File size: 5,535 Bytes
7da8fe2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Dataset of illustrated and non illustrated 19th Century newspaper ads."""

import ast
import pandas as pd
import datasets
from PIL import Image
from pathlib import Path

# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@dataset{van_strien_daniel_2021_5838410,
  author       = {van Strien, Daniel},
  title        = {{19th Century United States Newspaper Advert images 
                   with 'illustrated' or 'non illustrated' labels}},
  month        = oct,
  year         = 2021,
  publisher    = {Zenodo},
  version      = {0.0.1},
  doi          = {10.5281/zenodo.5838410},
  url          = {https://doi.org/10.5281/zenodo.5838410}}
"""


_DESCRIPTION = """\
The Dataset contains images derived from the Newspaper Navigator (news-navigator.labs.loc.gov/), a dataset of images drawn from the Library of Congress Chronicling America collection. 
"""

_HOMEPAGE = "https://doi.org/10.5281/zenodo.5838410"

_LICENSE = "Public Domain"


_URLS = "https://zenodo.org/record/5838410/files/images.zip?download=1"


# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
class IllustratedAds(datasets.GeneratorBasedBuilder):
    """TODO: Short description of my dataset."""

    VERSION = datasets.Version("1.1.0")

    def _info(self):

        features = datasets.Features(
            {
                "file": datasets.Value("string"),
                "image": datasets.Image(),
                "label": datasets.ClassLabel(names=["text-only", "illustrations"]),
                "pub_date": datasets.Value("timestamp[ns]"),
                "page_seq_num": datasets.Value("int64"),
                "edition_seq_num": datasets.Value("int64"),
                "batch": datasets.Value("string"),
                "lccn": datasets.Value("string"),
                "box": datasets.Sequence(datasets.Value("float32")),
                "score": datasets.Value("float64"),
                "ocr": datasets.Value("string"),
                "place_of_publication": datasets.Value("string"),
                "geographic_coverage": datasets.Value("string"),
                "name": datasets.Value("string"),
                "publisher": datasets.Value("string"),
                "url": datasets.Value("string"),
                "page_url": datasets.Value("string"),
            }
        )

        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
            # specify them. They'll be used if as_supervised=True in builder.as_dataset.
            # supervised_keys=("sentence", "label"),
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        data_dir = dl_manager.download_and_extract(_URLS)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "data_dir": Path(data_dir),
                },
            ),
        ]

    def _generate_examples(self, data_dir):
        dtypes = {
            "page_seq_num": "int64",
            "edition_seq_num": "int64",
            "batch": "string",
            "lccn": "string",
            "score": "float64",
            "place_of_publication": "string",
            "name": "string",
            "publisher": "string",
            "url": "string",
            "page_url": "string",
        }
        df_labels = pd.read_csv(
            "https://zenodo.org/record/5838410/files/ads.csv?download=1", index_col=0
        )
        df_metadata = pd.read_csv(
            "https://zenodo.org/record/5838410/files/sample.csv?download=1",
            index_col=0,
            dtype=dtypes,
        )
        df_metadata["file"] = df_metadata.filepath.str.replace("/", "_")
        df_metadata = df_metadata.set_index("file", drop=True)
        df = df_labels.join(df_metadata)
        df = df.reset_index()
        data = df.to_dict(orient="records")
        for id_, row in enumerate(data):
            box = ast.literal_eval(row["box"])
            row["box"] = box
            row.pop("filepath")
            ocr = " ".join(ast.literal_eval(row["ocr"]))
            row["ocr"] = ocr
            image = row["file"]
            row["image"] = Image.open(Path(data_dir / image))
            yield id_, row