content
stringlengths 35
416k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
def get_structure_index(structure_pattern,stream_index):
"""
Translates the stream index into a sequence of structure indices identifying an item in a hierarchy whose structure is specified by the provided structure pattern.
>>> get_structure_index('...',1)
[1]
>>> get_structure_index('.[.].',1)
[1, 0]
>>> get_structure_index('.[[...],..].',1)
[1, 0, 0]
>>> get_structure_index('.[[...]...].',2)
[1, 0, 1]
>>> get_structure_index('.[[...]...].',3)
[1, 0, 2]
>>> get_structure_index('.[[...]...].',4)
[1, 1]
>>> get_structure_index('.[[...]...].',5)
[1, 2]
>>> get_structure_index('.[[...]...].',6)
[1, 3]
>>> get_structure_index('.[[...]...].',7)
[2]
"""
structure_index = [0]
current_stream_index = 0
for p in structure_pattern:
if p == '[':
structure_index.append(0)
elif p == '.':
if current_stream_index == stream_index:
return structure_index
structure_index[-1] += 1
current_stream_index += 1
elif p == ']':
structure_index.pop(-1)
structure_index[-1] += 1
else:
raise Exception('Invalid character in structure pattern: %s' % repr(p))
raise Exception('Provided stream index does not exist in the provided structure pattern') | 8f1def101aa2ec63d1ea69382db9641bf0f51380 | 678 |
def errorcode_from_error(e):
"""
Get the error code from a particular error/exception caused by PostgreSQL.
"""
return e.orig.pgcode | 981b447d540e949834c10f4a05fb21769091b104 | 679 |
def get_avg_sentiment(sentiment):
"""
Compiles and returnes the average sentiment
of all titles and bodies of our query
"""
average = {}
for coin in sentiment:
# sum up all compound readings from each title & body associated with the
# coin we detected in keywords
average[coin] = sum([item['compound'] for item in sentiment[coin]])
# get the mean compound sentiment if it's not 0
if average[coin] != 0:
average[coin] = average[coin] / len(sentiment[coin])
return average | 6a79c3d4f28e18a33290ea86a912389a5b48b0f3 | 681 |
import os
def does_file_exist(path):
""" Checks if the given file is in the local filesystem.
Args:
path: A str, the path to the file.
Returns:
True on success, False otherwise.
"""
return os.path.isfile(path) | 38768ca739cf8a6f482bfb5d35cef397c70227c1 | 682 |
def listDatasets(objects = dir()):
"""
Utility function to identify currently loaded datasets.
Function should be called with default parameters,
ie as 'listDatasets()'
"""
datasetlist = []
for item in objects:
try:
if eval(item + '.' + 'has_key("DATA")') == True:
datasetlist.append(item)
except AttributeError:
pass
return datasetlist | 061d7c9287c6166b3e7d55449be49db30400ce56 | 683 |
import sys
def get_argument(index, default=''):
"""
取得 shell 參數, 或使用預設值
"""
if len(sys.argv) <= index:
return default
return sys.argv[index] | c2c8d78b608745428a1d6b4d97b5081e1f0961e7 | 685 |
import re
def clean_filename(string: str) -> str:
"""
清理文件名中的非法字符,防止保存到文件系统时出错
:param string:
:return:
"""
string = string.replace(':', '_').replace('/', '_').replace('\x00', '_')
string = re.sub('[\n\\\*><?\"|\t]', '', string)
return string.strip() | 805023382e30c0d0113715cdf6c7bcbc8b383066 | 686 |
import os
import importlib
def build_model(master_config):
"""
Imports the proper model class and builds model
"""
available_models = os.listdir("lib/classes/model_classes")
available_models = [i.replace(".py", "") for i in available_models]
model_type = master_config.Core_Config.Model_Config.model_type
model_class = None
if model_type in available_models:
model_class_module = importlib.import_module("lib.classes.model_classes." + model_type)
model_class = getattr(model_class_module, model_type)
else:
print("Error: model type not available. Check lib/classes/model_classes/ for available models", flush=True)
return False
model = model_class(master_config)
if master_config.Core_Config.Reload_Config.reload:
reload_path = master_config.Core_Config.Reload_Config.reload_path
if master_config.Core_Config.Reload_Config.by_name:
model.load_weights(reload_path + "model_and_config/final_model_weights.h5", by_name=True)
else:
model.load_weights(reload_path + "model_and_config/final_model_weights.h5")
return model | 3089df4094e211a0e5a7fe521bc08b2ca5ff23b0 | 687 |
def get_digits_from_right_to_left(number):
"""Return digits of an integer excluding the sign."""
number = abs(number)
if number < 10:
return (number, )
lst = list()
while number:
number, digit = divmod(number, 10)
lst.insert(0, digit)
return tuple(lst) | 6b5626ad42313534d207c75d2713d0c9dc97507c | 688 |
def rx_weight_fn(edge):
"""A function for returning the weight from the common vertex."""
return float(edge["weight"]) | 4c405ffeae306a3920a6e624c748fb00cc1ee8ac | 689 |
def image_inputs(images_and_videos, data_dir, text_tmp_images):
"""Generates a list of input arguments for ffmpeg with the given images."""
include_cmd = []
# adds images as video starting on overlay time and finishing on overlay end
img_formats = ['gif', 'jpg', 'jpeg', 'png']
for ovl in images_and_videos:
filename = ovl['image']
# checks if overlay is image or video
is_img = False
for img_fmt in img_formats:
is_img = filename.lower().endswith(img_fmt)
if is_img:
break
# treats image overlay
if is_img:
duration = str(float(ovl['end_time']) - float(ovl['start_time']))
is_gif = filename.lower().endswith('.gif')
has_fade = (float(ovl.get('fade_in_duration', 0)) +
float(ovl.get('fade_out_duration', 0))) > 0
# A GIF with no fade is treated as an animated GIF should.
# It works even if it is not animated.
# An animated GIF cannot have fade in or out effects.
if is_gif and not has_fade:
include_args = ['-ignore_loop', '0']
else:
include_args = ['-f', 'image2', '-loop', '1']
include_args += ['-itsoffset', str(ovl['start_time']), '-t', duration]
# GIFs should have a special input decoder for FFMPEG.
if is_gif:
include_args += ['-c:v', 'gif']
include_args += ['-i']
include_cmd += include_args + ['%s/assets/%s' % (data_dir,
filename)]
# treats video overlays
else:
duration = str(float(ovl['end_time']) - float(ovl['start_time']))
include_args = ['-itsoffset', str(ovl['start_time']), '-t', duration]
include_args += ['-i']
include_cmd += include_args + ['%s/assets/%s' % (data_dir,
filename)]
# adds texts as video starting and finishing on their overlay timing
for img2 in text_tmp_images:
duration = str(float(img2['end_time']) - float(img2['start_time']))
include_args = ['-f', 'image2', '-loop', '1']
include_args += ['-itsoffset', str(img2['start_time']), '-t', duration]
include_args += ['-i']
include_cmd += include_args + [str(img2['path'])]
return include_cmd | b210687d00edc802cbf362e4394b61e0c0989095 | 690 |
def f_not_null(seq):
"""过滤非空值"""
seq = filter(lambda x: x not in (None, '', {}, [], ()), seq)
return seq | a88eab0a03ef5c1db3ceb4445bb0d84a54157875 | 691 |
def calc_disordered_regions(limits, seq):
"""
Returns the sequence of disordered regions given a string of
starts and ends of the regions and the sequence.
