status
stringclasses
1 value
repo_name
stringclasses
13 values
repo_url
stringclasses
13 values
issue_id
int64
1
104k
updated_files
stringlengths
10
1.76k
title
stringlengths
4
369
body
stringlengths
0
254k
issue_url
stringlengths
38
55
pull_url
stringlengths
38
53
before_fix_sha
stringlengths
40
40
after_fix_sha
stringlengths
40
40
report_datetime
unknown
language
stringclasses
5 values
commit_datetime
unknown
closed
apache/airflow
https://github.com/apache/airflow
25,836
["airflow/api/client/api_client.py", "airflow/api/client/json_client.py", "airflow/api/client/local_client.py", "airflow/cli/cli_parser.py", "airflow/cli/commands/dag_command.py", "tests/cli/commands/test_dag_command.py"]
Support overriding `replace_microseconds` parameter for `airflow dags trigger` CLI command
### Description `airflow dags trigger` CLI command always defaults with `replace_microseconds=True` because of the default value in the API. It would be very nice to be able to control this flag from the CLI. ### Use case/motivation We use AWS MWAA. The exposed interface is Airflow CLI (yes, we could also ask to get a different interface from AWS MWAA, but I think this is something that was just overlooked for the CLI?), which does not support overriding `replace_microseconds` parameter when calling `airflow dags trigger` CLI command. For the most part, our dag runs for a given dag do not happen remotely at the same time. However, based on user behavior, they are sometimes triggered within the same second (albeit not microsecond). The first dag run is successfully triggered, but the second dag run fails the `replace_microseconds` parameter is wiping out the microseconds that we pass. Thus, DagRun.find_duplicates returns True for the second dag run that we're trying to trigger, and this raises the `DagRunAlreadyExists` exception. ### Related issues Not quite - they all seem to be around the experimental api and not directly related to the CLI. ### Are you willing to submit a PR? - [X] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/25836
https://github.com/apache/airflow/pull/27640
c30c0b5714e4ee217735649b9405f0f79af63059
b6013c0b8f1064c523af2d905c3f32ff1cbec421
"2022-08-19T17:04:24Z"
python
"2022-11-26T00:07:11Z"
closed
apache/airflow
https://github.com/apache/airflow
25,833
["airflow/providers/amazon/aws/hooks/s3.py", "tests/providers/amazon/aws/hooks/test_s3.py"]
Airflow Amazon provider S3Hook().download_file() fail when needs encryption arguments (SSECustomerKey etc..)
### Apache Airflow version 2.3.3 ### What happened Bug when trying to use the S3Hook to download a file from S3 with extra parameters for security like an SSECustomerKey. The function [download_file](https://github.com/apache/airflow/blob/dd72e67524c99e34ba4c62bfb554e4caf877d5ec/airflow/providers/amazon/aws/hooks/s3.py#L854) fetches the `extra_args` from `self` where we can specify the security parameters about encryption as a `dict`. But [download_file](https://github.com/apache/airflow/blob/dd72e67524c99e34ba4c62bfb554e4caf877d5ec/airflow/providers/amazon/aws/hooks/s3.py#L854) is calling [get_key()](https://github.com/apache/airflow/blob/dd72e67524c99e34ba4c62bfb554e4caf877d5ec/airflow/providers/amazon/aws/hooks/s3.py#L870) which does not use these `extra_args` when calling the [load() method here](https://github.com/apache/airflow/blob/dd72e67524c99e34ba4c62bfb554e4caf877d5ec/airflow/providers/amazon/aws/hooks/s3.py#L472), this results in a `botocore.exceptions.ClientError: An error occurred (400) when calling the HeadObject operation: Bad Request.` error. This could be fixed like this: load as says [boto3 documentation](https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3.html#S3.Object.load) is calling [S3.Client.head_object()](https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3.html#S3.Client.head_object) which can handle **kwargs and can have all the arguments below: ``` response = client.head_object( Bucket='string', IfMatch='string', IfModifiedSince=datetime(2015, 1, 1), IfNoneMatch='string', IfUnmodifiedSince=datetime(2015, 1, 1), Key='string', Range='string', VersionId='string', SSECustomerAlgorithm='string', SSECustomerKey='string', RequestPayer='requester', PartNumber=123, ExpectedBucketOwner='string', ChecksumMode='ENABLED' ) ``` An easy fix would be to give the `extra_args` to `get_key` then to `load(**self.extra_args) ` ### What you think should happen instead the extra_args should be used in get_key() and therefore obj.load() ### How to reproduce Try to use the S3Hook as below to download an encrypted file: ``` from airflow.providers.amazon.aws.hooks.s3 import S3Hook extra_args={ 'SSECustomerAlgorithm': 'YOUR_ALGO', 'SSECustomerKey': YOUR_SSE_C_KEY } hook = S3Hook(aws_conn_id=YOUR_S3_CONNECTION, extra_args=extra_args) hook.download_file( key=key, bucket_name=bucket_name, local_path=local_path ) ``` ### Operating System any ### Versions of Apache Airflow Providers _No response_ ### Deployment Docker-Compose ### Deployment details _No response_ ### Anything else _No response_ ### Are you willing to submit PR? - [X] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/25833
https://github.com/apache/airflow/pull/35037
36c5c111ec00075db30fab7c67ac1b6900e144dc
95980a9bc50c1accd34166ba608bbe2b4ebd6d52
"2022-08-19T16:25:16Z"
python
"2023-10-25T15:30:35Z"
closed
apache/airflow
https://github.com/apache/airflow
25,815
["airflow/providers/common/sql/operators/sql.py", "tests/providers/common/sql/operators/test_sql.py"]
SQLTableCheckOperator fails for Postgres
### Apache Airflow version 2.3.3 ### What happened `SQLTableCheckOperator` fails when used with Postgres. ### What you think should happen instead From the logs: ``` [2022-08-19, 09:28:14 UTC] {taskinstance.py:1910} ERROR - Task failed with exception Traceback (most recent call last): File "/usr/local/lib/python3.9/site-packages/airflow/providers/common/sql/operators/sql.py", line 296, in execute records = hook.get_first(self.sql) File "/usr/local/lib/python3.9/site-packages/airflow/hooks/dbapi.py", line 178, in get_first cur.execute(sql) psycopg2.errors.SyntaxError: subquery in FROM must have an alias LINE 1: SELECT MIN(row_count_check) FROM (SELECT CASE WHEN COUNT(*) ... ^ HINT: For example, FROM (SELECT ...) [AS] foo. ``` ### How to reproduce ```python import pendulum from datetime import timedelta from airflow import DAG from airflow.decorators import task from airflow.providers.common.sql.operators.sql import SQLTableCheckOperator from airflow.providers.postgres.operators.postgres import PostgresOperator _POSTGRES_CONN = "postgresdb" _TABLE_NAME = "employees" default_args = { "owner": "cs", "retries": 3, "retry_delay": timedelta(seconds=15), } with DAG( dag_id="sql_data_quality", start_date=pendulum.datetime(2022, 8, 1, tz="UTC"), schedule_interval=None, ) as dag: create_table = PostgresOperator( task_id="create_table", postgres_conn_id=_POSTGRES_CONN, sql=f""" CREATE TABLE IF NOT EXISTS {_TABLE_NAME} ( employee_name VARCHAR NOT NULL, employment_year INT NOT NULL ); """ ) populate_data = PostgresOperator( task_id="populate_data", postgres_conn_id=_POSTGRES_CONN, sql=f""" INSERT INTO {_TABLE_NAME} VALUES ('Adam', 2021); INSERT INTO {_TABLE_NAME} VALUES ('Chris', 2021); INSERT INTO {_TABLE_NAME} VALUES ('Frank', 2021); INSERT INTO {_TABLE_NAME} VALUES ('Fritz', 2021); INSERT INTO {_TABLE_NAME} VALUES ('Magda', 2022); INSERT INTO {_TABLE_NAME} VALUES ('Phil', 2021); """, ) check_row_count = SQLTableCheckOperator( task_id="check_row_count", conn_id=_POSTGRES_CONN, table=_TABLE_NAME, checks={ "row_count_check": {"check_statement": "COUNT(*) >= 3"} }, ) drop_table = PostgresOperator( task_id="drop_table", trigger_rule="all_done", postgres_conn_id=_POSTGRES_CONN, sql=f"DROP TABLE {_TABLE_NAME};", ) create_table >> populate_data >> check_row_count >> drop_table ``` ### Operating System macOS ### Versions of Apache Airflow Providers `apache-airflow-providers-common-sql==1.0.0` ### Deployment Astronomer ### Deployment details _No response_ ### Anything else _No response_ ### Are you willing to submit PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/25815
https://github.com/apache/airflow/pull/25821
b535262837994ef3faf3993da8f246cce6cfd3d2
dd72e67524c99e34ba4c62bfb554e4caf877d5ec
"2022-08-19T09:51:42Z"
python
"2022-08-19T15:08:21Z"
closed
apache/airflow
https://github.com/apache/airflow
25,781
["airflow/providers/google/cloud/operators/bigquery.py", "tests/providers/google/cloud/operators/test_bigquery.py"]
BigQueryGetDataOperator does not support passing project_id
### Apache Airflow Provider(s) google ### Versions of Apache Airflow Providers apache-airflow-providers-google==8.3.0 ### Apache Airflow version 2.3.2 ### Operating System MacOS ### Deployment Other ### Deployment details _No response_ ### What happened Can not actively pass project_id as an argument when using `BigQueryGetDataOperator`. This operator internally fallbacks into `default` project id. ### What you think should happen instead Should let developers pass project_id when needed ### How to reproduce _No response_ ### Anything else _No response_ ### Are you willing to submit PR? - [X] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/25781
https://github.com/apache/airflow/pull/25782
98a7701942c683f3126f9c4f450c352b510a2734
fc6dfa338a76d02a426e2b7f0325d37ea5e95ac3
"2022-08-18T04:40:01Z"
python
"2022-08-20T21:14:09Z"
closed
apache/airflow
https://github.com/apache/airflow
25,775
["airflow/models/abstractoperator.py", "airflow/models/taskmixin.py", "tests/models/test_baseoperator.py"]
XComs from another task group fail to populate dynamic task mapping metadata
### Apache Airflow version 2.3.3 ### What happened When a task returns a mappable Xcom within a task group, the dynamic task mapping feature (via `.expand`) causes the Airflow Scheduler to infinitely loop with a runtime error: ``` Traceback (most recent call last): File "/home/airflow/.local/bin/airflow", line 8, in <module> sys.exit(main()) File "/home/airflow/.local/lib/python3.9/site-packages/airflow/__main__.py", line 38, in main args.func(args) File "/home/airflow/.local/lib/python3.9/site-packages/airflow/cli/cli_parser.py", line 51, in command return func(*args, **kwargs) File "/home/airflow/.local/lib/python3.9/site-packages/airflow/utils/cli.py", line 99, in wrapper return f(*args, **kwargs) File "/home/airflow/.local/lib/python3.9/site-packages/airflow/cli/commands/scheduler_command.py", line 75, in scheduler _run_scheduler_job(args=args) File "/home/airflow/.local/lib/python3.9/site-packages/airflow/cli/commands/scheduler_command.py", line 46, in _run_scheduler_job job.run() File "/home/airflow/.local/lib/python3.9/site-packages/airflow/jobs/base_job.py", line 244, in run self._execute() File "/home/airflow/.local/lib/python3.9/site-packages/airflow/jobs/scheduler_job.py", line 751, in _execute self._run_scheduler_loop() File "/home/airflow/.local/lib/python3.9/site-packages/airflow/jobs/scheduler_job.py", line 839, in _run_scheduler_loop num_queued_tis = self._do_scheduling(session) File "/home/airflow/.local/lib/python3.9/site-packages/airflow/jobs/scheduler_job.py", line 921, in _do_scheduling callback_to_run = self._schedule_dag_run(dag_run, session) File "/home/airflow/.local/lib/python3.9/site-packages/airflow/jobs/scheduler_job.py", line 1163, in _schedule_dag_run schedulable_tis, callback_to_run = dag_run.update_state(session=session, execute_callbacks=False) File "/home/airflow/.local/lib/python3.9/site-packages/airflow/utils/session.py", line 68, in wrapper return func(*args, **kwargs) File "/home/airflow/.local/lib/python3.9/site-packages/airflow/models/dagrun.py", line 524, in update_state info = self.task_instance_scheduling_decisions(session) File "/home/airflow/.local/lib/python3.9/site-packages/airflow/utils/session.py", line 68, in wrapper return func(*args, **kwargs) File "/home/airflow/.local/lib/python3.9/site-packages/airflow/models/dagrun.py", line 654, in task_instance_scheduling_decisions schedulable_tis, changed_tis, expansion_happened = self._get_ready_tis( File "/home/airflow/.local/lib/python3.9/site-packages/airflow/models/dagrun.py", line 710, in _get_ready_tis expanded_tis, _ = schedulable.task.expand_mapped_task(self.run_id, session=session) File "/home/airflow/.local/lib/python3.9/site-packages/airflow/models/mappedoperator.py", line 614, in expand_mapped_task operator.mul, self._resolve_map_lengths(run_id, session=session).values() File "/home/airflow/.local/lib/python3.9/site-packages/airflow/models/mappedoperator.py", line 600, in _resolve_map_lengths raise RuntimeError(f"Failed to populate all mapping metadata; missing: {keys}") RuntimeError: Failed to populate all mapping metadata; missing: 'x' ``` ### What you think should happen instead Xcoms from different task groups should be mappable within other group scopes. ### How to reproduce ``` from airflow import DAG from airflow.decorators import task from airflow.utils.task_group import TaskGroup import pendulum @task def enumerate(x): return [i for i in range(x)] @task def addOne(x): return x+1 with DAG( dag_id="TaskGroupMappingBug", schedule_interval=None, start_date=pendulum.now().subtract(days=1), ) as dag: with TaskGroup(group_id="enumerateNine"): y = enumerate(9) with TaskGroup(group_id="add"): # airflow scheduler throws error here so this is never reached z = addOne.expand(x=y) ``` ### Operating System linux/amd64 via Docker (apache/airflow:2.3.3-python3.9) ### Versions of Apache Airflow Providers _No response_ ### Deployment Docker-Compose ### Deployment details docker-compose version 1.29.2, build 5becea4c Docker Engine v20.10.14 ### Anything else _No response_ ### Are you willing to submit PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/25775
https://github.com/apache/airflow/pull/25793
6e66dd7776707936345927f8fccee3ddb7f23a2b
5c48ed19bd3b554f9c3e881a4d9eb61eeba4295b
"2022-08-17T18:42:22Z"
python
"2022-08-19T09:55:19Z"
closed
apache/airflow
https://github.com/apache/airflow
25,765
["airflow/jobs/scheduler_job.py"]
Deadlock in Scheduler Loop when Updating Dag Run
### Apache Airflow version 2.3.3 ### What happened We have been getting occasional deadlock errors in our main scheduler loop that is causing the scheduler to error out of the main scheduler loop and terminate. The full stack trace of the error is below: ``` Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: [2022-08-13 00:01:17,377] {{scheduler_job.py:768}} ERROR - Exception when executing SchedulerJob._run_scheduler_loop Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: Traceback (most recent call last): Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: File "/home/ubuntu/.virtualenvs/ycharts/lib/python3.7/site-packages/sqlalchemy/engine/base.py", line 1800, in _execute_context Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: cursor, statement, parameters, context Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: File "/home/ubuntu/.virtualenvs/ycharts/lib/python3.7/site-packages/sqlalchemy/dialects/mysql/mysqldb.py", line 193, in do_executemany Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: rowcount = cursor.executemany(statement, parameters) Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: File "/home/ubuntu/.virtualenvs/ycharts/lib/python3.7/site-packages/MySQLdb/cursors.py", line 239, in executemany Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: self.rowcount = sum(self.execute(query, arg) for arg in args) Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: File "/home/ubuntu/.virtualenvs/ycharts/lib/python3.7/site-packages/MySQLdb/cursors.py", line 239, in <genexpr> Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: self.rowcount = sum(self.execute(query, arg) for arg in args) Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: File "/home/ubuntu/.virtualenvs/ycharts/lib/python3.7/site-packages/MySQLdb/cursors.py", line 206, in execute Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: res = self._query(query) Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: File "/home/ubuntu/.virtualenvs/ycharts/lib/python3.7/site-packages/MySQLdb/cursors.py", line 319, in _query Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: db.query(q) Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: File "/home/ubuntu/.virtualenvs/ycharts/lib/python3.7/site-packages/MySQLdb/connections.py", line 259, in query Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: _mysql.connection.query(self, query) Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: MySQLdb._exceptions.OperationalError: (1213, 'Deadlock found when trying to get lock; try restarting transaction') Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: The above exception was the direct cause of the following exception: Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: Traceback (most recent call last): Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: File "/home/ubuntu/.virtualenvs/ycharts/lib/python3.7/site-packages/airflow/jobs/scheduler_job.py", line 751, in _execute Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: self._run_scheduler_loop() Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: File "/home/ubuntu/.virtualenvs/ycharts/lib/python3.7/site-packages/airflow/jobs/scheduler_job.py", line 839, in _run_scheduler_loop Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: num_queued_tis = self._do_scheduling(session) Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: File "/home/ubuntu/.virtualenvs/ycharts/lib/python3.7/site-packages/airflow/jobs/scheduler_job.py", line 924, in _do_scheduling Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: guard.commit() Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: File "/home/ubuntu/.virtualenvs/ycharts/lib/python3.7/site-packages/airflow/utils/sqlalchemy.py", line 296, in commit Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: self.session.commit() Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: File "/home/ubuntu/.virtualenvs/ycharts/lib/python3.7/site-packages/sqlalchemy/orm/session.py", line 1451, in commit Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: self._transaction.commit(_to_root=self.future) Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: File "/home/ubuntu/.virtualenvs/ycharts/lib/python3.7/site-packages/sqlalchemy/orm/session.py", line 829, in commit Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: self._prepare_impl() Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: File "/home/ubuntu/.virtualenvs/ycharts/lib/python3.7/site-packages/sqlalchemy/orm/session.py", line 808, in _prepare_impl Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: self.session.flush() Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: File "/home/ubuntu/.virtualenvs/ycharts/lib/python3.7/site-packages/sqlalchemy/orm/session.py", line 3383, in flush Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: self._flush(objects) Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: File "/home/ubuntu/.virtualenvs/ycharts/lib/python3.7/site-packages/sqlalchemy/orm/session.py", line 3523, in _flush Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: transaction.rollback(_capture_exception=True) Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: File "/home/ubuntu/.virtualenvs/ycharts/lib/python3.7/site-packages/sqlalchemy/util/langhelpers.py", line 72, in __exit__ Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: with_traceback=exc_tb, Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: File "/home/ubuntu/.virtualenvs/ycharts/lib/python3.7/site-packages/sqlalchemy/util/compat.py", line 208, in raise_ Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: raise exception Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: File "/home/ubuntu/.virtualenvs/ycharts/lib/python3.7/site-packages/sqlalchemy/orm/session.py", line 3483, in _flush Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: flush_context.execute() Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: File "/home/ubuntu/.virtualenvs/ycharts/lib/python3.7/site-packages/sqlalchemy/orm/unitofwork.py", line 456, in execute Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: rec.execute(self) Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: File "/home/ubuntu/.virtualenvs/ycharts/lib/python3.7/site-packages/sqlalchemy/orm/unitofwork.py", line 633, in execute Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: uow, Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: File "/home/ubuntu/.virtualenvs/ycharts/lib/python3.7/site-packages/sqlalchemy/orm/persistence.py", line 242, in save_obj Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: update, Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: File "/home/ubuntu/.virtualenvs/ycharts/lib/python3.7/site-packages/sqlalchemy/orm/persistence.py", line 1002, in _emit_update_statements Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: statement, multiparams, execution_options=execution_options Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: File "/home/ubuntu/.virtualenvs/ycharts/lib/python3.7/site-packages/sqlalchemy/engine/base.py", line 1631, in _execute_20 Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: return meth(self, args_10style, kwargs_10style, execution_options) Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: File "/home/ubuntu/.virtualenvs/ycharts/lib/python3.7/site-packages/sqlalchemy/sql/elements.py", line 333, in _execute_on_connection Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: self, multiparams, params, execution_options Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: File "/home/ubuntu/.virtualenvs/ycharts/lib/python3.7/site-packages/sqlalchemy/engine/base.py", line 1508, in _execute_clauseelement Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: cache_hit=cache_hit, Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: File "/home/ubuntu/.virtualenvs/ycharts/lib/python3.7/site-packages/sqlalchemy/engine/base.py", line 1863, in _execute_context Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: e, statement, parameters, cursor, context Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: File "/home/ubuntu/.virtualenvs/ycharts/lib/python3.7/site-packages/sqlalchemy/engine/base.py", line 2044, in _handle_dbapi_exception Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: sqlalchemy_exception, with_traceback=exc_info[2], from_=e Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: File "/home/ubuntu/.virtualenvs/ycharts/lib/python3.7/site-packages/sqlalchemy/util/compat.py", line 208, in raise_ Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: raise exception Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: File "/home/ubuntu/.virtualenvs/ycharts/lib/python3.7/site-packages/sqlalchemy/engine/base.py", line 1800, in _execute_context Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: cursor, statement, parameters, context Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: File "/home/ubuntu/.virtualenvs/ycharts/lib/python3.7/site-packages/sqlalchemy/dialects/mysql/mysqldb.py", line 193, in do_executemany Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: rowcount = cursor.executemany(statement, parameters) Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: File "/home/ubuntu/.virtualenvs/ycharts/lib/python3.7/site-packages/MySQLdb/cursors.py", line 239, in executemany Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: self.rowcount = sum(self.execute(query, arg) for arg in args) Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: File "/home/ubuntu/.virtualenvs/ycharts/lib/python3.7/site-packages/MySQLdb/cursors.py", line 239, in <genexpr> Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: self.rowcount = sum(self.execute(query, arg) for arg in args) Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: File "/home/ubuntu/.virtualenvs/ycharts/lib/python3.7/site-packages/MySQLdb/cursors.py", line 206, in execute Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: res = self._query(query) Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: File "/home/ubuntu/.virtualenvs/ycharts/lib/python3.7/site-packages/MySQLdb/cursors.py", line 319, in _query Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: db.query(q) Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: File "/home/ubuntu/.virtualenvs/ycharts/lib/python3.7/site-packages/MySQLdb/connections.py", line 259, in query Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: _mysql.connection.query(self, query) Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: sqlalchemy.exc.OperationalError: (MySQLdb._exceptions.OperationalError) (1213, 'Deadlock found when trying to get lock; try restarting transaction') Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: [SQL: UPDATE dag_run SET last_scheduling_decision=%s WHERE dag_run.id = %s] Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: [parameters: ((datetime.datetime(2022, 8, 13, 0, 1, 17, 280720), 9), (datetime.datetime(2022, 8, 13, 0, 1, 17, 213661), 11), (datetime.datetime(2022, 8, 13, 0, 1, 17, 40686), 12))] Aug 13 00:01:17 ip-10-0-2-218 bash[26063]: (Background on this error at: https://sqlalche.me/e/14/e3q8) ``` It appears the issue occurs when attempting to update the `last_scheduling_decision` field of the `dag_run` table, but we are unsure why this would cause a deadlock. This issue has only been occurring when we upgrade to version 2.3.3, this was not an issue with version 2.2.4. ### What you think should happen instead The scheduler loop should not have any deadlocks that cause it to exit out of its main loop and terminate. I would expect the scheduler loop to always be running constantly, which is not the case if a deadlock occurs in this loop. ### How to reproduce This is occurring for us when we run a `LocalExecutor` with smart sensors enabled (2 shards). We only have 3 other daily DAGs which run at different times, and the error seems to occur right when the start time comes for one DAG to start running. After we restart the scheduler after that first deadlock, it seems to run fine the rest of the day, but the next day when it comes time to start the DAG again, another deadlock occurs. ### Operating System Ubuntu 18.04.6 LTS ### Versions of Apache Airflow Providers apache-airflow-providers-amazon==4.1.0 apache-airflow-providers-common-sql==1.0.0 apache-airflow-providers-ftp==3.1.0 apache-airflow-providers-http==4.0.0 apache-airflow-providers-imap==3.0.0 apache-airflow-providers-mysql==3.1.0 apache-airflow-providers-sftp==4.0.0 apache-airflow-providers-sqlite==3.1.0 apache-airflow-providers-ssh==3.1.0 ### Deployment Other ### Deployment details We deploy airflow to 2 different ec2 instances. The scheduler lives on one ec2 instances and the webserver lives on a separate ec2 instance. We only run a single scheduler. ### Anything else This issue occurs once a day when the first of our daily DAGs gets triggered. When we restart the scheduler after the deadlock, it works fine for the rest of the day typically. We use a `LocalExecutor` with a `PARALLELISM` of 32, smart sensors enabled using 2 shards. ### Are you willing to submit PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/25765
https://github.com/apache/airflow/pull/26347
f977804255ca123bfea24774328ba0a9ca63688b
0da49935000476b1d1941b63d0d66d3c58d64fea
"2022-08-17T14:04:17Z"
python
"2022-10-02T03:33:59Z"
closed
apache/airflow
https://github.com/apache/airflow
25,743
["airflow/config_templates/airflow_local_settings.py"]
DeprecationWarning: Passing filename_template to FileTaskHandler is deprecated and has no effect
### Apache Airflow version 2.3.3 ### What happened After upgrading or installing airflow 2.3.3 the remote_logging in airflow.cfg cant be set to true without creating depreciation warning. I'm using remote logging to an s3 bucket. It doesn't matter which version of **apache-airflow-providers-amazon** i have installed. When using systemd units to start the airflow components, the webserver will spam the depreciation warning every second. Tested with Python 3.10 and 3.7.3 ### What you think should happen instead When using the remote logging It should not execute an action every second in the background which seems to be deprecated. ### How to reproduce You could quickly install an Python virtual Environment on a machine of you choice. After that install airflow and apache-airflow-providers-amazon over pip Then change the logging part in the airflow.cfg: **[logging] remote_logging = True** create a testdag.py containing at least: **from airflow import DAG** run it with Python to see the errors: python testdag.py hint: some more deprecationWarnings will appear because the standard airflow.cfg which get created when installing airflow is not the current state. The Deprication warning you should see when turning remote_logging to true is: `.../lib/python3.10/site-packages/airflow/utils/log/file_task_handler.py:52 DeprecationWarning: Passing filename_template to FileTaskHandler is deprecated and has no effect` ### Operating System Debian GNU/Linux 10 (buster) and also tested Fedora release 36 (Thirty Six) ### Versions of Apache Airflow Providers apache-airflow-providers-amazon 4.0.0 ### Deployment Virtualenv installation ### Deployment details Running a small setup. 2 Virtual Machines. Airflow installed over pip inside a Python virtual environment. ### Anything else The Problem occurs every dag run and it gets logged every second inside the journal produced by the webserver systemd unit. ### Are you willing to submit PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/25743
https://github.com/apache/airflow/pull/25764
0267a47e5abd104891e0ec6c741b5bed208eef1e
da616a1421c71c8ec228fefe78a0a90263991423
"2022-08-16T14:26:29Z"
python
"2022-08-19T14:13:05Z"
closed
apache/airflow
https://github.com/apache/airflow
25,718
["airflow/providers/google/cloud/hooks/bigquery_dts.py"]
Incorrect config name generated for BigQueryDeleteDataTransferConfigOperator
### Apache Airflow version 2.3.3 ### What happened When we try to delete a big query transfer config using BigQueryDeleteDataTransferConfigOperator, we are unable to find the config, as the generated transfer config name is erroneous. As a result, although a transfer config id (that exists) is passed to the operator, we get an error saying that the transfer config doesn't exist. ### What you think should happen instead On further analysis, it was revealed that, in the bigquery_dts hook, the project name is incorrectly created as follows on the line 171: `project = f"/{project}/locations/{self.location}"` That is there's an extra / prefixed to the project. Removing the extra / shall fix this bug. ### How to reproduce 1. Create a transfer config in the BQ data transfers/or use the operator BigQueryCreateDataTransferOperator (in a project located in Europe). 2. Try to delete the transfer config using the BigQueryDeleteDataTransferConfigOperator by passing the location of the project along with the transfer config id. This step will throw the error. ### Operating System Windows 11 ### Versions of Apache Airflow Providers _No response_ ### Deployment Astronomer ### Deployment details _No response_ ### Anything else _No response_ ### Are you willing to submit PR? - [X] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/25718
https://github.com/apache/airflow/pull/25719
c6e9cdb4d013fec330deb79810dbb735d2c01482
fa0cb363b860b553af2ef9530ea2de706bd16e5d
"2022-08-15T03:02:59Z"
python
"2022-10-02T00:56:11Z"
closed
apache/airflow
https://github.com/apache/airflow
25,712
["airflow/providers/postgres/provider.yaml", "generated/provider_dependencies.json"]
postgres provider: use non-binary psycopg2 (recommended for production use)
### Apache Airflow Provider(s) postgres ### Versions of Apache Airflow Providers apache-airflow-providers-postgres==5.0.0 ### Apache Airflow version 2.3.3 ### Operating System Debian 11 (airflow docker image) ### Deployment Official Apache Airflow Helm Chart ### Deployment details _No response_ ### What happened psycopg2-binary package is installed. ### What you think should happen instead psycopg (non-binary) package is installed. According to the [psycopg2 docs](https://www.psycopg.org/docs/install.html#psycopg-vs-psycopg-binary), (emphasis theirs) "**For production use you are advised to use the source distribution.**". ### How to reproduce Either ``` docker run -it apache/airflow:2.3.3-python3.10 pip freeze |grep -E '(postgres|psycopg2)' ``` Or ``` docker run -it apache/airflow:slim-2.3.3-python3.10 curl -O curl https://raw.githubusercontent.com/apache/airflow/constraints-2.3.3/constraints-3.10.txt pip install -c constraints-3.10.txt apache-airflow-providers-postgres pip freeze |grep -E '(postgres|psycopg2)' ``` Either way, the output is: ``` apache-airflow-providers-postgres==5.0.0 psycopg2-binary==2.9.3 ``` ### Anything else _No response_ ### Are you willing to submit PR? - [X] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/25712
https://github.com/apache/airflow/pull/25710
28165eef2ac26c66525849e7bebb55553ea5a451
14d56a5a9e78580c53cf85db504464daccffe21c
"2022-08-14T10:23:53Z"
python
"2022-08-23T15:08:21Z"
closed
apache/airflow
https://github.com/apache/airflow
25,698
["airflow/models/mappedoperator.py", "tests/jobs/test_backfill_job.py", "tests/models/test_dagrun.py", "tests/models/test_taskinstance.py"]
Backfill mode with mapped tasks: "Failed to populate all mapping metadata"
### Apache Airflow version 2.3.3 ### What happened I was backfilling some DAGs that use dynamic tasks when I got an exception like the following: ``` Traceback (most recent call last): File "/opt/conda/envs/production/bin/airflow", line 11, in <module> sys.exit(main()) File "/opt/conda/envs/production/lib/python3.9/site-packages/airflow/__main__.py", line 38, in main args.func(args) File "/opt/conda/envs/production/lib/python3.9/site-packages/airflow/cli/cli_parser.py", line 51, in command return func(*args, **kwargs) File "/opt/conda/envs/production/lib/python3.9/site-packages/airflow/utils/cli.py", line 99, in wrapper return f(*args, **kwargs) File "/opt/conda/envs/production/lib/python3.9/site-packages/airflow/cli/commands/dag_command.py", line 107, in dag_backfill dag.run( File "/opt/conda/envs/production/lib/python3.9/site-packages/airflow/models/dag.py", line 2288, in run job.run() File "/opt/conda/envs/production/lib/python3.9/site-packages/airflow/jobs/base_job.py", line 244, in run self._execute() File "/opt/conda/envs/production/lib/python3.9/site-packages/airflow/utils/session.py", line 71, in wrapper return func(*args, session=session, **kwargs) File "/opt/conda/envs/production/lib/python3.9/site-packages/airflow/jobs/backfill_job.py", line 847, in _execute self._execute_dagruns( File "/opt/conda/envs/production/lib/python3.9/site-packages/airflow/utils/session.py", line 68, in wrapper return func(*args, **kwargs) File "/opt/conda/envs/production/lib/python3.9/site-packages/airflow/jobs/backfill_job.py", line 737, in _execute_dagruns processed_dag_run_dates = self._process_backfill_task_instances( File "/opt/conda/envs/production/lib/python3.9/site-packages/airflow/utils/session.py", line 68, in wrapper return func(*args, **kwargs) File "/opt/conda/envs/production/lib/python3.9/site-packages/airflow/jobs/backfill_job.py", line 612, in _process_backfill_task_instances for node, run_id, new_mapped_tis, max_map_index in self._manage_executor_state( File "/opt/conda/envs/production/lib/python3.9/site-packages/airflow/jobs/backfill_job.py", line 270, in _manage_executor_state new_tis, num_mapped_tis = node.expand_mapped_task(ti.run_id, session=session) File "/opt/conda/envs/production/lib/python3.9/site-packages/airflow/models/mappedoperator.py", line 614, in expand_mapped_task operator.mul, self._resolve_map_lengths(run_id, session=session).values() File "/opt/conda/envs/production/lib/python3.9/site-packages/airflow/models/mappedoperator.py", line 600, in _resolve_map_lengths raise RuntimeError(f"Failed to populate all mapping metadata; missing: {keys}") RuntimeError: Failed to populate all mapping metadata; missing: 'x' ``` Digging further, it appears this always happens if the task used as input to an `.expand` raises an Exception. Airflow doesn't handle this exception gracefully like it does with exceptions in "normal" tasks, which can lead to other errors from deeper within Airflow. This also means that since this is not a "typical" failure case, things like `--rerun-failed-tasks` do not work as expected. ### What you think should happen instead Airflow should fail gracefully if exceptions are raised in dynamic task generators. ### How to reproduce ``` #!/usr/bin/env python3 import datetime import logging from airflow.decorators import dag, task logger = logging.getLogger(__name__) @dag( schedule_interval='@daily', start_date=datetime.datetime(2022, 8, 12), default_args={ 'retries': 5, 'retry_delay': 5.0, }, ) def test_backfill(): @task def get_tasks(ti=None): logger.info(f'{ti.try_number=}') if ti.try_number < 3: raise RuntimeError('') return ['a', 'b', 'c'] @task def do_stuff(x=None, ti=None): logger.info(f'do_stuff: {x=}, {ti.try_number=}') if ti.try_number < 3: raise RuntimeError('') do_stuff.expand(x=do_stuff.expand(x=get_tasks())) do_stuff() >> do_stuff() # this works as expected dag = test_backfill() if __name__ == '__main__': dag.cli() ``` ``` airflow dags backfill test_backfill -s 2022-08-05 -e 2022-08-07 --rerun-failed-tasks ``` You can repeat the `backfill` command multiple times to slowly make progress through the DAG. Things will eventually succeed (assuming the exception that triggers this bug stops being raised), but obviously this is a pain when trying to backfill a non-trivial number of DAG Runs. ### Operating System CentOS Stream 8 ### Versions of Apache Airflow Providers None ### Deployment Other ### Deployment details Standalone ### Anything else I was able to reproduce this both with SQLite + `SequentialExecutor` as well as with Postgres + `LocalExecutor`. I haven't yet been able to reproduce this outside of `backfill` mode. Possibly related since they mention the same exception text: * #23533 * #23642 ### Are you willing to submit PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/25698
https://github.com/apache/airflow/pull/25757
d51957165b2836fe0006d318c299c149fb5d35b0
728a3ce5c2f5abdd7aa01864a861ca18b1f27c1b
"2022-08-12T18:04:47Z"
python
"2022-08-19T09:45:29Z"
closed
apache/airflow
https://github.com/apache/airflow
25,681
["airflow/models/dagrun.py", "tests/models/test_dagrun.py"]
Scheduler enters crash loop in certain cases with dynamic task mapping
### Apache Airflow version 2.3.3 ### What happened The scheduler crashed when attempting to queue a dynamically mapped task which is directly downstream and only dependent on another dynamically mapped task. <details><summary>scheduler.log</summary> ``` scheduler | ____________ _____________ scheduler | ____ |__( )_________ __/__ /________ __ scheduler | ____ /| |_ /__ ___/_ /_ __ /_ __ \_ | /| / / scheduler | ___ ___ | / _ / _ __/ _ / / /_/ /_ |/ |/ / scheduler | _/_/ |_/_/ /_/ /_/ /_/ \____/____/|__/ scheduler | [2022-08-11 08:41:10,922] {scheduler_job.py:708} INFO - Starting the scheduler scheduler | [2022-08-11 08:41:10,923] {scheduler_job.py:713} INFO - Processing each file at most -1 times scheduler | [2022-08-11 08:41:10,926] {executor_loader.py:105} INFO - Loaded executor: SequentialExecutor scheduler | [2022-08-11 08:41:10,929] {manager.py:160} INFO - Launched DagFileProcessorManager with pid: 52386 scheduler | [2022-08-11 08:41:10,932] {scheduler_job.py:1233} INFO - Resetting orphaned tasks for active dag runs scheduler | [2022-08-11 08:41:11 -0600] [52385] [INFO] Starting gunicorn 20.1.0 scheduler | [2022-08-11 08:41:11 -0600] [52385] [INFO] Listening at: http://0.0.0.0:8793 (52385) scheduler | [2022-08-11 08:41:11 -0600] [52385] [INFO] Using worker: sync scheduler | [2022-08-11 08:41:11 -0600] [52387] [INFO] Booting worker with pid: 52387 scheduler | [2022-08-11 08:41:11,656] {settings.py:55} INFO - Configured default timezone Timezone('UTC') scheduler | [2022-08-11 08:41:11,659] {manager.py:406} WARNING - Because we cannot use more than 1 thread (parsing_processes = 2) when using sqlite. So we set parallelism to 1. scheduler | [2022-08-11 08:41:11 -0600] [52388] [INFO] Booting worker with pid: 52388 scheduler | [2022-08-11 08:41:28,118] {dag.py:2968} INFO - Setting next_dagrun for bug_test to 2022-08-11T14:00:00+00:00, run_after=2022-08-11T15:00:00+00:00 scheduler | [2022-08-11 08:41:28,161] {scheduler_job.py:353} INFO - 20 tasks up for execution: scheduler | <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=0 [scheduled]> scheduler | <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=1 [scheduled]> scheduler | <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=2 [scheduled]> scheduler | <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=3 [scheduled]> scheduler | <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=4 [scheduled]> scheduler | <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=5 [scheduled]> scheduler | <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=6 [scheduled]> scheduler | <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=7 [scheduled]> scheduler | <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=8 [scheduled]> scheduler | <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=9 [scheduled]> scheduler | <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=10 [scheduled]> scheduler | <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=11 [scheduled]> scheduler | <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=12 [scheduled]> scheduler | <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=13 [scheduled]> scheduler | <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=14 [scheduled]> scheduler | <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=15 [scheduled]> scheduler | <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=16 [scheduled]> scheduler | <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=17 [scheduled]> scheduler | <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=18 [scheduled]> scheduler | <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=19 [scheduled]> scheduler | [2022-08-11 08:41:28,161] {scheduler_job.py:418} INFO - DAG bug_test has 0/16 running and queued tasks scheduler | [2022-08-11 08:41:28,161] {scheduler_job.py:418} INFO - DAG bug_test has 1/16 running and queued tasks scheduler | [2022-08-11 08:41:28,161] {scheduler_job.py:418} INFO - DAG bug_test has 2/16 running and queued tasks scheduler | [2022-08-11 08:41:28,161] {scheduler_job.py:418} INFO - DAG bug_test has 3/16 running and queued tasks scheduler | [2022-08-11 08:41:28,161] {scheduler_job.py:418} INFO - DAG bug_test has 4/16 running and queued tasks scheduler | [2022-08-11 08:41:28,161] {scheduler_job.py:418} INFO - DAG bug_test has 5/16 running and queued tasks scheduler | [2022-08-11 08:41:28,161] {scheduler_job.py:418} INFO - DAG bug_test has 6/16 running and queued tasks scheduler | [2022-08-11 08:41:28,161] {scheduler_job.py:418} INFO - DAG bug_test has 7/16 running and queued tasks scheduler | [2022-08-11 08:41:28,161] {scheduler_job.py:418} INFO - DAG bug_test has 8/16 running and queued tasks scheduler | [2022-08-11 08:41:28,161] {scheduler_job.py:418} INFO - DAG bug_test has 9/16 running and queued tasks scheduler | [2022-08-11 08:41:28,161] {scheduler_job.py:418} INFO - DAG bug_test has 10/16 running and queued tasks scheduler | [2022-08-11 08:41:28,161] {scheduler_job.py:418} INFO - DAG bug_test has 11/16 running and queued tasks scheduler | [2022-08-11 08:41:28,161] {scheduler_job.py:418} INFO - DAG bug_test has 12/16 running and queued tasks scheduler | [2022-08-11 08:41:28,162] {scheduler_job.py:418} INFO - DAG bug_test has 13/16 running and queued tasks scheduler | [2022-08-11 08:41:28,162] {scheduler_job.py:418} INFO - DAG bug_test has 14/16 running and queued tasks scheduler | [2022-08-11 08:41:28,162] {scheduler_job.py:418} INFO - DAG bug_test has 15/16 running and queued tasks scheduler | [2022-08-11 08:41:28,162] {scheduler_job.py:418} INFO - DAG bug_test has 16/16 running and queued tasks scheduler | [2022-08-11 08:41:28,162] {scheduler_job.py:425} INFO - Not executing <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=16 [scheduled]> since the number of tasks running or queued from DAG bug_test is >= to the DAG's max_active_tasks limit of 16 scheduler | [2022-08-11 08:41:28,162] {scheduler_job.py:418} INFO - DAG bug_test has 16/16 running and queued tasks scheduler | [2022-08-11 08:41:28,162] {scheduler_job.py:425} INFO - Not executing <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=17 [scheduled]> since the number of tasks running or queued from