Datasets:
File size: 5,625 Bytes
7da8fe2 96b39ed 7da8fe2 96b39ed 7da8fe2 96b39ed 7da8fe2 96b39ed 7da8fe2 96b39ed 7da8fe2 96b39ed 7da8fe2 96b39ed 7da8fe2 96b39ed 7da8fe2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Dataset of illustrated and non illustrated 19th Century newspaper ads."""
import ast
import os
import pandas as pd
import datasets
from PIL import Image
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@dataset{van_strien_daniel_2021_5838410,
author = {van Strien, Daniel},
title = {{19th Century United States Newspaper Advert images
with 'illustrated' or 'non illustrated' labels}},
month = oct,
year = 2021,
publisher = {Zenodo},
version = {0.0.1},
doi = {10.5281/zenodo.5838410},
url = {https://doi.org/10.5281/zenodo.5838410}}
"""
_DESCRIPTION = """\
The Dataset contains images derived from the Newspaper Navigator (news-navigator.labs.loc.gov/), a dataset of images drawn from the Library of Congress Chronicling America collection.
"""
_HOMEPAGE = "https://doi.org/10.5281/zenodo.5838410"
_LICENSE = "Public Domain"
_URLS = "https://zenodo.org/record/5838410/files/images.zip?download=1"
_DTYPES = {
"page_seq_num": "int64",
"edition_seq_num": "int64",
"batch": "string",
"lccn": "string",
"score": "float64",
"place_of_publication": "string",
"name": "string",
"publisher": "string",
"url": "string",
"page_url": "string",
}
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
class IllustratedAds(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("1.1.0")
def _info(self):
features = datasets.Features(
{
"file": datasets.Value("string"),
"image": datasets.Image(),
"label": datasets.ClassLabel(names=["text-only", "illustrations"]),
"pub_date": datasets.Value("timestamp[ns]"),
"page_seq_num": datasets.Value("int64"),
"edition_seq_num": datasets.Value("int64"),
"batch": datasets.Value("string"),
"lccn": datasets.Value("string"),
"box": datasets.Sequence(datasets.Value("float32")),
"score": datasets.Value("float64"),
"ocr": datasets.Value("string"),
"place_of_publication": datasets.Value("string"),
"geographic_coverage": datasets.Value("string"),
"name": datasets.Value("string"),
"publisher": datasets.Value("string"),
"url": datasets.Value("string"),
"page_url": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
images = dl_manager.download_and_extract(_URLS)
annotations = dl_manager.download(
[
"https://zenodo.org/record/5838410/files/ads.csv?download=1",
"https://zenodo.org/record/5838410/files/sample.csv?download=1"
]
)
df_labels = pd.read_csv(
annotations[0], index_col=0
)
df_metadata = pd.read_csv(
annotations[1],
index_col=0,
dtype=_DTYPES,
)
df_metadata["file"] = df_metadata.filepath.str.replace("/", "_")
df_metadata = df_metadata.set_index("file", drop=True)
df = df_labels.join(df_metadata)
df = df.reset_index()
annotations = df.to_dict(orient="records")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"images": images,
"annotations": annotations,
},
),
]
def _generate_examples(self, images, annotations):
for id_, row in enumerate(annotations):
box = ast.literal_eval(row["box"])
row["box"] = box
row.pop("filepath")
ocr = " ".join(ast.literal_eval(row["ocr"]))
row["ocr"] = ocr
image = row["file"]
row["image"] = os.path.join(images, image)
yield id_, row
|