Example
-------
limits = 1_5;8_10
seq = AHSEDQNAAANTH...
This will return `AHSED_AAA`
"""
seq = seq.replace(' ', '')
regions = [tuple(region.split('_')) for region
in limits.split(';')]
return '_'.join([seq[int(i)-1:int(j)] for i,j in regions]) | 2c9a487a776a742470deb98e6f471b04b23a0ff7 | 692 |
from math import exp, pi, sqrt
def bryc(K):
"""
基于2002年Bryc提出的一致逼近函数近似累积正态分布函数
绝对误差小于1.9e-5
:param X: 负无穷到正无穷取值
:return: 累积正态分布积分值的近似
"""
X = abs(K)
cnd = 1.-(X*X + 5.575192*X + 12.77436324) * exp(-X*X/2.)/(sqrt(2.*pi)*pow(X, 3) + 14.38718147*pow(X, 2) + 31.53531977*X + 2*12.77436324)
if K < 0:
cnd = 1. - cnd
return cnd | e2feb6fa7f806294cef60bb5afdc4e70c95447f8 | 693 |
def _row_or_col_is_header(s_count, v_count):
"""
Utility function for subdivide
Heuristic for whether a row/col is a header or not.
"""
if s_count == 1 and v_count == 1:
return False
else:
return (s_count + 1) / (v_count + s_count + 1) >= 2. / 3. | 525b235fe7027524658f75426b6dbc9c8e334232 | 695 |
def handle_storage_class(vol):
"""
vol: dict (send from the frontend)
If the fronend sent the special values `{none}` or `{empty}` then the
backend will need to set the corresponding storage_class value that the
python client expects.
"""
if "class" not in vol:
return None
if vol["class"] == "{none}":
return ""
if vol["class"] == "{empty}":
return None
else:
return vol["class"] | a2747b717c6b83bb1128f1d5e9d7696dd8deda19 | 697 |
def dummy_sgs(dummies, sym, n):
"""
Return the strong generators for dummy indices
Parameters
==========
dummies : list of dummy indices
`dummies[2k], dummies[2k+1]` are paired indices
sym : symmetry under interchange of contracted dummies::
* None no symmetry
* 0 commuting
* 1 anticommuting
n : number of indices
in base form the dummy indices are always in consecutive positions
Examples
========
>>> from sympy.combinatorics.tensor_can import dummy_sgs
>>> dummy_sgs(range(2, 8), 0, 8)
[[0, 1, 3, 2, 4, 5, 6, 7, 8, 9], [0, 1, 2, 3, 5, 4, 6, 7, 8, 9],
[0, 1, 2, 3, 4, 5, 7, 6, 8, 9], [0, 1, 4, 5, 2, 3, 6, 7, 8, 9],
[0, 1, 2, 3, 6, 7, 4, 5, 8, 9]]
"""
if len(dummies) > n:
raise ValueError("List too large")
res = []
# exchange of contravariant and covariant indices
if sym is not None:
for j in dummies[::2]:
a = list(range(n + 2))
if sym == 1:
a[n] = n + 1
a[n + 1] = n
a[j], a[j + 1] = a[j + 1], a[j]
res.append(a)
# rename dummy indices
for j in dummies[:-3:2]:
a = list(range(n + 2))
a[j:j + 4] = a[j + 2], a[j + 3], a[j], a[j + 1]
res.append(a)
return res | 774203b62a0335f9bea176a1228673b2466324e3 | 699 |
def get_uniform_comparator(comparator):
""" convert comparator alias to uniform name
"""
if comparator in ["eq", "equals", "==", "is"]:
return "equals"
elif comparator in ["lt", "less_than"]:
return "less_than"
elif comparator in ["le", "less_than_or_equals"]:
return "less_than_or_equals"
elif comparator in ["gt", "greater_than"]:
return "greater_than"
elif comparator in ["ge", "greater_than_or_equals"]:
return "greater_than_or_equals"
elif comparator in ["ne", "not_equals"]:
return "not_equals"
elif comparator in ["str_eq", "string_equals"]:
return "string_equals"
elif comparator in ["len_eq", "length_equals", "count_eq"]:
return "length_equals"
elif comparator in ["len_gt", "count_gt", "length_greater_than", "count_greater_than"]:
return "length_greater_than"
elif comparator in ["len_ge", "count_ge", "length_greater_than_or_equals", \
"count_greater_than_or_equals"]:
return "length_greater_than_or_equals"
elif comparator in ["len_lt", "count_lt", "length_less_than", "count_less_than"]:
return "length_less_than"
elif comparator in ["len_le", "count_le", "length_less_than_or_equals", \
"count_less_than_or_equals"]:
return "length_less_than_or_equals"
else:
return comparator | 20c24ba35dea92d916d9dd1006d110db277e0816 | 700 |
def inorder_traversal(root):
"""Function to traverse a binary tree inorder
Args:
root (Node): The root of a binary tree
Returns:
(list): List containing all the values of the tree from an inorder search
"""
res = []
if root:
res = inorder_traversal(root.left)
res.append(root.data)
res = res + inorder_traversal(root.right)
return res | f6d5141cbe9f39da609bd515133b367975e56688 | 701 |
def make_count(bits, default_count=50):
"""
Return items count from URL bits if last bit is positive integer.
>>> make_count(['Emacs'])
50
>>> make_count(['20'])
20
>>> make_count(['бред', '15'])
15
"""
count = default_count
if len(bits) > 0:
last_bit = bits[len(bits)-1]
if last_bit.isdigit():
count = int(last_bit)
return count | 8e7dc356ba7c0787b4b44ee8bba17568e27d1619 | 703 |
import re
def normalize_number(value: str, number_format: str) -> str:
"""
Transform a string that essentially represents a number to the corresponding number with the given number format.
Return a string that includes the transformed number. If the given number format does not match any supported one, return the given string.
:param value: the string
:param number_format: number format with which the value is normalized
:return: the normalized string
"""
if number_format == 'COMMA_POINT' or number_format == 'Comma Point':
nor_str = re.sub(pattern=',', repl='', string=value)
elif number_format == 'POINT_COMMA' or number_format == 'Point Comma':
nor_str = re.sub(pattern=',', repl='.', string=re.sub(pattern='\.', repl='', string=value))
elif number_format == 'SPACE_POINT' or number_format == 'Space Point':
nor_str = re.sub(pattern='\s', repl='', string=value)
elif number_format == 'SPACE_COMMA' or number_format == 'Space Comma':
nor_str = re.sub(pattern=',', repl='.', string=re.sub(pattern='\s', repl='', string=value))
elif number_format == 'NONE_COMMA' or number_format == 'None Comma':
nor_str = re.sub(pattern=',', repl='.', string=value)
else:
nor_str = value
return nor_str | c22bff28fc6ef6f424d0e9b8b0358b327cd153c5 | 704 |
import os
def is_regular_file(path):
"""Check whether 'path' is a regular file, especially not a symlink."""
return os.path.isfile(path) and not os.path.islink(path) | 28ad19350d1a11b62e858aa8408cb29dc4d4c126 | 706 |
def LinkConfig(reset=0, loopback=0, scrambling=1):
"""Link Configuration of TS1/TS2 Ordered Sets."""
value = ( reset << 0)
value |= ( loopback << 2)
value |= ((not scrambling) << 3)
return value | 901fe6df8bbe8dfa65cd516ac14692594608edfb | 708 |
def x_for_half_max_y(xs, ys):
"""Return the x value for which the corresponding y value is half
of the maximum y value. If there is no exact corresponding x value,
one is calculated by linear interpolation from the two
surrounding values.