DAG bug_test is >= to the DAG's max_active_tasks limit of 16 scheduler | [2022-08-11 08:41:28,162] {scheduler_job.py:418} INFO - DAG bug_test has 16/16 running and queued tasks scheduler | [2022-08-11 08:41:28,162] {scheduler_job.py:425} INFO - Not executing <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=18 [scheduled]> since the number of tasks running or queued from DAG bug_test is >= to the DAG's max_active_tasks limit of 16 scheduler | [2022-08-11 08:41:28,162] {scheduler_job.py:418} INFO - DAG bug_test has 16/16 running and queued tasks scheduler | [2022-08-11 08:41:28,162] {scheduler_job.py:425} INFO - Not executing <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=19 [scheduled]> since the number of tasks running or queued from DAG bug_test is >= to the DAG's max_active_tasks limit of 16 scheduler | [2022-08-11 08:41:28,162] {scheduler_job.py:504} INFO - Setting the following tasks to queued state: scheduler | <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=0 [scheduled]> scheduler | <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=1 [scheduled]> scheduler | <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=2 [scheduled]> scheduler | <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=3 [scheduled]> scheduler | <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=4 [scheduled]> scheduler | <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=5 [scheduled]> scheduler | <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=6 [scheduled]> scheduler | <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=7 [scheduled]> scheduler | <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=8 [scheduled]> scheduler | <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=9 [scheduled]> scheduler | <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=10 [scheduled]> scheduler | <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=11 [scheduled]> scheduler | <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=12 [scheduled]> scheduler | <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=13 [scheduled]> scheduler | <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=14 [scheduled]> scheduler | <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=15 [scheduled]> scheduler | [2022-08-11 08:41:28,164] {scheduler_job.py:546} INFO - Sending TaskInstanceKey(dag_id='bug_test', task_id='do_something', run_id='scheduled__2022-08-11T13:00:00+00:00', try_number=1, map_index=0) to executor with priority 2 and queue default scheduler | [2022-08-11 08:41:28,165] {base_executor.py:91} INFO - Adding to queue: ['airflow', 'tasks', 'run', 'bug_test', 'do_something', 'scheduled__2022-08-11T13:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/bug_test.py', '--map-index', '0'] scheduler | [2022-08-11 08:41:28,165] {scheduler_job.py:546} INFO - Sending TaskInstanceKey(dag_id='bug_test', task_id='do_something', run_id='scheduled__2022-08-11T13:00:00+00:00', try_number=1, map_index=1) to executor with priority 2 and queue default scheduler | [2022-08-11 08:41:28,165] {base_executor.py:91} INFO - Adding to queue: ['airflow', 'tasks', 'run', 'bug_test', 'do_something', 'scheduled__2022-08-11T13:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/bug_test.py', '--map-index', '1'] scheduler | [2022-08-11 08:41:28,165] {scheduler_job.py:546} INFO - Sending TaskInstanceKey(dag_id='bug_test', task_id='do_something', run_id='scheduled__2022-08-11T13:00:00+00:00', try_number=1, map_index=2) to executor with priority 2 and queue default scheduler | [2022-08-11 08:41:28,165] {base_executor.py:91} INFO - Adding to queue: ['airflow', 'tasks', 'run', 'bug_test', 'do_something', 'scheduled__2022-08-11T13:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/bug_test.py', '--map-index', '2'] scheduler | [2022-08-11 08:41:28,165] {scheduler_job.py:546} INFO - Sending TaskInstanceKey(dag_id='bug_test', task_id='do_something', run_id='scheduled__2022-08-11T13:00:00+00:00', try_number=1, map_index=3) to executor with priority 2 and queue default scheduler | [2022-08-11 08:41:28,165] {base_executor.py:91} INFO - Adding to queue: ['airflow', 'tasks', 'run', 'bug_test', 'do_something', 'scheduled__2022-08-11T13:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/bug_test.py', '--map-index', '3'] scheduler | [2022-08-11 08:41:28,165] {scheduler_job.py:546} INFO - Sending TaskInstanceKey(dag_id='bug_test', task_id='do_something', run_id='scheduled__2022-08-11T13:00:00+00:00', try_number=1, map_index=4) to executor with priority 2 and queue default scheduler | [2022-08-11 08:41:28,166] {base_executor.py:91} INFO - Adding to queue: ['airflow', 'tasks', 'run', 'bug_test', 'do_something', 'scheduled__2022-08-11T13:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/bug_test.py', '--map-index', '4'] scheduler | [2022-08-11 08:41:28,166] {scheduler_job.py:546} INFO - Sending TaskInstanceKey(dag_id='bug_test', task_id='do_something', run_id='scheduled__2022-08-11T13:00:00+00:00', try_number=1, map_index=5) to executor with priority 2 and queue default scheduler | [2022-08-11 08:41:28,166] {base_executor.py:91} INFO - Adding to queue: ['airflow', 'tasks', 'run', 'bug_test', 'do_something', 'scheduled__2022-08-11T13:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/bug_test.py', '--map-index', '5'] scheduler | [2022-08-11 08:41:28,166] {scheduler_job.py:546} INFO - Sending TaskInstanceKey(dag_id='bug_test', task_id='do_something', run_id='scheduled__2022-08-11T13:00:00+00:00', try_number=1, map_index=6) to executor with priority 2 and queue default scheduler | [2022-08-11 08:41:28,166] {base_executor.py:91} INFO - Adding to queue: ['airflow', 'tasks', 'run', 'bug_test', 'do_something', 'scheduled__2022-08-11T13:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/bug_test.py', '--map-index', '6'] scheduler | [2022-08-11 08:41:28,166] {scheduler_job.py:546} INFO - Sending TaskInstanceKey(dag_id='bug_test', task_id='do_something', run_id='scheduled__2022-08-11T13:00:00+00:00', try_number=1, map_index=7) to executor with priority 2 and queue default scheduler | [2022-08-11 08:41:28,166] {base_executor.py:91} INFO - Adding to queue: ['airflow', 'tasks', 'run', 'bug_test', 'do_something', 'scheduled__2022-08-11T13:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/bug_test.py', '--map-index', '7'] scheduler | [2022-08-11 08:41:28,167] {scheduler_job.py:546} INFO - Sending TaskInstanceKey(dag_id='bug_test', task_id='do_something', run_id='scheduled__2022-08-11T13:00:00+00:00', try_number=1, map_index=8) to executor with priority 2 and queue default scheduler | [2022-08-11 08:41:28,167] {base_executor.py:91} INFO - Adding to queue: ['airflow', 'tasks', 'run', 'bug_test', 'do_something', 'scheduled__2022-08-11T13:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/bug_test.py', '--map-index', '8'] scheduler | [2022-08-11 08:41:28,167] {scheduler_job.py:546} INFO - Sending TaskInstanceKey(dag_id='bug_test', task_id='do_something', run_id='scheduled__2022-08-11T13:00:00+00:00', try_number=1, map_index=9) to executor with priority 2 and queue default scheduler | [2022-08-11 08:41:28,167] {base_executor.py:91} INFO - Adding to queue: ['airflow', 'tasks', 'run', 'bug_test', 'do_something', 'scheduled__2022-08-11T13:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/bug_test.py', '--map-index', '9'] scheduler | [2022-08-11 08:41:28,167] {scheduler_job.py:546} INFO - Sending TaskInstanceKey(dag_id='bug_test', task_id='do_something', run_id='scheduled__2022-08-11T13:00:00+00:00', try_number=1, map_index=10) to executor with priority 2 and queue default scheduler | [2022-08-11 08:41:28,167] {base_executor.py:91} INFO - Adding to queue: ['airflow', 'tasks', 'run', 'bug_test', 'do_something', 'scheduled__2022-08-11T13:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/bug_test.py', '--map-index', '10'] scheduler | [2022-08-11 08:41:28,167] {scheduler_job.py:546} INFO - Sending TaskInstanceKey(dag_id='bug_test', task_id='do_something', run_id='scheduled__2022-08-11T13:00:00+00:00', try_number=1, map_index=11) to executor with priority 2 and queue default scheduler | [2022-08-11 08:41:28,167] {base_executor.py:91} INFO - Adding to queue: ['airflow', 'tasks', 'run', 'bug_test', 'do_something', 'scheduled__2022-08-11T13:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/bug_test.py', '--map-index', '11'] scheduler | [2022-08-11 08:41:28,167] {scheduler_job.py:546} INFO - Sending TaskInstanceKey(dag_id='bug_test', task_id='do_something', run_id='scheduled__2022-08-11T13:00:00+00:00', try_number=1, map_index=12) to executor with priority 2 and queue default scheduler | [2022-08-11 08:41:28,167] {base_executor.py:91} INFO - Adding to queue: ['airflow', 'tasks', 'run', 'bug_test', 'do_something', 'scheduled__2022-08-11T13:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/bug_test.py', '--map-index', '12'] scheduler | [2022-08-11 08:41:28,168] {scheduler_job.py:546} INFO - Sending TaskInstanceKey(dag_id='bug_test', task_id='do_something', run_id='scheduled__2022-08-11T13:00:00+00:00', try_number=1, map_index=13) to executor with priority 2 and queue default scheduler | [2022-08-11 08:41:28,168] {base_executor.py:91} INFO - Adding to queue: ['airflow', 'tasks', 'run', 'bug_test', 'do_something', 'scheduled__2022-08-11T13:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/bug_test.py', '--map-index', '13'] scheduler | [2022-08-11 08:41:28,168] {scheduler_job.py:546} INFO - Sending TaskInstanceKey(dag_id='bug_test', task_id='do_something', run_id='scheduled__2022-08-11T13:00:00+00:00', try_number=1, map_index=14) to executor with priority 2 and queue default scheduler | [2022-08-11 08:41:28,168] {base_executor.py:91} INFO - Adding to queue: ['airflow', 'tasks', 'run', 'bug_test', 'do_something', 'scheduled__2022-08-11T13:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/bug_test.py', '--map-index', '14'] scheduler | [2022-08-11 08:41:28,168] {scheduler_job.py:546} INFO - Sending TaskInstanceKey(dag_id='bug_test', task_id='do_something', run_id='scheduled__2022-08-11T13:00:00+00:00', try_number=1, map_index=15) to executor with priority 2 and queue default scheduler | [2022-08-11 08:41:28,168] {base_executor.py:91} INFO - Adding to queue: ['airflow', 'tasks', 'run', 'bug_test', 'do_something', 'scheduled__2022-08-11T13:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/bug_test.py', '--map-index', '15'] scheduler | [2022-08-11 08:41:28,170] {sequential_executor.py:59} INFO - Executing command: ['airflow', 'tasks', 'run', 'bug_test', 'do_something', 'scheduled__2022-08-11T13:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/bug_test.py', '--map-index', '0'] scheduler | [2022-08-11 08:41:29,131] {dagbag.py:508} INFO - Filling up the DagBag from /path/to/test/dir/bug_test/dags/bug_test.py scheduler | [2022-08-11 08:41:29,227] {task_command.py:371} INFO - Running <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=0 [queued]> on host somehost.com scheduler | [2022-08-11 08:41:29,584] {sequential_executor.py:59} INFO - Executing command: ['airflow', 'tasks', 'run', 'bug_test', 'do_something', 'scheduled__2022-08-11T13:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/bug_test.py', '--map-index', '1'] scheduler | [2022-08-11 08:41:30,492] {dagbag.py:508} INFO - Filling up the DagBag from /path/to/test/dir/bug_test/dags/bug_test.py scheduler | [2022-08-11 08:41:30,593] {task_command.py:371} INFO - Running <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=1 [queued]> on host somehost.com scheduler | [2022-08-11 08:41:30,969] {sequential_executor.py:59} INFO - Executing command: ['airflow', 'tasks', 'run', 'bug_test', 'do_something', 'scheduled__2022-08-11T13:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/bug_test.py', '--map-index', '2'] scheduler | [2022-08-11 08:41:31,852] {dagbag.py:508} INFO - Filling up the DagBag from /path/to/test/dir/bug_test/dags/bug_test.py scheduler | [2022-08-11 08:41:31,940] {task_command.py:371} INFO - Running <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=2 [queued]> on host somehost.com scheduler | [2022-08-11 08:41:32,308] {sequential_executor.py:59} INFO - Executing command: ['airflow', 'tasks', 'run', 'bug_test', 'do_something', 'scheduled__2022-08-11T13:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/bug_test.py', '--map-index', '3'] scheduler | [2022-08-11 08:41:33,199] {dagbag.py:508} INFO - Filling up the DagBag from /path/to/test/dir/bug_test/dags/bug_test.py scheduler | [2022-08-11 08:41:33,289] {task_command.py:371} INFO - Running <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=3 [queued]> on host somehost.com scheduler | [2022-08-11 08:41:33,656] {sequential_executor.py:59} INFO - Executing command: ['airflow', 'tasks', 'run', 'bug_test', 'do_something', 'scheduled__2022-08-11T13:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/bug_test.py', '--map-index', '4'] scheduler | [2022-08-11 08:41:34,535] {dagbag.py:508} INFO - Filling up the DagBag from /path/to/test/dir/bug_test/dags/bug_test.py scheduler | [2022-08-11 08:41:34,631] {task_command.py:371} INFO - Running <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=4 [queued]> on host somehost.com scheduler | [2022-08-11 08:41:35,013] {sequential_executor.py:59} INFO - Executing command: ['airflow', 'tasks', 'run', 'bug_test', 'do_something', 'scheduled__2022-08-11T13:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/bug_test.py', '--map-index', '5'] scheduler | [2022-08-11 08:41:35,928] {dagbag.py:508} INFO - Filling up the DagBag from /path/to/test/dir/bug_test/dags/bug_test.py scheduler | [2022-08-11 08:41:36,024] {task_command.py:371} INFO - Running <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=5 [queued]> on host somehost.com scheduler | [2022-08-11 08:41:36,393] {sequential_executor.py:59} INFO - Executing command: ['airflow', 'tasks', 'run', 'bug_test', 'do_something', 'scheduled__2022-08-11T13:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/bug_test.py', '--map-index', '6'] scheduler | [2022-08-11 08:41:37,296] {dagbag.py:508} INFO - Filling up the DagBag from /path/to/test/dir/bug_test/dags/bug_test.py scheduler | [2022-08-11 08:41:37,384] {task_command.py:371} INFO - Running <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=6 [queued]> on host somehost.com scheduler | [2022-08-11 08:41:37,758] {sequential_executor.py:59} INFO - Executing command: ['airflow', 'tasks', 'run', 'bug_test', 'do_something', 'scheduled__2022-08-11T13:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/bug_test.py', '--map-index', '7'] scheduler | [2022-08-11 08:41:38,642] {dagbag.py:508} INFO - Filling up the DagBag from /path/to/test/dir/bug_test/dags/bug_test.py scheduler | [2022-08-11 08:41:38,732] {task_command.py:371} INFO - Running <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=7 [queued]> on host somehost.com scheduler | [2022-08-11 08:41:39,113] {sequential_executor.py:59} INFO - Executing command: ['airflow', 'tasks', 'run', 'bug_test', 'do_something', 'scheduled__2022-08-11T13:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/bug_test.py', '--map-index', '8'] scheduler | [2022-08-11 08:41:39,993] {dagbag.py:508} INFO - Filling up the DagBag from /path/to/test/dir/bug_test/dags/bug_test.py scheduler | [2022-08-11 08:41:40,086] {task_command.py:371} INFO - Running <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=8 [queued]> on host somehost.com scheduler | [2022-08-11 08:41:40,461] {sequential_executor.py:59} INFO - Executing command: ['airflow', 'tasks', 'run', 'bug_test', 'do_something', 'scheduled__2022-08-11T13:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/bug_test.py', '--map-index', '9'] scheduler | [2022-08-11 08:41:41,383] {dagbag.py:508} INFO - Filling up the DagBag from /path/to/test/dir/bug_test/dags/bug_test.py scheduler | [2022-08-11 08:41:41,473] {task_command.py:371} INFO - Running <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=9 [queued]> on host somehost.com scheduler | [2022-08-11 08:41:41,865] {sequential_executor.py:59} INFO - Executing command: ['airflow', 'tasks', 'run', 'bug_test', 'do_something', 'scheduled__2022-08-11T13:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/bug_test.py', '--map-index', '10'] scheduler | [2022-08-11 08:41:42,761] {dagbag.py:508} INFO - Filling up the DagBag from /path/to/test/dir/bug_test/dags/bug_test.py scheduler | [2022-08-11 08:41:42,858] {task_command.py:371} INFO - Running <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=10 [queued]> on host somehost.com scheduler | [2022-08-11 08:41:43,236] {sequential_executor.py:59} INFO - Executing command: ['airflow', 'tasks', 'run', 'bug_test', 'do_something', 'scheduled__2022-08-11T13:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/bug_test.py', '--map-index', '11'] scheduler | [2022-08-11 08:41:44,124] {dagbag.py:508} INFO - Filling up the DagBag from /path/to/test/dir/bug_test/dags/bug_test.py scheduler | [2022-08-11 08:41:44,222] {task_command.py:371} INFO - Running <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=11 [queued]> on host somehost.com scheduler | [2022-08-11 08:41:44,654] {sequential_executor.py:59} INFO - Executing command: ['airflow', 'tasks', 'run', 'bug_test', 'do_something', 'scheduled__2022-08-11T13:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/bug_test.py', '--map-index', '12'] scheduler | [2022-08-11 08:41:45,545] {dagbag.py:508} INFO - Filling up the DagBag from /path/to/test/dir/bug_test/dags/bug_test.py scheduler | [2022-08-11 08:41:45,635] {task_command.py:371} INFO - Running <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=12 [queued]> on host somehost.com scheduler | [2022-08-11 08:41:45,998] {sequential_executor.py:59} INFO - Executing command: ['airflow', 'tasks', 'run', 'bug_test', 'do_something', 'scheduled__2022-08-11T13:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/bug_test.py', '--map-index', '13'] scheduler | [2022-08-11 08:41:46,867] {dagbag.py:508} INFO - Filling up the DagBag from /path/to/test/dir/bug_test/dags/bug_test.py scheduler | [2022-08-11 08:41:46,955] {task_command.py:371} INFO - Running <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=13 [queued]> on host somehost.com scheduler | [2022-08-11 08:41:47,386] {sequential_executor.py:59} INFO - Executing command: ['airflow', 'tasks', 'run', 'bug_test', 'do_something', 'scheduled__2022-08-11T13:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/bug_test.py', '--map-index', '14'] scheduler | [2022-08-11 08:41:48,270] {dagbag.py:508} INFO - Filling up the DagBag from /path/to/test/dir/bug_test/dags/bug_test.py scheduler | [2022-08-11 08:41:48,362] {task_command.py:371} INFO - Running <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=14 [queued]> on host somehost.com scheduler | [2022-08-11 08:41:48,718] {sequential_executor.py:59} INFO - Executing command: ['airflow', 'tasks', 'run', 'bug_test', 'do_something', 'scheduled__2022-08-11T13:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/bug_test.py', '--map-index', '15'] scheduler | [2022-08-11 08:41:49,569] {dagbag.py:508} INFO - Filling up the DagBag from /path/to/test/dir/bug_test/dags/bug_test.py scheduler | [2022-08-11 08:41:49,669] {task_command.py:371} INFO - Running <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=15 [queued]> on host somehost.com scheduler | [2022-08-11 08:41:50,022] {scheduler_job.py:599} INFO - Executor reports execution of bug_test.do_something run_id=scheduled__2022-08-11T13:00:00+00:00 exited with status success for try_number 1 scheduler | [2022-08-11 08:41:50,022] {scheduler_job.py:599} INFO - Executor reports execution of bug_test.do_something run_id=scheduled__2022-08-11T13:00:00+00:00 exited with status success for try_number 1 scheduler | [2022-08-11 08:41:50,022] {scheduler_job.py:599} INFO - Executor reports execution of bug_test.do_something run_id=scheduled__2022-08-11T13:00:00+00:00 exited with status success for try_number 1 scheduler | [2022-08-11 08:41:50,022] {scheduler_job.py:599} INFO - Executor reports execution of bug_test.do_something run_id=scheduled__2022-08-11T13:00:00+00:00 exited with status success for try_number 1 scheduler | [2022-08-11 08:41:50,023] {scheduler_job.py:599} INFO - Executor reports execution of bug_test.do_something run_id=scheduled__2022-08-11T13:00:00+00:00 exited with status success for try_number 1 scheduler | [2022-08-11 08:41:50,023] {scheduler_job.py:599} INFO - Executor reports execution of bug_test.do_something run_id=scheduled__2022-08-11T13:00:00+00:00 exited with status success for try_number 1 scheduler | [2022-08-11 08:41:50,023] {scheduler_job.py:599} INFO - Executor reports execution of bug_test.do_something run_id=scheduled__2022-08-11T13:00:00+00:00 exited with status success for try_number 1 scheduler | [2022-08-11 08:41:50,023] {scheduler_job.py:599} INFO - Executor reports execution of bug_test.do_something run_id=scheduled__2022-08-11T13:00:00+00:00 exited with status success for try_number 1 scheduler | [2022-08-11 08:41:50,023] {scheduler_job.py:599} INFO - Executor reports execution of bug_test.do_something run_id=scheduled__2022-08-11T13:00:00+00:00 exited with status success for try_number 1 scheduler | [2022-08-11 08:41:50,023] {scheduler_job.py:599} INFO - Executor reports execution of bug_test.do_something run_id=scheduled__2022-08-11T13:00:00+00:00 exited with status success for try_number 1 scheduler | [2022-08-11 08:41:50,023] {scheduler_job.py:599} INFO - Executor reports execution of bug_test.do_something run_id=scheduled__2022-08-11T13:00:00+00:00 exited with status success for try_number 1 scheduler | [2022-08-11 08:41:50,023] {scheduler_job.py:599} INFO - Executor reports execution of bug_test.do_something run_id=scheduled__2022-08-11T13:00:00+00:00 exited with status success for try_number 1 scheduler | [2022-08-11 08:41:50,023] {scheduler_job.py:599} INFO - Executor reports execution of bug_test.do_something run_id=scheduled__2022-08-11T13:00:00+00:00 exited with status success for try_number 1 scheduler | [2022-08-11 08:41:50,023] {scheduler_job.py:599} INFO - Executor reports execution of bug_test.do_something run_id=scheduled__2022-08-11T13:00:00+00:00 exited with status success for try_number 1 scheduler | [2022-08-11 08:41:50,023] {scheduler_job.py:599} INFO - Executor reports execution of bug_test.do_something run_id=scheduled__2022-08-11T13:00:00+00:00 