|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
BioScope |
|
--- |
|
The corpus consists of three parts, namely medical free texts, biological full |
|
papers and biological scientific abstracts. The dataset contains annotations at |
|
the token level for negative and speculative keywords and at the sentence level |
|
for their linguistic scope. The annotation process was carried out by two |
|
independent linguist annotators and a chief linguist - also responsible for |
|
setting up the annotation guidelines - who resolved cases where the annotators |
|
disagreed. The resulting corpus consists of more than 20.000 sentences that were |
|
considered for annotation and over 10% of them actually contain one (or more) |
|
linguistic annotation suggesting negation or uncertainty. |
|
""" |
|
|
|
import os |
|
import re |
|
import xml.etree.ElementTree as ET |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from .bigbiohub import kb_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
|
|
_LANGUAGES = ['English'] |
|
_PUBMED = True |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@article{vincze2008bioscope, |
|
title={The BioScope corpus: biomedical texts annotated for uncertainty, negation and their scopes}, |
|
author={Vincze, Veronika and Szarvas, Gy{\"o}rgy and Farkas, Rich{\'a}rd and M{\'o}ra, Gy{\"o}rgy and Csirik, J{\'a}nos}, |
|
journal={BMC bioinformatics}, |
|
volume={9}, |
|
number={11}, |
|
pages={1--9}, |
|
year={2008}, |
|
publisher={BioMed Central} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "bioscope" |
|
_DISPLAYNAME = "BioScope" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
The BioScope corpus consists of medical and biological texts annotated for |
|
negation, speculation and their linguistic scope. This was done to allow a |
|
comparison between the development of systems for negation/hedge detection and |
|
scope resolution. The BioScope corpus was annotated by two independent linguists |
|
following the guidelines written by our linguist expert before the annotation of |
|
the corpus was initiated. |
|
""" |
|
|
|
_HOMEPAGE = "https://rgai.inf.u-szeged.hu/node/105" |
|
|
|
_LICENSE = 'Creative Commons Attribution 2.0 Generic' |
|
|
|
_URLS = { |
|
_DATASETNAME: "https://rgai.sed.hu/sites/rgai.sed.hu/files/bioscope.zip", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
class BioscopeDataset(datasets.GeneratorBasedBuilder): |
|
"""The BioScope corpus consists of medical and biological texts annotated for negation, speculation and their linguistic scope.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="bioscope_source", |
|
version=SOURCE_VERSION, |
|
description="bioscope source schema", |
|
schema="source", |
|
subset_id="bioscope", |
|
), |
|
BigBioConfig( |
|
name="bioscope_abstracts_source", |
|
version=SOURCE_VERSION, |
|
description="bioscope source schema", |
|
schema="source", |
|
subset_id="bioscope_abstracts", |
|
), |
|
BigBioConfig( |
|
name="bioscope_papers_source", |
|
version=SOURCE_VERSION, |
|
description="bioscope source schema", |
|
schema="source", |
|
subset_id="bioscope_papers", |
|
), |
|
BigBioConfig( |
|
name="bioscope_medical_texts_source", |
|
version=SOURCE_VERSION, |
|
description="bioscope source schema", |
|
schema="source", |
|
subset_id="bioscope_medical_texts", |
|
), |
|
BigBioConfig( |
|
name="bioscope_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="bioscope BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id="bioscope", |
|
), |
|
BigBioConfig( |
|
name="bioscope_abstracts_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="bioscope BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id="bioscope_abstracts", |
|
), |
|
BigBioConfig( |
|
name="bioscope_papers_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="bioscope BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id="bioscope_papers", |
|
), |
|
BigBioConfig( |
|
name="bioscope_medical_texts_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="bioscope BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id="bioscope_medical_texts", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "bioscope_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"document_id": datasets.Value("string"), |
|
"document_type": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"entities": [ |
|
{ |
|
