|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
A dataset loading script for the PharmaCoNER corpus. |
|
|
|
The PharmaCoNER datset is a manually annotated collection of clinical case |
|
studies derived from the Spanish Clinical Case Corpus (SPACCC). It was designed |
|
for the Pharmacological Substances, Compounds and Proteins NER track, the first |
|
shared task on detecting drug and chemical entities in Spanish medical documents. |
|
""" |
|
|
|
import os |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from .bigbiohub import kb_features |
|
from .bigbiohub import text_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
from .bigbiohub import parse_brat_file |
|
from .bigbiohub import brat_parse_to_bigbio_kb |
|
|
|
_LANGUAGES = ['Spanish'] |
|
_PUBMED = False |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@inproceedings{gonzalez2019pharmaconer, |
|
title = "PharmaCoNER: Pharmacological Substances, Compounds and proteins Named Entity Recognition track", |
|
author = "Gonzalez-Agirre, Aitor and |
|
Marimon, Montserrat and |
|
Intxaurrondo, Ander and |
|
Rabal, Obdulia and |
|
Villegas, Marta and |
|
Krallinger, Martin", |
|
booktitle = "Proceedings of The 5th Workshop on BioNLP Open Shared Tasks", |
|
month = nov, |
|
year = "2019", |
|
address = "Hong Kong, China", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/D19-5701", |
|
doi = "10.18653/v1/D19-5701", |
|
pages = "1--10", |
|
} |
|
""" |
|
|
|
_DATASETNAME = "pharmaconer" |
|
_DISPLAYNAME = "PharmaCoNER" |
|
|
|
_GENERAL_DESCRIPTION = """\ |
|
PharmaCoNER: Pharmacological Substances, Compounds and Proteins Named Entity Recognition track |
|
|
|
This dataset is designed for the PharmaCoNER task, sponsored by Plan de Impulso de las Tecnologías del Lenguaje. |
|
|
|
It is a manually classified collection of clinical case studies derived from the Spanish Clinical \ |
|
Case Corpus (SPACCC), an open access electronic library that gathers Spanish medical publications \ |
|
from SciELO (Scientific Electronic Library Online). |
|
|
|
The annotation of the entire set of entity mentions was carried out by medicinal chemistry experts \ |
|
and it includes the following 4 entity types: NORMALIZABLES, NO_NORMALIZABLES, PROTEINAS and UNCLEAR. |
|
|
|
The PharmaCoNER corpus contains a total of 396,988 words and 1,000 clinical cases that have been \ |
|
randomly sampled into 3 subsets. The training set contains 500 clinical cases, while the development \ |
|
and test sets contain 250 clinical cases each. |
|
|
|
For further information, please visit https://temu.bsc.es/pharmaconer/ or send an email to encargo-pln-life@bsc.es |
|
""" |
|
|
|
_DESCRIPTION_SUBTRACK_1 = """\ |
|
\n\nSUBTRACK 1: NER offset and entity type classification\n |
|
The first subtrack consists in the classical entity-based or instanced-based evaluation that requires \ |
|
that system outputs match exactly the beginning and end locations of each entity tag, as well as match \ |
|
the entity annotation type of the gold standard annotations. |
|
""" |
|
|
|
_DESCRIPTION_SUBTRACK_2 = """\ |
|
\n\nSUBTRACK 2: CONCEPT INDEXING\n |
|
In the second subtask, a list of unique SNOMED concept identifiers have to be generated for each document. \ |
|
The predictions are compared to the manually annotated concept ids corresponding to chemical compounds and \ |
|
pharmacological substances. |
|
""" |
|
|
|
_DESCRIPTION = { |
|
"subtrack_1": _GENERAL_DESCRIPTION + _DESCRIPTION_SUBTRACK_1, |
|
"subtrack_2": _GENERAL_DESCRIPTION + _DESCRIPTION_SUBTRACK_2, |
|
"full_task": _GENERAL_DESCRIPTION |
|
+ _DESCRIPTION_SUBTRACK_1 |
|
+ _DESCRIPTION_SUBTRACK_2, |
|
} |
|
|
|
_HOMEPAGE = "https://temu.bsc.es/pharmaconer/index.php/datasets/" |
|
|
|
_LICENSE = 'Creative Commons Attribution 4.0 International' |
|
|
|
_URLS = { |
|
"pharmaconer": "https://zenodo.org/record/4270158/files/pharmaconer.zip?download=1", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.TEXT_CLASSIFICATION] |
|
|
|
_SOURCE_VERSION = "1.1.0" |
|
|
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
class PharmaconerDataset(datasets.GeneratorBasedBuilder): |
|
"""Manually annotated collection of clinical case studies from Spanish medical publications.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="pharmaconer_source", |
|
version=SOURCE_VERSION, |
|
description="PharmaCoNER source schema", |
|
schema="source", |
|
subset_id="full_task", |
|
), |
|
BigBioConfig( |
|
name="pharmaconer_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="PharmaCoNER BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id="subtrack_1", |
|
), |
|
BigBioConfig( |
|
name="pharmaconer_bigbio_text", |
|
version=BIGBIO_VERSION, |
|
description="PharmaCoNER BigBio schema", |
|
schema="bigbio_text", |
|