:param xs: x values
:param ys: y values corresponding to the x values
:return:
"""
if len(xs) != len(ys):
raise ValueError("xs and ys must be of equal length")
half_max_y = max(ys) / 2
for i in range(len(xs)-1):
if ys[i+1] >= half_max_y:
x_dist = xs[i+1] - xs[i]
y_dist = ys[i+1] - ys[i]
y_offset = half_max_y - ys[i]
if y_offset == 0:
return xs[i]
else:
x_offset = y_offset / y_dist * x_dist
return xs[i] + x_offset
return None | b18525664c98dc05d72a29f2904a13372f5696eb | 709 |
import numpy as np
def _from_Gryzinski(DATA):
"""
This function computes the cross section and energy values from the files
that store information following the Gryzinski Model
"""
a_0 = DATA['a_0']['VALUES']
epsilon_i_H = DATA['epsilon_i_H']['VALUES']
epsilon_i = DATA['epsilon_i']['VALUES']
xi = DATA['xi']['VALUES']
final_E = DATA['Final_E']['VALUES']
Energy_range = np.linspace(epsilon_i, final_E, 200)
u = Energy_range/epsilon_i
gg = (1+2/3*(1-1/(2*u))*np.log(np.e+(u-1)**(1/2)))
g = ((u-1)/u**2)*((u/(u+1))**(3/2))*((1-1/u)**(1/2))*gg
Cross_sections = 4*np.pi*(a_0**2)*((epsilon_i_H/epsilon_i)**2)*xi*g
return(Energy_range, Cross_sections) | 925fb1e76bf23915385cf56e3a663d111615700d | 710 |
def requestor_is_superuser(requestor):
"""Return True if requestor is superuser."""
return getattr(requestor, "is_superuser", False) | 7b201601cf8a1911aff8271ff71b6d4d51f68f1a | 711 |
def removeDuplicates(listToRemoveFrom: list[str]):
"""Given list, returns list without duplicates"""
listToReturn: list[str] = []
for item in listToRemoveFrom:
if item not in listToReturn:
listToReturn.append(item)
return listToReturn | 8265e7c560d552bd9e30c0a1140d6668abd1b4d6 | 712 |
import json
def importConfig():
"""設定ファイルの読み込み
Returns:
tuple:
str: interface,
str: alexa_remote_control.sh path
list: device list
"""
with open("config.json", "r", encoding="utf-8") as f:
config = json.load(f)
interface = config["interface"]
if not interface:
return False
arc_path = config["arc_path"]
devices = config["device_list"]
return (interface, arc_path, devices) | 84f8fc0deec4aebfe48209b01d1a35f7373d31e6 | 715 |
import time
def time_for_log() -> str:
"""Function that print the current time for bot prints"""
return time.strftime("%d/%m %H:%M:%S - ") | 0f964d5c827782ff8cc433e57bb3e78d0a7c7cba | 716 |
def is_unique2(s):
"""
Use a list and the int of the character will tell if that character has
already appeared once
"""
d = []
for t in s:
if d[int(t)]:
return False
d[int(t)] = True
return True | b1a1bdea8108690a0e227fd0b75f910bd6b99a07 | 719 |
def stations_by_river(stations):
"""Give a dictionary to hold the rivers name as keys and their corresponding stations' name as values"""
rivers_name = []
for i in stations:
if i.river not in rivers_name:
rivers_name.append(i.river)
elif i.river in rivers_name:
continue
big_list = []
for n in rivers_name:
lists = []
for y in stations:
if n == y.river:
lists.append(y.name)
elif n != y.river:
continue
lists = sorted(lists)
big_list.append(lists)
dictionary = dict(zip(rivers_name, big_list))
dicti = {}
for key in sorted(dictionary):
dicti.update({key : dictionary[key]})
assert dicti != {}
return dicti | 66fd928415619d175b7069b8c3103a3f7d930aac | 720 |
def inverse(a):
"""
[description]
calculating the inverse of the number of characters,
we do this to be able to find our departure when we arrive.
this part will be used to decrypt the message received.
:param a: it is an Int
:return: x -> it is an Int
"""
x = 0
while a * x % 97 != 1:
x = x + 1
return x | 2893d2abda34e4573eb5d9602edc0f8e14246e09 | 721 |
import random
def random_param_shift(vals, sigmas):
"""Add a random (normal) shift to a parameter set, for testing"""
assert len(vals) == len(sigmas)
shifts = [random.gauss(0, sd) for sd in sigmas]
newvals = [(x + y) for x, y in zip(vals, shifts)]
return newvals | 07430572c5051b7142499bcbdbc90de5abfcbd4d | 722 |
def get_frameheight():
"""return fixed height for extra panel
"""
return 120 | 3bd810eea77af15527d3c1df7ab0b788cfe90000 | 723 |
def default_heart_beat_interval() -> int:
"""
:return: in seconds
"""
return 60 | 58171c8fb5632aa2aa46de8138828cce2eaa4d33 | 724 |
from typing import OrderedDict
import six
def BuildPartialUpdate(clear, remove_keys, set_entries, field_mask_prefix,
entry_cls, env_builder):
"""Builds the field mask and patch environment for an environment update.
Follows the environments update semantic which applies operations
in an effective order of clear -> remove -> set.
Leading and trailing whitespace is stripped from elements in remove_keys
and the keys of set_entries.
Args:
clear: bool, If true, the patch removes existing keys.
remove_keys: iterable(string), Iterable of keys to remove.
set_entries: {string: string}, Dict containing entries to set.
field_mask_prefix: string, The prefix defining the path to the base of the
proto map to be patched.
entry_cls: AdditionalProperty, The AdditionalProperty class for the type
of entry being updated.
env_builder: [AdditionalProperty] -> Environment, A function which produces
a patch Environment with the given list of entry_cls properties.
Returns:
(string, Environment), a 2-tuple of the field mask defined by the arguments
and a patch environment produced by env_builder.
"""
remove_keys = set(k.strip() for k in remove_keys or [])
# set_entries is sorted by key to make it easier for tests to set the
# expected patch object.
set_entries = OrderedDict(
(k.strip(), v) for k, v in sorted(six.iteritems(set_entries or {})))
if clear:
entries = [
entry_cls(key=key, value=value)
for key, value in six.iteritems(set_entries)
]
return field_mask_prefix, env_builder(entries)
field_mask_entries = []
seen_keys = set()
for key in remove_keys:
field_mask_entries.append('{}.{}'.format(field_mask_prefix, key))
seen_keys.add(key)
entries = []
for key, value in six.iteritems(set_entries):
entries.append(entry_cls(key=key, value=value))
if key not in seen_keys:
field_mask_entries.append('{}.{}'.format(field_mask_prefix, key))
# Sorting field mask entries makes it easier for tests to set the expected
# field mask since dictionary iteration order is undefined.
field_mask_entries.sort()
return ','.join(field_mask_entries), env_builder(entries) | 320c589cd45dcec9a3ebba4b295075e23ef805ed | 728 |
def bycode(ent, group):
"""
Get the data with the given group code from an entity.
Arguments:
ent: An iterable of (group, data) tuples.
group: Group code that you want to retrieve.
Returns:
The data for the given group code. Can be a list of items if the group
code occurs multiple times.
