Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 11,888 Bytes
970237b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
The compound-protein relationship (CPI) dataset consists of 2,613 sentences from abstracts containing
annotations of proteins, small molecules, and their relationships. For further information see:
https://pubmed.ncbi.nlm.nih.gov/32126064/ and https://github.com/KerstenDoering/CPI-Pipeline
"""
import xml.etree.ElementTree as ET
from pathlib import Path
from typing import Dict, Iterator, Tuple

import datasets

from .bigbiohub import kb_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks

_LANGUAGES = ['English']
_PUBMED = True
_LOCAL = False
_CITATION = """\
@article{doring2020automated,
  title={Automated recognition of functional compound-protein relationships in literature},
  author={D{\"o}ring, Kersten and Qaseem, Ammar and Becer, Michael and Li, Jianyu and Mishra, Pankaj and Gao, Mingjie and Kirchner, Pascal and Sauter, Florian and Telukunta, Kiran K and Moumbock, Aur{\'e}lien FA and others},
  journal={Plos one},
  volume={15},
  number={3},
  pages={e0220925},
  year={2020},
  publisher={Public Library of Science San Francisco, CA USA}
}
"""

_DATASETNAME = "cpi"
_DISPLAYNAME = "CPI"

_DESCRIPTION = """\
The compound-protein relationship (CPI) dataset consists of 2,613 sentences from abstracts containing \
annotations of proteins, small molecules, and their relationships
"""

_HOMEPAGE = "https://github.com/KerstenDoering/CPI-Pipeline"

_LICENSE = 'ISC License'

_URLS = {
    "CPI": "https://github.com/KerstenDoering/CPI-Pipeline/raw/master/data_sets/xml/CPI-DS.xml",
    "CPI_IV": "https://github.com/KerstenDoering/CPI-Pipeline/raw/master/data_sets/xml/CPI-DS_IV.xml",
    "CPI_NIV": "https://github.com/KerstenDoering/CPI-Pipeline/raw/master/data_sets/xml/CPI-DS_IV.xml",
}

_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.NAMED_ENTITY_DISAMBIGUATION, Tasks.RELATION_EXTRACTION]

_SOURCE_VERSION = "1.0.2"
_BIGBIO_VERSION = "1.0.0"


class CpiDataset(datasets.GeneratorBasedBuilder):
    """The compound-protein relationship (CPI) dataset"""

    ENTITY_TYPE_TO_DB_NAME = {"compound": "PubChem", "protein": "UniProt"}

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)

    BUILDER_CONFIGS = [
        BigBioConfig(
            name="cpi_source",
            version=SOURCE_VERSION,
            description="CPI source schema",
            schema="source",
            subset_id="cpi",
        ),
        BigBioConfig(
            name="cpi_iv_source",
            version=SOURCE_VERSION,
            description="CPI source schema - subset with interaction verbs",
            schema="source",
            subset_id="cpi_iv",
        ),
        BigBioConfig(
            name="cpi_niv_source",
            version=SOURCE_VERSION,
            description="CPI source schema - subset without interaction verbs",
            schema="source",
            subset_id="cpi_niv",
        ),
        BigBioConfig(
            name="cpi_bigbio_kb",
            version=BIGBIO_VERSION,
            description="CPI BigBio schema",
            schema="bigbio_kb",
            subset_id="cpi",
        ),
    ]

    DEFAULT_CONFIG_NAME = "cpi_source"

    def _info(self):
        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "document_id": datasets.Value("string"),
                    "document_orig_id": datasets.Value("string"),
                    "sentences": [
                        {
                            "sentence_id": datasets.Value("string"),
                            "sentence_orig_id": datasets.Value("string"),
                            "text": datasets.Value("string"),
                            "entities": [
                                {
                                    "entity_id": datasets.Value("string"),
                                    "entity_orig_id": datasets.Sequence(datasets.Value("string")),
                                    "type": datasets.Value("string"),
                                    "offset": datasets.Sequence(datasets.Value("int32")),
                                    "text": datasets.Value("string"),
                                }
                            ],
                            "pairs": [
                                {
                                    "pair_id": datasets.Value("string"),
                                    "e1": datasets.Value("string"),
                                    "e2": datasets.Value("string"),
                                    "interaction": datasets.Value("bool"),
                                }
                            ],
                        }
                    ],
                }
            )