subset_id="subtrack_2", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "pharmaconer_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"document_id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"labels": [datasets.Value("string")], |
|
"text_bound_annotations": [ |
|
{ |
|
"offsets": datasets.Sequence([datasets.Value("int32")]), |
|
"text": datasets.Sequence(datasets.Value("string")), |
|
"type": datasets.Value("string"), |
|
"id": datasets.Value("string"), |
|
} |
|
], |
|
"events": [ |
|
{ |
|
"trigger": datasets.Value("string"), |
|
"id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"arguments": datasets.Sequence( |
|
{ |
|
"role": datasets.Value("string"), |
|
"ref_id": datasets.Value("string"), |
|
} |
|
), |
|
} |
|
], |
|
"relations": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"head": { |
|
"ref_id": datasets.Value("string"), |
|
"role": datasets.Value("string"), |
|
}, |
|
"tail": { |
|
"ref_id": datasets.Value("string"), |
|
"role": datasets.Value("string"), |
|
}, |
|
"type": datasets.Value("string"), |
|
} |
|
], |
|
"equivalences": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"ref_ids": datasets.Sequence(datasets.Value("string")), |
|
} |
|
], |
|
"attributes": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"ref_id": datasets.Value("string"), |
|
"value": datasets.Value("string"), |
|
} |
|
], |
|
"normalizations": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"ref_id": datasets.Value("string"), |
|
"resource_name": datasets.Value("string"), |
|
"cuid": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
} |
|
], |
|
}, |
|
) |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
features = kb_features |
|
|
|
elif self.config.schema == "bigbio_text": |
|
features = text_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION[self.config.subset_id], |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: |
|
""" |
|
Downloads/extracts the data to generate the train, validation and test splits. |
|
|
|
Each split is created by instantiating a `datasets.SplitGenerator`, which will |
|
call `this._generate_examples` with the keyword arguments in `gen_kwargs`. |
|
""" |
|
|
|
data_dir = dl_manager.download_and_extract(_URLS["pharmaconer"]) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepaths": [ |
|
Path( |
|
os.path.join( |
|
data_dir, "pharmaconer/train-set_1.1/train/subtrack1" |
|
) |
|
), |
|
Path( |
|
os.path.join( |
|
data_dir, "pharmaconer/train-set_1.1/train/subtrack2" |
|
) |
|
), |
|
], |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepaths": [ |
|
Path( |
|
os.path.join( |
|
data_dir, "pharmaconer/test-set_1.1/test/subtrack1" |
|
) |
|
), |
|
Path( |
|
os.path.join( |
|
data_dir, "pharmaconer/test-set_1.1/test/subtrack2" |
|
) |
|
), |
|
], |
|
"split": "test", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepaths": [ |
|
Path( |
|
os.path.join( |
|
data_dir, "pharmaconer/dev-set_1.1/dev/subtrack1" |
|
) |
|
), |
|
Path( |
|
os.path.join( |
|
data_dir, "pharmaconer/dev-set_1.1/dev/subtrack2" |
|
) |
|
), |
|
], |
|
"split": "dev", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepaths, split: str) -> Tuple[int, Dict]: |
|
""" |
|
This method handles input defined in _split_generators to yield (key, example) tuples from the dataset. |
|
Method parameters are unpacked from `gen_kwargs` as given in `_split_generators`. |
|
""" |
|
|
|
txt_files = sorted(list(filepaths[0].glob("*txt"))) |
|
tsv_files = sorted(list(filepaths[1].glob("*tsv"))) |
|
|
|
if self.config.schema == "source": |
|
for guid, (txt_file, tsv_file) in enumerate(zip(txt_files, tsv_files)): |
|
example = parse_brat_file(txt_file) |
|
try: |
|
subtrack2_df = pd.read_csv(tsv_file, sep="\t", header=None) |
|
subtrack2_df[1] = subtrack2_df[1].apply(str) |
|
codes_set = set(subtrack2_df[1].unique().flatten()) |
|
codes_set.discard("<null>") |
|
example["labels"] = list(codes_set) |
|
except Exception: |
|
example["labels"] = [] |
|
example["id"] = str(guid) |
|
yield guid, example |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
for guid, (txt_file, tsv_file) in enumerate(zip(txt_files, tsv_files)): |
|
example = brat_parse_to_bigbio_kb( |
|
parse_brat_file(txt_file) |
|
) |
|
example["id"] = str(guid) |
|
yield guid, example |
|
|
|
elif self.config.schema == "bigbio_text": |
|
for guid, (txt_file, tsv_file) in enumerate(zip(txt_files, tsv_files)): |
|
brat = brat_parse_to_bigbio_kb( |
|
parse_brat_file(txt_file) |
|
) |
|
try: |
|
subtrack2_df = pd.read_csv(tsv_file, sep="\t", header=None) |
|
subtrack2_df[1] = subtrack2_df[1].apply(str) |
|
codes_set = set(subtrack2_df[1].unique().flatten()) |
|
codes_set.discard("<null>") |
|
labels = list(codes_set) |
|
except Exception: |
|
labels = [] |
|
example = { |
|
"id": str(guid), |
|
"document_id": brat["document_id"], |
|
"text": brat["passages"][0]["text"][0], |
|
"labels": labels, |
|
} |
|
yield guid, example |
|
|
|
else: |
|
raise ValueError(f"Invalid config: {self.config.name}") |
|
|