|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
We present the SourceData-NLP dataset produced through the routine curation of papers during the publication process. |
|
A unique feature of this dataset is its emphasis on the annotation of bioentities in figure legends. |
|
We annotate eight classes of biomedical entities (small molecules, gene products, subcellular components, |
|
cell lines, cell types, tissues, organisms, and diseases), their role in the experimental design, |
|
and the nature of the experimental method as an additional class. |
|
SourceData-NLP contains more than 620,000 annotated biomedical entities, curated from 18,689 figures in |
|
3,223 papers in molecular and cell biology. |
|
|
|
[bigbio_schema_name] = kb |
|
""" |
|
|
|
import itertools |
|
import json |
|
import os |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from .bigbiohub import BigBioConfig, Tasks, kb_features |
|
|
|
_LANGUAGES = ["English"] |
|
_PUBMED = True |
|
_LOCAL = False |
|
_DISPLAYNAME = "SourceData-NLP" |
|
|
|
_CITATION = """\ |
|
@article{abreu2023sourcedata, |
|
title={The SourceData-NLP dataset: integrating curation into scientific publishing |
|
for training large language models}, |
|
author={Abreu-Vicente, Jorge and Sonntag, Hannah and Eidens, Thomas and Lemberger, Thomas}, |
|
journal={arXiv preprint arXiv:2310.20440}, |
|
year={2023} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "sourcedata_nlp" |
|
|
|
_DESCRIPTION = """\ |
|
SourceData is an NER/NED dataset of expert annotations of nine |
|
entity types in figure captions from biomedical research papers. |
|
""" |
|
|
|
_HOMEPAGE = "https://sourcedata.embo.org/" |
|
|
|
|
|
_LICENSE = "CC_BY_4p0" |
|
|
|
|
|
_URLS = { |
|
_DATASETNAME: ( |
|
"https://huggingface.co/datasets/EMBO/SourceData/resolve/main/bigbio/source_data_json_splits_2.0.2.zip" |
|
) |
|
} |
|
|
|
|
|
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_DISAMBIGUATION, Tasks.NAMED_ENTITY_RECOGNITION] |
|
|
|
_SOURCE_VERSION = "2.0.2" |
|
|
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
class SourceDataNlpDataset(datasets.GeneratorBasedBuilder): |
|
"""NER + NED dataset of multiple entity types from figure captions of scientific publications""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="sourcedata_nlp_source", |
|
version=SOURCE_VERSION, |
|
description="sourcedata_nlp source schema", |
|
schema="source", |
|
subset_id="sourcedata_nlp", |
|
), |
|
BigBioConfig( |
|
name="sourcedata_nlp_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="sourcedata_nlp BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id="sourcedata_nlp", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "sourcedata_nlp_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"doi": datasets.Value("string"), |
|
"abstract": datasets.Value("string"), |
|
"figures": [ |
|
{ |
|
"fig_id": datasets.Value("string"), |
|
"label": datasets.Value("string"), |
|
"fig_graphic_url": datasets.Value("string"), |
|
"panels": [ |
|
{ |
|
"panel_id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"panel_graphic_url": datasets.Value("string"), |
|
"entities": [ |
|
{ |
|
"annotation_id": datasets.Value("string"), |
|
"source": datasets.Value("string"), |
|
"category": datasets.Value("string"), |
|
"entity_type": datasets.Value("string"), |
|
"role": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"ext_ids": datasets.Value("string"), |
|
"norm_text": datasets.Value("string"), |
|
"ext_dbs": datasets.Value("string"), |
|
"in_caption": datasets.Value("bool"), |
|
"ext_names": datasets.Value("string"), |
|
"ext_tax_ids": datasets.Value("string"), |
|
"ext_tax_names": datasets.Value("string"), |
|
"ext_urls": datasets.Value("string"), |
|
"offsets": [datasets.Value("int64")], |
|
} |
|
], |
|
} |
|
], |
|
} |
|
], |
|
} |
|
) |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
features = kb_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
urls = _URLS[_DATASETNAME] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "train.jsonl"), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "test.jsonl"), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "validation.jsonl"), |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
if self.config.schema == "source": |
|
with open(filepath) as fstream: |
|