        elif self.config.schema == "bigbio_kb":
            features = kb_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=str(_LICENSE),
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        # Distinguish based on the subset id (cpi, cpi_iv, cpi_niv) which file to load
        subset_url = _URLS[self.config.subset_id.upper()]
        subset_file = dl_manager.download_and_extract(subset_url)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"subset_file": subset_file},
            )
        ]

    def _generate_examples(self, subset_file: Path) -> Iterator[Tuple[str, Dict]]:
        if self.config.schema == "source":
            for doc_id, document in self._read_source_examples(subset_file):
                yield doc_id, document

        elif self.config.name == "cpi_bigbio_kb":
            # Note: The sentences in a CPI document does not (necessarily) occur consecutive in
            # the original publication. Nevertheless, in this implementation we capture all sentences
            # of a document in one kb-schema document to explicitly model documents.

            # Transform each source-schema document to kb-schema document
            for doc_id, source_document in self._read_source_examples(subset_file):
                sentence_offset = 0
                passages = []
                entities = []
                relations = []

                # Transform all sentences to kb-schema sentences
                for source_sentence in source_document["sentences"]:
                    text = source_sentence["text"]
                    passages.append(
                        {
                            "id": source_sentence["sentence_id"],
                            "text": [text],
                            "offsets": [[sentence_offset + 0, sentence_offset + len(text)]],
                            "type": "",
                        }
                    )

                    # Transform source-schema entities to kb-schema entities
                    for source_entity in source_sentence["entities"]:
                        db_name = self.ENTITY_TYPE_TO_DB_NAME[source_entity["type"]]

                        entity_offset = source_entity["offset"]
                        entity_offset = [sentence_offset + entity_offset[0], sentence_offset + entity_offset[1]]

                        entities.append(
                            {
                                "id": source_entity["entity_id"],
                                "type": source_entity["type"],
                                "text": [source_entity["text"]],
                                "offsets": [entity_offset],
                                "normalized": [
                                    {"db_name": db_name, "db_id": db_id} for db_id in source_entity["entity_orig_id"]
                                ],
                            }
                        )

                    # Transform source-schema pairs to kb-schema relations
                    for source_pair in source_sentence["pairs"]:
                        # Ignore pairs that are annotated to be not in a relationship!
                        if not source_pair["interaction"]:
                            continue

                        relations.append(
                            {
                                "id": source_pair["pair_id"],
                                "type": "compound-protein-interaction",
                                "arg1_id": source_pair["e1"],
                                "arg2_id": source_pair["e2"],
                                "normalized": [],
                            }
                        )

                    sentence_offset += len(text) + 1

                kb_document = {
                    "id": source_document["document_id"],
                    "document_id": source_document["document_orig_id"],
                    "passages": passages,
                    "entities": entities,
                    "relations": relations,
                    "events": [],
                    "coreferences": [],
                }

                yield source_document["document_id"], kb_document

    def _read_source_examples(self, input_file: Path) -> Iterator[Tuple[str, Dict]]:
        """
        Reads all instances of the given input file and parses them into the source format.
        """
        root = ET.parse(input_file)
        for document in root.iter("document"):
            sentences = []
            for sentence in document.iter("sentence"):
                entities = []
                for entity in sentence.iter("entity"):
                    char_offsets = entity.attrib["charOffset"].split("-")
                    start, end = int(char_offsets[0]), int(char_offsets[1])

                    entities.append(
                        {
                            "entity_id": entity.attrib["id"],
                            "entity_orig_id": entity.attrib["origId"].split(","),
                            "type": entity.attrib["type"],
                            "text": entity.attrib["text"],
                            "offset": [start, end],
                        }
                    )

                pairs = []
                for pair in sentence.iter("pair"):
                    pairs.append(
                        {
                            "pair_id": pair.attrib["id"],
                            "e1": pair.attrib["e1"],
                            "e2": pair.attrib["e2"],
                            "interaction": pair.attrib["interaction"].lower() == "true",
                        }
                    )

                sentences.append(
                    {
                        "sentence_id": sentence.attrib["id"],
                        "sentence_orig_id": sentence.attrib["origId"],
                        "text": sentence.attrib["text"],
                        "entities": entities,
                        "pairs": pairs,
                    }
                )

            document_dict = {
                "document_id": document.attrib["id"],
                "document_orig_id": document.attrib["origId"],
                "sentences": sentences,
            }

            yield document.attrib["id"], document_dict