File size: 17,752 Bytes
0ac4ef8 d533c09 0ac4ef8 d533c09 0ac4ef8 d533c09 0ac4ef8 d533c09 0ac4ef8 d533c09 0ac4ef8 d533c09 0ac4ef8 d533c09 0ac4ef8 d533c09 0ac4ef8 d533c09 0ac4ef8 d533c09 0ac4ef8 0beca5d d533c09 0ac4ef8 d533c09 0ac4ef8 d533c09 0ac4ef8 d533c09 0ac4ef8 d533c09 0ac4ef8 d533c09 0ac4ef8 d533c09 0ac4ef8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
# # coding=utf-8
# # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
# #
# # Licensed under the Apache License, Version 2.0 (the "License");
# # you may not use this file except in compliance with the License.
# # You may obtain a copy of the License at
# #
# # http://www.apache.org/licenses/LICENSE-2.0
# #
# # Unless required by applicable law or agreed to in writing, software
# # distributed under the License is distributed on an "AS IS" BASIS,
# # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# # See the License for the specific language governing permissions and
# # limitations under the License.
# """A Dataset loading script for the Controlled Text Reduction dataset."""
# import datasets
# from dataclasses import dataclass
# from pathlib import Path
# from typing import List, Tuple
# import pandas as pd
# import json
# import gzip
# import itertools
# _CITATION = """"""
# # _CITATION = """\
# # @inproceedings{roit2020controlled,
# # title={Controlled Crowdsourcing for High-Quality QA-SRL Annotation},
# # author={Roit, Paul and Klein, Ayal and Stepanov, Daniela and Mamou, Jonathan and Michael, Julian and Stanovsky, Gabriel and Zettlemoyer, Luke and Dagan, Ido},
# # booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
# # pages={7008--7013},
# # year={2020}
# # }
# # """
# _DESCRIPTION = """\
# The dataset contains document-summary pairs with document spans (referred to as "highlights"), indicating the "pre-selected" spans that lead to the creation of the summary.
# The evaluation and test datasets were constructed via controlled crowdsourcing.
# The train datasets were automatically generated using the summary-source proposition-level alignment model SuperPAL (Ernst et al., 2021).
# """
# _HOMEPAGE = "https://github.com/lovodkin93/Controlled_Text_Reduction/tree/main"
# _LICENSE = """MIT License
# Copyright (c) 2022 lovodkin93
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE."""
