-lint: disable=W0106 set(ENV{CMAKE_PREFIX_PATH} ${_paths}) # cmake-lint: disable=W0106 message(VERBOSE "ENV{CMAKE_PREFIX_PATH} set to: $ENV{CMAKE_PREFIX_PATH}") endmacro() # comment needed here due to cmake-lint bug macro(modify_cmake_prefix_path) if(DEFINED CMAKE_PREFIX_PATH) modify_cmake_prefix_path_global(${ARGN}) else() modify_cmake_prefix_path_envvar(${ARGN}) endif() endmacro() if(ARGV1 STREQUAL "MODIFY_PREFIX_PATH") set(modify_prefix_path TRUE) endif() add_library(${target} INTERFACE) if(in_conda_build) # For conda-build we add the host conda environment prefix to the cmake search paths so that # raw `find_file` or `find_library` calls will find CUDA components in the host environment set(target_platform $ENV{cross_target_platform}) # when target != cross_target if(NOT target_platform) set(target_platform $ENV{target_platform}) endif() if("${target_platform}" STREQUAL "linux-64") set(targetsDir "targets/x86_64-linux") elseif("${target_platform}" STREQUAL "linux-ppc64le") set(targetsDir "targets/ppc64le-linux") elseif("${target_platform}" STREQUAL "linux-aarch64") set(targetsDir "targets/sbsa-linux") endif() target_include_directories(${target} INTERFACE "$ENV{PREFIX}/include" "$ENV{BUILD_PREFIX}/include") target_link_directories(${target} INTERFACE "$ENV{PREFIX}/lib" "$ENV{BUILD_PREFIX}/lib") if(DEFINED CMAKE_SHARED_LIBRARY_RPATH_LINK_CUDA_FLAG OR DEFINED CMAKE_SHARED_LIBRARY_RPATH_LINK_CXX_FLAG) if(DEFINED targetsDir) target_link_options(${target} INTERFACE "$<HOST_LINK:SHELL:LINKER:-rpath-link=$ENV{PREFIX}/${targetsDir}/lib>" ) endif() target_link_options(${target} INTERFACE "$<HOST_LINK:SHELL:LINKER:-rpath-link=$ENV{PREFIX}/lib>") target_link_options(${target} INTERFACE "$<HOST_LINK:SHELL:LINKER:-rpath-link=$ENV{BUILD_PREFIX}/lib>") endif() if(modify_prefix_path) message(VERBOSE "Conda build detected") set(prefix_paths "$ENV{PREFIX}" "$ENV{BUILD_PREFIX}") if(DEFINED targetsDir) list(PREPEND prefix_paths "$ENV{PREFIX}/${targetsDir}") endif() modify_cmake_prefix_path(PATHS ${prefix_paths}) endif() elseif(in_conda_prefix) target_include_directories(${target} INTERFACE "$ENV{CONDA_PREFIX}/include") target_link_directories(${target} INTERFACE "$ENV{CONDA_PREFIX}/lib") if(DEFINED CMAKE_SHARED_LIBRARY_RPATH_LINK_CUDA_FLAG OR DEFINED CMAKE_SHARED_LIBRARY_RPATH_LINK_CXX_FLAG) target_link_options(${target} INTERFACE "$<HOST_LINK:SHELL:LINKER:-rpath-link=$ENV{CONDA_PREFIX}/lib>") endif() if(modify_prefix_path) message(VERBOSE "Conda environment detected") modify_cmake_prefix_path(PATHS "$ENV{CONDA_PREFIX}") endif() endif() endif() endfunction()
0
rapidsai_public_repos/rapids-cmake/rapids-cmake
rapidsai_public_repos/rapids-cmake/rapids-cmake/cmake/write_git_revision_file.cmake
#============================================================================= # Copyright (c) 2021-2023, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #============================================================================= include_guard(GLOBAL) #[=======================================================================[.rst: rapids_cmake_write_git_revision_file ------------------------------------ .. versionadded:: v21.10.00 Generate a C++ header file that holds git revision information of the calling project. .. code-block:: cmake rapids_cmake_write_git_revision_file(<target_name> file_path [PREFIX <prefix>]) Creates a global interface target called `target_name` that holds the includes to the generated header with the macros for git branch, sha1, version, and if any uncommitted changes exist. Users of the header file must use :cmake:command:`target_link_libraries <cmake:command:target_link_libraries>` to the target so that the header is generated before it is used. ``PREFIX`` Prefix for all the C++ macros. By default if not explicitly specified it will be equal to the projects name ( CMake variable `PROJECT_NAME` ). This information will be recorded in the following defines: - <PREFIX>_GIT_BRANCH Will store the current git branch name, otherwise when in a detached HEAD state will store `HEAD`. - <PREFIX>_GIT_SHA1 Will store the full SHA1 for the current git commit if one exists. - <PREFIX>_GIT_IS_DIRTY Will exist if any git tracked file has any modifications that aren't committed ( dirty ). - <PREFIX>_GIT_VERSION Will store `<tag>[-<distance>-g<sha1>[-dirty]]` computed from running `git describe --tags --dirty --always`. For example "v21.10.00a-18-g7efb04f-dirty" indicates that the latest commit is "7efb04f" but has uncommitted changes (`-dirty`), and that we are "18" commits after tag "v21.10.00a". ``file_path`` Either an absolute or relative path. When a relative path, the absolute location will be computed from :cmake:variable:`CMAKE_CURRENT_BINARY_DIR <cmake:variable:CMAKE_CURRENT_BINARY_DIR>` .. note:: If `git` doesn't exist or the project doesn't use `git`, the header will still be written. The branch, sha1, and version defines will be set to `unknown` and the project won't be considered dirty. Result Targets ^^^^^^^^^^^^^^^^ `target_name` target will be created. Consuming libraries/executables of the generated header must use the target via :cmake:command:`target_link_libraries <cmake:command:target_link_libraries>` for correct builds. #]=======================================================================] function(rapids_cmake_write_git_revision_file target file_path) list(APPEND CMAKE_MESSAGE_CONTEXT "rapids.cmake.write_git_revision_file") set(options "") set(one_value PREFIX) set(multi_value "") cmake_parse_arguments(_RAPIDS "${options}" "${one_value}" "${multi_value}" ${ARGN}) cmake_path(IS_RELATIVE file_path is_relative) if(is_relative) cmake_path(APPEND CMAKE_CURRENT_BINARY_DIR ${file_path} OUTPUT_VARIABLE output_path) else() set(output_path "${file_path}") endif() if(NOT _RAPIDS_PREFIX) set(_RAPIDS_PREFIX "${PROJECT_NAME}") endif() # Find Git find_package(Git QUIET) add_custom_target(${target}_compute_git_info ALL BYPRODUCTS "${file_path}" COMMENT "Generate git revision file for ${target}" COMMAND ${CMAKE_COMMAND} -DWORKING_DIRECTORY=${CMAKE_CURRENT_SOURCE_DIR} -DGIT_EXECUTABLE=${GIT_EXECUTABLE} -D_RAPIDS_GIT_PREFIX=${_RAPIDS_PREFIX} -DTEMPLATE_FILE=${CMAKE_CURRENT_FUNCTION_LIST_DIR}/template/git_revision.hpp.in -DFILE_TO_WRITE=${file_path} -P ${CMAKE_CURRENT_FUNCTION_LIST_DIR}/detail/compute_git_info.cmake WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}) # Generate a target that depends on compute_git_info This is what other targets will use to get # the build path and makes sure that we have correct parallel builds add_library(${target} INTERFACE) add_dependencies(${target} ${target}_compute_git_info) cmake_path(GET file_path PARENT_PATH file_path_dir) target_include_directories(${target} INTERFACE "$<BUILD_INTERFACE:${file_path_dir}>") endfunction()
0
rapidsai_public_repos/rapids-cmake/rapids-cmake/cmake
rapidsai_public_repos/rapids-cmake/rapids-cmake/cmake/detail/policy.cmake
#============================================================================= # Copyright (c) 2023, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #============================================================================= include_guard(GLOBAL) #[=======================================================================[.rst: rapids_cmake_policy ------------------- .. versionadded:: v23.02.00 Prints rapids-cmake deprecated warnings .. code-block:: cmake rapids_cmake_policy( DEPRECATED_IN <version> REMOVED_IN <version> MESSAGE <content>) #]=======================================================================] function(rapids_cmake_policy) set(options "") set(one_value DEPRECATED_IN REMOVED_IN MESSAGE) set(multi_value "") cmake_parse_arguments(_RAPIDS_POLICY "${options}" "${one_value}" "${multi_value}" ${ARGN}) if(NOT DEFINED rapids-cmake-version) include("${rapids-cmake-dir}/rapids-version.cmake") endif() set(_RAPIDS_POLICY_CALLERS_VERSION ${rapids-cmake-version}) set(policy_context_text "rapids-cmake policy [deprecated=${_RAPIDS_POLICY_DEPRECATED_IN} removed=${_RAPIDS_POLICY_REMOVED_IN}]:" ) set(policy_mode DEPRECATION) message(STATUS "_RAPIDS_POLICY_CALLERS_VERSION: ${_RAPIDS_POLICY_CALLERS_VERSION}") message(STATUS "_RAPIDS_POLICY_REMOVED_IN: ${_RAPIDS_POLICY_REMOVED_IN}") if(_RAPIDS_POLICY_CALLERS_VERSION VERSION_GREATER_EQUAL ${_RAPIDS_POLICY_REMOVED_IN}) set(policy_mode FATAL_ERROR) endif() set(policy_upgrade_text "") if(_RAPIDS_POLICY_CALLERS_VERSION VERSION_LESS ${_RAPIDS_POLICY_DEPRECATED_IN}) set(policy_upgrade_text "You are currently requesting rapids-cmake ${_RAPIDS_POLICY_CALLERS_VERSION} please upgrade to ${_RAPIDS_POLICY_DEPRECATED_IN}." ) endif() message(${policy_mode} "${policy_context_text} ${_RAPIDS_POLICY_MESSAGE} ${policy_upgrade_text}") endfunction()
0
rapidsai_public_repos/rapids-cmake/rapids-cmake/cmake
rapidsai_public_repos/rapids-cmake/rapids-cmake/cmake/detail/compute_git_info.cmake
#============================================================================= # Copyright (c) 2021, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #============================================================================= if(GIT_EXECUTABLE AND EXISTS "${GIT_EXECUTABLE}") execute_process(COMMAND ${GIT_EXECUTABLE} rev-parse HEAD WORKING_DIRECTORY ${WORKING_DIRECTORY} ERROR_QUIET OUTPUT_VARIABLE _RAPIDS_WRITE_SHA1 OUTPUT_STRIP_TRAILING_WHITESPACE # need to strip off any newline ) execute_process(COMMAND ${GIT_EXECUTABLE} rev-parse --abbrev-ref HEAD WORKING_DIRECTORY ${WORKING_DIRECTORY} ERROR_QUIET OUTPUT_VARIABLE _RAPIDS_WRITE_BRANCH OUTPUT_STRIP_TRAILING_WHITESPACE # need to strip off any newline ) execute_process(COMMAND ${GIT_EXECUTABLE} describe --tag --dirty --always WORKING_DIRECTORY ${WORKING_DIRECTORY} ERROR_QUIET OUTPUT_VARIABLE _RAPIDS_WRITE_VERSION OUTPUT_STRIP_TRAILING_WHITESPACE # need to strip off any newline ) endif() if(NOT _RAPIDS_WRITE_SHA1) set(_RAPIDS_WRITE_SHA1 "unknown") endif() if(NOT _RAPIDS_WRITE_BRANCH) set(_RAPIDS_WRITE_BRANCH "unknown") endif() if(NOT _RAPIDS_WRITE_VERSION) set(_RAPIDS_WRITE_VERSION "unknown") endif() set(_RAPIDS_GIT_IS_DIRTY 0) if(_RAPIDS_WRITE_VERSION MATCHES dirty) set(_RAPIDS_GIT_IS_DIRTY 1) endif() configure_file("${TEMPLATE_FILE}" "${FILE_TO_WRITE}" @ONLY)