"""
data = [v for k, v in ent if k == group]
if len(data) == 1:
return data[0]
return data | c5b92f2bbd1cd5bc383a1102ccf54031222d82c3 | 729 |
def is_depth_wise_conv(module):
"""Determine Conv2d."""
if hasattr(module, "groups"):
return module.groups != 1 and module.in_channels == module.out_channels
elif hasattr(module, "group"):
return module.group != 1 and module.in_channels == module.out_channels | 27127f54edbf8d0653cab6c7dbfb1448f33ecab4 | 730 |
import heapq
def dijkstra(graph, start, end=None):
"""
Find shortest paths from the start vertex to all
vertices nearer than or equal to the end.
The input graph G is assumed to have the following
representation: A vertex can be any object that can
be used as an index into a dictionary. G is a
dictionary, indexed by vertices. For any vertex v,
G[v] is itself a dictionary, indexed by the neighbors
of v. For any edge v->w, G[v][w] is the length of
the edge.
The output is a pair (D,P) where D[v] is the distance
from start to v and P[v] is the predecessor of v along
the shortest path from s to v.
Original by
David Eppstein, UC Irvine, 4 April 2002
http://code.activestate.com/recipes/119466-dijkstras-algorithm-for-shortest-paths/
>>> G = DirectedGraph({'s':{'u':10, 'x':5}, 'u':{'v':1, 'x':2}, 'v':{'y':4}, 'x':{'u':3, 'v':9, 'y':2}, \
'y':{'s':7, 'v':6}})
>>> distances, predecessors = dijkstra(G, 's', 'v')
>>> sorted(distances.items())
[('s', 14), ('u', 8), ('v', 9), ('x', 5), ('y', 7)]
>>> sorted(predecessors.items())
[('s', 'y'), ('u', 'x'), ('v', 'u'), ('x', 's'), ('y', 'x')]
"""
distances = {} # dictionary of final distances
predecessors = {} # dictionary of predecessors (previous node)
queue = [] # queue
heapq.heappush(queue, (0, start))
while len(queue) > 0:
distance, node = heapq.heappop(queue)
if node in distances and distance > distances[node]:
continue
if node == end:
break
# Loop through neighbours
edges = graph.edges(node, distance=distance)
for neighbour, length in edges.items():
total = distance + length
if neighbour in distances:
if total >= distances[neighbour]:
continue
distances[neighbour] = total
predecessors[neighbour] = node
heapq.heappush(queue, (total, neighbour))
return distances, predecessors | b2a1ee983534c0a4af36ae7e3490c3b66949609b | 732 |
import math
def bond_number(r_max, sigma, rho_l, g):
""" calculates the Bond number for the largest droplet according to
Cha, H.; Vahabi, H.; Wu, A.; Chavan, S.; Kim, M.-K.; Sett, S.; Bosch, S. A.; Wang, W.; Kota, A. K.; Miljkovic, N.
Dropwise Condensation on Solid Hydrophilic Surfaces. Science Advances 2020, 6 (2), eaax0746.
https://doi.org/10.1126/sciadv.aax0746"""
l_y = math.sqrt(sigma / (rho_l*g))
bond = r_max**2 / l_y**2
return bond | 2098a762dd7c2e80ff4a570304acf7cfbdbba2e5 | 733 |
async def timeron(websocket, battleID):
"""Start the timer on a Metronome Battle.
"""
return await websocket.send(f'{battleID}|/timer on') | f1601694e2c37d41adcc3983aa535347dc13db71 | 734 |
import numpy
def to_unit_vector(this_vector):
""" Convert a numpy vector to a unit vector
Arguments:
this_vector: a (3,) numpy array
Returns:
new_vector: a (3,) array with the same direction but unit length
"""
norm = numpy.linalg.norm(this_vector)
assert norm > 0.0, "vector norm must be greater than 0"
if norm:
return this_vector/numpy.linalg.norm(this_vector)
else:
return this_vector | ae46bf536b8a67a1be1e98ae051eebf1f8696e37 | 735 |
import base64
def decode(msg):
""" Convert data per pubsub protocol / data format
Args:
msg: The msg from Google Cloud
Returns:
data: The msg data as a string
"""
if 'data' in msg:
data = base64.b64decode(msg['data']).decode('utf-8')
return data | 32e85b3f0c18f3d15ecb0779825941024da75909 | 736 |
def _validate_attribute_id(this_attributes, this_id, xml_ids, enforce_consistency, name):
""" Validate attribute id.
"""
# the given id is None and we don't have setup attributes
# -> increase current max id for the attribute by 1
if this_id is None and this_attributes is None:
this_id = max(xml_ids) + 1
# the given id is None and we do have setup attributes
# set id to the id present in the setup
elif this_id is None and this_attributes is not None:
this_id = this_attributes[name]
# the given id is not None and we do have setup attributes
# -> check that the ids match (unless we are in over-write mode)
elif this_id is not None and this_attributes is not None:
if (this_id != this_attributes[name]) and enforce_consistency:
raise ValueError("Expect id %i for attribute %s, got %i" % (this_attributes[name],
name,
this_id))
return this_id | e85201c85b790576f7c63f57fcf282a985c22347 | 737 |
def filter_characters(results: list) -> str:
"""Filters unwanted and duplicate characters.
Args:
results: List of top 1 results from inference.
Returns:
Final output string to present to user.
"""
text = ""
for i in range(len(results)):
if results[i] == "$":
continue
elif i + 1 < len(results) and results[i] == results[i + 1]:
continue
else:
text += results[i]
return text | 6b2ca1446450751258e37b70f2c9cbe5110a4ddd | 738 |
from typing import Union
from typing import SupportsFloat
def is_castable_to_float(value: Union[SupportsFloat, str, bytes, bytearray]) -> bool:
"""
prüft ob das objekt in float umgewandelt werden kann
Argumente : o_object : der Wert der zu prüfen ist
Returns : True|False
Exceptions : keine
>>> is_castable_to_float(1)
True
>>> is_castable_to_float('1')
True
>>> is_castable_to_float('1.0')
True
>>> is_castable_to_float('1,0')
False
>>> is_castable_to_float('True')
False
>>> is_castable_to_float(True)
True
>>> is_castable_to_float('')
False
>>> is_castable_to_float(None) # noqa
False
"""
try:
float(value)
return True
except (ValueError, TypeError):
return False | e3882c0e64da79dc9a0b74b4c2414c7bf29dd6c9 | 739 |
from operator import itemgetter
def list_unique(hasDupes):
"""Return the sorted unique values from a list"""
# order preserving
d = dict((x, i) for i, x in enumerate(hasDupes))
return [k for k, _ in sorted(d.items(), key=itemgetter(1))] | 0ba0fcb216400806aca4a11d5397531dc19482f6 | 740 |
import os
def delete_files(dpath: str, label: str='') -> str:
"""
Delete all files except the files that have names matched with label
If the directory path doesn't exist return 'The path doesn't exist'
else return the string with the count of all files in the directory
and the count of deleted files.
Args:
dpath
Type: string
Description: Directory path
label
Type: string
Description: Store characters or name that could be matched with
name of files in the directory. If match are true
the file will not be deleted.
Returns:
Type: string
Description: The 'The path doesn't exist' string
or the string with the count of all files in the directory
and the count of deleted files.
