|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
This corpus release contains 4,993 abstracts annotated with (P)articipants, |
|
(I)nterventions, and (O)utcomes. Training labels are sourced from AMT workers and |
|
aggregated to reduce noise. Test labels are collected from medical professionals. |
|
""" |
|
|
|
import os |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple, Union |
|
|
|
import datasets |
|
from .bigbiohub import kb_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
|
|
_LANGUAGES = ['English'] |
|
_PUBMED = True |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@inproceedings{nye-etal-2018-corpus, |
|
title = "A Corpus with Multi-Level Annotations of Patients, Interventions and Outcomes to Support Language Processing for Medical Literature", |
|
author = "Nye, Benjamin and |
|
Li, Junyi Jessy and |
|
Patel, Roma and |
|
Yang, Yinfei and |
|
Marshall, Iain and |
|
Nenkova, Ani and |
|
Wallace, Byron", |
|
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", |
|
month = jul, |
|
year = "2018", |
|
address = "Melbourne, Australia", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/P18-1019", |
|
doi = "10.18653/v1/P18-1019", |
|
pages = "197--207", |
|
} |
|
""" |
|
|
|
_DATASETNAME = "ebm_pico" |
|
_DISPLAYNAME = "EBM NLP" |
|
|
|
_DESCRIPTION = """\ |
|
This corpus release contains 4,993 abstracts annotated with (P)articipants, |
|
(I)nterventions, and (O)utcomes. Training labels are sourced from AMT workers and |
|
aggregated to reduce noise. Test labels are collected from medical professionals. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/bepnye/EBM-NLP" |
|
|
|
_LICENSE = 'License information unavailable' |
|
|
|
_URLS = { |
|
_DATASETNAME: "https://github.com/bepnye/EBM-NLP/raw/master/ebm_nlp_2_00.tar.gz" |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION] |
|
|
|
_SOURCE_VERSION = "2.0.0" |
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
PHASES = ("starting_spans", "hierarchical_labels") |
|
LABEL_DECODERS = { |
|
PHASES[0]: { |
|
"participants": {0: "No Label", 1: "Participant"}, |
|
"interventions": {0: "No Label", 1: "Intervention"}, |
|
"outcomes": {0: "No Label", 1: "Outcome"}, |
|
}, |
|
PHASES[1]: { |
|
"participants": { |
|
0: "No label", |
|
1: "Age", |
|
2: "Sex", |
|
3: "Sample-size", |
|
4: "Condition", |
|
}, |
|
"interventions": { |
|
0: "No label", |
|
1: "Surgical", |
|
2: "Physical", |
|
3: "Pharmacological", |
|
4: "Educational", |
|
5: "Psychological", |
|
6: "Other", |
|
7: "Control", |
|
}, |
|
"outcomes": { |
|
0: "No label", |
|
1: "Physical", |
|
2: "Pain", |
|
3: "Mortality", |
|
4: "Adverse-effects", |
|
5: "Mental", |
|
6: "Other", |
|
}, |
|
}, |
|
} |
|
|
|
|
|
def _get_entities_pico( |
|
annotation_dict: Dict[str, List[int]], |
|
tokenized: List[str], |
|
document_content: str, |
|
) -> List[Dict[str, Union[int, str]]]: |
|
"""extract PIO entities from documents using annotation_dict""" |
|
|
|
def _partition(alist, indices): |
|
return [alist[i:j] for i, j in zip([0] + indices, indices + [None])] |
|
|
|
ents = [] |
|
for annotation_type, annotations in annotation_dict.items(): |
|
indices = [idx for idx, val in enumerate(annotations) if val != 0] |
|
|
|
if len(indices) > 0: |
|
split_indices = [] |
|
|
|
for item_index, item in enumerate(indices): |
|
if item_index + 1 == len(indices): |
|
break |
|
if indices[item_index] + 1 != indices[item_index + 1]: |
|
split_indices.append(item_index + 1) |
|
elif annotations[item] != annotations[item + 1]: |
|
split_indices.append(item_index + 1) |
|
multiple_indices = _partition(indices, split_indices) |
|
|
|
for _indices in multiple_indices: |
|
high_level_type = LABEL_DECODERS["starting_spans"][annotation_type][1] |
|
fine_grained_type = LABEL_DECODERS["hierarchical_labels"][ |
|
annotation_type |
|
][annotations[_indices[0]]] |
|
annotation_text = " ".join([tokenized[ind] for ind in _indices]) |
|
|
|
char_start = document_content.find(annotation_text) |
|
char_end = char_start + len(annotation_text) |
|
|
|
ent = { |
|
"annotation_text": annotation_text, |
|
"high_level_annotation_type": high_level_type, |
|
"fine_grained_annotation_type": fine_grained_type, |
|
"char_start": char_start, |
|