0
rapidsai_public_repos/rapids-cmake/rapids-cmake/cmake
rapidsai_public_repos/rapids-cmake/rapids-cmake/cmake/template/version.hpp.in
/* * Copyright (c) 2021, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #define @_RAPIDS_PREFIX@_VERSION_MAJOR @_RAPIDS_WRITE_MAJOR@ #define @_RAPIDS_PREFIX@_VERSION_MINOR @_RAPIDS_WRITE_MINOR@ #define @_RAPIDS_PREFIX@_VERSION_PATCH @_RAPIDS_WRITE_PATCH@
0
rapidsai_public_repos/rapids-cmake/rapids-cmake/cmake
rapidsai_public_repos/rapids-cmake/rapids-cmake/cmake/template/git_revision.hpp.in
/* * Copyright (c) 2021, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #define @_RAPIDS_GIT_PREFIX@_GIT_BRANCH "@_RAPIDS_WRITE_BRANCH@" #define @_RAPIDS_GIT_PREFIX@_GIT_SHA1 "@_RAPIDS_WRITE_SHA1@" #define @_RAPIDS_GIT_PREFIX@_GIT_VERSION "@_RAPIDS_WRITE_VERSION@" #if (@_RAPIDS_GIT_IS_DIRTY@) // # define @_RAPIDS_GIT_PREFIX@_GIT_IS_DIRTY #endif
0
rapidsai_public_repos/rapids-cmake/rapids-cmake
rapidsai_public_repos/rapids-cmake/rapids-cmake/cpm/find.cmake
#============================================================================= # Copyright (c) 2020-2023, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #============================================================================= include_guard(GLOBAL) #[=======================================================================[.rst: rapids_cpm_find --------------- .. versionadded:: v21.06.00 Allow projects to find or build arbitrary projects via `CPM` with built-in tracking of these dependencies for correct export support. .. code-block:: cmake rapids_cpm_find(<PackageName> <version> [COMPONENTS <components...>] [GLOBAL_TARGETS <targets...>] [BUILD_EXPORT_SET <export-name>] [INSTALL_EXPORT_SET <export-name>] <CPM_ARGS> all normal CPM options ) Generate a CPM FindPackage call and associate this with the listed build and install export set for correct export generation. Since the visibility of CMake's targets differ between targets built locally and those imported, :cmake:command:`rapids_cpm_find` promotes imported targets to be global so users have consistency. List all targets used by your project in `GLOBAL_TARGET`. .. note:: Requires :cmake:command:`rapids_cpm_init` to be called before usage ``PackageName`` Name of the package to find. ``version`` Version of the package you would like CPM to find. ``COMPONENTS`` .. versionadded:: v22.10.00 A list of required components that are required to be found for this package to be considered valid when doing a local search. ``GLOBAL_TARGETS`` Which targets from this package should be made global. This information will be propagated to any associated export set. .. versionchanged:: v21.10.00 If any targets listed in `GLOBAL_TARGET` exist when :cmake:command:`rapids_cpm_find` is called no calls to `CPM` will be executed. This is done for the following reasons: - Removes the need for the calling code to do the conditional checks - Allows `BUILD_EXPORT_SET` and `INSTALL_EXPORT_SET` tracking to happen correctly when targets had already been brought it by non-CPM means. ``BUILD_EXPORT_SET`` Record that a :cmake:command:`CPMFindPackage(<PackageName> ...)` call needs to occur as part of our build directory export set. ``INSTALL_EXPORT_SET`` Record a :cmake:command:`find_dependency(<PackageName> ...) <cmake:module:CMakeFindDependencyMacro>` call needs to occur as part of our install directory export set. ``CPM_ARGS`` Required placeholder to be provided before any extra arguments that need to be passed down to :cmake:command:`CPMFindPackage`. Result Variables ^^^^^^^^^^^^^^^^ :cmake:variable:`<PackageName>_SOURCE_DIR` is set to the path to the source directory of <PackageName>. :cmake:variable:`<PackageName>_BINARY_DIR` is set to the path to the build directory of <PackageName>. :cmake:variable:`<PackageName>_ADDED` is set to a true value if <PackageName> has not been added before. .. note:: Adding an export set to :cmake:command:`rapids_cpm_find` has different behavior for build and install. Build exports a respective CPM call, since we presume other CPM packages don't generate a correct build directory config module. While install exports a `find_dependency` call as we expect projects to have a valid install setup. If you need different behavior you will need to use :cmake:command:`rapids_export_package()` or :cmake:command:`rapids_export_cpm()`. If :cmake:variable:`CPM_<PackageName>_SOURCE` is set, we use :cmake:command:`CPMAddPackage` instead of :cmake:command:`CPMFindPackage`. :cmake:command:`CPMAddPackage` always adds the package at the desired :cmake:variable:`CPM_<PackageName>_SOURCE` location, and won't attempt to locate it via :cmake:command:`find_package() <cmake:command:find_package>` first. Examples ^^^^^^^^ Example on how to use :cmake:command:`rapids_cpm_find` to include common projects .. code-block:: cmake # fmt rapids_cpm_find(fmt 8.0.1 GLOBAL_TARGETS fmt::fmt CPM_ARGS GITHUB_REPOSITORY fmtlib/fmt GIT_TAG 8.0.1 GIT_SHALLOW TRUE ) # google benchmark, no GIT_TAG required since it uses `v<Version>` tags rapids_cpm_find(benchmark 1.5.2 CPM_ARGS GIT_REPOSITORY https://github.com/google/benchmark.git GIT_SHALLOW TRUE OPTIONS "BENCHMARK_ENABLE_TESTING OFF" "BENCHMARK_ENABLE_INSTALL OFF" ) Overriding ^^^^^^^^^^ The :cmake:command:`rapids_cpm_package_override` command provides a way for projects to override the default values for any :cmake:command:`rapids_cpm_find`, `rapids_cpm_* <../api.html#cpm-pre-configured-packages>`__, `CPM <https://github.com/cpm-cmake/CPM.cmake>`_, and :cmake:module:`FetchContent() <cmake:module:FetchContent>` package. By default when an override for a project is provided no local search for that project will occur. This is done to make sure that the requested modified version is used. #]=======================================================================] # cmake-lint: disable=R0912,R0915 function(rapids_cpm_find name version) list(APPEND CMAKE_MESSAGE_CONTEXT "rapids.cpm.find") set(options CPM_ARGS) set(one_value BUILD_EXPORT_SET INSTALL_EXPORT_SET) set(multi_value COMPONENTS GLOBAL_TARGETS) cmake_parse_arguments(_RAPIDS "${options}" "${one_value}" "${multi_value}" ${ARGN}) if(NOT DEFINED _RAPIDS_CPM_ARGS) message(FATAL_ERROR "rapids_cpm_find requires you to specify CPM_ARGS before any CPM arguments") endif() set(package_needs_to_be_added TRUE) if(_RAPIDS_GLOBAL_TARGETS) foreach(target IN LISTS _RAPIDS_GLOBAL_TARGETS) if(TARGET ${target}) set(package_needs_to_be_added FALSE) break() endif() endforeach() endif() if(_RAPIDS_COMPONENTS) # We need to pass the set of components as a space separated string and not a list string(REPLACE ";" " " _RAPIDS_COMPONENTS "${_RAPIDS_COMPONENTS}") list(APPEND _RAPIDS_UNPARSED_ARGUMENTS "FIND_PACKAGE_ARGUMENTS" "COMPONENTS ${_RAPIDS_COMPONENTS}") endif() if(package_needs_to_be_added) if(CPM_${name}_SOURCE) CPMAddPackage(NAME ${name} VERSION ${version} ${_RAPIDS_UNPARSED_ARGUMENTS}) else() CPMFindPackage(NAME ${name} VERSION ${version} ${_RAPIDS_UNPARSED_ARGUMENTS}) endif() else() # Restore any CPM variables that might be cached cpm_check_if_package_already_added(${name} ${version}) if(CPM_PACKAGE_ALREADY_ADDED) cpm_export_variables(${name}) endif() endif() set(_rapids_extra_info) if(_RAPIDS_GLOBAL_TARGETS) include("${rapids-cmake-dir}/cmake/make_global.cmake") rapids_cmake_make_global(_RAPIDS_GLOBAL_TARGETS) list(APPEND _rapids_extra_info "GLOBAL_TARGETS" ${_RAPIDS_GLOBAL_TARGETS}) endif() if(_RAPIDS_BUILD_EXPORT_SET) include("${rapids-cmake-dir}/export/cpm.cmake") rapids_export_cpm(BUILD ${name} ${_RAPIDS_BUILD_EXPORT_SET} CPM_ARGS NAME ${name} VERSION ${version} ${_RAPIDS_UNPARSED_ARGUMENTS} ${_rapids_extra_info}) endif() if(_RAPIDS_INSTALL_EXPORT_SET) include("${rapids-cmake-dir}/export/package.cmake") if(_RAPIDS_COMPONENTS) list(APPEND _rapids_extra_info "COMPONENTS" ${_RAPIDS_COMPONENTS}) endif() rapids_export_package(INSTALL ${name} ${_RAPIDS_INSTALL_EXPORT_SET} VERSION ${version} ${_rapids_extra_info}) endif() # Propagate up variables that CPMFindPackage provide set(${name}_SOURCE_DIR "${${name}_SOURCE_DIR}" PARENT_SCOPE) set(${name}_BINARY_DIR "${${name}_BINARY_DIR}" PARENT_SCOPE) set(${name}_ADDED "${${name}_ADDED}" PARENT_SCOPE) endfunction()
0
rapidsai_public_repos/rapids-cmake/rapids-cmake
rapidsai_public_repos/rapids-cmake/rapids-cmake/cpm/spdlog.cmake
#============================================================================= # Copyright (c) 2021-2023, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #============================================================================= include_guard(GLOBAL) #[=======================================================================[.rst: rapids_cpm_spdlog ----------------- .. versionadded:: v21.10.00 Allow projects to find or build `spdlog` via `CPM` with built-in tracking of these dependencies for correct export support. Uses the version of spdlog :ref:`specified in the version file <cpm_versions>` for consistency across all RAPIDS projects. .. code-block:: cmake rapids_cpm_spdlog( [FMT_OPTION <fmt-option-name>] [BUILD_EXPORT_SET <export-name>] [INSTALL_EXPORT_SET <export-name>] [<CPM_ARGS> ...]) ``FMT_OPTION`` .. versionadded:: v23.04.00 Spdlog depends on the fmt library and offers multiple ways of handling this dependency when spdlog is built. This option only controls the behavior when spdlog is fetched and built, NOT when an installed spdlog is found on the system. This option can be set to: `BUNDLED`, `EXTERNAL_FMT`, `EXTERNAL_FMT_HO`, or `STD_FORMAT`. If set to `BUNDLED`, then spdlog will use its own bundled version of fmt. If set to `EXTERNAL_FMT` then spdlog will use the `fmt::fmt` target and be linked with the fmt library. If set to `EXTERNAL_FMT_HO` then spdlog will use the `fmt::fmt-header-only` target and be linked with a header only fmt library. If set to `STD_FORMAT` then spdlog will use `std::format` instead of the fmt library. Defaults to `EXTERNAL_FMT_HO`. .. |PKG_NAME| replace:: spdlog .. include:: common_package_args.txt Result Targets ^^^^^^^^^^^^^^ spdlog::spdlog, spdlog::spdlog_header_only targets will be created Result Variables ^^^^^^^^^^^^^^^^ :cmake:variable:`spdlog_SOURCE_DIR` is set to the path to the source directory of spdlog. :cmake:variable:`spdlog_BINARY_DIR` is set to the path to the build directory of spdlog. :cmake:variable:`spdlog_ADDED` is set to a true value if spdlog has not been added before. :cmake:variable:`spdlog_VERSION` is set to the version of spdlog specified by the versions.json. :cmake:variable:`spdlog_fmt_target` is set to the fmt target used, if used #]=======================================================================] function(rapids_cpm_spdlog) list(APPEND CMAKE_MESSAGE_CONTEXT "rapids.cpm.spdlog") set(options) set(one_value FMT_OPTION BUILD_EXPORT_SET INSTALL_EXPORT_SET) set(multi_value) cmake_parse_arguments(_RAPIDS "${options}" "${one_value}" "${multi_value}" ${ARGN}) # Fix up _RAPIDS_UNPARSED_ARGUMENTS to have EXPORT_SETS as this is need for rapids_cpm_find. Also # propagate the user provided build and install export sets. if(_RAPIDS_INSTALL_EXPORT_SET) list(APPEND _RAPIDS_UNPARSED_ARGUMENTS INSTALL_EXPORT_SET ${_RAPIDS_INSTALL_EXPORT_SET}) endif() if(_RAPIDS_BUILD_EXPORT_SET) list(APPEND _RAPIDS_UNPARSED_ARGUMENTS BUILD_EXPORT_SET ${_RAPIDS_BUILD_EXPORT_SET}) endif() set(to_install OFF) if(_RAPIDS_INSTALL_EXPORT_SET) set(to_install ON) endif() include("${rapids-cmake-dir}/cpm/detail/package_details.cmake") rapids_cpm_package_details(spdlog version repository tag shallow exclude) include("${rapids-cmake-dir}/cpm/detail/generate_patch_command.cmake") rapids_cpm_generate_patch_command(spdlog ${version} patch_command) # If the option wasn't passed to the command, default to header only fmt if(NOT _RAPIDS_FMT_OPTION) set(_RAPIDS_FMT_OPTION "EXTERNAL_FMT_HO") endif() if(_RAPIDS_FMT_OPTION STREQUAL "BUNDLED") set(spdlog_fmt_option "") elseif(_RAPIDS_FMT_OPTION STREQUAL "EXTERNAL_FMT") set(spdlog_fmt_option "SPDLOG_FMT_EXTERNAL ON") set(spdlog_fmt_target fmt::fmt) elseif(_RAPIDS_FMT_OPTION STREQUAL "EXTERNAL_FMT_HO") set(spdlog_fmt_option "SPDLOG_FMT_EXTERNAL_HO ON") set(spdlog_fmt_target fmt::fmt-header-only) elseif(_RAPIDS_FMT_OPTION STREQUAL "STD_FORMAT") set(spdlog_fmt_option "SPDLOG_USE_STD_FORMAT ON") else() message(FATAL_ERROR "Invalid option used for FMT_OPTION, got: ${_RAPIDS_FMT_OPTION}, expected one of: 'BUNDLED', 'EXTERNAL_FMT', 'EXTERNAL_FMT_HO', 'STD_FORMAT'" ) endif() if(_RAPIDS_FMT_OPTION STREQUAL "EXTERNAL_FMT" OR _RAPIDS_FMT_OPTION STREQUAL "EXTERNAL_FMT_HO") include("${rapids-cmake-dir}/cpm/fmt.cmake") # Using `spdlog_ROOT` needs to cause any internal find calls in `spdlog-config.cmake` to first # search beside it before looking globally. list(APPEND fmt_ROOT ${spdlog_ROOT}) rapids_cpm_fmt(${_RAPIDS_UNPARSED_ARGUMENTS}) endif() include("${rapids-cmake-dir}/cpm/find.cmake") rapids_cpm_find(spdlog ${version} ${_RAPIDS_UNPARSED_ARGUMENTS} GLOBAL_TARGETS spdlog::spdlog spdlog::spdlog_header_only CPM_ARGS GIT_REPOSITORY ${repository} GIT_TAG ${tag} GIT_SHALLOW ${shallow} PATCH_COMMAND ${patch_command} EXCLUDE_FROM_ALL ${exclude} OPTIONS "SPDLOG_INSTALL ${to_install}" "${spdlog_fmt_option}") include("${rapids-cmake-dir}/cpm/detail/display_patch_status.cmake") rapids_cpm_display_patch_status(spdlog) # Propagate up variables that CPMFindPackage provide set(spdlog_SOURCE_DIR "${spdlog_SOURCE_DIR}" PARENT_SCOPE) set(spdlog_BINARY_DIR "${spdlog_BINARY_DIR}" PARENT_SCOPE) set(spdlog_ADDED "${spdlog_ADDED}" PARENT_SCOPE) set(spdlog_VERSION ${version} PARENT_SCOPE) set(spdlog_fmt_target ${spdlog_fmt_target} PARENT_SCOPE) # spdlog creates the correct namespace aliases endfunction()
0
rapidsai_public_repos/rapids-cmake/rapids-cmake
rapidsai_public_repos/rapids-cmake/rapids-cmake/cpm/rmm.cmake
#============================================================================= # Copyright (c) 2021-2023, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #============================================================================= include_guard(GLOBAL) #[=======================================================================[.rst: rapids_cpm_rmm -------------- .. versionadded:: v21.10.00 Allow projects to find or build `RMM` via `CPM` with built-in tracking of these dependencies for correct export support. Uses the current rapids-cmake version of RMM `as specified in the version file <cpm_versions>` for consistency across all RAPIDS projects. .. code-block:: cmake rapids_cpm_rmm( [BUILD_EXPORT_SET <export-name>] [INSTALL_EXPORT_SET <export-name>] [<CPM_ARGS> ...]) .. |PKG_NAME| replace:: rmm .. include:: common_package_args.txt Result Targets ^^^^^^^^^^^^^^ rmm::rmm target will be created Result Variables ^^^^^^^^^^^^^^^^ :cmake:variable:`rmm_SOURCE_DIR` is set to the path to the source directory of RMM. :cmake:variable:`rmm_BINARY_DIR` is set to the path to the build directory of RMM. :cmake:variable:`rmm_ADDED` is set to a true value if RMM has not been added before. :cmake:variable:`rmm_VERSION` is set to the version of RMM specified by the versions.json. #]=======================================================================] function(rapids_cpm_rmm) list(APPEND CMAKE_MESSAGE_CONTEXT "rapids.cpm.rmm") set(options) set(one_value INSTALL_EXPORT_SET) set(multi_value) cmake_parse_arguments(_RAPIDS "${options}" "${one_value}" "${multi_value}" ${ARGN}) # Fix up RAPIDS_UNPARSED_ARGUMENTS to have EXPORT_SETS as this is need for rapids_cpm_find if(_RAPIDS_INSTALL_EXPORT_SET) list(APPEND _RAPIDS_UNPARSED_ARGUMENTS INSTALL_EXPORT_SET ${_RAPIDS_INSTALL_EXPORT_SET}) endif() include("${rapids-cmake-dir}/cpm/detail/package_details.cmake") rapids_cpm_package_details(rmm version repository tag shallow exclude) set(to_exclude OFF) if(NOT _RAPIDS_INSTALL_EXPORT_SET OR exclude) set(to_exclude ON) endif() include("${rapids-cmake-dir}/cpm/detail/generate_patch_command.cmake") rapids_cpm_generate_patch_command(rmm ${version} patch_command) include("${rapids-cmake-dir}/cpm/find.cmake") rapids_cpm_find(rmm ${version} ${ARGN} ${_RAPIDS_UNPARSED_ARGUMENTS} GLOBAL_TARGETS rmm::rmm CPM_ARGS GIT_REPOSITORY ${repository} GIT_TAG ${tag} GIT_SHALLOW ${shallow} PATCH_COMMAND ${patch_command} EXCLUDE_FROM_ALL ${to_exclude} OPTIONS "BUILD_TESTS OFF" "BUILD_BENCHMARKS OFF") include("${rapids-cmake-dir}/cpm/detail/display_patch_status.cmake") rapids_cpm_display_patch_status(rmm) # Propagate up variables that CPMFindPackage provide set(rmm_SOURCE_DIR "${rmm_SOURCE_DIR}" PARENT_SCOPE) set(rmm_BINARY_DIR "${rmm_BINARY_DIR}" PARENT_SCOPE) set(rmm_ADDED "${rmm_ADDED}" PARENT_SCOPE) set(rmm_VERSION ${version} PARENT_SCOPE) # rmm creates the correct namespace aliases endfunction()
0
rapidsai_public_repos/rapids-cmake/rapids-cmake
rapidsai_public_repos/rapids-cmake/rapids-cmake/cpm/init.cmake
#============================================================================= # Copyright (c) 2021, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #============================================================================= include_guard(GLOBAL) #[=======================================================================[.rst: rapids_cpm_init --------------- .. versionadded:: v21.06.00 Establish the `CPM` and preset package infrastructure for the project. .. code-block:: cmake rapids_cpm_init( [OVERRIDE <json_override_file_path> ] ) The CPM module will be downloaded based on the state of :cmake:variable:`CPM_SOURCE_CACHE` and :cmake:variable:`ENV{CPM_SOURCE_CACHE}`. This allows multiple nested projects to share the same download of CPM. If those variables aren't set the file will be cached in the build tree of the calling project .. versionadded:: v21.10.00 ``OVERRIDE`` Override the `CPM` preset package information for the project. The user provided json file must follow the `versions.json` format, which is :ref:`documented here<cpm_version_format>`. If the override file doesn't specify a value or package entry the default version will be used. .. note:: Must be called before any invocation of :cmake:command:`rapids_cpm_find`. #]=======================================================================] function(rapids_cpm_init) list(APPEND CMAKE_MESSAGE_CONTEXT "rapids.cpm.init") set(_rapids_options) set(_rapids_one_value OVERRIDE) set(_rapids_multi_value) cmake_parse_arguments(_RAPIDS "${_rapids_options}" "${_rapids_one_value}" "${_rapids_multi_value}" ${ARGN}) include("${rapids-cmake-dir}/cpm/detail/load_preset_versions.cmake") rapids_cpm_load_preset_versions() if(_RAPIDS_OVERRIDE) include("${rapids-cmake-dir}/cpm/package_override.cmake") rapids_cpm_package_override("${_RAPIDS_OVERRIDE}") endif() include("${rapids-cmake-dir}/cpm/detail/download.cmake") rapids_cpm_download() # Propagate up any modified local variables that CPM has changed. # # Push up the modified CMAKE_MODULE_PATh to allow `find_package` calls to find packages that CPM # already added. set(CMAKE_MODULE_PATH "${CMAKE_MODULE_PATH}" PARENT_SCOPE) endfunction()
0
rapidsai_public_repos/rapids-cmake/rapids-cmake
rapidsai_public_repos/rapids-cmake/rapids-cmake/cpm/gtest.cmake