for line in fstream: |
|
document = self._parse_document(line) |
|
doc_figs = document["figures"] |
|
all_figures = [] |
|
for fig in doc_figs: |
|
all_panels = [] |
|
figure = { |
|
"fig_id": fig["fig_id"], |
|
"label": fig["label"], |
|
"fig_graphic_url": fig["fig_graphic_url"], |
|
} |
|
for p in fig["panels"]: |
|
panel = { |
|
"panel_id": p["panel_id"], |
|
"text": p["text"].strip(), |
|
"panel_graphic_url": p["panel_graphic_url"], |
|
"entities": [ |
|
{ |
|
"annotation_id": t["tag_id"], |
|
"source": t["source"], |
|
"category": t["category"], |
|
"entity_type": t["entity_type"], |
|
"role": t["role"], |
|
"text": t["text"], |
|
"ext_ids": t["ext_ids"], |
|
"norm_text": t["norm_text"], |
|
"ext_dbs": t["ext_dbs"], |
|
"in_caption": bool(t["in_caption"]), |
|
"ext_names": t["ext_names"], |
|
"ext_tax_ids": t["ext_tax_ids"], |
|
"ext_tax_names": t["ext_tax_names"], |
|
"ext_urls": t["ext_urls"], |
|
"offsets": t["local_offsets"], |
|
} |
|
for t in p["tags"] |
|
], |
|
} |
|
for e in panel["entities"]: |
|
assert type(e["offsets"]) == list |
|
if len(panel["entities"]) == 0: |
|
continue |
|
all_panels.append(panel) |
|
|
|
figure["panels"] = all_panels |
|
|
|
|
|
if len(all_panels) == 0: |
|
continue |
|
all_figures.append(figure) |
|
|
|
output = { |
|
"doi": document["doi"], |
|
"abstract": document["abstract"], |
|
"figures": all_figures, |
|
} |
|
yield document["doi"], output |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
uid = itertools.count(0) |
|
|
|
with open(filepath) as fstream: |
|
for line in fstream: |
|
output = {} |
|
document = self._parse_document(line) |
|
|
|
|
|
output["id"] = next(uid) |
|
output["document_id"] = document["doi"] |
|
output["passages"] = document["passages"] |
|
for i, passage in enumerate(output["passages"]): |
|
passage["id"] = next(uid) |
|
passage_text = passage["text"].strip() |
|
passage["text"] = [passage_text] |
|
passage_offsets = passage["offsets"] |
|
if i == 0: |
|
passage_offsets[1] = len(passage_text.strip()) |
|
passage["offsets"] = [ |
|
[ |
|
passage_offsets[0], |
|
passage_offsets[0] + passage_offsets[1], |
|
] |
|
] |
|
entities = [] |
|
for fig in document["figures"]: |
|
for panel in fig["panels"]: |
|
for tag in panel["tags"]: |
|
|
|
ent_type = self._get_entity_type(tag) |
|
if ent_type is not None: |
|
ent = { |
|
"id": next(uid), |
|
"type": ent_type, |
|
"text": [tag["text"]], |
|
"offsets": [tag["document_offsets"]], |
|
"normalized": [ |
|
{"db_name": db_name, "db_id": db_id} |
|
for db_name, db_id in zip(tag["ext_dbs"], tag["ext_ids"]) |
|
], |
|
} |
|
entities.append(ent) |
|
|
|
|
|
|
|
|
|
role = self._get_entity_role(tag) |
|
if role is not None: |
|
role_ent = { |
|
"id": next(uid), |
|
"type": role, |
|
"text": [tag["text"]], |
|
"offsets": [tag["document_offsets"]], |
|
"normalized": [ |
|
{"db_name": db_name, "db_id": db_id} |
|
for db_name, db_id in zip(tag["ext_dbs"], tag["ext_ids"]) |
|
], |
|
} |
|
entities.append(role_ent) |
|
|
|
output["entities"] = entities |
|
|
|
output["relations"] = [] |
|
output["events"] = [] |
|
output["coreferences"] = [] |
|
|
|
yield output["document_id"], output |
|
|
|
def _parse_document(self, raw_document): |
|
doc = json.loads(raw_document.strip()) |
|
return doc |
|
|
|
def _get_entity_type(self, tag): |
|
if tag["entity_type"] == "molecule": |
|
return "SMALL_MOLECULE" |
|
elif tag["entity_type"] in ["geneprod", "gene", "protein"]: |
|
return "GENEPROD" |
|
elif tag["entity_type"] == "subcellular": |
|
return "SUBCELLULAR" |
|
elif tag["entity_type"] == "cell_type": |
|
return "CELL_TYPE" |
|
elif tag["entity_type"] == "tissue": |
|
return "TISSUE" |
|
elif tag["entity_type"] == "organism": |
|
return "ORGANISM" |
|
elif tag["category"] == "assay": |
|
return "EXP_ASSAY" |
|
elif tag["category"] == "disease": |
|
return "DISEASE" |
|
elif tag["entity_type"] == "cell_line": |
|
return "CELL_LINE" |
|
|
|
def _get_entity_role(self, tag): |
|
if tag["entity_type"] == "molecule": |
|
if tag["role"] == "intervention": |
|
return "CONTROLLED_VAR" |
|
elif tag["role"] == "assayed": |
|
return "MEASURED_VAR" |
|
elif tag["entity_type"] in ["geneprod", "gene", "protein"]: |
|
if tag["role"] == "intervention": |
|
return "CONTROLLED_VAR" |
|
elif tag["role"] == "assayed": |
|
return "MEASURED_VAR" |
|
|