"""
directory = os.path.abspath(dpath)
print(directory)
# Test whether the path exists
if not os.path.exists(dpath):
return "The path doesn't exist"
else:
# Make list of files
files = os.listdir(directory)
all_files_count = len(files)
delete_files_count = 0
for file in files:
if file.find(label) == -1:
os.remove(directory + "\\" + file)
delete_files_count += 1
return "All files: {} Delete files: {}".format(all_files_count, delete_files_count) | c8b95d9b14d698145667383bbfe88045330e5cb0 | 743 |
def get_neighbours(sudoku, row, col):
"""Funkcja zwraca 3 listy sasiadow danego pola, czyli np. wiersz tego pola, ale bez samego pola"""
row_neighbours = [sudoku[row][y] for y in range(9) if y != col]
col_neighbours = [sudoku[x][col] for x in range(9) if x != row]
sqr_neighbours = [sudoku[x][y] for x in range(9) if x//3 == row//3 for y in range(9) if y//3 == col//3 if x!=row or y!=col]
return row_neighbours, col_neighbours, sqr_neighbours | b10766fc8925b54d887925e1a684e368c0f3b550 | 744 |
def console_script(tmpdir):
"""Python script to use in tests."""
script = tmpdir.join('script.py')
script.write('#!/usr/bin/env python\nprint("foo")')
return script | be6a38bec8bb4f53de83b3c632ff3d26d88ef1c7 | 746 |
from typing import Optional
from typing import TextIO
from typing import Type
import csv
from pathlib import Path
import sys
def get_dialect(
filename: str, filehandle: Optional[TextIO] = None
) -> Type[csv.Dialect]:
"""Try to guess dialect based on file name or contents."""
dialect: Type[csv.Dialect] = csv.excel_tab
file_path = Path(filename)
if file_path.suffix == ".txt":
pass
elif file_path.suffix == ".csv":
if filehandle:
dialect = csv.Sniffer().sniff(filehandle.read(4 * 1024))
filehandle.seek(0)
else:
sys.stderr.write("Error: File does not have the ending csv or txt.\n")
sys.exit(2)
return dialect | 91d21e5bb321e7deb1e4b8db445d5c51d8138456 | 748 |
def home():
""" Home interface """
return '''<!doctype html>
<meta name="viewport" content="width=device-width, initial-scale=1" />
<body style="margin:0;font-family:sans-serif;color:white">
<form method="POST" action="analyse" enctype="multipart/form-data">
<label style="text-align:center;position:fixed;top:0;bottom:0;width:100%;background-position:center;background-size:cover;background-image:url(https://blog.even3.com.br/wp-content/uploads/2019/04/saiba-como-e-por-que-fazer-crachas-para-eventos-1.png)">
<br /><br />
<h1>Cara-crachá</h1>
<h3 id="processing" style="display:none">Processando...</h3>
<input type="file" name="file" onchange="processing.style.display='block';this.form.submit()" style="display:none" />
</label>
</form>
</body>
''' | d8a9c3449ac56b04ee1514729342ce29469c5c2f | 751 |
def selection_criteria_1(users, label_of_interest):
"""
Formula for Retirement/Selection score:
x = sum_i=1_to_n (r_i) — sum_j=1_to_m (r_j).
Where first summation contains reliability scores of users who have labeled it as the same
as the label of interest, second summation contains reliability scores of users who have
labeled it differently
Args:
users (list): List of users where each element is a tuple of the form (uid, ulabel,
f1 score)
label_of_interest (int): Label under consideration (left hand summation of formula)
Returns (int): 1 = select the subject id, 0 = don't select
"""
left_sum, right_sum = 0, 0
threshold = 2.0
for user in users:
uid, ulabel, f1_score = user
if ulabel == label_of_interest:
left_sum += f1_score
else:
right_sum += f1_score
if left_sum - right_sum >= threshold:
return 1
else:
return 0 | 8255fd3645d5b50c43006d2124d06577e3ac8f2d | 752 |
import re
def book_number_from_path(book_path: str) -> float:
"""
Parses the book number from a directory string.
Novellas will have a floating point value like "1.1" which indicates that it was the first novella
to be published between book 1 and book 2.
:param book_path: path of the currently parsed book
:return: book number
"""
num = int(re.findall(r'[0-9]{2}', book_path)[-1])
return num / 10 | 087cb0b8cd0c48c003175a05ed0d7bb14ad99ac3 | 753 |
def intervals_split_merge(list_lab_intervals):
"""
对界限列表进行融合
e.g.
如['(2,5]', '(5,7]'], 融合后输出为 '(2,7]'
Parameters:
----------
list_lab_intervals: list, 界限区间字符串列表
Returns:
-------
label_merge: 合并后的区间
"""
list_labels = []
# 遍历每个区间, 取得左值右值字符串组成列表
for lab in list_lab_intervals:
for s in lab.split(','):
list_labels.append(s.replace('(', '').replace(')', '').replace(']', ''))
list_lab_vals = [float(lab) for lab in list_labels]
# 取得最大最小值的索引
id_max_val = list_lab_vals.index(max(list_lab_vals))
id_min_val = list_lab_vals.index(min(list_lab_vals))
# 取得最大最小值的字符串
lab_max_interval = list_labels[id_max_val]
lab_min_interval = list_labels[id_min_val]
# 如果右边界限的值为+Inf,则改为')', 其他为']'
l_label = '('
if lab_max_interval == '+Inf':
r_label = ')'
else:
r_label = ']'
label_merge = l_label + lab_min_interval + ',' + lab_max_interval + r_label
return label_merge | a9e99ec6fc51efb78a4884206a72f7f4ad129dd4 | 754 |
from typing import List
def set_process_tracking(template: str, channels: List[str]) -> str:
"""This function replaces the template placeholder for the process tracking with the correct process tracking.
Args:
template: The template to be modified.
channels: The list of channels to be used.
Returns:
The modified template.
"""
tracking = ""
for channel in channels:
tracking += " ULong64_t {ch}_processed = 0;\n".format(ch=channel)
tracking += " std::mutex {ch}_bar_mutex;\n".format(ch=channel)
tracking += " auto c_{ch} = {ch}_df_final.Count();\n".format(ch=channel)
tracking += " c_{ch}.OnPartialResultSlot(quantile, [&{ch}_bar_mutex, &{ch}_processed, &quantile](unsigned int /*slot*/, ULong64_t /*_c*/) {{".format(
ch=channel
)
tracking += (
"\n std::lock_guard<std::mutex> lg({ch}_bar_mutex);\n".format(
ch=channel
)
)
tracking += " {ch}_processed += quantile;\n".format(ch=channel)
tracking += ' Logger::get("main - {ch} Channel")->info("{{}} Events processed ...", {ch}_processed);\n'.format(
ch=channel
)
tracking += " });\n"
return template.replace("{PROGRESS_CALLBACK}", tracking) | 0cf720bd56a63939541a06e60492472f92c4e589 | 755 |
def read_dynamo_table(gc, name, read_throughput=None, splits=None):
"""
Reads a Dynamo table as a Glue DynamicFrame.
:param awsglue.context.GlueContext gc: The GlueContext
:param str name: The name of the Dynamo table
:param str read_throughput: Optional read throughput - supports values from "0.1" to "1.5", inclusive.
:param str splits: Optional number of input splits - defaults to the SparkContext default parallelism.