exited with status success for try_number 1 scheduler | [2022-08-11 08:41:50,023] {scheduler_job.py:599} INFO - Executor reports execution of bug_test.do_something run_id=scheduled__2022-08-11T13:00:00+00:00 exited with status success for try_number 1 scheduler | [2022-08-11 08:41:50,036] {scheduler_job.py:642} INFO - TaskInstance Finished: dag_id=bug_test, task_id=do_something, run_id=scheduled__2022-08-11T13:00:00+00:00, map_index=0, run_start_date=2022-08-11 14:41:29.255370+00:00, run_end_date=2022-08-11 14:41:29.390095+00:00, run_duration=0.134725, state=success, executor_state=success, try_number=1, max_tries=0, job_id=5, pool=default_pool, queue=default, priority_weight=2, operator=_PythonDecoratedOperator, queued_dttm=2022-08-11 14:41:28.163024+00:00, queued_by_job_id=4, pid=52421 scheduler | [2022-08-11 08:41:50,036] {scheduler_job.py:642} INFO - TaskInstance Finished: dag_id=bug_test, task_id=do_something, run_id=scheduled__2022-08-11T13:00:00+00:00, map_index=1, run_start_date=2022-08-11 14:41:30.628702+00:00, run_end_date=2022-08-11 14:41:30.768539+00:00, run_duration=0.139837, state=success, executor_state=success, try_number=1, max_tries=0, job_id=6, pool=default_pool, queue=default, priority_weight=2, operator=_PythonDecoratedOperator, queued_dttm=2022-08-11 14:41:28.163024+00:00, queued_by_job_id=4, pid=52423 scheduler | [2022-08-11 08:41:50,036] {scheduler_job.py:642} INFO - TaskInstance Finished: dag_id=bug_test, task_id=do_something, run_id=scheduled__2022-08-11T13:00:00+00:00, map_index=2, run_start_date=2022-08-11 14:41:31.968933+00:00, run_end_date=2022-08-11 14:41:32.112968+00:00, run_duration=0.144035, state=success, executor_state=success, try_number=1, max_tries=0, job_id=7, pool=default_pool, queue=default, priority_weight=2, operator=_PythonDecoratedOperator, queued_dttm=2022-08-11 14:41:28.163024+00:00, queued_by_job_id=4, pid=52425 scheduler | [2022-08-11 08:41:50,036] {scheduler_job.py:642} INFO - TaskInstance Finished: dag_id=bug_test, task_id=do_something, run_id=scheduled__2022-08-11T13:00:00+00:00, map_index=3, run_start_date=2022-08-11 14:41:33.318972+00:00, run_end_date=2022-08-11 14:41:33.458203+00:00, run_duration=0.139231, state=success, executor_state=success, try_number=1, max_tries=0, job_id=8, pool=default_pool, queue=default, priority_weight=2, operator=_PythonDecoratedOperator, queued_dttm=2022-08-11 14:41:28.163024+00:00, queued_by_job_id=4, pid=52429 scheduler | [2022-08-11 08:41:50,036] {scheduler_job.py:642} INFO - TaskInstance Finished: dag_id=bug_test, task_id=do_something, run_id=scheduled__2022-08-11T13:00:00+00:00, map_index=4, run_start_date=2022-08-11 14:41:34.663829+00:00, run_end_date=2022-08-11 14:41:34.811273+00:00, run_duration=0.147444, state=success, executor_state=success, try_number=1, max_tries=0, job_id=9, pool=default_pool, queue=default, priority_weight=2, operator=_PythonDecoratedOperator, queued_dttm=2022-08-11 14:41:28.163024+00:00, queued_by_job_id=4, pid=52437 scheduler | [2022-08-11 08:41:50,037] {scheduler_job.py:642} INFO - TaskInstance Finished: dag_id=bug_test, task_id=do_something, run_id=scheduled__2022-08-11T13:00:00+00:00, map_index=5, run_start_date=2022-08-11 14:41:36.056658+00:00, run_end_date=2022-08-11 14:41:36.203243+00:00, run_duration=0.146585, state=success, executor_state=success, try_number=1, max_tries=0, job_id=10, pool=default_pool, queue=default, priority_weight=2, operator=_PythonDecoratedOperator, queued_dttm=2022-08-11 14:41:28.163024+00:00, queued_by_job_id=4, pid=52440 scheduler | [2022-08-11 08:41:50,037] {scheduler_job.py:642} INFO - TaskInstance Finished: dag_id=bug_test, task_id=do_something, run_id=scheduled__2022-08-11T13:00:00+00:00, map_index=6, run_start_date=2022-08-11 14:41:37.412705+00:00, run_end_date=2022-08-11 14:41:37.550794+00:00, run_duration=0.138089, state=success, executor_state=success, try_number=1, max_tries=0, job_id=11, pool=default_pool, queue=default, priority_weight=2, operator=_PythonDecoratedOperator, queued_dttm=2022-08-11 14:41:28.163024+00:00, queued_by_job_id=4, pid=52442 scheduler | [2022-08-11 08:41:50,037] {scheduler_job.py:642} INFO - TaskInstance Finished: dag_id=bug_test, task_id=do_something, run_id=scheduled__2022-08-11T13:00:00+00:00, map_index=7, run_start_date=2022-08-11 14:41:38.761691+00:00, run_end_date=2022-08-11 14:41:38.897424+00:00, run_duration=0.135733, state=success, executor_state=success, try_number=1, max_tries=0, job_id=12, pool=default_pool, queue=default, priority_weight=2, operator=_PythonDecoratedOperator, queued_dttm=2022-08-11 14:41:28.163024+00:00, queued_by_job_id=4, pid=52446 scheduler | [2022-08-11 08:41:50,037] {scheduler_job.py:642} INFO - TaskInstance Finished: dag_id=bug_test, task_id=do_something, run_id=scheduled__2022-08-11T13:00:00+00:00, map_index=8, run_start_date=2022-08-11 14:41:40.119057+00:00, run_end_date=2022-08-11 14:41:40.262712+00:00, run_duration=0.143655, state=success, executor_state=success, try_number=1, max_tries=0, job_id=13, pool=default_pool, queue=default, priority_weight=2, operator=_PythonDecoratedOperator, queued_dttm=2022-08-11 14:41:28.163024+00:00, queued_by_job_id=4, pid=52450 scheduler | [2022-08-11 08:41:50,037] {scheduler_job.py:642} INFO - TaskInstance Finished: dag_id=bug_test, task_id=do_something, run_id=scheduled__2022-08-11T13:00:00+00:00, map_index=9, run_start_date=2022-08-11 14:41:41.502857+00:00, run_end_date=2022-08-11 14:41:41.641680+00:00, run_duration=0.138823, state=success, executor_state=success, try_number=1, max_tries=0, job_id=14, pool=default_pool, queue=default, priority_weight=2, operator=_PythonDecoratedOperator, queued_dttm=2022-08-11 14:41:28.163024+00:00, queued_by_job_id=4, pid=52452 scheduler | [2022-08-11 08:41:50,037] {scheduler_job.py:642} INFO - TaskInstance Finished: dag_id=bug_test, task_id=do_something, run_id=scheduled__2022-08-11T13:00:00+00:00, map_index=10, run_start_date=2022-08-11 14:41:42.889206+00:00, run_end_date=2022-08-11 14:41:43.030804+00:00, run_duration=0.141598, state=success, executor_state=success, try_number=1, max_tries=0, job_id=15, pool=default_pool, queue=default, priority_weight=2, operator=_PythonDecoratedOperator, queued_dttm=2022-08-11 14:41:28.163024+00:00, queued_by_job_id=4, pid=52454 scheduler | [2022-08-11 08:41:50,037] {scheduler_job.py:642} INFO - TaskInstance Finished: dag_id=bug_test, task_id=do_something, run_id=scheduled__2022-08-11T13:00:00+00:00, map_index=11, run_start_date=2022-08-11 14:41:44.255197+00:00, run_end_date=2022-08-11 14:41:44.413457+00:00, run_duration=0.15826, state=success, executor_state=success, try_number=1, max_tries=0, job_id=16, pool=default_pool, queue=default, priority_weight=2, operator=_PythonDecoratedOperator, queued_dttm=2022-08-11 14:41:28.163024+00:00, queued_by_job_id=4, pid=52461 scheduler | [2022-08-11 08:41:50,037] {scheduler_job.py:642} INFO - TaskInstance Finished: dag_id=bug_test, task_id=do_something, run_id=scheduled__2022-08-11T13:00:00+00:00, map_index=12, run_start_date=2022-08-11 14:41:45.665373+00:00, run_end_date=2022-08-11 14:41:45.803094+00:00, run_duration=0.137721, state=success, executor_state=success, try_number=1, max_tries=0, job_id=17, pool=default_pool, queue=default, priority_weight=2, operator=_PythonDecoratedOperator, queued_dttm=2022-08-11 14:41:28.163024+00:00, queued_by_job_id=4, pid=52463 scheduler | [2022-08-11 08:41:50,038] {scheduler_job.py:642} INFO - TaskInstance Finished: dag_id=bug_test, task_id=do_something, run_id=scheduled__2022-08-11T13:00:00+00:00, map_index=13, run_start_date=2022-08-11 14:41:46.988348+00:00, run_end_date=2022-08-11 14:41:47.159584+00:00, run_duration=0.171236, state=success, executor_state=success, try_number=1, max_tries=0, job_id=18, pool=default_pool, queue=default, priority_weight=2, operator=_PythonDecoratedOperator, queued_dttm=2022-08-11 14:41:28.163024+00:00, queued_by_job_id=4, pid=52465 scheduler | [2022-08-11 08:41:50,038] {scheduler_job.py:642} INFO - TaskInstance Finished: dag_id=bug_test, task_id=do_something, run_id=scheduled__2022-08-11T13:00:00+00:00, map_index=14, run_start_date=2022-08-11 14:41:48.393004+00:00, run_end_date=2022-08-11 14:41:48.533408+00:00, run_duration=0.140404, state=success, executor_state=success, try_number=1, max_tries=0, job_id=19, pool=default_pool, queue=default, priority_weight=2, operator=_PythonDecoratedOperator, queued_dttm=2022-08-11 14:41:28.163024+00:00, queued_by_job_id=4, pid=52472 scheduler | [2022-08-11 08:41:50,038] {scheduler_job.py:642} INFO - TaskInstance Finished: dag_id=bug_test, task_id=do_something, run_id=scheduled__2022-08-11T13:00:00+00:00, map_index=15, run_start_date=2022-08-11 14:41:49.699253+00:00, run_end_date=2022-08-11 14:41:49.833084+00:00, run_duration=0.133831, state=success, executor_state=success, try_number=1, max_tries=0, job_id=20, pool=default_pool, queue=default, priority_weight=2, operator=_PythonDecoratedOperator, queued_dttm=2022-08-11 14:41:28.163024+00:00, queued_by_job_id=4, pid=52476 scheduler | [2022-08-11 08:41:51,632] {dagrun.py:912} INFO - Restoring mapped task '<TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=0 [success]>' scheduler | [2022-08-11 08:41:51,633] {dagrun.py:912} INFO - Restoring mapped task '<TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=1 [success]>' scheduler | [2022-08-11 08:41:51,633] {dagrun.py:912} INFO - Restoring mapped task '<TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=2 [success]>' scheduler | [2022-08-11 08:41:51,633] {dagrun.py:912} INFO - Restoring mapped task '<TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=3 [success]>' scheduler | [2022-08-11 08:41:51,633] {dagrun.py:912} INFO - Restoring mapped task '<TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=4 [success]>' scheduler | [2022-08-11 08:41:51,633] {dagrun.py:912} INFO - Restoring mapped task '<TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=5 [success]>' scheduler | [2022-08-11 08:41:51,633] {dagrun.py:912} INFO - Restoring mapped task '<TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=6 [success]>' scheduler | [2022-08-11 08:41:51,634] {dagrun.py:912} INFO - Restoring mapped task '<TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=7 [success]>' scheduler | [2022-08-11 08:41:51,634] {dagrun.py:912} INFO - Restoring mapped task '<TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=8 [success]>' scheduler | [2022-08-11 08:41:51,634] {dagrun.py:912} INFO - Restoring mapped task '<TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=9 [success]>' scheduler | [2022-08-11 08:41:51,634] {dagrun.py:912} INFO - Restoring mapped task '<TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=10 [success]>' scheduler | [2022-08-11 08:41:51,634] {dagrun.py:912} INFO - Restoring mapped task '<TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=11 [success]>' scheduler | [2022-08-11 08:41:51,634] {dagrun.py:912} INFO - Restoring mapped task '<TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=12 [success]>' scheduler | [2022-08-11 08:41:51,634] {dagrun.py:912} INFO - Restoring mapped task '<TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=13 [success]>' scheduler | [2022-08-11 08:41:51,634] {dagrun.py:912} INFO - Restoring mapped task '<TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=14 [success]>' scheduler | [2022-08-11 08:41:51,634] {dagrun.py:912} INFO - Restoring mapped task '<TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=15 [success]>' scheduler | [2022-08-11 08:41:51,634] {dagrun.py:912} INFO - Restoring mapped task '<TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=16 [scheduled]>' scheduler | [2022-08-11 08:41:51,634] {dagrun.py:912} INFO - Restoring mapped task '<TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=17 [scheduled]>' scheduler | [2022-08-11 08:41:51,634] {dagrun.py:912} INFO - Restoring mapped task '<TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=18 [scheduled]>' scheduler | [2022-08-11 08:41:51,635] {dagrun.py:912} INFO - Restoring mapped task '<TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=19 [scheduled]>' scheduler | [2022-08-11 08:41:51,636] {dagrun.py:937} INFO - Restoring mapped task '<TaskInstance: bug_test.do_something_else scheduled__2022-08-11T13:00:00+00:00 [None]>' scheduler | [2022-08-11 08:41:51,688] {scheduler_job.py:353} INFO - 4 tasks up for execution: scheduler | <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=16 [scheduled]> scheduler | <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=17 [scheduled]> scheduler | <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=18 [scheduled]> scheduler | <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=19 [scheduled]> scheduler | [2022-08-11 08:41:51,688] {scheduler_job.py:418} INFO - DAG bug_test has 0/16 running and queued tasks scheduler | [2022-08-11 08:41:51,688] {scheduler_job.py:418} INFO - DAG bug_test has 1/16 running and queued tasks scheduler | [2022-08-11 08:41:51,688] {scheduler_job.py:418} INFO - DAG bug_test has 2/16 running and queued tasks scheduler | [2022-08-11 08:41:51,688] {scheduler_job.py:418} INFO - DAG bug_test has 3/16 running and queued tasks scheduler | [2022-08-11 08:41:51,688] {scheduler_job.py:504} INFO - Setting the following tasks to queued state: scheduler | <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=16 [scheduled]> scheduler | <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=17 [scheduled]> scheduler | <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=18 [scheduled]> scheduler | <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=19 [scheduled]> scheduler | [2022-08-11 08:41:51,690] {scheduler_job.py:546} INFO - Sending TaskInstanceKey(dag_id='bug_test', task_id='do_something', run_id='scheduled__2022-08-11T13:00:00+00:00', try_number=1, map_index=16) to executor with priority 2 and queue default scheduler | [2022-08-11 08:41:51,690] {base_executor.py:91} INFO - Adding to queue: ['airflow', 'tasks', 'run', 'bug_test', 'do_something', 'scheduled__2022-08-11T13:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/bug_test.py', '--map-index', '16'] scheduler | [2022-08-11 08:41:51,690] {scheduler_job.py:546} INFO - Sending TaskInstanceKey(dag_id='bug_test', task_id='do_something', run_id='scheduled__2022-08-11T13:00:00+00:00', try_number=1, map_index=17) to executor with priority 2 and queue default scheduler | [2022-08-11 08:41:51,690] {base_executor.py:91} INFO - Adding to queue: ['airflow', 'tasks', 'run', 'bug_test', 'do_something', 'scheduled__2022-08-11T13:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/bug_test.py', '--map-index', '17'] scheduler | [2022-08-11 08:41:51,690] {scheduler_job.py:546} INFO - Sending TaskInstanceKey(dag_id='bug_test', task_id='do_something', run_id='scheduled__2022-08-11T13:00:00+00:00', try_number=1, map_index=18) to executor with priority 2 and queue default scheduler | [2022-08-11 08:41:51,690] {base_executor.py:91} INFO - Adding to queue: ['airflow', 'tasks', 'run', 'bug_test', 'do_something', 'scheduled__2022-08-11T13:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/bug_test.py', '--map-index', '18'] scheduler | [2022-08-11 08:41:51,690] {scheduler_job.py:546} INFO - Sending TaskInstanceKey(dag_id='bug_test', task_id='do_something', run_id='scheduled__2022-08-11T13:00:00+00:00', try_number=1, map_index=19) to executor with priority 2 and queue default scheduler | [2022-08-11 08:41:51,690] {base_executor.py:91} INFO - Adding to queue: ['airflow', 'tasks', 'run', 'bug_test', 'do_something', 'scheduled__2022-08-11T13:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/bug_test.py', '--map-index', '19'] scheduler | [2022-08-11 08:41:51,692] {sequential_executor.py:59} INFO - Executing command: ['airflow', 'tasks', 'run', 'bug_test', 'do_something', 'scheduled__2022-08-11T13:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/bug_test.py', '--map-index', '16'] scheduler | [2022-08-11 08:41:52,532] {dagbag.py:508} INFO - Filling up the DagBag from /path/to/test/dir/bug_test/dags/bug_test.py scheduler | [2022-08-11 08:41:52,620] {task_command.py:371} INFO - Running <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=16 [queued]> on host somehost.com scheduler | [2022-08-11 08:41:53,037] {sequential_executor.py:59} INFO - Executing command: ['airflow', 'tasks', 'run', 'bug_test', 'do_something', 'scheduled__2022-08-11T13:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/bug_test.py', '--map-index', '17'] scheduler | [2022-08-11 08:41:53,907] {dagbag.py:508} INFO - Filling up the DagBag from /path/to/test/dir/bug_test/dags/bug_test.py scheduler | [2022-08-11 08:41:53,996] {task_command.py:371} INFO - Running <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=17 [queued]> on host somehost.com scheduler | [2022-08-11 08:41:54,427] {sequential_executor.py:59} INFO - Executing command: ['airflow', 'tasks', 'run', 'bug_test', 'do_something', 'scheduled__2022-08-11T13:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/bug_test.py', '--map-index', '18'] scheduler | [2022-08-11 08:41:55,305] {dagbag.py:508} INFO - Filling up the DagBag from /path/to/test/dir/bug_test/dags/bug_test.py scheduler | [2022-08-11 08:41:55,397] {task_command.py:371} INFO - Running <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=18 [queued]> on host somehost.com scheduler | [2022-08-11 08:41:55,816] {sequential_executor.py:59} INFO - Executing command: ['airflow', 'tasks', 'run', 'bug_test', 'do_something', 'scheduled__2022-08-11T13:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/bug_test.py', '--map-index', '19'] scheduler | [2022-08-11 08:41:56,726] {dagbag.py:508} INFO - Filling up the DagBag from /path/to/test/dir/bug_test/dags/bug_test.py scheduler | [2022-08-11 08:41:56,824] {task_command.py:371} INFO - Running <TaskInstance: bug_test.do_something scheduled__2022-08-11T13:00:00+00:00 map_index=19 [queued]> on host somehost.com scheduler | Traceback (most recent call last): scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/engine/base.py", line 1802, in _execute_context scheduler | self.dialect.do_execute( scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/engine/default.py", line 719, in do_execute scheduler | cursor.execute(statement, parameters) scheduler | sqlite3.IntegrityError: UNIQUE constraint failed: task_instance.dag_id, task_instance.task_id, task_instance.run_id, task_instance.map_index scheduler | scheduler | The above exception was the direct cause of the following exception: scheduler | scheduler | Traceback (most recent call last): scheduler | File "/path/to/test/dir/bug_test/.env/bin/airflow", line 8, in <module> scheduler | sys.exit(main()) scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/airflow/__main__.py", line 38, in main scheduler | args.func(args) scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/airflow/cli/cli_parser.py", line 51, in command scheduler | return func(*args, **kwargs) scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/airflow/utils/cli.py", line 99, in wrapper scheduler | return f(*args, **kwargs) scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/airflow/cli/commands/task_command.py", line 377, in task_run scheduler | _run_task_by_selected_method(args, dag, ti) scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/airflow/cli/commands/task_command.py", line 183, in _run_task_by_selected_method scheduler | _run_task_by_local_task_job(args, ti) scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/airflow/cli/commands/task_command.py", line 241, in _run_task_by_local_task_job scheduler | run_job.run() scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/airflow/jobs/base_job.py", line 244, in run scheduler | self._execute() scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/airflow/jobs/local_task_job.py", line 133, in _execute scheduler | self.handle_task_exit(return_code) scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/airflow/jobs/local_task_job.py", line 171, in handle_task_exit scheduler | self._run_mini_scheduler_on_child_tasks() scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/airflow/utils/session.py", line 71, in wrapper scheduler | return func(*args, session=session, **kwargs) scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/airflow/jobs/local_task_job.py", line 261, in _run_mini_scheduler_on_child_tasks scheduler | info = dag_run.task_instance_scheduling_decisions(session) scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/airflow/utils/session.py", line 68, in wrapper scheduler | return func(*args, **kwargs) scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/airflow/models/dagrun.py", line 654, in task_instance_scheduling_decisions scheduler | schedulable_tis, changed_tis, expansion_happened = self._get_ready_tis( scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/airflow/models/dagrun.py", line 710, in _get_ready_tis scheduler | expanded_tis, _ = schedulable.task.expand_mapped_task(self.run_id, session=session) scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/airflow/models/mappedoperator.py", line 683, in expand_mapped_task scheduler | session.flush() scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/orm/session.py", line 3345, in flush scheduler | self._flush(objects) scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/orm/session.py", line 3485, in _flush scheduler | transaction.rollback(_capture_exception=True) scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/util/langhelpers.py", line 70, in __exit__ scheduler | compat.raise_( scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/util/compat.py", line 207, in raise_ scheduler | raise exception scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/orm/session.py", line 3445, in _flush scheduler | flush_context.execute() scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/orm/unitofwork.py", line 456, in execute scheduler | rec.execute(self) scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/orm/unitofwork.py", line 630, in execute scheduler | util.preloaded.orm_persistence.save_obj( scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/orm/persistence.py", line 236, in save_obj scheduler | _emit_update_statements( scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/orm/persistence.py", line 1000, in _emit_update_statements scheduler | c = connection._execute_20( scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/engine/base.py", line 1614, in _execute_20 scheduler | return meth(self, args_10style, kwargs_10style, execution_options) scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/sql/elements.py", line 325, in _execute_on_connection scheduler | return connection._execute_clauseelement( scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/engine/base.py", line 1481, in _execute_clauseelement scheduler | ret = self._execute_context( scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/engine/base.py", line 1845, in _execute_context scheduler | self._handle_dbapi_exception( scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/engine/base.py", line 2026, in _handle_dbapi_exception scheduler | util.raise_( scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/util/compat.py", line 207, in raise_ scheduler | raise exception scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/engine/base.py", line 1802, in _execute_context scheduler | self.dialect.do_execute( scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/engine/default.py", line 719, in do_execute scheduler | cursor.execute(statement, parameters) scheduler | sqlalchemy.exc.IntegrityError: (sqlite3.IntegrityError) UNIQUE constraint failed: task_instance.dag_id, task_instance.task_id, task_instance.run_id, task_instance.map_index scheduler | [SQL: UPDATE task_instance SET map_index=? WHERE task_instance.task_id = ? AND task_instance.dag_id = ? AND task_instance.run_id = ? AND task_instance.map_index = ?] scheduler | [parameters: (0, 'do_something_else', 'bug_test', 'scheduled__2022-08-11T13:00:00+00:00', -1)] scheduler | (Background on this error at: https://sqlalche.me/e/14/gkpj) scheduler | [2022-08-11 08:41:57,311] {sequential_executor.py:66} ERROR - Failed to execute task Command '['airflow', 'tasks', 'run', 'bug_test', 'do_something', 'scheduled__2022-08-11T13:00:00+00:00', '--local', '--subdir', 'DAGS_FOLDER/bug_test.py', '--map-index', '19']' returned non-zero exit status 1.. scheduler | [2022-08-11 08:41:57,313] {scheduler_job.py:599} INFO - Executor reports execution of bug_test.do_something run_id=scheduled__2022-08-11T13:00:00+00:00 exited with status success for try_number 1 scheduler | [2022-08-11 08:41:57,313] {scheduler_job.py:599} INFO - Executor reports execution of bug_test.do_something run_id=scheduled__2022-08-11T13:00:00+00:00 exited with status success for try_number 1 scheduler | [2022-08-11 08:41:57,313] {scheduler_job.py:599} INFO - Executor reports execution of bug_test.do_something run_id=scheduled__2022-08-11T13:00:00+00:00 exited with status success for try_number 1 scheduler | [2022-08-11 08:41:57,313] {scheduler_job.py:599} INFO - Executor reports execution of bug_test.do_something run_id=scheduled__2022-08-11T13:00:00+00:00 exited with status failed for try_number 1 scheduler | [2022-08-11 08:41:57,321] {scheduler_job.py:642} INFO - TaskInstance Finished: dag_id=bug_test, task_id=do_something, run_id=scheduled__2022-08-11T13:00:00+00:00, map_index=16, run_start_date=2022-08-11 14:41:52.649415+00:00, run_end_date=2022-08-11 14:41:52.787286+00:00, run_duration=0.137871, state=success, executor_state=success, try_number=1, max_tries=0, job_id=21, pool=default_pool, queue=default, priority_weight=2, operator=_PythonDecoratedOperator, queued_dttm=2022-08-11 14:41:51.688924+00:00, queued_by_job_id=4, pid=52479 scheduler | [2022-08-11 08:41:57,321] {scheduler_job.py:642} INFO - TaskInstance Finished: dag_id=bug_test, task_id=do_something, run_id=scheduled__2022-08-11T13:00:00+00:00, map_index=17, run_start_date=2022-08-11 14:41:54.027712+00:00, run_end_date=2022-08-11 14:41:54.170371+00:00, run_duration=0.142659, state=success, executor_state=success, try_number=1, max_tries=0, job_id=22, pool=default_pool, queue=default, priority_weight=2, operator=_PythonDecoratedOperator, queued_dttm=2022-08-11 14:41:51.688924+00:00, queued_by_job_id=4, pid=52484 scheduler | [2022-08-11 08:41:57,321] {scheduler_job.py:642} INFO - TaskInstance Finished: dag_id=bug_test, task_id=do_something, run_id=scheduled__2022-08-11T13:00:00+00:00, map_index=18, run_start_date=2022-08-11 14:41:55.426712+00:00, run_end_date=2022-08-11 14:41:55.566833+00:00, run_duration=0.140121, state=success, executor_state=success, try_number=1, max_tries=0, job_id=23, pool=default_pool, queue=default, priority_weight=2, operator=_PythonDecoratedOperator, queued_dttm=2022-08-11 14:41:51.688924+00:00, queued_by_job_id=4, pid=52488 scheduler | [2022-08-11 08:41:57,321] {scheduler_job.py:642} INFO - TaskInstance Finished: dag_id=bug_test, task_id=do_something, run_id=scheduled__2022-08-11T13:00:00+00:00, map_index=19, run_start_date=2022-08-11 14:41:56.859387+00:00, run_end_date=2022-08-11 14:41:57.018604+00:00, run_duration=0.159217, state=success, executor_state=failed, try_number=1, max_tries=0, job_id=24, pool=default_pool, queue=default, priority_weight=2, operator=_PythonDecoratedOperator, queued_dttm=2022-08-11 14:41:51.688924+00:00, queued_by_job_id=4, pid=52490 scheduler | [2022-08-11 08:41:57,403] {scheduler_job.py:768} ERROR - Exception when executing SchedulerJob._run_scheduler_loop scheduler | Traceback (most recent call last): scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/engine/base.py", line 1802, in _execute_context scheduler | self.dialect.do_execute( scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/engine/default.py", line 719, in do_execute scheduler | cursor.execute(statement, parameters) scheduler | sqlite3.IntegrityError: UNIQUE constraint failed: task_instance.dag_id, task_instance.task_id, task_instance.run_id, task_instance.map_index scheduler | scheduler | The above exception was the direct cause of the following exception: scheduler | scheduler | Traceback (most recent call last): scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/airflow/jobs/scheduler_job.py", line 751, in _execute scheduler | self._run_scheduler_loop() scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/airflow/jobs/scheduler_job.py", line 839, in _run_scheduler_loop scheduler | num_queued_tis = self._do_scheduling(session) scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/airflow/jobs/scheduler_job.py", line 921, in _do_scheduling scheduler | callback_to_run = self._schedule_dag_run(dag_run, session) scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/airflow/jobs/scheduler_job.py", line 1163, in _schedule_dag_run scheduler | schedulable_tis, callback_to_run = dag_run.update_state(session=session, execute_callbacks=False) scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/airflow/utils/session.py", line 68, in wrapper scheduler | return func(*args, **kwargs) scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/airflow/models/dagrun.py", line 524, in update_state scheduler | info = self.task_instance_scheduling_decisions(session) scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/airflow/utils/session.py", line 68, in wrapper scheduler | return func(*args, **kwargs) scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/airflow/models/dagrun.py", line 654, in task_instance_scheduling_decisions scheduler | schedulable_tis, changed_tis, expansion_happened = self._get_ready_tis( scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/airflow/models/dagrun.py", line 710, in _get_ready_tis scheduler | expanded_tis, _ = schedulable.task.expand_mapped_task(self.run_id, session=session) scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/airflow/models/mappedoperator.py", line 683, in expand_mapped_task scheduler | session.flush() scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/orm/session.py", line 3345, in flush scheduler | self._flush(objects) scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/orm/session.py", line 3485, in _flush scheduler | transaction.rollback(_capture_exception=True) scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/util/langhelpers.py", line 70, in __exit__ scheduler | compat.raise_( scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/util/compat.py", line 207, in raise_ scheduler | raise exception scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/orm/session.py", line 3445, in _flush scheduler | flush_context.execute() scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/orm/unitofwork.py", line 456, in execute scheduler | rec.execute(self) scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/orm/unitofwork.py", line 630, in execute scheduler | util.preloaded.orm_persistence.save_obj( scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/orm/persistence.py", line 236, in save_obj scheduler | _emit_update_statements( scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/orm/persistence.py", line 1000, in _emit_update_statements scheduler | c = connection._execute_20( scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/engine/base.py", line 1614, in _execute_20 scheduler | return meth(self, args_10style, kwargs_10style, execution_options) scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/sql/elements.py", line 325, in _execute_on_connection scheduler | return connection._execute_clauseelement( scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/engine/base.py", line 1481, in _execute_clauseelement scheduler | ret = self._execute_context( scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/engine/base.py", line 1845, in _execute_context scheduler | self._handle_dbapi_exception( scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/engine/base.py", line 2026, in _handle_dbapi_exception scheduler | util.raise_( scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/util/compat.py", line 207, in raise_ scheduler | raise exception scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/engine/base.py", line 1802, in _execute_context scheduler | self.dialect.do_execute( scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/engine/default.py", line 719, in do_execute scheduler | cursor.execute(statement, parameters) scheduler | sqlalchemy.exc.IntegrityError: (sqlite3.IntegrityError) UNIQUE constraint failed: task_instance.dag_id, task_instance.task_id, task_instance.run_id, task_instance.map_index scheduler | [SQL: UPDATE task_instance SET map_index=? WHERE task_instance.task_id = ? AND task_instance.dag_id = ? AND task_instance.run_id = ? AND task_instance.map_index = ?] scheduler | [parameters: (0, 'do_something_else', 'bug_test', 'scheduled__2022-08-11T13:00:00+00:00', -1)] scheduler | (Background on this error at: https://sqlalche.me/e/14/gkpj) scheduler | [2022-08-11 08:41:58,421] {process_utils.py:125} INFO - Sending Signals.SIGTERM to group 52386. PIDs of all processes in the group: [52386] scheduler | [2022-08-11 08:41:58,421] {process_utils.py:80} INFO - Sending the signal Signals.SIGTERM to group 52386 scheduler | [2022-08-11 08:41:58,609] {process_utils.py:75} INFO - Process psutil.Process(pid=52386, status='terminated', exitcode=0, started='08:41:10') (52386) terminated with exit code 0 scheduler | [2022-08-11 08:41:58,609] {scheduler_job.py:780} INFO - Exited execute loop scheduler | Traceback (most recent call last): scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/engine/base.py", line 1802, in _execute_context scheduler | self.dialect.do_execute( scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/engine/default.py", line 719, in do_execute scheduler | [2022-08-11 08:41:58 -0600] [52385] [INFO] Handling signal: term scheduler | cursor.execute(statement, parameters) scheduler | sqlite3.IntegrityError: UNIQUE constraint failed: task_instance.dag_id, task_instance.task_id, task_instance.run_id, task_instance.map_index scheduler | scheduler | The above exception was the direct cause of the following exception: scheduler | scheduler | Traceback (most recent call last): scheduler | File "/path/to/test/dir/bug_test/.env/bin/airflow", line 8, in <module> scheduler | sys.exit(main()) scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/airflow/__main__.py", line 38, in main scheduler | args.func(args) scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/airflow/cli/cli_parser.py", line 51, in command scheduler | return func(*args, **kwargs) scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/airflow/utils/cli.py", line 99, in wrapper scheduler | return f(*args, **kwargs) scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/airflow/cli/commands/scheduler_command.py", line 75, in scheduler scheduler | _run_scheduler_job(args=args) scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/airflow/cli/commands/scheduler_command.py", line 46, in _run_scheduler_job scheduler | job.run() scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/airflow/jobs/base_job.py", line 244, in run scheduler | self._execute() scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/airflow/jobs/scheduler_job.py", line 751, in _execute scheduler | self._run_scheduler_loop() scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/airflow/jobs/scheduler_job.py", line 839, in _run_scheduler_loop scheduler | num_queued_tis = self._do_scheduling(session) scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/airflow/jobs/scheduler_job.py", line 921, in _do_scheduling scheduler | [2022-08-11 08:41:58 -0600] [52387] [INFO] Worker exiting (pid: 52387) scheduler | [2022-08-11 08:41:58 -0600] [52388] [INFO] Worker exiting (pid: 52388) scheduler | callback_to_run = self._schedule_dag_run(dag_run, session) scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/airflow/jobs/scheduler_job.py", line 1163, in _schedule_dag_run scheduler | schedulable_tis, callback_to_run = dag_run.update_state(session=session, execute_callbacks=False) scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/airflow/utils/session.py", line 68, in wrapper scheduler | return func(*args, **kwargs) scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/airflow/models/dagrun.py", line 524, in update_state scheduler | info = self.task_instance_scheduling_decisions(session) scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/airflow/utils/session.py", line 68, in wrapper scheduler | return func(*args, **kwargs) scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/airflow/models/dagrun.py", line 654, in task_instance_scheduling_decisions scheduler | schedulable_tis, changed_tis, expansion_happened = self._get_ready_tis( scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/airflow/models/dagrun.py", line 710, in _get_ready_tis scheduler | expanded_tis, _ = schedulable.task.expand_mapped_task(self.run_id, session=session) scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/airflow/models/mappedoperator.py", line 683, in expand_mapped_task scheduler | session.flush() scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/orm/session.py", line 3345, in flush scheduler | self._flush(objects) scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/orm/session.py", line 3485, in _flush scheduler | transaction.rollback(_capture_exception=True) scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/util/langhelpers.py", line 70, in __exit__ scheduler | compat.raise_( scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/util/compat.py", line 207, in raise_ scheduler | raise exception scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/orm/session.py", line 3445, in _flush scheduler | flush_context.execute() scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/orm/unitofwork.py", line 456, in execute scheduler | rec.execute(self) scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/orm/unitofwork.py", line 630, in execute scheduler | util.preloaded.orm_persistence.save_obj( scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/orm/persistence.py", line 236, in save_obj scheduler | _emit_update_statements( scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/orm/persistence.py", line 1000, in _emit_update_statements scheduler | c = connection._execute_20( scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/engine/base.py", line 1614, in _execute_20 scheduler | return meth(self, args_10style, kwargs_10style, execution_options) scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/sql/elements.py", line 325, in _execute_on_connection scheduler | return connection._execute_clauseelement( scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/engine/base.py", line 1481, in _execute_clauseelement scheduler | ret = self._execute_context( scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/engine/base.py", line 1845, in _execute_context scheduler | self._handle_dbapi_exception( scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/engine/base.py", line 2026, in _handle_dbapi_exception scheduler | util.raise_( scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/util/compat.py", line 207, in raise_ scheduler | raise exception scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/engine/base.py", line 1802, in _execute_context scheduler | self.dialect.do_execute( scheduler | File "/path/to/test/dir/bug_test/.env/lib/python3.9/site-packages/sqlalchemy/engine/default.py", line 719, in do_execute scheduler | cursor.execute(statement, parameters) scheduler | sqlalchemy.exc.IntegrityError: (sqlite3.IntegrityError) UNIQUE constraint failed: task_instance.dag_id, task_instance.task_id, task_instance.run_id, task_instance.map_index scheduler | [SQL: UPDATE task_instance SET map_index=? WHERE task_instance.task_id = ? AND task_instance.dag_id = ? AND task_instance.run_id = ? AND task_instance.map_index = ?] scheduler | [parameters: (0, 'do_something_else', 'bug_test', 'scheduled__2022-08-11T13:00:00+00:00', -1)] scheduler | (Background on this error at: https://sqlalche.me/e/14/gkpj) scheduler | [2022-08-11 08:41:58 -0600] [52385] [INFO] Shutting down: Master ``` </details> ### What you think should happen instead The scheduler does not crash and the dynamically mapped task executes normally ### How to reproduce ### Setup - one DAG with two tasks, one directly downstream of the other - the DAG has a schedule (e.g. @hourly) - both tasks use task expansion - the second task uses the output of the first task as its expansion parameter - the scheduler's pool size is smaller than the number of map indices in each task ### Steps to reproduce 1. enable the DAG and let it run ### Operating System MacOS and Dockerized Linux on MacOS ### Versions of Apache Airflow Providers None ### Deployment Other ### Deployment details I have tested and confirmed this bug is present in three separate deployments: 1. `airflow standalone` 2. DaskExecutor using docker compose 3. KubernetesExecutor using Docker Desktop's builtin Kubernetes cluster All three of these deployments were executed locally on a Macbook Pro. ### 1. `airflow standalone` I created a new Python 3.9 virtual environment, installed Airflow 2.3.3, configured a few environment variables, and executed `airflow standalone`. Here is a bash script that completes all of these tasks: <details><summary>airflow_standalone.sh</summary> ```bash #!