# # _URLs = {
# # "csv": {
# # "sentences": {
# # "wikinews.dev": "https://github.com/plroit/qasrl-gs/raw/master/data/sentences/wikinews.dev.full.csv",
# # "wikinews.test": "https://github.com/plroit/qasrl-gs/raw/master/data/sentences/wikinews.test.full.csv",
# # "wikipedia.dev": "https://github.com/plroit/qasrl-gs/raw/master/data/sentences/wikipedia.dev.full.csv",
# # "wikipedia.test": "https://github.com/plroit/qasrl-gs/raw/master/data/sentences/wikipedia.test.full.csv",
# # },
# # "qasrl-annotations": {
# # "wikinews.dev": "https://github.com/plroit/qasrl-gs/raw/master/data/gold/wikinews.dev.gold.csv",
# # "wikinews.test": "https://github.com/plroit/qasrl-gs/raw/master/data/gold/wikinews.test.gold.csv",
# # "wikipedia.dev": "https://github.com/plroit/qasrl-gs/raw/master/data/gold/wikipedia.dev.gold.csv",
# # "wikipedia.test": "https://github.com/plroit/qasrl-gs/raw/master/data/gold/wikipedia.test.gold.csv",
# # },
# # },
# # "jsonl": "https://qasrl.org/data/qasrl-gs.tar"
# # }
# _URLs = {
# "DUC-2001-2002": {
# "dev": "https://github.com/lovodkin93/Controlled_Text_Reduction/tree/main/data/dev_DUC-2001-2002.csv",
# "test": "https://github.com/lovodkin93/Controlled_Text_Reduction/tree/main/data/test_DUC-2001-2002.csv",
# "train": "https://github.com/lovodkin93/Controlled_Text_Reduction/tree/main/data/train_DUC-2001-2002.csv"
# },
# "CNN-DM": {
# "train": "https://github.com/lovodkin93/Controlled_Text_Reduction/tree/main/data/train_CNNDM.csv",
# "dev": "https://github.com/lovodkin93/Controlled_Text_Reduction/tree/main/data/dev_DUC-2001-2002.csv",
# "test": "https://github.com/lovodkin93/Controlled_Text_Reduction/tree/main/data/test_DUC-2001-2002.csv",
# },
# }
# @dataclass
# class ControlledTextReductionConfig(datasets.BuilderConfig):
# """ Allow the loader to re-distribute the original dev and test splits between train, dev and test. """
# data_source: str = "DUC-2001-2002" # "DUC-2001-2002" or "CNN-DM"
# class ControlledTextReduction(datasets.GeneratorBasedBuilder):
# """Controlled Text Reduction: dataset for the Controlled Text Reduction task ().
# Each data point consists of a document, a summary, and a list of spans of the document that are the pre-selected content whose summary is the summary"""
# VERSION = datasets.Version("1.0.0")
# BUILDER_CONFIG_CLASS = ControlledTextReductionConfig
# BUILDER_CONFIGS = [
# ControlledTextReductionConfig(
# name="DUC-2001-2002",
# version=VERSION,
# description="This provides the Controlled Text Reduction dataset extracted from the DUC 2001-2002 Single Document Summarization benchmark",
# data_source="DUC-2001-2002"
# ),
# ControlledTextReductionConfig(
# name="CNN-DM",
# version=VERSION,
# description="This provides the Controlled Text Reduction dataset extracted from the CNN-DM dataset (the train split)",
# data_source="CNN-DM"
# )
# ]
# DEFAULT_CONFIG_NAME = (
# "default" # It's not mandatory to have a default configuration. Just use one if it make sense.
# )
# def _info(self):
# features = datasets.Features(
# {
# "doc_text": datasets.Value("string"),
# "summary_text": datasets.Value("string"),
# "highlight_spans": datasets.Value("string")
# }
# )
# return datasets.DatasetInfo(
# # This is the description that will appear on the datasets page.
# description=_DESCRIPTION,
# # This defines the different columns of the dataset and their types
# features=features, # Here we define them above because they are different between the two configurations
# # If there's a common (input, target) tuple from the features,
# # specify them here. They'll be used if as_supervised=True in
# # builder.as_dataset.
# supervised_keys=None,
# # Homepage of the dataset for documentation
# homepage=_HOMEPAGE,
# # License for the dataset if available
# license=_LICENSE,
# # Citation for the dataset
# citation=_CITATION,
# )
# def _split_generators(self, dl_manager: datasets.utils.download_manager.DownloadManager):
# """Returns SplitGenerators."""
# URLs = _URLs[self.config.data_source]
# # Download and prepare all files - keep same structure as URLs
# corpora = {section: Path(dl_manager.download_and_extract(URLs[section]))
# for section in URLs}
# if self.config.data_source=="CNN-DM":
# return [
# datasets.SplitGenerator(
# name=datasets.Split.TRAIN,
# # These kwargs will be passed to _generate_examples
# gen_kwargs={
# "filepath": corpora["train"]
# },
# ),
# datasets.SplitGenerator(
# name=datasets.Split.VALIDATION,
# # These kwargs will be passed to _generate_examples
# gen_kwargs={
# "filepath": corpora["dev"]
# },
# ),
# datasets.SplitGenerator(
# name=datasets.Split.TEST,
# # These kwargs will be passed to _generate_examples
# gen_kwargs={
# "filepath": corpora["test"]
# },
# ),
# ]
# else:
# return [
# datasets.SplitGenerator(
# name=datasets.Split.TRAIN,
# # These kwargs will be passed to _generate_examples
# gen_kwargs={
# "filepath": corpora["train"]
# },
# ),
# datasets.SplitGenerator(
# name=datasets.Split.VALIDATION,
# # These kwargs will be passed to _generate_examples
# gen_kwargs={
# "filepath": corpora["dev"]
# },
# ),
# datasets.SplitGenerator(
# name=datasets.Split.TEST,
# # These kwargs will be passed to _generate_examples
# gen_kwargs={
# "filepath": corpora["test"]
# },
# ),
# ]
# def _generate_examples(self, filepath: List[str]):
# """ Yields Controlled Text Reduction examples from a csv file. Each instance contains the document, the summary and the pre-selected spans."""