#============================================================================= # Copyright (c) 2021-2023, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #============================================================================= include_guard(GLOBAL) #[=======================================================================[.rst: rapids_cpm_gtest ---------------- .. versionadded:: v21.10.00 Allow projects to find or build `Google Test` via `CPM` with built-in tracking of these dependencies for correct export support. Uses the version of GTest :ref:`specified in the version file <cpm_versions>` for consistency across all RAPIDS projects. .. code-block:: cmake rapids_cpm_gtest( [BUILD_EXPORT_SET <export-name>] [INSTALL_EXPORT_SET <export-name>] [<CPM_ARGS> ...]) .. |PKG_NAME| replace:: GTest .. include:: common_package_args.txt Result Targets ^^^^^^^^^^^^^^ GTest::gtest, GTest::gmock, GTest::gtest_main, GTest::gmock_main targets will be created Result Variables ^^^^^^^^^^^^^^^^ :cmake:variable:`GTest_SOURCE_DIR` is set to the path to the source directory of GTest. :cmake:variable:`GTest_BINARY_DIR` is set to the path to the build directory of GTest. :cmake:variable:`GTest_ADDED` is set to a true value if GTest has not been added before. :cmake:variable:`GTest_VERSION` is set to the version of GTest specified by the versions.json. #]=======================================================================] function(rapids_cpm_gtest) list(APPEND CMAKE_MESSAGE_CONTEXT "rapids.cpm.gtest") set(to_install OFF) if(INSTALL_EXPORT_SET IN_LIST ARGN) set(to_install ON) endif() include("${rapids-cmake-dir}/cpm/detail/package_details.cmake") rapids_cpm_package_details(GTest version repository tag shallow exclude) include("${rapids-cmake-dir}/cpm/detail/generate_patch_command.cmake") rapids_cpm_generate_patch_command(GTest ${version} patch_command) include("${rapids-cmake-dir}/cpm/find.cmake") rapids_cpm_find(GTest ${version} ${ARGN} GLOBAL_TARGETS GTest::gtest GTest::gmock GTest::gtest_main GTest::gmock_main CPM_ARGS FIND_PACKAGE_ARGUMENTS "EXACT" GIT_REPOSITORY ${repository} GIT_TAG ${tag} GIT_SHALLOW ${shallow} PATCH_COMMAND ${patch_command} EXCLUDE_FROM_ALL ${exclude} OPTIONS "INSTALL_GTEST ${to_install}" "CMAKE_POSITION_INDEPENDENT_CODE ON") include("${rapids-cmake-dir}/cpm/detail/display_patch_status.cmake") rapids_cpm_display_patch_status(GTest) # Propagate up variables that CPMFindPackage provide set(GTest_SOURCE_DIR "${GTest_SOURCE_DIR}" PARENT_SCOPE) set(GTest_BINARY_DIR "${GTest_BINARY_DIR}" PARENT_SCOPE) set(GTest_ADDED "${GTest_ADDED}" PARENT_SCOPE) set(GTest_VERSION ${version} PARENT_SCOPE) if(TARGET GTest::gtest AND NOT TARGET GTest::gmock) message(WARNING "The GTest package found doesn't provide gmock. If you run into 'GTest::gmock target not found' issues you need to use a different version of GTest.The easiest way is to request building GTest from source by adding the following to the cmake invocation: '-DCPM_DOWNLOAD_GTest=ON'") endif() if(NOT TARGET GTest::gtest AND TARGET gtest) add_library(GTest::gtest ALIAS gtest) add_library(GTest::gtest_main ALIAS gtest_main) endif() if(NOT TARGET GTest::gmock AND TARGET gmock) add_library(GTest::gmock ALIAS gmock) add_library(GTest::gmock_main ALIAS gmock_main) endif() endfunction()
0
rapidsai_public_repos/rapids-cmake/rapids-cmake
rapidsai_public_repos/rapids-cmake/rapids-cmake/cpm/libcudacxx.cmake
#============================================================================= # Copyright (c) 2021-2023, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #============================================================================= include_guard(GLOBAL) #[=======================================================================[.rst: rapids_cpm_libcudacxx --------------------- .. versionadded:: v21.12.00 Allow projects to find or build `libcudacxx` via `CPM` with built-in tracking of these dependencies for correct export support. Uses the version of libcudacxx :ref:`specified in the version file <cpm_versions>` for consistency across all RAPIDS projects. .. code-block:: cmake rapids_cpm_libcudacxx( [BUILD_EXPORT_SET <export-name>] [INSTALL_EXPORT_SET <export-name>] [<CPM_ARGS> ...]) .. |PKG_NAME| replace:: libcudacxx .. include:: common_package_args.txt Result Targets ^^^^^^^^^^^^^^ libcudacxx::libcudacxx target will be created Result Variables ^^^^^^^^^^^^^^^^ :cmake:variable:`libcudacxx_SOURCE_DIR` is set to the path to the source directory of libcudacxx. :cmake:variable:`libcudacxx_BINARY_DIR` is set to the path to the build directory of libcudacxx. :cmake:variable:`libcudacxx_ADDED` is set to a true value if libcudacxx has not been added before. :cmake:variable:`libcudacxx_VERSION` is set to the version of libcudacxx specified by the versions.json. #]=======================================================================] function(rapids_cpm_libcudacxx) list(APPEND CMAKE_MESSAGE_CONTEXT "rapids.cpm.libcudacxx") include("${rapids-cmake-dir}/cpm/detail/package_details.cmake") rapids_cpm_package_details(libcudacxx version repository tag shallow exclude) set(to_install OFF) if(INSTALL_EXPORT_SET IN_LIST ARGN AND NOT exclude) set(to_install ON) # By default if we allow libcudacxx to install into `CMAKE_INSTALL_INCLUDEDIR` alongside rmm (or # other packages) we will get a install tree that looks like this: # include/rmm include/cub include/libcudacxx # This is a problem for CMake+NVCC due to the rules around import targets, and user/system # includes. In this case both rmm and libcudacxx will specify an include path of `include`, # while libcudacxx tries to mark it as an user include, since rmm uses CMake's default of system # include. Compilers when provided the same include as both user and system always goes with # system. # Now while rmm could also mark `include` as system this just pushes the issue to another # dependency which isn't built by RAPIDS and comes by and marks `include` as system. # Instead the more reliable option is to make sure that we get libcudacxx to be placed in an # unique include path that the other project will use. In the case of rapids-cmake we install # the headers to `include/rapids/libcudacxx` include(GNUInstallDirs) set(CMAKE_INSTALL_INCLUDEDIR "${CMAKE_INSTALL_INCLUDEDIR}/rapids/libcudacxx") set(CMAKE_INSTALL_LIBDIR "${CMAKE_INSTALL_LIBDIR}/rapids/") endif() include("${rapids-cmake-dir}/cpm/detail/generate_patch_command.cmake") rapids_cpm_generate_patch_command(libcudacxx ${version} patch_command) include("${rapids-cmake-dir}/cpm/find.cmake") rapids_cpm_find(libcudacxx ${version} ${ARGN} GLOBAL_TARGETS libcudacxx::libcudacxx CPM_ARGS GIT_REPOSITORY ${repository} GIT_TAG ${tag} GIT_SHALLOW ${shallow} PATCH_COMMAND ${patch_command} EXCLUDE_FROM_ALL ${exclude} OPTIONS "libcudacxx_ENABLE_INSTALL_RULES ${to_install}") include("${rapids-cmake-dir}/cpm/detail/display_patch_status.cmake") rapids_cpm_display_patch_status(libcudacxx) set(options) set(one_value BUILD_EXPORT_SET INSTALL_EXPORT_SET) set(multi_value) cmake_parse_arguments(_RAPIDS "${options}" "${one_value}" "${multi_value}" ${ARGN}) if(libcudacxx_SOURCE_DIR) # Store where CMake can find our custom libcudacxx include("${rapids-cmake-dir}/export/find_package_root.cmake") rapids_export_find_package_root(BUILD libcudacxx "${libcudacxx_SOURCE_DIR}/lib/cmake" EXPORT_SET ${_RAPIDS_BUILD_EXPORT_SET}) rapids_export_find_package_root(INSTALL libcudacxx [=[${CMAKE_CURRENT_LIST_DIR}/../../rapids/cmake/libcudacxx]=] EXPORT_SET ${_RAPIDS_INSTALL_EXPORT_SET} CONDITION to_install) endif() # Propagate up variables that CPMFindPackage provide set(libcudacxx_SOURCE_DIR "${libcudacxx_SOURCE_DIR}" PARENT_SCOPE) set(libcudacxx_BINARY_DIR "${libcudacxx_BINARY_DIR}" PARENT_SCOPE) set(libcudacxx_ADDED "${libcudacxx_ADDED}" PARENT_SCOPE) set(libcudacxx_VERSION ${version} PARENT_SCOPE) endfunction()
0
rapidsai_public_repos/rapids-cmake/rapids-cmake
rapidsai_public_repos/rapids-cmake/rapids-cmake/cpm/gbench.cmake
#============================================================================= # Copyright (c) 2022-2023, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #============================================================================= include_guard(GLOBAL) #[=======================================================================[.rst: rapids_cpm_gbench ----------------- .. versionadded:: v22.12.00 Allow projects to find or build Google Benchmark via `CPM` with built-in tracking of these dependencies for correct export support. Uses the version of Google benchmark :ref:`specified in the version file <cpm_versions>` for consistency across all RAPIDS projects. .. code-block:: cmake rapids_cpm_gbench( [BUILD_EXPORT_SET <export-name>] [INSTALL_EXPORT_SET <export-name>] [BUILD_STATIC] [<CPM_ARGS> ...]) .. |PKG_NAME| replace:: benchmark .. include:: common_package_args.txt .. versionadded:: v23.12.00 ``BUILD_STATIC`` Will build Google Benchmark statically. No local searching for a previously built version will occur. Result Targets ^^^^^^^^^^^^^^ benchmark::benchmark targets will be created #]=======================================================================] function(rapids_cpm_gbench) list(APPEND CMAKE_MESSAGE_CONTEXT "rapids.cpm.gbench") set(to_install OFF) if(INSTALL_EXPORT_SET IN_LIST ARGN) set(to_install ON) endif() set(build_shared ON) if(BUILD_STATIC IN_LIST ARGN) set(build_shared OFF) set(CPM_DOWNLOAD_benchmark ON) # Since we need static we build from source endif() include("${rapids-cmake-dir}/cpm/detail/package_details.cmake") rapids_cpm_package_details(benchmark version repository tag shallow exclude) include("${rapids-cmake-dir}/cpm/detail/generate_patch_command.cmake") rapids_cpm_generate_patch_command(benchmark ${version} patch_command) include("${rapids-cmake-dir}/cmake/install_lib_dir.cmake") rapids_cmake_install_lib_dir(lib_dir) include("${rapids-cmake-dir}/cpm/find.cmake") rapids_cpm_find(benchmark ${version} ${ARGN} GLOBAL_TARGETS benchmark::benchmark benchmark::benchmark_main CPM_ARGS GIT_REPOSITORY ${repository} GIT_TAG ${tag} GIT_SHALLOW ${shallow} PATCH_COMMAND ${patch_command} EXCLUDE_FROM_ALL ${exclude} OPTIONS "BENCHMARK_ENABLE_GTEST_TESTS OFF" "BENCHMARK_ENABLE_TESTING OFF" "BENCHMARK_ENABLE_INSTALL ${to_install}" "CMAKE_INSTALL_LIBDIR ${lib_dir}" "BUILD_SHARED_LIBS ${build_shared}") include("${rapids-cmake-dir}/cpm/detail/display_patch_status.cmake") rapids_cpm_display_patch_status(benchmark) if(NOT TARGET benchmark::benchmark AND TARGET benchmark) add_library(benchmark::benchmark ALIAS benchmark) endif() endfunction()
0
rapidsai_public_repos/rapids-cmake/rapids-cmake
rapidsai_public_repos/rapids-cmake/rapids-cmake/cpm/package_override.cmake