:rtype: awsglue.dynamicframe.DynamicFrame
"""
connection_options = {
'dynamodb.input.tableName': name,
'dynamodb.splits': str(splits or gc.spark_session.sparkContext.defaultParallelism)
}
if read_throughput:
connection_options['dynamodb.throughput.read.percent'] = str(read_throughput)
return gc.create_dynamic_frame_from_options(connection_type='dynamodb', connection_options=connection_options) | 5f789626cb3fc8004532cc59bdae128b744b111e | 756 |
def fuzzyCompareDouble(p1, p2):
"""
compares 2 double as points
"""
return abs(p1 - p2) * 100000. <= min(abs(p1), abs(p2)) | e2a93a993147e8523da0717d08587250003f9269 | 757 |
from typing import Dict
from typing import List
def prettify_eval(set_: str, accuracy: float, correct: int, avg_loss: float, n_instances: int,
stats: Dict[str, List[int]]):
"""Returns string with prettified classification results"""
table = 'problem_type accuracy\n'
for k in sorted(stats.keys()):
accuracy_ = stats[k][0]/stats[k][1]
accuracy_ = accuracy_*100
table += k
table += ' '
table += '{:.2f}%\n'.format(accuracy_)
return '\n' + set_ + ' set average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.format(
avg_loss, correct, n_instances, accuracy) + table + '\n' | 5e5ba8ffa62668e245daa2ada9fc09747b5b6dd2 | 760 |
def find_roots(graph):
"""
return nodes which you can't traverse down any further
"""
return [n for n in graph.nodes() if len(list(graph.predecessors(n))) == 0] | 7dbf755d2b76f066370d149638433c6693e8e7b9 | 762 |
def check_args(**kwargs):
"""
Check arguments for themis load function
Parameters:
**kwargs : a dictionary of arguments
Possible arguments are: probe, level
The arguments can be: a string or a list of strings
Invalid argument are ignored (e.g. probe = 'g', level='l0', etc.)
Invalid argument names are ignored (e.g. 'probes', 'lev', etc.)
Returns: list
Prepared arguments in the same order as the inputs
Examples:
res_probe = check_args(probe='a')
(res_probe, res_level) = check_args(probe='a b', level='l2')
(res_level, res_probe) = check_args(level='l1', probe=['a', 'b'])
# With incorrect argument probes:
res = check_args(probe='a', level='l2', probes='a b') : res = [['a'], ['l2']]
"""
valid_keys = {'probe', 'level'}
valid_probe = {'a', 'b', 'c', 'd', 'e'}
valid_level = {'l1', 'l2'}
# Return list of values from arg_list that are only included in valid_set
def valid_list(arg_list, valid_set):
valid_res = []
for arg in arg_list:
if arg in valid_set:
valid_res.append(arg)
return valid_res
# Return list
res = []
for key, values in kwargs.items():
if key.lower() not in valid_keys:
continue
# resulting list
arg_values = []
# convert string into list, or ignore the argument
if isinstance(values, str):
values = [values]
elif not isinstance(values, list):
continue
for value in values:
arg_values.extend(value.strip().lower().split())
# simple validation of the arguments
if key.lower() == 'probe':
arg_values = valid_list(arg_values, valid_probe)
if key.lower() == 'level':
arg_values = valid_list(arg_values, valid_level)
res.append(arg_values)
return res | 3e25dc43df0a80a9a16bcca0729ee0b170a9fb89 | 763 |
import time
def wait_for_sidekiq(gl):
"""
Return a helper function to wait until there are no busy sidekiq processes.
Use this with asserts for slow tasks (group/project/user creation/deletion).
"""
def _wait(timeout=30, step=0.5):
for _ in range(timeout):
time.sleep(step)
busy = False
processes = gl.sidekiq.process_metrics()["processes"]
for process in processes:
if process["busy"]:
busy = True
if not busy:
return True
return False
return _wait | 7fe98f13e9474739bfe4066f20e5f7d813ee4476 | 764 |
def insert_node_after(new_node, insert_after):
"""Insert new_node into buffer after insert_after."""
next_element = insert_after['next']
next_element['prev'] = new_node
new_node['next'] = insert_after['next']
insert_after['next'] = new_node
new_node['prev'] = insert_after
return new_node | e03fbd7bd44a3d85d36069d494464b9237bdd306 | 765 |
def classname(object, modname):
"""Get a class name and qualify it with a module name if necessary."""
name = object.__name__
if object.__module__ != modname:
name = object.__module__ + '.' + name
return name | af4e05b0adaa9c90bb9946edf1dba67a40e78323 | 766 |
def ceil(array, value):
"""
Returns the smallest index i such that array[i - 1] < value.
"""
l = 0
r = len(array) - 1
i = r + 1
while l <= r:
m = l + int((r - l) / 2)
if array[m] >= value:
# This mid index is a candidate for the index we are searching for
# so save it, and continue searching for a smaller candidate on the
# left side.
i = m
r = m - 1
else:
# This mid index is not a candidate so continue searching the right
# side.
l = m + 1
return i | 689148cebc61ee60c99464fde10e6005b5d901a9 | 767 |
def show_table(table, **options):
"""
Displays a table without asking for input from the user.
:param table: a :class:`Table` instance
:param options: all :class:`Table` options supported, see :class:`Table` documentation for details
:return: None
"""
return table.show_table(**options) | ec040d4a68d2b3cb93493f336daf1aa63289756e | 771 |
import pickle
def load_embeddings(topic):
"""
Load TSNE 2D Embeddings generated from fitting BlazingText on the news articles.
"""
print(topic)
embeddings = pickle.load(
open(f'covidash/data/{topic}/blazing_text/embeddings.pickle', 'rb'))
labels = pickle.load(
open(f'covidash/data/{topic}/blazing_text/labels.pickle', 'rb'))
if '</s>' in labels:
labels.remove('</s>')
embeddings = embeddings[:len(labels), :]
return embeddings, labels | de2f74c7e467e0f057c10a0bc15b79ee9eecb40f | 773 |
import csv
def read_q_stats(csv_path):
"""Return list of Q stats from file"""
q_list = []
with open(csv_path, newline='') as csv_file:
reader = csv.DictReader(csv_file)
for row in reader:
q_list.append(float(row['q']))
return q_list | f5bee4859dc4bac45c4c3e8033da1b4aba5d2818 | 777 |
from typing import Union
from pathlib import Path
from typing import Dict
import json
def read_json(json_path: Union[str, Path]) -> Dict:
"""
Read json file from a path.
Args:
json_path: File path to a json file.
Returns:
Python dictionary
"""
with open(json_path, "r") as fp:
data = json.load(fp)
return data | c0b55e5363a134282977ee8a01083490e9908fcf | 780 |
def redact(str_to_redact, items_to_redact):
""" return str_to_redact with items redacted
"""
if items_to_redact:
for item_to_redact in items_to_redact:
str_to_redact = str_to_redact.replace(item_to_redact, '***')
return str_to_redact | f86f24d3354780568ec2f2cbf5d32798a43fdb6a | 781 |
def gce_zones() -> list:
"""Returns the list of GCE zones"""
_bcds = dict.fromkeys(['us-east1', 'europe-west1'], ['b', 'c', 'd'])
_abcfs = dict.fromkeys(['us-central1'], ['a', 'b', 'c', 'f'])
_abcs = dict.fromkeys(
[
'us-east4',
'us-west1',
'europe-west4',
'europe-west3',
'europe-west2',
'asia-east1',
'asia-southeast1',
'asia-northeast1',
'asia-south1',
'australia-southeast1',
'southamerica-east1',
'asia-east2',
'asia-northeast2',
'europe-north1',
'europe-west6',
'northamerica-northeast1',
'us-west2',
],
['a', 'b', 'c'],
)
_zones_combo = {**_bcds, **_abcfs, **_abcs}
zones = [f'{loc}-{zone}' for loc, zones in _zones_combo.items() for zone in zones]
return zones | 10e684b2f458fe54699eb9886af148b092ec604d | 782 |
def create_classes_names_list(training_set):
"""
:param training_set: dict(list, list)
:return: (list, list)
"""
learn_classes_list = []
for k, v in training_set.items():
learn_classes_list.extend([str(k)] * len(v))
return learn_classes_list | 0b30153afb730d4e0c31e87635c9ece71c530a41 | 784 |
def map_parallel(function, xs):
"""Apply a remote function to each element of a list."""
if not isinstance(xs, list):
raise ValueError('The xs argument must be a list.')
if not hasattr(function, 'remote'):
raise ValueError('The function argument must be a remote function.')