"char_end": char_end, |
|
} |
|
|
|
ents.append(ent) |
|
return ents |
|
|
|
|
|
class EbmPico(datasets.GeneratorBasedBuilder): |
|
"""A Corpus with Multi-Level Annotations of Patients, Interventions and Outcomes to |
|
Support Language Processing for Medical Literature.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="ebm_pico_source", |
|
version=SOURCE_VERSION, |
|
description="ebm_pico source schema", |
|
schema="source", |
|
subset_id="ebm_pico", |
|
), |
|
BigBioConfig( |
|
name="ebm_pico_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="ebm_pico BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id="ebm_pico", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "ebm_pico_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"doc_id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"entities": [ |
|
{ |
|
"text": datasets.Value("string"), |
|
"annotation_type": datasets.Value("string"), |
|
"fine_grained_annotation_type": datasets.Value("string"), |
|
"start": datasets.Value("int64"), |
|
"end": datasets.Value("int64"), |
|
} |
|
], |
|
} |
|
) |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
features = kb_features |
|
else: |
|
raise ValueError("config.schema must be either source or bigbio_kb") |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
urls = _URLS[_DATASETNAME] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
|
|
documents_folder = Path(data_dir) / "ebm_nlp_2_00" / "documents" |
|
annotations_folder = ( |
|
Path(data_dir) / "ebm_nlp_2_00" / "annotations" / "aggregated" |
|
) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"documents_folder": documents_folder, |
|
"annotations_folder": annotations_folder, |
|
"split_folder": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"documents_folder": documents_folder, |
|
"annotations_folder": annotations_folder, |
|
"split_folder": "test/gold", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples( |
|
self, documents_folder, annotations_folder, split_folder: str |
|
) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
annotation_types = ["interventions", "outcomes", "participants"] |
|
|
|
docs_path = os.path.join( |
|
annotations_folder, |
|
f"hierarchical_labels/{annotation_types[0]}/{split_folder}/", |
|
) |
|
documents_in_split = sorted(os.listdir(docs_path)) |
|
|
|
uid = 0 |
|
for id_, document in enumerate(documents_in_split): |
|
document_id = document.split(".")[0] |
|
with open(f"{documents_folder}/{document_id}.tokens") as fp: |
|
tokenized = fp.read().splitlines() |
|
document_content = " ".join(tokenized) |
|
|
|
annotation_dict = {} |
|
for annotation_type in annotation_types: |
|
try: |
|
with open( |
|
f"{annotations_folder}/hierarchical_labels/{annotation_type}/{split_folder}/{document}" |
|
) as fp: |
|
annotation_dict[annotation_type] = [ |
|
int(x) for x in fp.read().splitlines() |
|
] |
|
except OSError: |
|
annotation_dict[annotation_type] = [] |
|
|
|
ents = _get_entities_pico( |
|
annotation_dict, tokenized=tokenized, document_content=document_content |
|
) |
|
|
|
if self.config.schema == "source": |
|
|
|
data = { |
|
"doc_id": document_id, |
|
"text": document_content, |
|
"entities": [ |
|
{ |
|
"text": ent["annotation_text"], |
|
"annotation_type": ent["high_level_annotation_type"], |
|
"fine_grained_annotation_type": ent[ |
|
"fine_grained_annotation_type" |
|
], |
|
"start": ent["char_start"], |
|
"end": ent["char_end"], |
|
} |
|
for ent in ents |
|
], |
|
} |
|
yield id_, data |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
data = { |
|
"id": str(uid), |
|
"document_id": document_id, |
|
"passages": [], |
|
"entities": [], |
|
"relations": [], |
|
"events": [], |
|
"coreferences": [], |
|
} |
|
uid += 1 |
|
|
|
data["passages"] = [ |
|
{ |
|
"id": str(uid), |
|
"type": "document", |
|
"text": [document_content], |
|
"offsets": [[0, len(document_content)]], |
|
} |
|
] |
|
uid += 1 |
|
|
|
for ent in ents: |
|
entity = { |
|
"id": uid, |
|
"type": f'{ent["high_level_annotation_type"]}_{ent["fine_grained_annotation_type"]}', |
|
"text": [ent["annotation_text"]], |
|
"offsets": [[ent["char_start"], ent["char_end"]]], |
|
"normalized": [], |
|
} |
|
data["entities"].append(entity) |
|
uid += 1 |
|
|
|
yield uid, data |
|
|