/bin/bash # ensure working dir is correct DIR=$(cd $(dirname $BASH_SOURCE[0]) && pwd) cd $DIR set -x # set version parameters AIRFLOW_VERSION="2.3.3" PYTHON_VERSION="3.9" # configure Python environment if [ ~ -d "$DIR/.env" ] then python3 -m venv "$DIR/.env" fi source "$DIR/.env/bin/activate" pip install --upgrade pip # install Airflow CONSTRAINT_URL="https://raw.githubusercontent.com/apache/airflow/constraints-${AIRFLOW_VERSION}/constraints-${PYTHON_VERSION}.txt" pip install "apache-airflow==${AIRFLOW_VERSION}" --constraint "${CONSTRAINT_URL}" # configure Airflow export AIRFLOW_HOME="$DIR/.airflow" export AIRFLOW__CORE__DAGS_FOLDER="$DIR/dags" export AIRFLOW__CORE__LOAD_EXAMPLES="False" export AIRFLOW__DATABASE__LOAD_DEFAULT_CONNECTIONS="False" # start Airflow exec "$DIR/.env/bin/airflow" standalone ``` </details> Here is the DAG code that can be placed in a `dags` directory in the same location as the above script. Note that this DAG code triggers the bug in all environments I tested. <details><summary>bug_test.py</summary> ```python import pendulum from airflow.decorators import dag, task @dag( 'bug_test', schedule_interval='@hourly', start_date=pendulum.now().add(hours=-2) ) def test_scheduler_bug(): @task def do_something(i): return i + 10 @task def do_something_else(i): import logging log = logging.getLogger('airflow.task') log.info("I'll never run") nums = do_something.expand(i=[i+1 for i in range(20)]) do_something_else.expand(i=nums) TEST_DAG = test_scheduler_bug() ``` </details> Once set up, simply activating the DAG will demonstrate the bug. ### 2. DaskExecutor on docker compose with Postgres 12 I cannot provide a full replication of this setup as it is rather in depth. The Docker image is starts from `python:3.9-slim` then installs Airflow with appropriate constraints. It has a lot of additional packages installed, both system and python. It also has a custom entrypoint that can run the Dask scheduler in addition to regular Airflow commands. Here are the applicable Airflow configuration values: <details><summary>airflow.cfg</summary> ```conf [core] donot_pickle = False executor = DaskExecutor load_examples = False max_active_tasks_per_dag = 16 parallelism = 4 [scheduler] dag_dir_list_interval = 0 catchup_by_default = False parsing_processes = 3 scheduler_health_check_threshold = 90 ``` </details> Here is a docker-compose file that is nearly identical to the one I use (I just removed unrelated bits): <details><summary>docker-compose.yml</summary> ```yml version: '3.7' services: metastore: image: postgres:12-alpine ports: - 5432:5432 container_name: airflow-metastore volumes: - ${AIRFLOW_HOME_DIR}/pgdata:/var/lib/postgresql/data environment: POSTGRES_USER: airflow POSTGRES_PASSWORD: ${AIRFLOW_DB_PASSWORD} PGDATA: /var/lib/postgresql/data/pgdata airflow-webserver: image: 'my_custom_image:tag' ports: - '8080:8080' depends_on: - metastore container_name: airflow-webserver environment: AIRFLOW_HOME: /opt/airflow AIRFLOW__WEBSERVER__SECRET_KEY: ${AIRFLOW_SECRET_KEY} AIRFLOW__CORE__FERNET_KEY: ${FERNET_KEY} AIRFLOW__CORE__SQL_ALCHEMY_CONN: postgresql+psycopg2://airflow:${AIRFLOW_DB_PASSWORD}@metastore:5432/${AIRFLOW_DB_DATABASE} env_file: container_vars.env command: - webserver - --daemon - --access-logfile - /var/log/airflow/webserver-access.log - --error-logfile - /var/log/airflow/webserver-errors.log - --log-file - /var/log/airflow/webserver.log volumes: - ${AIRFLOW_HOME_DIR}/logs:/var/log/airflow airflow-scheduler: image: 'my_custom_image:tag' depends_on: - metastore - dask-scheduler container_name: airflow-scheduler environment: AIRFLOW_HOME: /opt/airflow AIRFLOW__CORE__FERNET_KEY: ${FERNET_KEY} AIRFLOW__CORE__SQL_ALCHEMY_CONN: postgresql+psycopg2://airflow:${AIRFLOW_DB_PASSWORD}@metastore:5432/${AIRFLOW_DB_DATABASE} SCHEDULER_RESTART_INTERVAL: ${SCHEDULER_RESTART_INTERVAL} env_file: container_vars.env restart: unless-stopped command: - scheduler - --daemon - --log-file - /var/log/airflow/scheduler.log volumes: - ${AIRFLOW_HOME_DIR}/logs:/var/log/airflow dask-scheduler: image: 'my_custom_image:tag' ports: - 8787:8787 container_name: airflow-dask-scheduler command: - dask-scheduler dask-worker: image: 'my_custom_image:tag' depends_on: - dask-scheduler - metastore container_name: airflow-worker environment: AIRFLOW_HOME: /opt/airflow AIRFLOW__CORE__FERNET_KEY: ${FERNET_KEY} AIRFLOW__CORE__SQL_ALCHEMY_CONN: postgresql+psycopg2://airflow:${AIRFLOW_DB_PASSWORD}@metastore:5432/${AIRFLOW_DB_DATABASE} env_file: container_vars.env command: - dask-worker - dask-scheduler:8786 - --nprocs - '8' - --nthreads - '1' volumes: - ${AIRFLOW_HOME_DIR}/logs:/var/log/airflow ``` </details> I also had to manually change the default pool size to 15 in the UI in order to trigger the bug. With the default pool set to 128 the bug did not trigger. ### 3. KubernetesExecutor on Docker Desktop builtin Kubernetes cluster with Postgres 11 This uses the official [Airflow Helm Chart](https://airflow.apache.org/docs/helm-chart/stable/index.html) with the following values overrides: <details><summary>values.yaml</summary> ```yml defaultAirflowRepository: my_custom_image defaultAirflowTag: "my_image_tag" airflowVersion: "2.3.3" executor: "KubernetesExecutor" webserverSecretKeySecretName: airflow-webserver-secret-key fernetKeySecretName: airflow-fernet-key config: webserver: expose_config: 'True' base_url: http://localhost:8080 scheduler: catchup_by_default: 'False' api: auth_backends: airflow.api.auth.backend.default triggerer: enabled: false statsd: enabled: false redis: enabled: false cleanup: enabled: false logs: persistence: enabled: true workers: extraVolumes: - name: airflow-dags hostPath: path: /local/path/to/dags type: Directory extraVolumeMounts: - name: airflow-dags mountPath: /opt/airflow/dags readOnly: true scheduler: extraVolumes: - name: airflow-dags hostPath: path: /local/path/to/dags type: Directory extraVolumeMounts: - name: airflow-dags mountPath: /opt/airflow/dags readOnly: true ``` </details> The docker image is the official `airflow:2.3.3-python3.9` image with a single environment variable modified: ```conf PYTHONPATH="/opt/airflow/dags/repo/dags:${PYTHONPATH}" ``` ### Anything else This is my understanding of the timeline that produces the crash: 1. The scheduler queues some of the subtasks in the first task 1. Some subtasks run and yield their XCom results 1. The scheduler runs, queueing the remainder of the subtasks for the first task and creates some subtasks in the second task using the XCom results produced thus far 1. The remainder of the subtasks from the first task complete 1. The scheduler attempts to recreate all of the subtasks of the second task, including the ones already created, and a unique constraint in the database is violated and the scheduler crashes 1. When the scheduler restarts, it attempts the previous step again and crashes again, thus entering a crash loop It seems that if some but not all subtasks for the second task have been created when the scheduler attempts to queue the mapped task, then the scheduler tries to create all of the subtasks again which causes a unique constraint violation. **NOTES** - IF the scheduler can queue as many or more tasks as there are map indices for the task, then this won't happen. The provided test case succeeded on the DaskExecutor deployment when the default pool was 128, however when I reduced that pool to 15 this bug occurred. ### Are you willing to submit PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/25681
https://github.com/apache/airflow/pull/25788
29c33165a06b7a6233af3657ace4f2bdb4ec27e4
db818ae6665b37cd032aa6d2b0f97232462d41e1
"2022-08-11T15:27:11Z"
python
"2022-08-25T19:11:48Z"
closed
apache/airflow
https://github.com/apache/airflow
25,671
["airflow/cli/cli_parser.py", "airflow/cli/commands/dag_command.py", "tests/cli/commands/test_dag_command.py"]
`airflow dags test` command with run confs
### Description Currently, the command [`airflow dags test`](https://airflow.apache.org/docs/apache-airflow/stable/cli-and-env-variables-ref.html#test) doesn't accept any configs to set run confs. We can do that in [`airflow dags trigger`](https://airflow.apache.org/docs/apache-airflow/stable/cli-and-env-variables-ref.html#trigger) command through `--conf` argument. The command `airflow dags test` is really useful when testing DAGs in local machines or CI/CD environment. Can we have that feature for the `airflow dags test` command? ### Use case/motivation We may put run confs same as `airflow dags trigger` command does. Example: ``` $ airflow dags test <DAG_ID> <EXECUTION_DATE> --conf '{"path": "some_path"}' ``` ### Related issues _No response_ ### Are you willing to submit a PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/25671
https://github.com/apache/airflow/pull/25900
bcdc25dd3fbda568b5ff2c04701623d6bf11a61f
bcc2fe26f6e0b7204bdf73f57d25b4e6c7a69548
"2022-08-11T13:00:03Z"
python
"2022-08-29T08:51:29Z"
closed
apache/airflow
https://github.com/apache/airflow
25,669
["airflow/providers/atlassian/jira/CHANGELOG.rst", "airflow/providers/atlassian/jira/hooks/jira.py", "airflow/providers/atlassian/jira/operators/jira.py", "airflow/providers/atlassian/jira/provider.yaml", "airflow/providers/atlassian/jira/sensors/jira.py", "generated/provider_dependencies.json", "tests/providers/atlassian/jira/hooks/test_jira.py", "tests/providers/atlassian/jira/operators/test_jira.py", "tests/providers/atlassian/jira/sensors/test_jira.py"]
change Jira sdk to official atlassian sdk
### Description Jira is a product of atlassian https://www.atlassian.com/ There are https://github.com/pycontribs/jira/issues and https://github.com/atlassian-api/atlassian-python-api ### Use case/motivation Motivation is that now Airflow use unoffical SDK which is limited only to jira and can't also add operators for the other productions. https://github.com/atlassian-api/atlassian-python-api is the official one and also contains more integrations to other atlassian products https://github.com/atlassian-api/atlassian-python-api/issues/1027 ### Related issues _No response_ ### Are you willing to submit a PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/25669
https://github.com/apache/airflow/pull/27633
b5338b5825859355b017bed3586d5a42208f1391
f3c68d7e153b8d417edf4cc4a68d18dbc0f30e64
"2022-08-11T12:08:46Z"
python
"2022-12-07T12:48:41Z"
closed
apache/airflow
https://github.com/apache/airflow
25,668
["airflow/providers/cncf/kubernetes/hooks/kubernetes.py", "tests/providers/cncf/kubernetes/operators/test_spark_kubernetes.py"]
SparkKubernetesOperator application file attribute "name" is not mandatory
### Apache Airflow version 2.3.3 ### What happened Since commit https://github.com/apache/airflow/commit/3c5bc73579080248b0583d74152f57548aef53a2 the SparkKubernetesOperator application file is expected to have an attribute metadata:name and the operator execution fails with exception `KeyError: 'name'` if it not exists. Please find the example error stack below: ``` [2022-07-27, 12:58:07 UTC] {taskinstance.py:1909} ERROR - Task failed with exception Traceback (most recent call last): File "/opt/bitnami/airflow/venv/lib/python3.8/site-packages/airflow/providers/cncf/kubernetes/operators/spark_kubernetes.py", line 69, in execute response = hook.create_custom_object( File "/opt/bitnami/airflow/venv/lib/python3.8/site-packages/airflow/providers/cncf/kubernetes/hooks/kubernetes.py", line 316, in create_custom_object name=body_dict["metadata"]["name"], KeyError: 'name' ``` ### What you think should happen instead The operator should start successfully, ignoring the field absence The attribute metadata:name in NOT mandatory, and a pair metadata:generateName can be user instead - please find proof here: https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.22/#objectmeta-v1-meta, particularly in the following: ``` GenerateName is an optional prefix, used by the server, to generate a unique name ONLY IF the Name field has not been provided ``` ### How to reproduce Start a DAG with SparkKubernetesOperator with an application file like this in the beginning: ``` apiVersion: sparkoperator.k8s.io/v1beta2 kind: SparkApplication metadata: generateName: spark_app_name [...] ``` ### Operating System linux ### Versions of Apache Airflow Providers apache-airflow==2.3.3 apache-airflow-providers-cncf-kubernetes==4.2.0 ### Deployment Virtualenv installation ### Deployment details _No response_ ### Anything else Every time ### Are you willing to submit PR? - [X] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/25668
https://github.com/apache/airflow/pull/25787
4dc9b1c592497686dada05e45147b1364ec338ea
2d2f0daad66416d565e874e35b6a487a21e5f7b1
"2022-08-11T11:43:00Z"
python
"2022-11-08T12:58:28Z"
closed
apache/airflow
https://github.com/apache/airflow
25,653
["airflow/jobs/backfill_job.py", "tests/jobs/test_backfill_job.py"]
Deferrable Operators get stuck as "scheduled" during backfill
### Apache Airflow version 2.3.3 ### What happened If you try to backfill a DAG that uses any [deferrable operators](https://airflow.apache.org/docs/apache-airflow/stable/concepts/deferring.html), those tasks will get indefinitely stuck in a "scheduled" state. If I watch the Grid View, I can see the task state change: "scheduled" (or sometimes "queued") -> "deferred" -> "scheduled". I've tried leaving in this state for over an hour, but there are no further state changes. When the task is stuck like this, the log appears as empty in the web UI. The corresponding log file *does* exist on the worker, but it does not contain any errors or warnings that might point to the source of the problem. Ctrl-C-ing the backfill at this point seems to hang on "Shutting down LocalExecutor; waiting for running tasks to finish." **Force-killing and restarting the backfill will "unstick" the stuck tasks.** However, any deferrable operators downstream of the first will get back into that stuck state, requiring multiple restarts to get everything to complete successfully. ### What you think should happen instead Deferrable operators should work as normal when backfilling. ### How to reproduce ``` #!/usr/bin/env python3 import datetime import logging import pendulum from airflow.decorators import dag, task from airflow.sensors.time_sensor import TimeSensorAsync logger = logging.getLogger(__name__) @dag( schedule_interval='@daily', start_date=datetime.datetime(2022, 8, 10), ) def test_backfill(): time_sensor = TimeSensorAsync( task_id='time_sensor', target_time=datetime.time(0).replace(tzinfo=pendulum.UTC), # midnight - should succeed immediately when the trigger first runs ) @task def some_task(): logger.info('hello') time_sensor >> some_task() dag = test_backfill() if __name__ == '__main__': dag.cli() ``` `airflow dags backfill test_backfill -s 2022-08-01 -e 2022-08-04` ### Operating System CentOS Stream 8 ### Versions of Apache Airflow Providers None ### Deployment Other ### Deployment details Self-hosted/standalone ### Anything else I was able to reproduce this with the following configurations: * `standalone` mode + SQLite backend + `SequentialExecutor` * `standalone` mode + Postgres backend + `LocalExecutor` * Production deployment (self-hosted) + Postgres backend + `CeleryExecutor` I have not yet found anything telling in any of the backend logs. Possibly related: * #23693 * #23145 * #13542 - A modified version of the workaround mentioned in [this comment](https://github.com/apache/airflow/issues/13542#issuecomment-1011598836) works to unstick the first stuck task. However if you run it multiple times to try to unstick any downstream tasks, it causes the backfill command to crash. ### Are you willing to submit PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/25653
https://github.com/apache/airflow/pull/26205
f01eed6490acd3bb3a58824e7388c4c3cd50ae29
3396d1f822caac7cbeb14e1e67679b8378a84a6c
"2022-08-10T19:19:21Z"
python
"2022-09-23T05:08:28Z"
closed
apache/airflow
https://github.com/apache/airflow
25,641
["airflow/www/templates/airflow/dag_audit_log.html", "airflow/www/views.py"]
Improve audit log
### Discussed in https://github.com/apache/airflow/discussions/25638 See the discussion. There are a couple of improvements that can be done: * add atribute to download the log rather than open it in-browser * add .log or similar (.txt?) extension * sort the output * possibly more <div type='discussions-op-text'> <sup>Originally posted by **V0lantis** August 10, 2022</sup> ### Apache Airflow version 2.3.3 ### What happened The audit log link crashes because there is too much data displayed. ### What you think should happen instead The windows shouldn't crash ### How to reproduce Display a dag audit log with thousand or millions lines should do the trick ### Operating System ``` NAME="Amazon Linux" VERSION="2" ID="amzn" ID_LIKE="centos rhel fedora" VERSION_ID="2" PRETTY_NAME="Amazon Linux 2" ANSI_COLOR="0;33" CPE_NAME="cpe:2.3:o:amazon:amazon_linux:2" HOME_URL="https://amazonlinux.com/" ``` ### Versions of Apache Airflow Providers ``` apache-airflow-providers-amazon==4.0.0 apache-airflow-providers-celery==3.0.0 apache-airflow-providers-cncf-kubernetes==4.1.0 apache-airflow-providers-datadog==3.0.0 apache-airflow-providers-docker==3.0.0 apache-airflow-providers-ftp==3.0.0 apache-airflow-providers-github==2.0.0 apache-airflow-providers-google==8.1.0 apache-airflow-providers-grpc==3.0.0 apache-airflow-providers-hashicorp==3.0.0 apache-airflow-providers-http==3.0.0 apache-airflow-providers-imap==3.0.0 apache-airflow-providers-jira==3.0.0 apache-airflow-providers-mysql==3.0.0 apache-airflow-providers-postgres==5.0.0 apache-airflow-providers-redis==3.0.0 apache-airflow-providers-sftp==3.0.0 apache-airflow-providers-slack==5.0.0 apache-airflow-providers-sqlite==3.0.0 apache-airflow-providers-ssh==3.0.0 apache-airflow-providers-tableau==3.0.0 apache-airflow-providers-zendesk==4.0.0 ``` ### Deployment Official Apache Airflow Helm Chart ### Deployment details k8s ### Anything else _No response_ ### Are you willing to submit PR? - [X] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md) </div>
https://github.com/apache/airflow/issues/25641
https://github.com/apache/airflow/pull/25856
634b9c03330c8609949f070457e7b99a6e029f26
50016564fa6ab6c6b02bdb0c70fccdf9b75c2f10
"2022-08-10T13:42:53Z"
python
"2022-08-23T00:31:17Z"
closed
apache/airflow
https://github.com/apache/airflow
25,627
["airflow/jobs/scheduler_job.py"]
MySQL Not Using Correct Index for Scheduler Critical Section Query
### Apache Airflow version Other Airflow 2 version ### What happened Airflow Version: 2.2.5 MySQL Version: 8.0.18 In the Scheduler, we are coming across instances where MySQL is inefficiently optimizing the [critical section task queuing query](https://github.com/apache/airflow/blob/2.2.5/airflow/jobs/scheduler_job.py#L294-L303). When a large number of task instances are scheduled, MySQL failing to use the `ti_state` index to filter the `task_instance` table, resulting in a full table scan (about 7.3 million rows). Normally, when running the critical section query the index on `task_instance.state` is used to filter scheduled `task_instances`. ```bash | -> Limit: 512 row(s) (actual time=5.290..5.413 rows=205 loops=1) -> Sort row IDs: <temporary>.tmp_field_0, <temporary>.execution_date, limit input to 512 row(s) per chunk (actual time=5.289..5.391 rows=205 loops=1) -> Table scan on <temporary> (actual time=0.003..0.113 rows=205 loops=1) -> Temporary table (actual time=5.107..5.236 rows=205 loops=1) -> Nested loop inner join (cost=20251.99 rows=1741) (actual time=0.100..4.242 rows=205 loops=1) -> Nested loop inner join (cost=161.70 rows=12) (actual time=0.071..2.436 rows=205 loops=1) -> Index lookup on task_instance using ti_state (state='scheduled') (cost=80.85 rows=231) (actual time=0.051..1.992 rows=222 loops=1) -> Filter: ((dag_run.run_type <> 'backfill') and (dag_run.state = 'running')) (cost=0.25 rows=0) (actual time=0.002..0.002 rows=1 loops=222) -> Single-row index lookup on dag_run using dag_run_dag_id_run_id_key (dag_id=task_instance.dag_id, run_id=task_instance.run_id) (cost=0.25 rows=1) (actual time=0.001..0.001 rows=1 loops=222) -> Filter: ((dag.is_paused = 0) and (task_instance.dag_id = dag.dag_id)) (cost=233.52 rows=151) (actual time=0.008..0.008 rows=1 loops=205) -> Index range scan on dag (re-planned for each iteration) (cost=233.52 rows=15072) (actual time=0.008..0.008 rows=1 loops=205) 1 row in set, 1 warning (0.03 sec) ``` When a large number of task_instances are in scheduled state at the same time, the index on `task_instance.state` is not being used to filter scheduled `task_instances`. ```bash | -> Limit: 512 row(s) (actual time=12110.251..12110.573 rows=512 loops=1) -> Sort row IDs: <temporary>.tmp_field_0, <temporary>.execution_date, limit input to 512 row(s) per chunk (actual time=12110.250..12110.526 rows=512 loops=1) -> Table scan on <temporary> (actual time=0.005..0.800 rows=1176 loops=1) -> Temporary table (actual time=12109.022..12109.940 rows=1176 loops=1) -> Nested loop inner join (cost=10807.83 rows=3) (actual time=1.328..12097.528 rows=1176 loops=1) -> Nested loop inner join (cost=10785.34 rows=64) (actual time=1.293..12084.371 rows=1193 loops=1) -> Filter: (dag.is_paused = 0) (cost=1371.40 rows=1285) (actual time=0.087..22.409 rows=13264 loops=1) -> Table scan on dag (cost=1371.40 rows=12854) (actual time=0.085..15.796 rows=13508 loops=1) -> Filter: ((task_instance.state = 'scheduled') and (task_instance.dag_id = dag.dag_id)) (cost=0.32 rows=0) (actual time=0.907..0.909 rows=0 loops=13264) -> Index lookup on task_instance using PRIMARY (dag_id=dag.dag_id) (cost=0.32 rows=70) (actual time=0.009..0.845 rows=553 loops=13264) -> Filter: ((dag_run.run_type <> 'backfill') and (dag_run.state = 'running')) (cost=0.25 rows=0) (actual time=0.010..0.011 rows=1 loops=1193) -> Single-row index lookup on dag_run using dag_run_dag_id_run_id_key (dag_id=task_instance.dag_id, run_id=task_instance.run_id) (cost=0.25 rows=1) (actual time=0.009..0.010 rows=1 loops=1193) 1 row in set, 1 warning (12.14 sec) ``` ### What you think should happen instead To resolve this, I added a patch on the `scheduler_job.py` file, adding a MySQL index hint to use the `ti_state` index. ```diff --- /usr/local/lib/python3.9/site-packages/airflow/jobs/scheduler_job.py +++ /usr/local/lib/python3.9/site-packages/airflow/jobs/scheduler_job.py @@ -293,6 +293,7 @@ class SchedulerJob(BaseJob): # and the dag is not paused query = ( session.query(TI) + .with_hint(TI, 'USE INDEX (ti_state)', dialect_name='mysql') .join(TI.dag_run) .filter(DR.run_type != DagRunType.BACKFILL_JOB, DR.state == DagRunState.RUNNING) .join(TI.dag_model) ``` I think it makes sense to add this index hint upstream. ### How to reproduce Schedule a large number of dag runs and tasks in a short period of time. ### Operating System Debian GNU/Linux 10 (buster) ### Versions of Apache Airflow Providers _No response_ ### Deployment Other 3rd-party Helm chart ### Deployment details Airflow 2.2.5 on Kubernetes MySQL Version: 8.0.18 ### Anything else _No response_ ### Are you willing to submit PR? - [X] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/25627
https://github.com/apache/airflow/pull/25673
4d9aa3ae48bae124793b1a8ee394150eba0eee9b
134b5551db67f17b4268dce552e87a154aa1e794
"2022-08-09T19:50:29Z"
python
"2022-08-12T11:28:55Z"
closed
apache/airflow
https://github.com/apache/airflow
25,588
["airflow/models/mappedoperator.py", "tests/models/test_mappedoperator.py"]
Mapped KubernetesPodOperater not rendering nested templates
### Apache Airflow version 2.3.3 ### What happened Nested values, such as `env_vars` for the `KubernetesPodOperater` are not being rendered when used as a dynamically mapped operator. Assuming the following: ```python op = KubernetesPodOperater.partial( env_vars=[k8s.V1EnvVar(name='AWS_ACCESS_KEY_ID', value='{{ var.value.aws_access_key_id }}')], # Other arguments ).expand(arguments=[[1], [2]]) ``` The *Rendered Template* results for `env_vars` should be: ``` ("[{'name': 'AWS_ACCESS_KEY_ID', 'value': 'some-super-secret-value', 'value_from': None}]") ``` Instead the actual *Rendered Template* results for `env_vars` are un-rendered: ``` ("[{'name': 'AWS_ACCESS_KEY_ID', 'value': '{{ var.value.aws_access_key_id }}', 'value_from': None}]") ``` This is probably caused by the fact that `MappedOperator` is not calling [`KubernetesPodOperater._render_nested_template_fields`](https://github.com/apache/airflow/blob/main/airflow/providers/cncf/kubernetes/operators/kubernetes_pod.py#L286). ### What you think should happen instead _No response_ ### How to reproduce _No response_ ### Operating System Ubuntu 18.04 ### Versions of Apache Airflow Providers _No response_ ### Deployment Other 3rd-party Helm chart ### Deployment details _No response_ ### Anything else _No response_ ### Are you willing to submit PR? - [X] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/25588
https://github.com/apache/airflow/pull/25599
762588dcf4a05c47aa253b864bda00726a5569dc
ed39703cd4f619104430b91d7ba67f261e5bfddb
"2022-08-08T06:17:20Z"
python
"2022-08-15T12:02:30Z"
closed
apache/airflow
https://github.com/apache/airflow
25,580
[".github/workflows/ci.yml", "BREEZE.rst", "TESTING.rst", "dev/breeze/src/airflow_breeze/commands/testing_commands.py", "dev/breeze/src/airflow_breeze/commands/testing_commands_config.py", "images/breeze/output-commands-hash.txt", "images/breeze/output_testing.svg", "images/breeze/output_testing_helm-tests.svg", "images/breeze/output_testing_tests.svg", "scripts/in_container/check_environment.sh"]
Convet running Helm unit tests to use the new breeze
The unit tests of Helm (using `helm template` still use bash scripts not the new breeze - we should switch them).