#============================================================================= # Copyright (c) 2021-2023, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #============================================================================= include_guard(GLOBAL) #[=======================================================================[.rst: rapids_cpm_package_override --------------------------- .. versionadded:: v21.10.00 Overrides the :cmake:command:`rapids_cpm_find`, `rapids_cpm_* <../api.html#cpm-pre-configured-packages>`__, `CPM <https://github.com/cpm-cmake/CPM.cmake>`_, and :cmake:module:`FetchContent() <cmake:module:FetchContent>` package information for the project. .. code-block:: cmake rapids_cpm_package_override(<json_file_path>) Allows projects to override the default values for any :cmake:command:`rapids_cpm_find`, `rapids_cpm_* <../api.html#cpm-pre-configured-packages>`__, `CPM <https://github.com/cpm-cmake/CPM.cmake>`_, and :cmake:module:`FetchContent() <cmake:module:FetchContent>` package. The user provided json file must follow the `versions.json` format, which is :ref:`documented here<cpm_version_format>` and shown in the below example: .. literalinclude:: /packages/example.json :language: json By default when an override for a project is provided no local search for that project will occur. This is done to make sure that the requested modified version is used. If a project is listed in multiple override files, the first file values will be used, and all later calls for that packaged will be ignored. This "first to record, wins" approach is used to match FetchContent, and allows parent projects to override child projects. .. note:: .. versionadded:: v23.10.00 When the variable `CPM_<package_name>_SOURCE` exists, any override entries for `package_name` will be ignored. .. note:: If the override file doesn't specify a value or package entry the default version will be used. Must be called before any invocation of :cmake:command:`rapids_cpm_find`. #]=======================================================================] function(rapids_cpm_package_override filepath) list(APPEND CMAKE_MESSAGE_CONTEXT "rapids.cpm.rapids_cpm_package_override") if(NOT EXISTS "${filepath}") message(FATAL_ERROR "rapids_cpm_package_override can't load '${filepath}', verify it exists") endif() file(READ "${filepath}" json_data) # Determine all the projects that exist in the json file string(JSON package_count LENGTH "${json_data}" packages) math(EXPR package_count "${package_count} - 1") # For each project cache the subset of the json for that project in a global property so that # packasge_details.cmake can fetch that information if(package_count GREATER_EQUAL 0) # cmake-lint: disable=E1120 foreach(index RANGE ${package_count}) string(JSON package_name MEMBER "${json_data}" packages ${index}) get_property(override_exists GLOBAL PROPERTY rapids_cpm_${package_name}_override_json DEFINED) if(NOT (override_exists OR DEFINED CPM_${package_name}_SOURCE)) # only add the first override for a project we encounter string(JSON data GET "${json_data}" packages "${package_name}") set_property(GLOBAL PROPERTY rapids_cpm_${package_name}_override_json "${data}") set_property(GLOBAL PROPERTY rapids_cpm_${package_name}_override_json_file "${filepath}") endif() endforeach() # establish the fetch content include(FetchContent) include("${rapids-cmake-dir}/cpm/detail/package_details.cmake") rapids_cpm_package_details(${package_name} version repository tag shallow exclude) include("${rapids-cmake-dir}/cpm/detail/generate_patch_command.cmake") rapids_cpm_generate_patch_command(${package_name} ${version} patch_command) FetchContent_Declare(${package_name} GIT_REPOSITORY ${repository} GIT_TAG ${tag} GIT_SHALLOW ${shallow} PATCH_COMMAND ${patch_command} EXCLUDE_FROM_ALL ${exclude}) endif() endfunction()
0
rapidsai_public_repos/rapids-cmake/rapids-cmake
rapidsai_public_repos/rapids-cmake/rapids-cmake/cpm/fmt.cmake
#============================================================================= # Copyright (c) 2023, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #============================================================================= include_guard(GLOBAL) #[=======================================================================[.rst: rapids_cpm_fmt ----------------- .. versionadded:: v23.04.00 Allow projects to find or build `fmt` via `CPM` with built-in tracking of these dependencies for correct export support. Uses the version of fmt :ref:`specified in the version file <cpm_versions>` for consistency across all RAPIDS projects. .. code-block:: cmake rapids_cpm_fmt( [BUILD_EXPORT_SET <export-name>] [INSTALL_EXPORT_SET <export-name>] [<CPM_ARGS> ...]) .. |PKG_NAME| replace:: fmt .. include:: common_package_args.txt Result Targets ^^^^^^^^^^^^^^ fmt::fmt, fmt::fmt-header-only targets will be created Result Variables ^^^^^^^^^^^^^^^^ :cmake:variable:`fmt_SOURCE_DIR` is set to the path to the source directory of fmt. :cmake:variable:`fmt_BINARY_DIR` is set to the path to the build directory of fmt. :cmake:variable:`fmt_ADDED` is set to a true value if fmt has not been added before. :cmake:variable:`fmt_VERSION` is set to the version of fmt specified by the versions.json. #]=======================================================================] function(rapids_cpm_fmt) list(APPEND CMAKE_MESSAGE_CONTEXT "rapids.cpm.fmt") set(to_install OFF) if(INSTALL_EXPORT_SET IN_LIST ARGN) set(to_install ON) endif() include("${rapids-cmake-dir}/cpm/detail/package_details.cmake") rapids_cpm_package_details(fmt version repository tag shallow exclude) include("${rapids-cmake-dir}/cpm/detail/generate_patch_command.cmake") rapids_cpm_generate_patch_command(fmt ${version} patch_command) include("${rapids-cmake-dir}/cpm/find.cmake") rapids_cpm_find(fmt ${version} ${ARGN} GLOBAL_TARGETS fmt::fmt fmt::fmt-header-only CPM_ARGS GIT_REPOSITORY ${repository} GIT_TAG ${tag} GIT_SHALLOW ${shallow} PATCH_COMMAND ${patch_command} EXCLUDE_FROM_ALL ${exclude} OPTIONS "FMT_INSTALL ${to_install}" "CMAKE_POSITION_INDEPENDENT_CODE ON") include("${rapids-cmake-dir}/cpm/detail/display_patch_status.cmake") rapids_cpm_display_patch_status(fmt) # Propagate up variables that CPMFindPackage provide set(fmt_SOURCE_DIR "${fmt_SOURCE_DIR}" PARENT_SCOPE) set(fmt_BINARY_DIR "${fmt_BINARY_DIR}" PARENT_SCOPE) set(fmt_ADDED "${fmt_ADDED}" PARENT_SCOPE) set(fmt_VERSION ${version} PARENT_SCOPE) # fmt creates the correct namespace aliases endfunction()
0
rapidsai_public_repos/rapids-cmake/rapids-cmake
rapidsai_public_repos/rapids-cmake/rapids-cmake/cpm/cuco.cmake
#============================================================================= # Copyright (c) 2022, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #============================================================================= include_guard(GLOBAL) #[=======================================================================[.rst: rapids_cpm_cuco --------------------- .. versionadded:: v22.08.00 Allow projects to find or build `cuCollections` via `CPM` with built-in tracking of these dependencies for correct export support. Uses the version of cuCollections :ref:`specified in the version file <cpm_versions>` for consistency across all RAPIDS projects. .. code-block:: cmake rapids_cpm_cuco( [BUILD_EXPORT_SET <export-name>] [INSTALL_EXPORT_SET <export-name>] [<CPM_ARGS> ...]) .. |PKG_NAME| replace:: cuco .. include:: common_package_args.txt Result Targets ^^^^^^^^^^^^^^ cuco::cuco target will be created Result Variables ^^^^^^^^^^^^^^^^ :cmake:variable:`cuco_SOURCE_DIR` is set to the path to the source directory of cuco. :cmake:variable:`cuco_BINARY_DIR` is set to the path to the build directory of cuco. :cmake:variable:`cuco_ADDED` is set to a true value if cuco has not been added before. :cmake:variable:`cuco_VERSION` is set to the version of cuco specified by the versions.json. #]=======================================================================] function(rapids_cpm_cuco) list(APPEND CMAKE_MESSAGE_CONTEXT "rapids.cpm.cuco") set(options) set(one_value INSTALL_EXPORT_SET) set(multi_value) cmake_parse_arguments(_RAPIDS "${options}" "${one_value}" "${multi_value}" ${ARGN}) # Fix up _RAPIDS_UNPARSED_ARGUMENTS to have INSTALL_EXPORT_SET as this is need for rapids_cpm_find set(to_install OFF) if(_RAPIDS_INSTALL_EXPORT_SET) list(APPEND _RAPIDS_UNPARSED_ARGUMENTS INSTALL_EXPORT_SET ${_RAPIDS_INSTALL_EXPORT_SET}) set(to_install ON) endif() include("${rapids-cmake-dir}/cpm/detail/package_details.cmake") rapids_cpm_package_details(cuco version repository tag shallow exclude) set(to_exclude OFF) if(NOT to_install OR exclude) set(to_exclude ON) endif() include("${rapids-cmake-dir}/cpm/detail/generate_patch_command.cmake") rapids_cpm_generate_patch_command(cuco ${version} patch_command) include("${rapids-cmake-dir}/cpm/find.cmake") rapids_cpm_find(cuco ${version} ${_RAPIDS_UNPARSED_ARGUMENTS} GLOBAL_TARGETS cuco::cuco CPM_ARGS GIT_REPOSITORY ${repository} GIT_TAG ${tag} GIT_SHALLOW ${shallow} PATCH_COMMAND ${patch_command} EXCLUDE_FROM_ALL ${to_exclude} OPTIONS "BUILD_TESTS OFF" "BUILD_BENCHMARKS OFF" "BUILD_EXAMPLES OFF" "INSTALL_CUCO ${to_install}") include("${rapids-cmake-dir}/cpm/detail/display_patch_status.cmake") rapids_cpm_display_patch_status(cuco) # Propagate up variables that CPMFindPackage provide set(cuco_SOURCE_DIR "${cuco_SOURCE_DIR}" PARENT_SCOPE) set(cuco_BINARY_DIR "${cuco_BINARY_DIR}" PARENT_SCOPE) set(cuco_ADDED "${cuco_ADDED}" PARENT_SCOPE) set(cuco_VERSION ${version} PARENT_SCOPE) endfunction()
0
rapidsai_public_repos/rapids-cmake/rapids-cmake
rapidsai_public_repos/rapids-cmake/rapids-cmake/cpm/thrust.cmake