# EXERCISE: Modify the list comprehension below to invoke "function"
# remotely on each element of "xs". This should essentially submit
# one remote task for each element of the list and then return the
# resulting list of ObjectIDs.
return [function.remote(x) for x in xs] | 1fe75868d5ff12a361a6aebd9e4e49bf92c32126 | 785 |
def masseuse_memo(A, memo, ind=0):
"""
Return the max with memo
:param A:
:param memo:
:param ind:
:return:
"""
# Stop if
if ind > len(A)-1:
return 0
if ind not in memo:
memo[ind] = max(masseuse_memo(A, memo, ind + 2) + A[ind], masseuse_memo(A, memo, ind + 1))
return memo[ind] | 03d108cb551f297fc4fa53cf9575d03af497ee38 | 786 |
def get_tone(pinyin):
"""Renvoie le ton du pinyin saisi par l'utilisateur.
Args:
pinyin {str}:
l'entrée pinyin par l'utilisateur
Returns:
number/None :
Si pas None, la partie du ton du pinyin (chiffre)
"""
# Prenez le dernier chaine du pinyin
tone = pinyin[-1]
# Déterminer s'il s'agit d'un type numérique
if tone.isdigit():
return tone
else:
return None | fc0b02902053b3f2470acf952812573f5125c4cf | 787 |
import os
def downloads_dir():
"""
:returns string: default downloads directory path.
"""
return os.path.expanduser('~') + "/Downloads/" | f8c328a3176a664387059ebf6af567d018bcd57e | 790 |
def get_reddit_tables():
"""Returns 12 reddit tables corresponding to 2016"""
reddit_2016_tables = []
temp = '`fh-bigquery.reddit_posts.2016_{}`'
for i in range(1, 10):
reddit_2016_tables.append(temp.format('0' + str(i)))
for i in range(10, 13):
reddit_2016_tables.append(temp.format(str(i)))
return reddit_2016_tables | e590ab35becbe46aa220257f6629e54f720b3a13 | 791 |
def _unpack(f):
"""to unpack arguments"""
def decorated(input):
if not isinstance(input, tuple):
input = (input,)
return f(*input)
return decorated | 245d425b45d9d7ef90239b791d6d65bcbd0433d5 | 793 |
import requests
def fetch_url(url):
"""Fetches the specified URL.
:param url: The URL to fetch
:type url: string
:returns: The response object
"""
return requests.get(url) | 26198dbc4f7af306e7a09c86b59a7da1a4802241 | 794 |
def get_symbol_size(sym):
"""Get the size of a symbol"""
return sym["st_size"] | b2d39afe39542e7a4e1b4fed60acfc83e6a58677 | 795 |
from pathlib import Path
def get_parent_dir(os_path: str) -> str:
"""
Get the parent directory.
"""
return str(Path(os_path).parents[1]) | 3a6e518119e39bfbdb9381bc570ac772b88b1334 | 796 |
import re
def searchLiteralLocation(a_string, patterns):
"""assumes a_string is a string, being searched in
assumes patterns is a list of strings, to be search for in a_string
returns a list of re span object, representing the found literal if it exists,
else returns an empty list"""
results = []
for pattern in patterns:
regex = pattern
match = re.search(regex, a_string)
if match:
results.append((match, match.span()))
return results | 0f751bae801eaee594216688551919ed61784187 | 797 |
def get_factors(n: int) -> list:
"""Returns the factors of a given integer.
"""
return [i for i in range(1, n+1) if n % i == 0] | c15a0e30e58597daf439facd3900c214831687f2 | 799 |
import numpy
def read_mat_cplx_bin(fname):
"""
Reads a .bin file containing floating-point values (complex) saved by Koala
Parameters
----------
fname : string
Path to the file
Returns
-------
buffer : ndarray
An array containing the complex floating-point values read from the file
See Also
--------
write_mat_cplx_bin
Example
-------
>>> buf = read_mat_cplx_bin('test/file_cplx.bin')
>>> buf
array([[ 0.00000000e+00 +0.00000000e+00j,
0.00000000e+00 +0.00000000e+00j,
0.00000000e+00 +0.00000000e+00j, ...,
0.00000000e+00 +0.00000000e+00j,
0.00000000e+00 +0.00000000e+00j,
0.00000000e+00 +0.00000000e+00j],
[ 0.00000000e+00 +0.00000000e+00j,
4.97599517e-09 +9.14632536e-10j,
5.99623329e-09 -1.52811275e-08j, ...,
1.17636354e-07 -1.01500063e-07j,
6.33714581e-10 +5.61812996e-09j,
0.00000000e+00 +0.00000000e+00j],
...,
[ 0.00000000e+00 +0.00000000e+00j,
-1.26479121e-08 -2.92324431e-09j,
-4.59448168e-09 +9.28236474e-08j, ...,
-4.15031316e-08 +1.48466597e-07j,
4.41099779e-08 -1.27046489e-08j,
0.00000000e+00 +0.00000000e+00j],
[ -0.00000000e+00 +0.00000000e+00j,
0.00000000e+00 +0.00000000e+00j,
0.00000000e+00 +0.00000000e+00j, ...,
0.00000000e+00 +0.00000000e+00j,
0.00000000e+00 +0.00000000e+00j,
0.00000000e+00 +0.00000000e+00j]], dtype=complex64)
"""
kcplx_header_dtype = numpy.dtype([
("width", "i4"),
("height", "i4")
])
f = open(fname, 'rb')
kcplx_header = numpy.fromfile(f, dtype=kcplx_header_dtype, count=1)
shape = (kcplx_header['height'], kcplx_header['width'])
#print kcplx_header
tmp = numpy.fromfile(f, dtype='float32')
f.close()
real_tmp = (tmp[0:kcplx_header['height']*kcplx_header['width']]).reshape(shape)
imag_tmp = (tmp[kcplx_header['height']*kcplx_header['width']:]).reshape(shape)
#print tmp
#print 'array = {}'.format(len(tmp))
return real_tmp + 1j*imag_tmp | f2761f4cd7031dc16cb2f9903fd431bc7b4212d8 | 801 |
def getChrLenList(chrLenDict, c):
""" Given a chromosome length dictionary keyed on chromosome names and
a chromosome name (c) this returns a list of all the runtimes for a given
chromosome across all Step names.