https://github.com/apache/airflow/issues/25580
https://github.com/apache/airflow/pull/25581
0d34355ffa3f9f2ecf666d4518d36c4366a4c701
a562cc396212e4d21484088ac5f363ade9ac2b8d
"2022-08-07T13:24:26Z"
python
"2022-08-08T06:56:15Z"
closed
apache/airflow
https://github.com/apache/airflow
25,555
["airflow/configuration.py", "tests/core/test_configuration.py"]
Airflow doesn't re-use a secrets backend instance when loading configuration values
### Apache Airflow version main (development) ### What happened When airflow is loading its configuration, it creates a new secrets backend instance for each configuration backend it loads from secrets and then additionally creates a global secrets backend instance that is used in `ensure_secrets_loaded` which code outside of the configuration file uses. This can cause issues with the vault backend (and possibly others, not sure) since logging in to vault can be an expensive operation server-side and each instance of the vault secrets backend needs to re-login to use its internal client. ### What you think should happen instead Ideally, airflow would attempt to create a single secrets backend instance and re-use this. This can possibly be patched in the vault secrets backend, but instead I think updating the `configuration` module to cache the secrets backend would be preferable since it would then apply to any secrets backend. ### How to reproduce Use the hashicorp vault secrets backend and store some configuration in `X_secret` values. See that it logs in more than you'd expect. ### Operating System Ubuntu 18.04 ### Versions of Apache Airflow Providers ``` apache-airflow==2.3.0 apache-airflow-providers-hashicorp==2.2.0 hvac==0.11.2 ``` ### Deployment Official Apache Airflow Helm Chart ### Deployment details _No response_ ### Anything else _No response_ ### Are you willing to submit PR? - [X] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/25555
https://github.com/apache/airflow/pull/25556
33fbe75dd5100539c697d705552b088e568d52e4
5863c42962404607013422a40118d8b9f4603f0b
"2022-08-05T16:13:36Z"
python
"2022-08-06T14:21:22Z"
closed
apache/airflow
https://github.com/apache/airflow
25,523
["airflow/www/static/js/graph.js"]
Mapped, classic operator tasks within TaskGroups prepend `group_id` in Graph View
### Apache Airflow version main (development) ### What happened When mapped, classic operator tasks exist within TaskGroups, the `group_id` of the TaskGroup is prepended to the displayed `task_id` in the Graph View. In the below screenshot, all displayed task IDs only contain the direct `task_id` except for the "mapped_classic_task". This particular task is a mapped `BashOperator` task. The prepended `group_id` does not appear for unmapped, classic operator tasks, nor mapped and unmapped TaskFlow tasks. <img width="1440" alt="image" src="https://user-images.githubusercontent.com/48934154/182760586-975a7886-bcd6-477d-927b-25e82139b5b7.png"> ### What you think should happen instead The pattern of the displayed task names should be consistent for all task types (mapped/unmapped, classic operators/TaskFlow functions). Additionally, having the `group_id` prepended to the mapped, classic operator tasks is a little redundant and less readable. ### How to reproduce 1. Use an example DAG of the following: ```python from pendulum import datetime from airflow.decorators import dag, task, task_group from airflow.operators.bash import BashOperator @dag(start_date=datetime(2022, 1, 1), schedule_interval=None) def task_group_task_graph(): @task_group def my_task_group(): BashOperator(task_id="not_mapped_classic_task", bash_command="echo") BashOperator.partial(task_id="mapped_classic_task").expand( bash_command=["echo", "echo hello", "echo world"] ) @task def another_task(input=None): ... another_task.override(task_id="not_mapped_taskflow_task")() another_task.override(task_id="mapped_taskflow_task").expand(input=[1, 2, 3]) my_task_group() _ = task_group_task_graph() ``` 2. Navigate to the Graph view 3. Notice that the `task_id` for the "mapped_classic_task" prepends the TaskGroup `group_id` of "my_task_group" while the other tasks in the TaskGroup do not. ### Operating System Debian GNU/Linux ### Versions of Apache Airflow Providers N/A ### Deployment Other ### Deployment details Breeze ### Anything else Setting `prefix_group_id=False` for the TaskGroup does remove the prepended `group_id` from the tasks display name. ### Are you willing to submit PR? - [x] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/25523
https://github.com/apache/airflow/pull/26108
5697e9fdfa9d5af2d48f7037c31972c2db1f4397
3b76e81bcc9010cfec4d41fe33f92a79020dbc5b
"2022-08-04T04:13:48Z"
python
"2022-09-01T16:32:02Z"
closed
apache/airflow
https://github.com/apache/airflow
25,522
["airflow/providers/amazon/aws/hooks/batch_client.py", "airflow/providers/amazon/aws/operators/batch.py", "tests/providers/amazon/aws/hooks/test_batch_client.py", "tests/providers/amazon/aws/operators/test_batch.py"]
Support AWS Batch multinode job types
### Description Support [multinode job types](https://docs.aws.amazon.com/batch/latest/userguide/multi-node-parallel-jobs.html) in the [AWS Batch Operator](https://github.com/apache/airflow/blob/main/airflow/providers/amazon/aws/operators/batch.py). The [boto3 `submit_job` method](https://boto3.amazonaws.com/v1/documentation/api/1.9.88/reference/services/batch.html#Batch.Client.submit_job) supports container, multinode, and array batch jobs with the mutually exclusive `nodeOverrides` and `containerOverrides` (+ `arrayProperties`) parameters. But currently the AWS Batch Operator only supports submission of container jobs and array jobs by hardcoding the boto3 `submit_job` parameter `containerOverrides`: https://github.com/apache/airflow/blob/3c08cefdfd2e2636a714bb835902f0cb34225563/airflow/providers/amazon/aws/operators/batch.py#L200 & https://github.com/apache/airflow/blob/3c08cefdfd2e2636a714bb835902f0cb34225563/airflow/providers/amazon/aws/hooks/batch_client.py#L99 The [`get_job_awslogs_info`](https://github.com/apache/airflow/blob/main/airflow/providers/amazon/aws/hooks/batch_client.py#L419) method in the batch client hook is also hardcoded for the container type job: https://github.com/apache/airflow/blob/3c08cefdfd2e2636a714bb835902f0cb34225563/airflow/providers/amazon/aws/hooks/batch_client.py#L425 To support multinode jobs the `get_job_awslogs_info` method would need to access `nodeProperties` from the [`describe_jobs`](https://boto3.amazonaws.com/v1/documentation/api/1.9.88/reference/services/batch.html#Batch.Client.describe_jobs) response. ### Use case/motivation Multinode jobs are a supported job type of AWS Batch, are supported by the underlying boto3 library, and should be also be available to be managed by Airflow. I've extended the AWS Batch Operator for our own use cases, but would prefer to not maintain a separate operator. ### Related issues _No response_ ### Are you willing to submit a PR? - [X] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/25522
https://github.com/apache/airflow/pull/29522
f080e1e3985f24293979f2f0fc28f1ddf72ee342
2ce11300064ec821ffe745980012100fc32cb4b4
"2022-08-03T23:14:12Z"
python
"2023-04-12T04:29:25Z"
closed
apache/airflow
https://github.com/apache/airflow
25,512
["airflow/www/static/js/dag/grid/index.tsx"]
Vertical overlay scrollbar on Grid view blocks last DAG run column
### Apache Airflow version 2.3.3 (latest released) ### What happened The vertical overlay scrollbar in Grid view on the Web UI (#22134) covers up the final DAG run column and makes it impossible to click on the tasks for that DAG run: ![image](https://user-images.githubusercontent.com/12103194/182652473-e935fb33-0808-43ad-84d8-acabbf4e9b88.png) ![image](https://user-images.githubusercontent.com/12103194/182652203-0494efb5-8335-4005-920a-98bff42e1b21.png) ### What you think should happen instead Either pad the Grid view so the scrollbar does not appear on top of the content or force the scroll bar to take up its own space ### How to reproduce Have a DAG run with enough tasks to cause vertical overflow. Found on Linux + FF 102 ### Operating System Fedora 36 ### Versions of Apache Airflow Providers _No response_ ### Deployment Virtualenv installation ### Deployment details _No response_ ### Anything else _No response_ ### Are you willing to submit PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/25512
https://github.com/apache/airflow/pull/25554
5668888a7e1074a620b3d38f407ecf1aa055b623
fe9772949eba35c73101c3cd93a7c76b3e633e7e
"2022-08-03T16:10:55Z"
python
"2022-08-05T16:46:59Z"
closed
apache/airflow
https://github.com/apache/airflow
25,508
["airflow/migrations/versions/0118_2_5_0_add_updated_at_to_dagrun_and_ti.py", "airflow/models/dagrun.py", "airflow/models/taskinstance.py", "docs/apache-airflow/img/airflow_erd.sha256", "docs/apache-airflow/img/airflow_erd.svg", "docs/apache-airflow/migrations-ref.rst", "tests/models/test_taskinstance.py"]
add lastModified columns to DagRun and TaskInstance.
I wonder if we should add lastModified columns to DagRun and TaskInstance. It might help a lot of UI/API queries. _Originally posted by @ashb in https://github.com/apache/airflow/issues/23805#issuecomment-1143752368_
https://github.com/apache/airflow/issues/25508
https://github.com/apache/airflow/pull/26252
768865e10c811bc544590ec268f9f5c334da89b5
4930df45f5bae89c297dbcd5cafc582a61a0f323
"2022-08-03T14:49:55Z"
python
"2022-09-19T13:28:07Z"
closed
apache/airflow
https://github.com/apache/airflow
25,493
["airflow/www/views.py", "tests/www/views/test_views_base.py", "tests/www/views/test_views_home.py"]
URL contains tag query parameter but Airflow UI does not correctly visualize the tags
### Apache Airflow version 2.3.3 (latest released) ### What happened An URL I saved in the past, `https://astronomer.astronomer.run/dx4o2568/home?tags=test`, has the tag field in the query parameter though I was not aware of this. When I clicked on the URL, I was confused because I did not see any DAGs when I should have a bunch. After closer inspection, I realized that the URL has the tag field in the query parameter but then noticed that the tag box in the Airflow UI wasn't properly populated. ![screen_shot_2022-07-12_at_8 11 07_am](https://user-images.githubusercontent.com/5952735/182496710-601b4a98-aacb-4482-bb9f-bb3fdf9e265f.png) ### What you think should happen instead When I clicked on the URL, the tag box should have been populated with the strings in the URL. ### How to reproduce Start an Airflow deployment with some DAGs and add the tag query parameter. More specifically, it has to be a tag that is not used by any DAG. ### Operating System N/A ### Versions of Apache Airflow Providers _No response_ ### Deployment Astronomer ### Deployment details _No response_ ### Anything else _No response_ ### Are you willing to submit PR? - [X] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/25493
https://github.com/apache/airflow/pull/25715
ea306c9462615d6b215d43f7f17d68f4c62951b1
485142ac233c4ac9627f523465b7727c2d089186
"2022-08-03T00:03:45Z"
python
"2022-11-24T10:27:43Z"
closed
apache/airflow
https://github.com/apache/airflow
25,492
["airflow/api_connexion/endpoints/plugin_endpoint.py", "airflow/api_connexion/openapi/v1.yaml", "airflow/api_connexion/schemas/plugin_schema.py", "airflow/www/static/js/types/api-generated.ts"]
API server /plugin crashes
### Apache Airflow version 2.3.3 (latest released) ### What happened The `/plugins` endpoint returned a 500 http status code. ``` curl -X GET http://localhost:8080/api/v1/plugins\?limit\=1 \ -H 'Cache-Control: no-cache' \ --user "admin:admin" { "detail": "\"{'name': 'Test View', 'category': 'Test Plugin', 'view': 'test.appbuilder_views.TestAppBuilderBaseView'}\" is not of type 'object'\n\nFailed validating 'type' in schema['allOf'][0]['properties']['plugins']['items']['properties']['appbuilder_views']['items']:\n {'nullable': True, 'type': 'object'}\n\nOn instance['plugins'][0]['appbuilder_views'][0]:\n (\"{'name': 'Test View', 'category': 'Test Plugin', 'view': \"\n \"'test.appbuilder_views.TestAppBuilderBaseView'}\")", "status": 500, "title": "Response body does not conform to specification", "type": "http://apache-airflow-docs.s3-website.eu-central-1.amazonaws.com/docs/apache-airflow/latest/stable-rest-api-ref.html#section/Errors/Unknown" } ``` The error message in the webserver is as followed ``` [2022-08-03 17:07:57,705] {validation.py:244} ERROR - http://localhost:8080/api/v1/plugins?limit=1 validation error: "{'name': 'Test View', 'category': 'Test Plugin', 'view': 'test.appbuilder_views.TestAppBuilderBaseView'}" is not of type 'object' Failed validating 'type' in schema['allOf'][0]['properties']['plugins']['items']['properties']['appbuilder_views']['items']: {'nullable': True, 'type': 'object'} On instance['plugins'][0]['appbuilder_views'][0]: ("{'name': 'Test View', 'category': 'Test Plugin', 'view': " "'test.appbuilder_views.TestAppBuilderBaseView'}") 172.18.0.1 - admin [03/Aug/2022:17:10:17 +0000] "GET /api/v1/plugins?limit=1 HTTP/1.1" 500 733 "-" "curl/7.79.1" ``` ### What you think should happen instead The response should contain all the plugins integrated with Airflow. ### How to reproduce Create a simple plugin in the plugin directory. `appbuilder_views.py` ``` from flask_appbuilder import expose, BaseView as AppBuilderBaseView # Creating a flask appbuilder BaseView class TestAppBuilderBaseView(AppBuilderBaseView): @expose("/") def test(self): return self.render_template("test_plugin/test.html", content="Hello galaxy!") ``` `plugin.py` ``` from airflow.plugins_manager import AirflowPlugin from test.appbuilder_views import TestAppBuilderBaseView class TestPlugin(AirflowPlugin): name = "test" appbuilder_views = [ { "name": "Test View", "category": "Test Plugin", "view": TestAppBuilderBaseView() } ] ``` Call the `/plugin` endpoint. ``` curl -X GET http://localhost:8080/api/v1/plugins\?limit\=1 \ -H 'Cache-Control: no-cache' \ --user "admin:admin" ``` ### Operating System N/A ### Versions of Apache Airflow Providers _No response_ ### Deployment Astronomer ### Deployment details _No response_ ### Anything else _No response_ ### Are you willing to submit PR? - [X] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/25492
https://github.com/apache/airflow/pull/25524
7e3d2350dbb23b9c98bbadf73296425648e1e42d
5de11e1410b432d632e8c0d1d8ca0945811a56f0
"2022-08-02T23:44:07Z"
python
"2022-08-04T15:37:58Z"
closed
apache/airflow
https://github.com/apache/airflow
25,474
["airflow/providers/google/cloud/transfers/postgres_to_gcs.py"]
PostgresToGCSOperator parquet format mapping inconsistencies converts boolean data type to string
### Apache Airflow Provider(s) google ### Versions of Apache Airflow Providers apache-airflow-providers-google==6.8.0 ### Apache Airflow version 2.3.2 ### Operating System Debian GNU/Linux 11 (bullseye) ### Deployment Docker-Compose ### Deployment details _No response_ ### What happened When converting postgres native data type to bigquery data types, [this](https://github.com/apache/airflow/blob/main/airflow/providers/google/cloud/transfers/sql_to_gcs.py#L288) function is responsible for converting from postgres types -> bigquery types -> parquet types. The [map](https://github.com/apache/airflow/blob/main/airflow/providers/google/cloud/transfers/postgres_to_gcs.py#L80) in the PostgresToGCSOperator indicates that the postgres boolean type matches to the bigquery `BOOLEAN` data type. Then when converting from bigquery to parquet data types [here](https://github.com/apache/airflow/blob/main/airflow/providers/google/cloud/transfers/sql_to_gcs.py#L288), the [map](https://github.com/apache/airflow/blob/main/airflow/providers/google/cloud/transfers/sql_to_gcs.py#L289) does not have the `BOOLEAN` data type in its keys. Because the type defaults to string in the following [line](https://github.com/apache/airflow/blob/main/airflow/providers/google/cloud/transfers/sql_to_gcs.py#L305), the BOOLEAN data type is converted into string, which then fails when converting the data into `pa.bool_()`. When converting the boolean data type into `pa.string()` pyarrow raises an error. ### What you think should happen instead I would expect the postgres boolean type to map to `pa.bool_()` data type. Changing the [map](https://github.com/apache/airflow/blob/main/airflow/providers/google/cloud/transfers/postgres_to_gcs.py#L80) to include the `BOOL` key instead of `BOOLEAN` would correctly map the postgres type to the final parquet type. ### How to reproduce 1. Create a postgres connection on airflow with id `postgres_test_conn`. 2. Create a gcp connection on airflow with id `gcp_test_conn`. 3. In the database referenced by the `postgres_test_conn`, in the public schema create a table `test_table` that includes a boolean data type, and insert data into the table. 4. Create a bucket named `issue_PostgresToGCSOperator_bucket`, in the gcp account referenced by the `gcp_test_conn`. 5. Run the dag below that inserts the data from the postgres table into the cloud storage bucket. ```python import pendulum from airflow import DAG from airflow.providers.google.cloud.transfers.postgres_to_gcs import PostgresToGCSOperator with DAG( dag_id="issue_PostgresToGCSOperator", start_date=pendulum.parse("2022-01-01"), )as dag: task = PostgresToGCSOperator( task_id='extract_task', filename='uploading-{}.parquet', bucket="issue_PostgresToGCSOperator_bucket", export_format='parquet', sql="SELECT * FROM test_table", postgres_conn_id='postgres_test_conn', gcp_conn_id='gcp_test_conn', ) ``` ### Anything else _No response_ ### Are you willing to submit PR? - [X] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/25474
https://github.com/apache/airflow/pull/25475
4da2b0c216c92795f19862a3ff6634e5a5936138
faf3c4fe474733965ab301465f695e3cc311169c
"2022-08-02T14:36:32Z"
python
"2022-08-02T20:28:56Z"
closed
apache/airflow
https://github.com/apache/airflow
25,446
["chart/templates/statsd/statsd-deployment.yaml", "chart/values.schema.json", "chart/values.yaml", "tests/charts/test_annotations.py"]
Helm Chart: Allow adding annotations to statsd deployment