#============================================================================= # Copyright (c) 2021-2023, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #============================================================================= include_guard(GLOBAL) #[=======================================================================[.rst: rapids_cpm_thrust ----------------- .. versionadded:: v21.10.00 Allow projects to find or build `Thrust` via `CPM` with built-in tracking of these dependencies for correct export support. Uses the version of Thrust :ref:`specified in the version file <cpm_versions>` for consistency across all RAPIDS projects. .. code-block:: cmake rapids_cpm_thrust( NAMESPACE <namespace> [BUILD_EXPORT_SET <export-name>] [INSTALL_EXPORT_SET <export-name>] [<CPM_ARGS> ...]) ``NAMESPACE`` The namespace that the Thrust target will be constructed into. .. |PKG_NAME| replace:: Thrust .. include:: common_package_args.txt .. versionadded:: v23.12.00 When `BUILD_EXPORT_SET` is specified the generated build export set dependency file will automatically call `thrust_create_target(<namespace>::Thrust FROM_OPTIONS)`. When `INSTALL_EXPORT_SET` is specified the generated install export set dependency file will automatically call `thrust_create_target(<namespace>::Thrust FROM_OPTIONS)`. Result Targets ^^^^^^^^^^^^^^ <namespace>::Thrust target will be created Result Variables ^^^^^^^^^^^^^^^^ :cmake:variable:`Thrust_SOURCE_DIR` is set to the path to the source directory of Thrust. :cmake:variable:`Thrust_BINARY_DIR` is set to the path to the build directory of Thrust. :cmake:variable:`Thrust_ADDED` is set to a true value if Thrust has not been added before. :cmake:variable:`Thrust_VERSION` is set to the version of Thrust specified by the versions.json. #]=======================================================================] # cmake-lint: disable=R0915 function(rapids_cpm_thrust NAMESPACE namespaces_name) list(APPEND CMAKE_MESSAGE_CONTEXT "rapids.cpm.thrust") include("${rapids-cmake-dir}/cpm/detail/package_details.cmake") rapids_cpm_package_details(Thrust version repository tag shallow exclude) set(to_install OFF) if(INSTALL_EXPORT_SET IN_LIST ARGN AND NOT exclude) set(to_install ON) # Make sure we install thrust into the `include/rapids` subdirectory instead of the default include(GNUInstallDirs) set(CMAKE_INSTALL_INCLUDEDIR "${CMAKE_INSTALL_INCLUDEDIR}/rapids") set(CMAKE_INSTALL_LIBDIR "${CMAKE_INSTALL_LIBDIR}/rapids") endif() include("${rapids-cmake-dir}/cpm/detail/generate_patch_command.cmake") rapids_cpm_generate_patch_command(Thrust ${version} patch_command) include("${rapids-cmake-dir}/cpm/find.cmake") rapids_cpm_find(Thrust ${version} ${ARGN} GLOBAL_TARGETS ${namespaces_name}::Thrust CPM_ARGS FIND_PACKAGE_ARGUMENTS EXACT GIT_REPOSITORY ${repository} GIT_TAG ${tag} GIT_SHALLOW ${shallow} PATCH_COMMAND ${patch_command} EXCLUDE_FROM_ALL ${exclude} OPTIONS "THRUST_ENABLE_INSTALL_RULES ${to_install}") include("${rapids-cmake-dir}/cpm/detail/display_patch_status.cmake") rapids_cpm_display_patch_status(Thrust) set(options) set(one_value BUILD_EXPORT_SET INSTALL_EXPORT_SET) set(multi_value) cmake_parse_arguments(_RAPIDS "${options}" "${one_value}" "${multi_value}" ${ARGN}) set(post_find_code "if(NOT TARGET ${namespaces_name}::Thrust)" " thrust_create_target(${namespaces_name}::Thrust FROM_OPTIONS)" "endif()") if(Thrust_SOURCE_DIR) # Store where CMake can find the Thrust-config.cmake that comes part of Thrust source code include("${rapids-cmake-dir}/export/find_package_root.cmake") include("${rapids-cmake-dir}/export/detail/post_find_package_code.cmake") rapids_export_find_package_root(BUILD Thrust "${Thrust_SOURCE_DIR}/cmake" EXPORT_SET ${_RAPIDS_BUILD_EXPORT_SET}) rapids_export_post_find_package_code(BUILD Thrust "${post_find_code}" EXPORT_SET ${_RAPIDS_BUILD_EXPORT_SET}) rapids_export_find_package_root(INSTALL Thrust [=[${CMAKE_CURRENT_LIST_DIR}/../../rapids/cmake/thrust]=] EXPORT_SET ${_RAPIDS_INSTALL_EXPORT_SET} CONDITION to_install) rapids_export_post_find_package_code(INSTALL Thrust "${post_find_code}" EXPORT_SET ${_RAPIDS_INSTALL_EXPORT_SET} CONDITION to_install) endif() # Check for the existence of thrust_create_target so we support fetching Thrust with DOWNLOAD_ONLY if(NOT TARGET ${namespaces_name}::Thrust AND COMMAND thrust_create_target) thrust_create_target(${namespaces_name}::Thrust FROM_OPTIONS) set_target_properties(${namespaces_name}::Thrust PROPERTIES IMPORTED_NO_SYSTEM ON) if(TARGET _Thrust_Thrust) set_target_properties(_Thrust_Thrust PROPERTIES IMPORTED_NO_SYSTEM ON) endif() endif() # Propagate up variables that CPMFindPackage provide set(Thrust_SOURCE_DIR "${Thrust_SOURCE_DIR}" PARENT_SCOPE) set(Thrust_BINARY_DIR "${Thrust_BINARY_DIR}" PARENT_SCOPE) set(Thrust_ADDED "${Thrust_ADDED}" PARENT_SCOPE) set(Thrust_VERSION ${version} PARENT_SCOPE) endfunction()
0
rapidsai_public_repos/rapids-cmake/rapids-cmake
rapidsai_public_repos/rapids-cmake/rapids-cmake/cpm/versions.json
{ "packages" : { "benchmark" : { "version" : "1.8.0", "git_url" : "https://github.com/google/benchmark.git", "git_tag" : "v${version}" }, "cuco" : { "version" : "0.0.1", "git_shallow" : false, "git_url" : "https://github.com/NVIDIA/cuCollections.git", "git_tag" : "7c76a124df0c2cd3fd66e3e080b9470a3b4707c6" }, "fmt" : { "version" : "9.1.0", "git_url" : "https://github.com/fmtlib/fmt.git", "git_tag" : "${version}", "patches" : [ { "file" : "fmt/no_debug_warnings.diff", "issue" : "No warnings during debug builds [https://github.com/fmtlib/fmt/issues/3351]", "fixed_in" : "10.0" } ] }, "GTest" : { "version" : "1.13.0", "git_url" : "https://github.com/google/googletest.git", "git_tag" : "v${version}" }, "libcudacxx" : { "version" : "2.1.0", "git_url" : "https://github.com/NVIDIA/libcudacxx.git", "git_tag" : "${version}", "patches" : [ { "file" : "libcudacxx/install_rules.diff", "issue" : "libcudacxx installs incorrect files [https://github.com/NVIDIA/libcudacxx/pull/428]", "fixed_in" : "2.2" }, { "file" : "libcudacxx/reroot_support.diff", "issue" : "Support conda-forge usage of CMake rerooting [https://github.com/NVIDIA/libcudacxx/pull/490], requires libcudacxx/install_rules.diff.", "fixed_in" : "2.2" }, { "file" : "libcudacxx/proclaim_return_type_nv_exec_check_disable.diff", "issue" : "Use pragma to disable execution checks in cuda::proclaim_return_type. [https://github.com/NVIDIA/libcudacxx/pull/448]", "fixed_in" : "2.2" }, { "file" : "libcudacxx/memory_resource.diff", "issue" : "Allow {async_}resource_ref to be constructible from a pointer. [https://github.com/NVIDIA/libcudacxx/pull/439]", "fixed_in" : "2.2" } ] }, "nvbench" : { "version" : "0.0", "git_shallow" : false, "git_url" : "https://github.com/NVIDIA/nvbench.git", "git_tag" : "978d81a0cba97e3f30508e3c0e3cd65ce94fb699" }, "nvcomp" : { "version" : "3.0.4", "git_url" : "https://github.com/NVIDIA/nvcomp.git", "git_tag" : "v2.2.0", "proprietary_binary" : { "x86_64-linux" : "https://developer.download.nvidia.com/compute/nvcomp/${version}/local_installers/nvcomp_${version}_x86_64_${cuda-toolkit-version-major}.x.tgz", "aarch64-linux" : "https://developer.download.nvidia.com/compute/nvcomp/${version}/local_installers/nvcomp_${version}_SBSA_${cuda-toolkit-version-major}.x.tgz" } }, "rmm" : { "version" : "${rapids-cmake-version}", "git_url" : "https://github.com/rapidsai/rmm.git", "git_tag" : "branch-${version}" }, "spdlog" : { "version" : "1.11.0", "git_url" : "https://github.com/gabime/spdlog.git", "git_tag" : "v${version}" }, "Thrust" : { "version" : "1.17.2", "git_url" : "https://github.com/NVIDIA/thrust.git", "git_tag" : "${version}", "patches" : [ { "file" : "Thrust/reroot_support.diff", "issue" : "Support conda-forge usage of CMake rerooting [https://github.com/NVIDIA/thrust/pull/1969]", "fixed_in" : "2.2" }, { "file" : "Thrust/transform_iter_with_reduce_by_key.diff", "issue" : "Support transform iterator with reduce by key [https://github.com/NVIDIA/thrust/pull/1805]", "fixed_in" : "2.1" }, { "file" : "Thrust/install_rules.diff", "issue" : "Thrust 1.X installs incorrect files [https://github.com/NVIDIA/thrust/issues/1790]", "fixed_in" : "2.0" } ] } } }
0
rapidsai_public_repos/rapids-cmake/rapids-cmake
rapidsai_public_repos/rapids-cmake/rapids-cmake/cpm/nvcomp.cmake
#============================================================================= # Copyright (c) 2021-2023, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #============================================================================= include_guard(GLOBAL) #[=======================================================================[.rst: rapids_cpm_nvcomp ----------------- .. versionadded:: v22.06.00 Allow projects to find or build `nvComp` via `CPM` with built-in tracking of these dependencies for correct export support. Uses the version of nvComp :ref:`specified in the version file <cpm_versions>` for consistency across all RAPIDS projects. .. code-block:: cmake rapids_cpm_nvcomp( [USE_PROPRIETARY_BINARY <ON|OFF>] [BUILD_EXPORT_SET <export-name>] [INSTALL_EXPORT_SET <export-name>] [<CPM_ARGS> ...]) ``USE_PROPRIETARY_BINARY`` By enabling this flag and using the software, you agree to fully comply with the terms and conditions of nvcomp's NVIDIA Software License Agreement. Found at https://developer.download.nvidia.com/compute/nvcomp/2.3/LICENSE.txt NVComp offers pre-built proprietary version of the library ( for x86_64 only ) that offer more features compared to the open source version. Since NVComp currently doesn't offer pre-built versions for all platforms, callers should verify the the request for a proprietary binary was fulfilled by checking the :cmake:variable:`nvcomp_proprietary_binary` variable after calling :cmake:command:`rapids_cpm_nvcomp`. .. note:: If an override entry exists for the nvcomp package it MUST have a proprietary_binary entry for this to flag to do anything. Any override without this entry is considered to invalidate the existing proprietary binary entry. .. |PKG_NAME| replace:: nvcomp .. include:: common_package_args.txt Result Targets ^^^^^^^^^^^^^^ nvcomp::nvcomp target will be created Result Variables ^^^^^^^^^^^^^^^^ :cmake:variable:`nvcomp_SOURCE_DIR` is set to the path to the source directory of nvcomp. :cmake:variable:`nvcomp_BINARY_DIR` is set to the path to the build directory of nvcomp. :cmake:variable:`nvcomp_ADDED` is set to a true value if nvcomp has not been added before. :cmake:variable:`nvcomp_VERSION` is set to the version of nvcomp specified by the versions.json. :cmake:variable:`nvcomp_proprietary_binary` is set to ON if the proprietary binary is being used #]=======================================================================] # cmake-lint: disable=R0915,R0912 function(rapids_cpm_nvcomp) list(APPEND CMAKE_MESSAGE_CONTEXT "rapids.cpm.nvcomp") set(options) set(one_value USE_PROPRIETARY_BINARY BUILD_EXPORT_SET INSTALL_EXPORT_SET) set(multi_value) cmake_parse_arguments(_RAPIDS "${options}" "${one_value}" "${multi_value}" ${ARGN}) # Fix up _RAPIDS_UNPARSED_ARGUMENTS