|
--- |
|
language: en |
|
license: unknown |
|
task_categories: |
|
- change-detection |
|
pretty_name: ChaBuD MSI |
|
tags: |
|
- remote-sensing |
|
- earth-observation |
|
- geospatial |
|
- satellite-imagery |
|
- change-detection |
|
- sentinel-2 |
|
dataset_info: |
|
features: |
|
- name: image1 |
|
dtype: |
|
array3_d: |
|
dtype: uint8 |
|
shape: |
|
- 512 |
|
- 512 |
|
- 13 |
|
- name: image2 |
|
dtype: |
|
array3_d: |
|
dtype: uint8 |
|
shape: |
|
- 512 |
|
- 512 |
|
- 13 |
|
- name: mask |
|
dtype: image |
|
splits: |
|
- name: train |
|
num_bytes: 2624716428.0 |
|
num_examples: 278 |
|
- name: validation |
|
num_bytes: 736431228.0 |
|
num_examples: 78 |
|
download_size: 2232652835 |
|
dataset_size: 3361147656.0 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: validation |
|
path: data/validation-* |
|
--- |
|
|
|
# ChaBuD MSI |
|
|
|
<!-- Dataset thumbnail --> |
|
![ChaBuD MSI](./thumbnail.png) |
|
|
|
<!-- Provide a quick summary of the dataset. --> |
|
ChaBuD is a dataset for Change detection for Burned area Delineation and is used for the ChaBuD ECML-PKDD 2023 Discovery Challenge. This is the MSI version with 13 bands. |
|
- **Paper:** https://doi.org/10.1016/j.rse.2021.112603 |
|
- **Homepage:** https://huggingface.co/spaces/competitions/ChaBuD-ECML-PKDD2023 |
|
|
|
## Description |
|
|
|
<!-- Provide a longer summary of what this dataset is. --> |
|
|
|
|
|
- **Total Number of Images**: 356 |
|
- **Bands**: 13 (MSI) |
|
- **Image Size**: 512x512 |
|
- **Image Resolution**: 10m |
|
- **Land Cover Classes**: 2 |
|
- **Classes**: no change, burned area |
|
- **Source**: Sentinel-2 |
|
|
|
|
|
## Usage |
|
|
|
To use this dataset, simply use `datasets.load_dataset("blanchon/ChaBuD_MSI")`. |
|
<!-- Provide any additional information on how to use this dataset. --> |
|
```python |
|
from datasets import load_dataset |
|
ChaBuD_MSI = load_dataset("blanchon/ChaBuD_MSI") |
|
``` |
|
|
|
## Citation |
|
|
|
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> |
|
If you use the ChaBuD_MSI dataset in your research, please consider citing the following publication: |
|
|
|
|
|
```bibtex |
|
@article{TURKOGLU2021112603, |
|
title = {Crop mapping from image time series: Deep learning with multi-scale label hierarchies}, |
|
journal = {Remote Sensing of Environment}, |
|
volume = {264}, |
|
pages = {112603}, |
|
year = {2021}, |
|
issn = {0034-4257}, |
|
doi = {https://doi.org/10.1016/j.rse.2021.112603}, |
|
url = {https://www.sciencedirect.com/science/article/pii/S0034425721003230}, |
|
author = {Mehmet Ozgur Turkoglu and Stefano D'Aronco and Gregor Perich and Frank Liebisch and Constantin Streit and Konrad Schindler and Jan Dirk Wegner}, |
|
keywords = {Deep learning, Recurrent neural network (RNN), Convolutional RNN, Hierarchical classification, Multi-stage, Crop classification, Multi-temporal, Time series}, |
|
} |
|
``` |
|
|