# # merge annotations from sections
# df = pd.read_csv(filepath, index_col=False)
# for counter, dic in enumerate(df.to_dict('records')):
# columns_to_load_into_object = ["doc_text", "summary_text", "highlight_spans"]
# for key in columns_to_load_into_object:
# dic[key] = eval(dic[key])
# yield counter, dic
#################################################################################################################################################
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""A Dataset loading script for the QA-Discourse dataset (Pyatkin et. al., ACL 2020)."""
import datasets
from pathlib import Path
from typing import List
import pandas as pd
_CITATION = """\
@inproceedings{pyatkin2020qadiscourse,
title={QADiscourse-Discourse Relations as QA Pairs: Representation, Crowdsourcing and Baselines},
author={Pyatkin, Valentina and Klein, Ayal and Tsarfaty, Reut and Dagan, Ido},
booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
pages={2804--2819},
year={2020}
}"""
_DESCRIPTION = """\
The dataset contains question-answer pairs to model discourse relations.
While answers roughly correspond to spans of the sentence, these spans could have been freely adjusted by annotators to grammaticaly fit the question;
Therefore, answers are given just as text and not as identified spans of the original sentence.
See the paper for details: QADiscourse - Discourse Relations as QA Pairs: Representation, Crowdsourcing and Baselines, Pyatkin et. al., 2020
"""
_HOMEPAGE = "https://github.com/ValentinaPy/QADiscourse"
_LICENSE = """Resources on this page are licensed CC-BY 4.0, a Creative Commons license requiring Attribution (https://creativecommons.org/licenses/by/4.0/)."""
_URLs = {
"wikinews.train": "https://github.com/ValentinaPy/QADiscourse/raw/master/Dataset/wikinews_train.tsv",
"wikinews.dev": "https://github.com/ValentinaPy/QADiscourse/raw/master/Dataset/wikinews_dev.tsv",
"wikinews.test": "https://github.com/ValentinaPy/QADiscourse/raw/master/Dataset/wikinews_test.tsv",
"wikipedia.train": "https://github.com/ValentinaPy/QADiscourse/raw/master/Dataset/wikipedia_train.tsv",
"wikipedia.dev": "https://github.com/ValentinaPy/QADiscourse/raw/master/Dataset/wikipedia_dev.tsv",
"wikipedia.test": "https://github.com/ValentinaPy/QADiscourse/raw/master/Dataset/wikipedia_test.tsv",
}
COLUMNS = ['qasrl_id', 'sentence', 'worker_id', 'full_question', 'full_answer',
'question_start', 'question_aux', 'question_body', 'answer',
'untokenized sentence', 'target indices for untok sent']
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
class QaDiscourse(datasets.GeneratorBasedBuilder):
"""QA-Discourse: Discourse Relations as Question-Answer Pairs. """
VERSION = datasets.Version("1.0.2")
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="plain_text", version=VERSION, description="This provides the QA-Discourse dataset"
),
]
DEFAULT_CONFIG_NAME = (
"plain_text" # It's not mandatory to have a default configuration. Just use one if it make sense.
)
def _info(self):
features = datasets.Features(
{
"sentence": datasets.Value("string"),
"sent_id": datasets.Value("string"),
"question": datasets.Sequence(datasets.Value("string")),
"answers": datasets.Sequence(datasets.Value("string")),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.utils.download_manager.DownloadManager):
"""Returns SplitGenerators."""
# Download and prepare all files - keep same structure as _URLs
corpora = {section: Path(dl_manager.download_and_extract(_URLs[section]))
for section in _URLs}
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepaths": [corpora["wikinews.train"],
corpora["wikipedia.train"]],
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepaths": [corpora["wikinews.dev"],
corpora["wikipedia.dev"]],
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepaths": [corpora["wikinews.test"],
corpora["wikipedia.test"]],
},
),
]
def _generate_examples(self, filepaths: List[str]):
"""
Yields QA-Discourse examples from a tsv file.
Sentences with no QAs will yield an ``empty QA'' record, where both 'question' and 'answers' are empty lists.
"""
# merge annotations from sections
df = pd.concat([pd.read_csv(fn, sep='\t', error_bad_lines=False) for fn in filepaths]).reset_index(drop=True)
df = df.applymap(str) # must turn all values to strings explicitly to avoid type errors
for counter, row in df.iterrows():
# Prepare question (3 "slots" and question mark)
question = [row.question_start, row.question_aux, row.question_body.rstrip('?'), '?']
answer = [row.answer]
if row.question_start == "_": # sentence has no QAs
question = []
answer = []
yield counter, {
"sentence": row.sentence,
"sent_id": row.qasrl_id,
"question": question,
"answers": answer,
}
|