to have EXPORT_SETS as this is need for rapids_cpm_find if(_RAPIDS_INSTALL_EXPORT_SET) list(APPEND _RAPIDS_EXPORT_ARGUMENTS INSTALL_EXPORT_SET ${_RAPIDS_INSTALL_EXPORT_SET}) endif() if(_RAPIDS_BUILD_EXPORT_SET) list(APPEND _RAPIDS_EXPORT_ARGUMENTS BUILD_EXPORT_SET ${_RAPIDS_BUILD_EXPORT_SET}) endif() set(_RAPIDS_UNPARSED_ARGUMENTS ${_RAPIDS_EXPORT_ARGUMENTS}) include("${rapids-cmake-dir}/cpm/detail/package_details.cmake") rapids_cpm_package_details(nvcomp version repository tag shallow exclude) set(to_exclude OFF) if(NOT _RAPIDS_INSTALL_EXPORT_SET OR exclude) set(to_exclude ON) endif() # first search locally if `rapids_cmake_always_download` is false if(NOT rapids_cmake_always_download) include("${rapids-cmake-dir}/find/package.cmake") rapids_find_package(nvcomp ${version} GLOBAL_TARGETS nvcomp::nvcomp ${_RAPIDS_EXPORT_ARGUMENTS} FIND_ARGS QUIET) if(nvcomp_FOUND) # report where nvcomp was found message(STATUS "Found nvcomp: ${nvcomp_DIR} (found version ${nvcomp_VERSION})") endif() endif() # second see if we have a proprietary pre-built binary listed in versions.json and it if # requested. set(nvcomp_proprietary_binary OFF) # will be set to true by rapids_cpm_get_proprietary_binary if(_RAPIDS_USE_PROPRIETARY_BINARY AND NOT nvcomp_FOUND) include("${rapids-cmake-dir}/cpm/detail/get_proprietary_binary_url.cmake") include("${rapids-cmake-dir}/cpm/detail/download_proprietary_binary.cmake") rapids_cpm_get_proprietary_binary_url(nvcomp ${version} nvcomp_url) if(nvcomp_url) rapids_cpm_download_proprietary_binary(nvcomp ${nvcomp_url}) endif() # Record the nvcomp_DIR so that if USE_PROPRIETARY_BINARY is disabled we can safely clear the # nvcomp_DIR value if(nvcomp_proprietary_binary) set(nvcomp_proprietary_binary_dir "${nvcomp_ROOT}/lib/cmake/nvcomp") cmake_path(NORMAL_PATH nvcomp_proprietary_binary_dir) set(rapids_cpm_nvcomp_proprietary_binary_dir "${nvcomp_proprietary_binary_dir}" CACHE INTERNAL "nvcomp proprietary location") endif() elseif(DEFINED nvcomp_DIR) cmake_path(NORMAL_PATH nvcomp_DIR) if(nvcomp_DIR STREQUAL rapids_cpm_nvcomp_proprietary_binary_dir) unset(nvcomp_DIR) unset(nvcomp_DIR CACHE) endif() endif() include("${rapids-cmake-dir}/cpm/detail/generate_patch_command.cmake") rapids_cpm_generate_patch_command(nvcomp ${version} patch_command) # Apply any patch commands to the proprietary binary if(nvcomp_proprietary_binary AND patch_command) execute_process(COMMAND ${patch_command} WORKING_DIRECTORY ${nvcomp_ROOT}) endif() include("${rapids-cmake-dir}/cpm/find.cmake") rapids_cpm_find(nvcomp ${version} ${_RAPIDS_UNPARSED_ARGUMENTS} GLOBAL_TARGETS nvcomp::nvcomp CPM_ARGS GIT_REPOSITORY ${repository} GIT_TAG ${tag} GIT_SHALLOW ${shallow} EXCLUDE_FROM_ALL ${to_exclude} PATCH_COMMAND ${patch_command} OPTIONS "BUILD_STATIC ON" "BUILD_TESTS OFF" "BUILD_BENCHMARKS OFF" "BUILD_EXAMPLES OFF") include("${rapids-cmake-dir}/cpm/detail/display_patch_status.cmake") rapids_cpm_display_patch_status(nvcomp) # provide consistent targets between a found nvcomp and one building from source if(NOT TARGET nvcomp::nvcomp AND TARGET nvcomp) add_library(nvcomp::nvcomp ALIAS nvcomp) endif() # Propagate up variables that CPMFindPackage provide set(nvcomp_SOURCE_DIR "${nvcomp_SOURCE_DIR}" PARENT_SCOPE) set(nvcomp_BINARY_DIR "${nvcomp_BINARY_DIR}" PARENT_SCOPE) set(nvcomp_ADDED "${nvcomp_ADDED}" PARENT_SCOPE) set(nvcomp_VERSION ${version} PARENT_SCOPE) set(nvcomp_proprietary_binary ${nvcomp_proprietary_binary} PARENT_SCOPE) # Set up up install rules when using the proprietary_binary. When building from source, nvcomp # will set the correct install rules include("${rapids-cmake-dir}/export/find_package_root.cmake") if(NOT to_exclude AND nvcomp_proprietary_binary) include(GNUInstallDirs) install(DIRECTORY "${nvcomp_ROOT}/lib/" DESTINATION lib) install(DIRECTORY "${nvcomp_ROOT}/include/" DESTINATION include) # place the license information in the location that conda uses install(FILES "${nvcomp_ROOT}/NOTICE" DESTINATION info/ RENAME NVCOMP_NOTICE) install(FILES "${nvcomp_ROOT}/LICENSE" DESTINATION info/ RENAME NVCOMP_LICENSE) endif() # point our consumers to where they can find the pre-built version rapids_export_find_package_root(BUILD nvcomp "${nvcomp_ROOT}" EXPORT_SET ${_RAPIDS_BUILD_EXPORT_SET} CONDITION nvcomp_proprietary_binary) endfunction()
0
rapidsai_public_repos/rapids-cmake/rapids-cmake
rapidsai_public_repos/rapids-cmake/rapids-cmake/cpm/nvbench.cmake
#============================================================================= # Copyright (c) 2021-2023, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #============================================================================= include_guard(GLOBAL) #[=======================================================================[.rst: rapids_cpm_nvbench ------------------ .. versionadded:: v21.10.00 Allow projects to find or build `nvbench` via `CPM` with built-in tracking of these dependencies for correct export support. Uses the version of nvbench :ref:`specified in the version file <cpm_versions>` for consistency across all RAPIDS projects. .. code-block:: cmake rapids_cpm_nvbench( [BUILD_EXPORT_SET <export-name>] [INSTALL_EXPORT_SET <export-name>] [BUILD_STATIC] [<CPM_ARGS> ...]) .. |PKG_NAME| replace:: nvbench .. include:: common_package_args.txt .. versionadded:: v23.12.00 ``BUILD_STATIC`` Will build nvbench statically. No local searching for a previously built version will occur. Result Targets ^^^^^^^^^^^^^^ nvbench::nvbench target will be created nvbench::main target will be created Result Variables ^^^^^^^^^^^^^^^^ :cmake:variable:`nvbench_SOURCE_DIR` is set to the path to the source directory of nvbench. :cmake:variable:`nvbench_BINARY_DIR` is set to the path to the build directory of nvbench. :cmake:variable:`nvbench_ADDED` is set to a true value if nvbench has not been added before. :cmake:variable:`nvbench_VERSION` is set to the version of nvbench specified by the versions.json. #]=======================================================================] function(rapids_cpm_nvbench) list(APPEND CMAKE_MESSAGE_CONTEXT "rapids.cpm.nvbench") set(to_install OFF) if(INSTALL_EXPORT_SET IN_LIST ARGN) set(to_install ON) endif() set(build_shared ON) if(BUILD_STATIC IN_LIST ARGN) set(build_shared OFF) set(CPM_DOWNLOAD_nvbench ON) # Since we need static we build from source endif() include("${rapids-cmake-dir}/cpm/detail/package_details.cmake") rapids_cpm_package_details(nvbench version repository tag shallow exclude) # CUDA::nvml is an optional package and might not be installed ( aka conda ) find_package(CUDAToolkit REQUIRED) set(nvbench_with_nvml "OFF") if(TARGET CUDA::nvml) set(nvbench_with_nvml "ON") endif() include("${rapids-cmake-dir}/cpm/detail/generate_patch_command.cmake") rapids_cpm_generate_patch_command(nvbench ${version} patch_command) include("${rapids-cmake-dir}/cpm/find.cmake") rapids_cpm_find(nvbench ${version} ${ARGN} GLOBAL_TARGETS nvbench::nvbench nvbench::main CPM_ARGS GIT_REPOSITORY ${repository} GIT_TAG ${tag} GIT_SHALLOW ${shallow} PATCH_COMMAND ${patch_command} EXCLUDE_FROM_ALL ${exclude} OPTIONS "NVBench_ENABLE_NVML ${nvbench_with_nvml}" "NVBench_ENABLE_EXAMPLES OFF" "NVBench_ENABLE_TESTING OFF" "NVBench_ENABLE_INSTALL_RULES ${to_install}" "BUILD_SHARED_LIBS ${build_shared}") include("${rapids-cmake-dir}/cpm/detail/display_patch_status.cmake") rapids_cpm_display_patch_status(nvbench) # Propagate up variables that CPMFindPackage provide set(nvbench_SOURCE_DIR "${nvbench_SOURCE_DIR}" PARENT_SCOPE) set(nvbench_BINARY_DIR "${nvbench_BINARY_DIR}" PARENT_SCOPE) set(nvbench_ADDED "${nvbench_ADDED}" PARENT_SCOPE) set(nvbench_VERSION ${version} PARENT_SCOPE) # nvbench creates the correct namespace aliases endfunction()
0
rapidsai_public_repos/rapids-cmake/rapids-cmake/cpm
rapidsai_public_repos/rapids-cmake/rapids-cmake/cpm/patches/command_template.cmake.in
#============================================================================= # Copyright (c) 2022, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #============================================================================= set(msg_state) function(rapids_cpm_run_git_patch file issue) set(git_command @GIT_EXECUTABLE@) cmake_path(GET file FILENAME file_name) cmake_path(GET file_name EXTENSION LAST_ONLY ext) string(SUBSTRING "${ext}" 1 -1 ext) if(NOT (ext STREQUAL "diff" OR ext STREQUAL "patch") ) list(APPEND msg_state "rapids-cmake: Unable to apply ${file} as ${ext} is unsupported. Only .diff and .patch are supported") set(msg_state ${msg_state} PARENT_SCOPE) return() endif() set(command apply) set(args) if(ext STREQUAL "patch") set(command am) set(args -3) endif() set(result 1) if(ext STREQUAL "diff") execute_process( COMMAND ${git_command} apply ${file} RESULT_VARIABLE result ERROR_VARIABLE repo_error_info ) if(NOT result EQUAL 0) # See if the diff was previously applied execute_process( COMMAND ${git_command} apply --reverse --check ${file} RESULT_VARIABLE result ) endif() elseif(ext STREQUAL "patch") # no need to check if the git patch was already applied # `am` does that and returns a success error code for those cases execute_process( COMMAND ${git_command} am -3 ${file} RESULT_VARIABLE result ERROR_VARIABLE repo_error_info ) endif() if(result EQUAL 0) list(APPEND msg_state "rapids-cmake [@package_name@]: applied ${ext} ${file_name} to fix issue: '${issue}'") else() list(APPEND msg_state "rapids-cmake [@package_name@]: failed to apply ${ext} ${file_name}") list(APPEND msg_state "rapids-cmake [@package_name@]: git ${ext} output: ${repo_error_info}") endif() list(APPEND msg_state "\n") set(msg_state ${msg_state} PARENT_SCOPE) endfunction() # We want to ensure that any patched files have a timestamp # that is at least 1 second newer compared to the git checkout # This ensures that all of CMake up-to-date install logic # considers these files as modified. # # This ensures that if our patch contains additional install rules # they will execute even when an existing install rule exists # with the same destination ( and our patch is listed last ). execute_process(COMMAND ${CMAKE_COMMAND} -E sleep 1) set(files "@patch_files_to_run@") set(issues "@patch_issues_to_ref@") set(output_file "@log_file@") foreach(file issue IN ZIP_LISTS files issues) rapids_cpm_run_git_patch(${file} ${issue}) endforeach() if(msg_state) file(WRITE "${output_file}" ${msg_state}) endif()