"offsets": datasets.Sequence([datasets.Value("int32")]), |
|
"text": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"id": datasets.Value("string"), |
|
"normalized": [ |
|
{ |
|
"db_name": datasets.Value("string"), |
|
"db_id": datasets.Value("string"), |
|
} |
|
], |
|
} |
|
], |
|
} |
|
) |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
features = kb_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
urls = _URLS[_DATASETNAME] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"data_files": data_dir, |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, data_files: Path) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
sentences = self._load_sentences(data_files) |
|
if self.config.schema == "source": |
|
for guid, sentence_tuple in enumerate(sentences): |
|
document_type, sentence = sentence_tuple |
|
example = self._create_example(sentence_tuple) |
|
example["document_type"] = f"{document_type}_{sentence.attrib['id']}" |
|
example["text"] = "".join(sentence_tuple[1].itertext()) |
|
yield guid, example |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
for guid, sentence_tuple in enumerate(sentences): |
|
document_type, sentence = sentence_tuple |
|
example = self._create_example(sentence_tuple) |
|
example["id"] = guid |
|
example["passages"] = [ |
|
{ |
|
"id": f"{document_type}_{sentence.attrib['id']}", |
|
"type": document_type, |
|
"text": ["".join(sentence.itertext())], |
|
"offsets": [(0, len("".join(sentence.itertext())))], |
|
} |
|
] |
|
example["events"] = [] |
|
example["coreferences"] = [] |
|
example["relations"] = [] |
|
yield guid, example |
|
|
|
def _load_sentences(self, data_files: Path) -> List: |
|
""" |
|
Returns a list of tuples (Document type, iterator from dataset) |
|
""" |
|
if self.config.subset_id.__contains__("abstracts"): |
|
sentences = self._concat_iterators( |
|
( |
|
"Abstract", |
|
ET.parse(os.path.join(data_files, "abstracts.xml")) |
|
.getroot() |
|
.iter("sentence"), |
|
) |
|
) |
|
elif self.config.subset_id.__contains__("papers"): |
|
sentences = self._concat_iterators( |
|
( |
|
"Paper", |
|
ET.parse(os.path.join(data_files, "full_papers.xml")) |
|
.getroot() |
|
.iter("sentence"), |
|
) |
|
) |
|
elif self.config.subset_id.__contains__("medical_texts"): |
|
sentences = self._concat_iterators( |
|
( |
|
"Medical text", |
|
ET.parse( |
|
os.path.join( |
|
data_files, "clinical_merger/clinical_records_anon.xml" |
|
) |
|
) |
|
.getroot() |
|
.iter("sentence"), |
|
) |
|
) |
|
else: |
|
abstracts = ( |
|
ET.parse(os.path.join(data_files, "abstracts.xml")) |
|
.getroot() |
|
.iter("sentence") |
|
) |
|
papers = ( |
|
ET.parse(os.path.join(data_files, "full_papers.xml")) |
|
.getroot() |
|
.iter("sentence") |
|
) |
|
medical_texts = ( |
|
ET.parse( |
|
os.path.join( |
|
data_files, "clinical_merger/clinical_records_anon.xml" |
|
) |
|
) |
|
.getroot() |
|
.iter("sentence") |
|
) |
|
sentences = self._concat_iterators( |
|
("Abstract", abstracts), |
|
("Paper", papers), |
|
("Medical text", medical_texts), |
|
) |
|
return sentences |
|
|
|
@staticmethod |
|
def _concat_iterators(*iterator_tuple): |
|
for document_type, iterator in iterator_tuple: |
|
for element in iterator: |
|
yield document_type, element |
|
|
|
def _create_example(self, sentence_tuple): |
|
document_type, sentence = sentence_tuple |
|
document_type_prefix = document_type[0] |
|
|
|
example = {} |
|
example["document_id"] = f"{document_type_prefix}_{sentence.attrib['id']}" |
|
example["entities"] = self._extract_entities(sentence, document_type_prefix) |
|
return example |
|
|
|
def _extract_entities(self, sentence, document_type_prefix): |
|
text = "".join(sentence.itertext()) |
|
entities = [] |
|
xcopes = dict([(xcope.attrib["id"], xcope) for xcope in sentence.iter("xcope")]) |
|
cues = dict([(cue.attrib["ref"], cue) for cue in sentence.iter("cue")]) |
|
for idx, xcope in xcopes.items(): |
|
|
|
if cues.get(idx) is None: |
|
continue |
|
entities.append( |
|
{ |
|
"id": f"{document_type_prefix}_{idx}", |
|
"type": cues.get(idx).attrib["type"], |
|
"text": ["".join(xcope.itertext())], |
|
"offsets": self._extract_offsets( |
|
text=text, entity_text="".join(xcope.itertext()) |
|
), |
|
"normalized": [], |
|
} |
|
) |
|
return entities |
|
|
|
def _extract_offsets(self, text, entity_text): |
|
return [(text.find(entity_text), text.find(entity_text) + len(entity_text))] |
|
|