"""
l = []
if c not in chrLenDict:
return l
for n in chrLenDict[c]:
l.append(chrLenDict[c][n])
return l | aedf613484262ac5bd31baf384ade2eb35f3e1eb | 802 |
import torch
import math
def positionalencoding3d(d_model, dx, dy, dz):
"""
:param d_model: dimension of the model
:param height: height of the positions
:param width: width of the positions
:return: d_model*height*width position matrix
"""
# if d_model % 6 != 0:
# raise ValueError("Cannot use sin/cos positional encoding with "
# "odd dimension (got dim={:d})".format(d_model))
pe = torch.zeros(d_model, dx, dy, dz)
# Each dimension use half of d_model
interval = int(d_model // 6) * 2
div_term = torch.exp(torch.arange(0., interval, 2) * -(math.log(10000.0) / interval))
pos_x = torch.arange(0., dx).unsqueeze(1) * div_term
pos_y = torch.arange(0., dy).unsqueeze(1) * div_term
pos_z = torch.arange(0., dz).unsqueeze(1) * div_term
pe[0:interval:2, :, :, :] = torch.sin(pos_x).T.unsqueeze(2).unsqueeze(3).repeat(1, 1, dy, dz)
pe[1:interval:2, :, :, :] = torch.cos(pos_x).T.unsqueeze(2).unsqueeze(3).repeat(1, 1, dy, dz)
pe[interval:int(interval * 2):2, :, :] = torch.sin(pos_y).T.unsqueeze(1).unsqueeze(3).repeat(1, dx, 1, dz)
pe[interval + 1:int(interval * 2):2, :, :] = torch.cos(pos_y).T.unsqueeze(1).unsqueeze(3).repeat(1, dx, 1, dz)
pe[int(interval * 2):int(interval * 3):2, :, :] = torch.sin(pos_z).T.unsqueeze(1).unsqueeze(2).repeat(1, dx, dy, 1)
pe[int(interval * 2) + 1:int(interval * 3):2, :, :] = torch.cos(pos_z).T.unsqueeze(1).unsqueeze(2).repeat(1, dx, dy, 1)
return pe | 178dc3b86e3be0c9e799f5f0c658808f541f1eca | 803 |
def _check_varrlist_integrity(vlist):
"""Return true if shapes and datatypes are the same"""
shape = vlist[0].data.shape
datatype = vlist[0].data.dtype
for v in vlist:
if v.data.shape != shape:
raise(Exception("Data shapes don't match"))
if v.data.dtype != datatype:
raise(Exception("Data types don't match"))
return True | 1b6fedd1222757c0bc92490be85d8030ee877842 | 804 |
import os
def GetPID():
"""Returns the PID of the shell."""
return os.getppid() | 28e56a9d0c1c6c1d005c58f5c9fffeb3857d8877 | 805 |
def compute_MSE(predicted, observed):
""" predicted is scalar and observed as array"""
if len(observed) == 0:
return 0
err = 0
for o in observed:
err += (predicted - o)**2/predicted
return err/len(observed) | e2cc326dde2ece551f78cd842d1bf44707bfb6db | 806 |
def if_else(cond, a, b):
"""Work around Python 2.4
"""
if cond: return a
else: return b | 4b11328dd20fbb1ca663f272ac8feae15a8b26d9 | 807 |
import re
def get_tbl_type(num_tbl, num_cols, len_tr, content_tbl):
"""
obtain table type based on table features
"""
count_very_common = len([i for i, x in enumerate(content_tbl) if re.match(r'^very common',x) ])
count_common = len([i for i, x in enumerate(content_tbl) if re.match(r'^common',x) ])
count_uncommon = len([i for i, x in enumerate(content_tbl) if re.match(r'^uncommon',x) ])
count_rare = len([i for i, x in enumerate(content_tbl) if re.match(r'^rare',x) ])
count_very_rare = len([i for i, x in enumerate(content_tbl) if re.match(r'^very rare',x) ])
count_unknown = len([i for i, x in enumerate(content_tbl) if "known" in x])
count_feats = [count_very_common,count_common,count_uncommon,count_rare,count_very_rare,count_unknown]
if num_cols>3 and sum(count_feats) > num_cols+5:
tbl_type = 'table type: vertical'
elif ((all(i <2 for i in count_feats) and num_tbl<=5) or num_cols>4) and len_tr>2:
tbl_type = 'table type: horizontal'
else:
tbl_type = 'table type: vertical'
return tbl_type | 19c06766c932aab4385fa8b7b8cd3c56a2294c65 | 808 |
import unicodedata
def normalize(form, text):
"""Return the normal form form for the Unicode string unistr.
Valid values for form are 'NFC', 'NFKC', 'NFD', and 'NFKD'.
"""
return unicodedata.normalize(form, text) | 6d32604a951bb13ff649fd3e221c2e9b35d4f1a1 | 809 |
def box(type_):
"""Create a non-iterable box type for an object.
Parameters
----------
type_ : type
The type to create a box for.
Returns
-------
box : type
A type to box values of type ``type_``.
"""
class c(object):
__slots__ = 'value',
def __init__(self, value):
if not isinstance(value, type_):
raise TypeError(
"values must be of type '%s' (received '%s')" % (
type_.__name__, type(value).__name__,
),
)
self.value = value
c.__name__ = 'Boxed%s' + type_.__name__
return c | 5b4721ab78ce17f9eeb93abcc59bed046917d296 | 810 |
def rssError(yArr, yHatArr):
"""
Desc:
计算分析预测误差的大小
Args:
yArr:真实的目标变量
yHatArr:预测得到的估计值
Returns:
计算真实值和估计值得到的值的平方和作为最后的返回值
"""
return ((yArr - yHatArr) ** 2).sum() | 429dd6b20c20e6559ce7d4e57deaea58a664d22b | 811 |
def get_language_file_path(language):
"""
:param language: string
:return: string: path to where the language file lies
"""
return "{lang}/localization_{lang}.json".format(lang=language) | 9be9ee9511e0c82772ab73d17f689c181d63e67c | 812 |
import random
def randbytes(size) -> bytes:
"""Custom implementation of random.randbytes, since that's a Python 3.9 feature """
return bytes(random.sample(list(range(0, 255)), size)) | 0ea312376de3f90894befb29ec99d86cfc861910 | 813 |
def path_to_model(path):
"""Return model name from path."""
epoch = str(path).split("phase")[-1]
model = str(path).split("_dir/")[0].split("/")[-1]
return f"{model}_epoch{epoch}" | 78b10c8fb6f9821e6be6564738d40f822e675cb6 | 814 |
def removeString2(string, removeLen):
"""骚操作 直接使用字符串替换"""
alphaNums = []
for c in string:
if c not in alphaNums:
alphaNums.append(c)
while True:
preLength = len(string)
for c in alphaNums:
replaceStr = c * removeLen
string = string.replace(replaceStr, '')
if preLength == len(string):
break
return string | 57d01d7c2a244b62a173fef35fd0acf1b622beed | 815 |
def binary_to_string(bin_string: str):
"""
>>> binary_to_string("01100001")
'a'
>>> binary_to_string("a")
Traceback (most recent call last):
...
ValueError: bukan bilangan biner
>>> binary_to_string("")
Traceback (most recent call last):
...
ValueError: tidak ada yang diinputkan
>>> binary_to_string("39")
Traceback (most recent call last):
...
ValueError: bukan bilangan biner
>>> binary_to_string(1010)
Traceback (most recent call last):
...
TypeError: bukan string
"""
if not isinstance(bin_string, str):
raise TypeError("bukan string")
if not bin_string:
raise ValueError("tidak ada yang diinputkan")
if not all(char in "01" for char in bin_string):
raise ValueError("bukan bilangan biner")
return "".join([chr(int(i, 2)) for i in bin_string.split()]) | f22dd64027ee65acd4d782a6a1ce80520f016770 | 817 |
def tabindex(field, index):
"""Set the tab index on the filtered field."""
field.field.widget.attrs["tabindex"] = index
return field | c42b64b3f94a2a8a35b8b0fa3f14fe6d44b2f755 | 818 |