0
rapidsai_public_repos/rapids-cmake/rapids-cmake/cpm/patches
rapidsai_public_repos/rapids-cmake/rapids-cmake/cpm/patches/Thrust/transform_iter_with_reduce_by_key.diff
diff --git a/thrust/iterator/transform_input_output_iterator.h b/thrust/iterator/transform_input_output_iterator.h index f512a36..a5f725d 100644 --- a/thrust/iterator/transform_input_output_iterator.h +++ b/thrust/iterator/transform_input_output_iterator.h @@ -102,6 +102,8 @@ template <typename InputFunction, typename OutputFunction, typename Iterator> /*! \endcond */ + transform_input_output_iterator() = default; + /*! This constructor takes as argument a \c Iterator an \c InputFunction and an * \c OutputFunction and copies them to a new \p transform_input_output_iterator * diff --git a/thrust/iterator/transform_output_iterator.h b/thrust/iterator/transform_output_iterator.h index 66fb46a..4a68cb5 100644 --- a/thrust/iterator/transform_output_iterator.h +++ b/thrust/iterator/transform_output_iterator.h @@ -104,6 +104,8 @@ template <typename UnaryFunction, typename OutputIterator> /*! \endcond */ + transform_output_iterator() = default; + /*! This constructor takes as argument an \c OutputIterator and an \c * UnaryFunction and copies them to a new \p transform_output_iterator *
0
rapidsai_public_repos/rapids-cmake/rapids-cmake/cpm/patches
rapidsai_public_repos/rapids-cmake/rapids-cmake/cpm/patches/Thrust/reroot_support.diff
diff --git a/dependencies/cub/cub/cmake/cub-header-search.cmake b/dependencies/cub/cub/cmake/cub-header-search.cmake index 2ff1a8acd8..5e731f2be8 100644 --- a/dependencies/cub/cub/cmake/cub-header-search.cmake +++ b/dependencies/cub/cub/cmake/cub-header-search.cmake @@ -1,5 +1,6 @@ unset(_CUB_VERSION_INCLUDE_DIR CACHE) # Clear old result to force search find_path(_CUB_VERSION_INCLUDE_DIR cub/version.cuh + NO_CMAKE_FIND_ROOT_PATH NO_DEFAULT_PATH # Only search explicit paths below: PATHS "${CMAKE_CURRENT_LIST_DIR}/../.." # Source tree diff --git a/dependencies/cub/cub/cmake/cub-header-search.cmake.in b/dependencies/cub/cub/cmake/cub-header-search.cmake.in index 271b1b27bd..3bd10e4b70 100644 --- a/dependencies/cub/cub/cmake/cub-header-search.cmake.in +++ b/dependencies/cub/cub/cmake/cub-header-search.cmake.in @@ -11,6 +11,7 @@ list(TRANSFORM from_install_prefix REPLACE ".+" "../") list(JOIN from_install_prefix "" from_install_prefix) find_path(_CUB_VERSION_INCLUDE_DIR cub/version.cuh + NO_CMAKE_FIND_ROOT_PATH NO_DEFAULT_PATH # Only search explicit paths below: PATHS "${CMAKE_CURRENT_LIST_DIR}/${from_install_prefix}/@CMAKE_INSTALL_INCLUDEDIR@" diff --git a/thrust/cmake/thrust-header-search.cmake b/thrust/cmake/thrust-header-search.cmake index 643ec90b7..7d27c68f4 100644 --- a/thrust/cmake/thrust-header-search.cmake +++ b/thrust/cmake/thrust-header-search.cmake @@ -1,6 +1,7 @@ # Parse version information from version.h: unset(_THRUST_VERSION_INCLUDE_DIR CACHE) # Clear old result to force search find_path(_THRUST_VERSION_INCLUDE_DIR thrust/version.h + NO_CMAKE_FIND_ROOT_PATH NO_DEFAULT_PATH # Only search explicit paths below: PATHS "${CMAKE_CURRENT_LIST_DIR}/../.." # Source tree diff --git a/thrust/cmake/thrust-header-search.cmake.in b/thrust/cmake/thrust-header-search.cmake.in index c014c469b..adea07e2d 100644 --- a/thrust/cmake/thrust-header-search.cmake.in +++ b/thrust/cmake/thrust-header-search.cmake.in @@ -11,6 +11,7 @@ list(TRANSFORM from_install_prefix REPLACE ".+" "../") list(JOIN from_install_prefix "" from_install_prefix) find_path(_THRUST_VERSION_INCLUDE_DIR thrust/version.h + NO_CMAKE_FIND_ROOT_PATH NO_DEFAULT_PATH # Only search explicit paths below: PATHS "${CMAKE_CURRENT_LIST_DIR}/${from_install_prefix}/@CMAKE_INSTALL_INCLUDEDIR@"
0
rapidsai_public_repos/rapids-cmake/rapids-cmake/cpm/patches
rapidsai_public_repos/rapids-cmake/rapids-cmake/cpm/patches/Thrust/install_rules.diff
diff --git a/cmake/ThrustInstallRules.cmake b/cmake/ThrustInstallRules.cmake index 93084c1..bf6c195 100644 --- a/cmake/ThrustInstallRules.cmake +++ b/cmake/ThrustInstallRules.cmake @@ -13,7 +13,7 @@ install(DIRECTORY "${Thrust_SOURCE_DIR}/thrust" install(DIRECTORY "${Thrust_SOURCE_DIR}/thrust/cmake/" DESTINATION "${CMAKE_INSTALL_LIBDIR}/cmake/thrust" - PATTERN thrust-header-search EXCLUDE + REGEX thrust-header-search.* EXCLUDE ) # Need to configure a file to store the infix specified in # CMAKE_INSTALL_INCLUDEDIR since it can be defined by the user @@ -39,7 +39,7 @@ if (THRUST_INSTALL_CUB_HEADERS) # Need to configure a file to store THRUST_INSTALL_HEADER_INFIX install(DIRECTORY "${Thrust_SOURCE_DIR}/dependencies/cub/cub/cmake/" DESTINATION "${CMAKE_INSTALL_LIBDIR}/cmake/cub" - PATTERN cub-header-search EXCLUDE + REGEX cub-header-search.* EXCLUDE ) set(install_location "${CMAKE_INSTALL_LIBDIR}/cmake/cub") configure_file("${Thrust_SOURCE_DIR}/dependencies/cub/cub/cmake/cub-header-search.cmake.in"
0
rapidsai_public_repos/rapids-cmake/rapids-cmake/cpm/patches
rapidsai_public_repos/rapids-cmake/rapids-cmake/cpm/patches/libcudacxx/proclaim_return_type_nv_exec_check_disable.diff
diff --git a/include/cuda/std/detail/libcxx/include/__functional/invoke.h b/include/cuda/std/detail/libcxx/include/__functional/invoke.h index 1ab318d5..850d00a8 100644 --- a/include/cuda/std/detail/libcxx/include/__functional/invoke.h +++ b/include/cuda/std/detail/libcxx/include/__functional/invoke.h @@ -342,6 +342,9 @@ _LIBCUDACXX_INLINE_VISIBILITY __nat __invoke(__any, _Args&& ...__args); // bullets 1, 2 and 3 +#ifdef __CUDACC__ +#pragma nv_exec_check_disable +#endif template <class _Fp, class _A0, class ..._Args, class = __enable_if_bullet1<_Fp, _A0> > inline _LIBCUDACXX_INLINE_VISIBILITY @@ -350,6 +353,9 @@ __invoke(_Fp&& __f, _A0&& __a0, _Args&& ...__args) _NOEXCEPT_(noexcept((static_cast<_A0&&>(__a0).*__f)(static_cast<_Args&&>(__args)...))) { return (static_cast<_A0&&>(__a0).*__f)(static_cast<_Args&&>(__args)...); } +#ifdef __CUDACC__ +#pragma nv_exec_check_disable +#endif template <class _Fp, class _A0, class ..._Args, class = __enable_if_bullet2<_Fp, _A0> > inline _LIBCUDACXX_INLINE_VISIBILITY @@ -358,6 +364,9 @@ __invoke(_Fp&& __f, _A0&& __a0, _Args&& ...__args) _NOEXCEPT_(noexcept((__a0.get().*__f)(static_cast<_Args&&>(__args)...))) { return (__a0.get().*__f)(static_cast<_Args&&>(__args)...); } +#ifdef __CUDACC__ +#pragma nv_exec_check_disable +#endif template <class _Fp, class _A0, class ..._Args, class = __enable_if_bullet3<_Fp, _A0> > inline _LIBCUDACXX_INLINE_VISIBILITY @@ -368,6 +377,9 @@ __invoke(_Fp&& __f, _A0&& __a0, _Args&& ...__args) // bullets 4, 5 and 6 +#ifdef __CUDACC__ +#pragma nv_exec_check_disable +#endif template <class _Fp, class _A0, class = __enable_if_bullet4<_Fp, _A0> > inline _LIBCUDACXX_INLINE_VISIBILITY @@ -376,6 +388,9 @@ __invoke(_Fp&& __f, _A0&& __a0) _NOEXCEPT_(noexcept(static_cast<_A0&&>(__a0).*__f)) { return static_cast<_A0&&>(__a0).*__f; } +#ifdef __CUDACC__ +#pragma nv_exec_check_disable +#endif template <class _Fp, class _A0, class = __enable_if_bullet5<_Fp, _A0> > inline _LIBCUDACXX_INLINE_VISIBILITY @@ -384,6 +399,9 @@ __invoke(_Fp&& __f, _A0&& __a0) _NOEXCEPT_(noexcept(__a0.get().*__f)) { return __a0.get().*__f; } +#ifdef __CUDACC__ +#pragma nv_exec_check_disable +#endif template <class _Fp, class _A0, class = __enable_if_bullet6<_Fp, _A0> > inline _LIBCUDACXX_INLINE_VISIBILITY @@ -394,6 +412,9 @@ __invoke(_Fp&& __f, _A0&& __a0) // bullet 7 +#ifdef __CUDACC__ +#pragma nv_exec_check_disable +#endif template <class _Fp, class ..._Args> inline _LIBCUDACXX_INLINE_VISIBILITY _LIBCUDACXX_CONSTEXPR decltype(_CUDA_VSTD::declval<_Fp>()(_CUDA_VSTD::declval<_Args>()...))
0
rapidsai_public_repos/rapids-cmake/rapids-cmake/cpm/patches
rapidsai_public_repos/rapids-cmake/rapids-cmake/cpm/patches/libcudacxx/memory_resource.diff
diff --git a/include/cuda/memory_resource b/include/cuda/memory_resource index 4a904cda..32f3f210 100644 --- a/include/cuda/memory_resource +++ b/include/cuda/memory_resource @@ -525,7 +525,16 @@ public: && (((_Alloc_type == _AllocType::_Default) && resource_with<_Resource, _Properties...>) // ||((_Alloc_type == _AllocType::_Async) && async_resource_with<_Resource, _Properties...>)))) // basic_resource_ref(_Resource& __res) noexcept - : _Resource_ref_base<_Alloc_type>(&__res, &__alloc_vtable<_Alloc_type, _Resource>) + : _Resource_ref_base<_Alloc_type>(_CUDA_VSTD::addressof(__res), &__alloc_vtable<_Alloc_type, _Resource>) + , _Filtered_vtable<_Properties...>(_Filtered_vtable<_Properties...>::template _Create<_Resource>()) + {} + + _LIBCUDACXX_TEMPLATE(class _Resource) + (requires (!_Is_basic_resource_ref<_Resource> + && (((_Alloc_type == _AllocType::_Default) && resource_with<_Resource, _Properties...>) // + ||((_Alloc_type == _AllocType::_Async) && async_resource_with<_Resource, _Properties...>)))) // + basic_resource_ref(_Resource* __res) noexcept + : _Resource_ref_base<_Alloc_type>(__res, &__alloc_vtable<_Alloc_type, _Resource>) , _Filtered_vtable<_Properties...>(_Filtered_vtable<_Properties...>::template _Create<_Resource>()) {}
0
rapidsai_public_repos/rapids-cmake/rapids-cmake/cpm/patches
rapidsai_public_repos/rapids-cmake/rapids-cmake/cpm/patches/libcudacxx/reroot_support.diff
diff --git a/lib/cmake/libcudacxx/libcudacxx-header-search.cmake.in b/lib/cmake/libcudacxx/libcudacxx-header-search.cmake.in index 6130197f..ec53d5de 100644 --- a/lib/cmake/libcudacxx/libcudacxx-header-search.cmake.in +++ b/lib/cmake/libcudacxx/libcudacxx-header-search.cmake.in @@ -5,6 +5,7 @@ unset(_libcudacxx_VERSION_INCLUDE_DIR CACHE) # Clear old result to force search set(from_install_prefix "@from_install_prefix@") find_path(_libcudacxx_VERSION_INCLUDE_DIR cuda/std/detail/__config + NO_CMAKE_FIND_ROOT_PATH # Don't allow CMake to re-root the search NO_DEFAULT_PATH # Only search explicit paths below: PATHS "${CMAKE_CURRENT_LIST_DIR}/${from_install_prefix}/@CMAKE_INSTALL_INCLUDEDIR@" # Install tree
0