### Description Helm Chart [does not allow adding annotations](https://github.com/apache/airflow/blob/40eefd84797f5085e6c3fef6cbd6f713ceb3c3d8/chart/templates/statsd/statsd-deployment.yaml#L60-L63) to StatsD deployment. We should add it. ### Use case/motivation In our Kubernetes cluster we need to set annotations on deployments that should be scraped by Prometheus. Having an exporter that does not get scraped defeats the purpose :slightly_smiling_face: ### Related issues _No response_ ### Are you willing to submit a PR? - [X] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/25446
https://github.com/apache/airflow/pull/25732
fdecf12051308a4e064f5e4bf5464ffc9b183dad
951b7084619eca7229cdaadda99fd1191d4793e7
"2022-08-01T14:23:14Z"
python
"2022-09-15T00:31:54Z"
closed
apache/airflow
https://github.com/apache/airflow
25,395
["airflow/providers/snowflake/provider.yaml", "airflow/providers/snowflake/transfers/copy_into_snowflake.py", "airflow/providers/snowflake/transfers/s3_to_snowflake.py", "scripts/in_container/verify_providers.py", "tests/providers/snowflake/transfers/test_copy_into_snowflake.py"]
GCSToSnowflakeOperator with feature parity to the S3ToSnowflakeOperator
### Description Require an operator similar to the S3ToSnowflakeOperator but for GCS to load data stored in GCS to a Snowflake table. ### Use case/motivation Same as the S3ToSnowflakeOperator. ### Related issues _No response_ ### Are you willing to submit a PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/25395
https://github.com/apache/airflow/pull/25541
2ee099655b1ca46935dbf3e37ae0ec1139f98287
5c52bbf32d81291b57d051ccbd1a2479ff706efc
"2022-07-29T10:23:52Z"
python
"2022-08-26T22:03:05Z"
closed
apache/airflow
https://github.com/apache/airflow
25,388
["airflow/providers/jdbc/operators/jdbc.py", "tests/providers/jdbc/operators/test_jdbc.py"]
apache-airflow-providers-jdbc fails with jaydebeapi.Error
### Apache Airflow Provider(s) jdbc ### Versions of Apache Airflow Providers I am using apache-airflow-providers-jdbc==3.0.0 for Airflow 2.3.3 as per constraint [file](https://raw.githubusercontent.com/apache/airflow/constraints-2.3.3/constraints-3.10.txt) ### Apache Airflow version 2.3.3 (latest released) ### Operating System K8 on Linux ### Deployment Official Apache Airflow Helm Chart ### Deployment details _No response_ ### What happened I am using JdbcOperator to execute one ALTER sql statement but it returns the following error: File "/usr/local/airflow/.local/lib/python3.10/site-packages/airflow/providers/jdbc/operators/jdbc.py", line 76, in execute return hook.run(self.sql, self.autocommit, parameters=self.parameters, handler=fetch_all_handler) File "/usr/local/airflow/.local/lib/python3.10/site-packages/airflow/hooks/dbapi.py", line 213, in run result = handler(cur) File "/usr/local/airflow/.local/lib/python3.10/site-packages/airflow/providers/jdbc/operators/jdbc.py", line 30, in fetch_all_handler return cursor.fetchall() File "/usr/local/airflow/.local/lib/python3.10/site-packages/jaydebeapi/__init__.py", line 593, in fetchall row = self.fetchone() File "/usr/local/airflow/.local/lib/python3.10/site-packages/jaydebeapi/__init__.py", line 558, in fetchone raise Error() jaydebeapi.Error ### What you think should happen instead The introduction of handler=fetch_all_handler in File "/usr/local/airflow/.local/lib/python3.10/site-packages/airflow/providers/jdbc/operators/jdbc.py", line 76, in execute return hook.run(self.sql, self.autocommit, parameters=self.parameters, handler=fetch_all_handler) is breaking the script. With the previous version which did not have fetch_all_handler in jdbc.py, it was running perfectly. ### How to reproduce Try submitting ALTER statement in airflow jdbcOperator. ### Anything else _No response_ ### Are you willing to submit PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/25388
https://github.com/apache/airflow/pull/25412
3dfa44566c948cb2db016e89f84d6fe37bd6d824
1708da9233c13c3821d76e56dbe0e383ff67b0fd
"2022-07-28T22:08:43Z"
python
"2022-08-07T09:18:21Z"
closed
apache/airflow
https://github.com/apache/airflow
25,360
["airflow/models/abstractoperator.py", "airflow/models/baseoperator.py", "airflow/operators/trigger_dagrun.py", "airflow/providers/qubole/operators/qubole.py", "airflow/www/static/js/dag.js", "airflow/www/static/js/dag/details/taskInstance/index.tsx", "docs/spelling_wordlist.txt"]
Extra Links do not works with mapped operators
### Apache Airflow version main (development) ### What happened I found that Extra Links do not work with dynamic tasks at all - links inaccessible, but same Extra Links works fine with not mapped operators. I think the nature of that extra links assign to parent task instance (i do not know how to correct name this TI) but not to actual mapped TIs. As result we only have `number extra links defined` in operator not `(number extra links defined in operator) x number of mapped TIs.` ### What you think should happen instead _No response_ ### How to reproduce ```python from pendulum import datetime from airflow.decorators import dag from airflow.sensors.external_task import ExternalTaskSensor from airflow.operators.empty import EmptyOperator EXTERNAL_DAG_IDS = [f"example_external_dag_{ix:02d}" for ix in range(3)] DAG_KWARGS = { "start_date": datetime(2022, 7, 1), "schedule_interval": "@daily", "catchup": False, "tags": ["mapped_extra_links", "AIP-42", "serialization"], } def external_dags(): EmptyOperator(task_id="dummy") @dag(**DAG_KWARGS) def external_regular_task_sensor(): for external_dag_id in EXTERNAL_DAG_IDS: ExternalTaskSensor( task_id=f'wait_for_{external_dag_id}', external_dag_id=external_dag_id, poke_interval=5, ) @dag(**DAG_KWARGS) def external_mapped_task_sensor(): ExternalTaskSensor.partial( task_id='wait', poke_interval=5, ).expand(external_dag_id=EXTERNAL_DAG_IDS) dag_external_regular_task_sensor = external_regular_task_sensor() dag_external_mapped_task_sensor = external_mapped_task_sensor() for dag_id in EXTERNAL_DAG_IDS: globals()[dag_id] = dag(dag_id=dag_id, **DAG_KWARGS)(external_dags)() ``` https://user-images.githubusercontent.com/3998685/180994213-847b3fd3-d351-4836-b246-b54056f34ad6.mp4 ### Operating System macOs 12.5 ### Versions of Apache Airflow Providers _No response_ ### Deployment Other ### Deployment details _No response_ ### Anything else _No response_ ### Are you willing to submit PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/25360
https://github.com/apache/airflow/pull/25500
4ecaa9e3f0834ca0ef08002a44edda3661f4e572
d9e924c058f5da9eba5bb5b85a04bfea6fb2471a
"2022-07-28T10:44:40Z"
python
"2022-08-05T03:41:07Z"
closed
apache/airflow
https://github.com/apache/airflow
25,352
["airflow/decorators/base.py", "airflow/models/expandinput.py", "airflow/models/mappedoperator.py", "tests/models/test_taskinstance.py", "tests/models/test_xcom_arg_map.py"]
expand_kwargs.map(func) gives unhelpful error message if func returns list
### Apache Airflow version main (development) ### What happened Here's a DAG: ```python3 with DAG( dag_id="expand_list", doc_md="try to get kwargs from a list", schedule_interval=None, start_date=datetime(2001, 1, 1), ) as expand_list: @expand_list.task def do_this(): return [ ("echo hello $USER", "USER", "foo"), ("echo hello $USER", "USER", "bar"), ] def mapper(tuple): if tuple[2] == "bar": return [1, 2, 3] else: return {"bash_command": tuple[0], "env": {tuple[1]: tuple[2]}} BashOperator.partial(task_id="one_cmd").expand_kwargs(do_this().map(mapper)) ``` The `foo` task instance succeeds as expected, and the `bar` task fails as expected. But the error message that it gives isn't particularly helpful to a user who doesn't know what they did wrong: ``` ERROR - Failed to execute task: resolve() takes 3 positional arguments but 4 were given. Traceback (most recent call last): File "/home/matt/src/airflow/airflow/executors/debug_executor.py", line 78, in _run_task ti.run(job_id=ti.job_id, **params) File "/home/matt/src/airflow/airflow/utils/session.py", line 71, in wrapper return func(*args, session=session, **kwargs) File "/home/matt/src/airflow/airflow/models/taskinstance.py", line 1782, in run self._run_raw_task( File "/home/matt/src/airflow/airflow/utils/session.py", line 68, in wrapper return func(*args, **kwargs) File "/home/matt/src/airflow/airflow/models/taskinstance.py", line 1445, in _run_raw_task self._execute_task_with_callbacks(context, test_mode) File "/home/matt/src/airflow/airflow/models/taskinstance.py", line 1580, in _execute_task_with_callbacks task_orig = self.render_templates(context=context) File "/home/matt/src/airflow/airflow/models/taskinstance.py", line 2202, in render_templates rendered_task = self.task.render_template_fields(context) File "/home/matt/src/airflow/airflow/models/mappedoperator.py", line 751, in render_template_fields unmapped_task = self.unmap(mapped_kwargs) File "/home/matt/src/airflow/airflow/models/mappedoperator.py", line 591, in unmap kwargs = self._expand_mapped_kwargs(resolve) File "/home/matt/src/airflow/airflow/models/mappedoperator.py", line 546, in _expand_mapped_kwargs return expand_input.resolve(*resolve) TypeError: resolve() takes 3 positional arguments but 4 were given ``` ### What you think should happen instead Whatever checks the return value for mappability should do more to point the user to their error. Perhaps something like: > UnmappableDataError: Expected a dict with keys that BashOperator accepts, got `[1, 2, 3]` instead ### How to reproduce Run the dag above ### Operating System Linux 5.10.101 #1-NixOS SMP Wed Feb 16 11:54:31 UTC 2022 x86_64 GNU/Linux ### Versions of Apache Airflow Providers n/a ### Deployment Virtualenv installation ### Deployment details _No response_ ### Anything else _No response_ ### Are you willing to submit PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/25352
https://github.com/apache/airflow/pull/25355
f6b48ac6dfaf931a5433ec16369302f68f038c65
4e786e31bcdf81427163918e14d191e55a4ab606
"2022-07-27T22:49:28Z"
python
"2022-07-29T08:58:18Z"
closed
apache/airflow
https://github.com/apache/airflow
25,349
["airflow/providers/hashicorp/_internal_client/vault_client.py", "tests/providers/hashicorp/_internal_client/test_vault_client.py", "tests/providers/hashicorp/hooks/test_vault.py"]
Vault client for hashicorp provider prints a deprecation warning when using kubernetes login
### Apache Airflow Provider(s) hashicorp ### Versions of Apache Airflow Providers ``` apache-airflow==2.3.0 apache-airflow-providers-hashicorp==2.2.0 hvac==0.11.2 ``` ### Apache Airflow version 2.3.0 ### Operating System Ubuntu 18.04 ### Deployment Official Apache Airflow Helm Chart ### Deployment details _No response_ ### What happened Using the vault secrets backend prints a deprecation warning when using the kubernetes auth method: ``` /home/airflow/.local/lib/python3.8/site-packages/airflow/providers/hashicorp/_internal_client/vault_client.py:284 DeprecationWarning: Call to deprecated function 'auth_kubernetes'. This method will be removed in version '1.0.0' Please use the 'login' method on the 'hvac.api.auth_methods.kubernetes' class moving forward. ``` This code is still present in `main` at https://github.com/apache/airflow/blob/main/airflow/providers/hashicorp/_internal_client/vault_client.py#L258-L260. ### What you think should happen instead The new kubernetes authentication method should be used instead. This code: ```python if self.auth_mount_point: _client.auth_kubernetes(role=self.kubernetes_role, jwt=jwt, mount_point=self.auth_mount_point) else: _client.auth_kubernetes(role=self.kubernetes_role, jwt=jwt) ``` Should be able to be updated to: ```python from hvac.api.auth_methods import Kubernetes if self.auth_mount_point: Kubernetes(_client.adapter).login(role=self.kubernetes_role, jwt=jwt, mount_point=self.auth_mount_point) else: Kubernetes(_client.adapter).login(role=self.kubernetes_role, jwt=jwt) ``` ### How to reproduce Use the vault secrets backend with the kubernetes auth method and look at the logs. ### Anything else _No response_ ### Are you willing to submit PR? - [X] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/25349
https://github.com/apache/airflow/pull/25351
f4b93cc097dab95437c9c4b37474f792f80fd14e
ad0a4965aaf0702f0e8408660b912e87d3c75c22
"2022-07-27T19:19:01Z"
python
"2022-07-28T18:23:18Z"
closed
apache/airflow
https://github.com/apache/airflow
25,344
["airflow/models/abstractoperator.py", "tests/models/test_baseoperator.py"]
Improve Airflow logging for operator Jinja template processing
### Description When an operator uses Jinja templating, debugging issues is difficult because the Airflow task log only displays a stack trace. ### Use case/motivation When there's a templating issue, I'd like to have some specific, actionable info to help understand the problem. At minimum: * Which operator or task had the issue? * Which field had the issue? * What was the Jinja template? Possibly also the Jinja context, although that can be very verbose. I have prototyped this in my local Airflow dev environment, and I propose something like the following. (Note the logging commands, which are not present in the Airflow repo.) Please let me know if this sounds reasonable, and I will be happy to create a PR. ``` def _do_render_template_fields( self, parent, template_fields, context, jinja_env, seen_oids, ) -> None: """Copied from Airflow 2.2.5 with added logging.""" logger.info(f"BaseOperator._do_render_template_fields(): Task {self.task_id}") for attr_name in template_fields: content = getattr(parent, attr_name) if content: logger.info(f"Rendering template for '{attr_name}' field: {content!r}") rendered_content = self.render_template(content, context, jinja_env, seen_oids) + setattr(parent, attr_name, rendered_content) ``` ### Related issues _No response_ ### Are you willing to submit a PR? - [X] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/25344
https://github.com/apache/airflow/pull/25452
9c632684341fb3115d654aecb83aa951d80b19af
4da2b0c216c92795f19862a3ff6634e5a5936138
"2022-07-27T15:46:39Z"
python
"2022-08-02T19:40:00Z"
closed
apache/airflow
https://github.com/apache/airflow
25,343
["airflow/callbacks/callback_requests.py", "airflow/models/taskinstance.py", "tests/callbacks/test_callback_requests.py"]
Object of type datetime is not JSON serializable after detecting zombie jobs with CeleryExecutor and separated Scheduler and DAG-Processor
### Apache Airflow version 2.3.3 (latest released) ### What happened After running for a certain period (few minutes until several hours depending on the number of active DAGs in the environment) The scheduler crashes with the following error message: ``` [2022-07-26 15:07:24,362] {executor_loader.py:105} INFO - Loaded executor: CeleryExecutor [2022-07-26 15:07:24,363] {scheduler_job.py:1252} INFO - Resetting orphaned tasks for active dag runs [2022-07-26 15:07:25,585] {celery_executor.py:532} INFO - Adopted the following 1 tasks from a dead executor <TaskInstance: freewheel_uafl_data_scala.freewheel.delivery_data scheduled__2022-07-25T04:15:00+00:00 [running]> in state STARTED [2022-07-26 15:07:35,881] {scheduler_job.py:1381} WARNING - Failing (1) jobs without heartbeat after 2022-07-26 12:37:35.868798+00:00 [2022-07-26 15:07:35,881] {scheduler_job.py:1389} ERROR - Detected zombie job: {'full_filepath': '/data/dags/09_scala_apps/freewheel_uafl_data_scala.py', 'msg': 'Detected <TaskInstance: freewheel_uafl_data_scala.freewheel.delivery_data scheduled__2022-07-25T04:15:00+00:00 [running]> as zombie', 'simple_task_instance': <airflow.models.taskinstance.SimpleTaskInstance object at 0x7fb4a1105690>, 'is_failure_callback': True} [2022-07-26 15:07:35,883] {scheduler_job.py:769} ERROR - Exception when executing SchedulerJob._run_scheduler_loop Traceback (most recent call last): File "/usr/lib/python3.10/site-packages/airflow/jobs/scheduler_job.py", line 752, in _execute self._run_scheduler_loop() File "/usr/lib/python3.10/site-packages/airflow/jobs/scheduler_job.py", line 873, in _run_scheduler_loop next_event = timers.run(blocking=False) File "/usr/lib/python3.10/sched.py", line 151, in run action(*argument, **kwargs) File "/usr/lib/python3.10/site-packages/airflow/utils/event_scheduler.py", line 36, in repeat action(*args, **kwargs) File "/usr/lib/python3.10/site-packages/airflow/utils/session.py", line 71, in wrapper return func(*args, session=session, **kwargs) File "/usr/lib/python3.10/site-packages/airflow/jobs/scheduler_job.py", line 1390, in _find_zombies self.executor.send_callback(request) File "/usr/lib/python3.10/site-packages/airflow/executors/base_executor.py", line 363, in send_callback self.callback_sink.send(request) File "/usr/lib/python3.10/site-packages/airflow/utils/session.py", line 71, in wrapper return func(*args, session=session, **kwargs) File "/usr/lib/python3.10/site-packages/airflow/callbacks/database_callback_sink.py", line 34, in send db_callback = DbCallbackRequest(callback=callback, priority_weight=10) File "<string>", line 4, in __init__ File "/usr/lib/python3.10/site-packages/sqlalchemy/orm/state.py", line 481, in _initialize_instance with util.safe_reraise(): File "/usr/lib/python3.10/site-packages/sqlalchemy/util/langhelpers.py", line 70, in __exit__ compat.raise_( File "/usr/lib/python3.10/site-packages/sqlalchemy/util/compat.py", line 208, in raise_ raise exception File "/usr/lib/python3.10/site-packages/sqlalchemy/orm/state.py", line 479, in _initialize_instance return manager.original_init(*mixed[1:], **kwargs) File "/usr/lib/python3.10/site-packages/airflow/models/db_callback_request.py", line 44, in __init__ self.callback_data = callback.to_json() File "/usr/lib/python3.10/site-packages/airflow/callbacks/callback_requests.py", line 79, in to_json return json.dumps(dict_obj) File "/usr/lib/python3.10/json/__init__.py", line 231, in dumps return _default_encoder.encode(obj) File "/usr/lib/python3.10/json/encoder.py", line 199, in encode chunks = self.iterencode(o, _one_shot=True) File "/usr/lib/python3.10/json/encoder.py", line 257, in iterencode return _iterencode(o, 0) File "/usr/lib/python3.10/json/encoder.py", line 179, in default raise TypeError(f'Object of type {o.__class__.__name__} ' TypeError: Object of type datetime is not JSON serializable [2022-07-26 15:07:36,100] {scheduler_job.py:781} INFO - Exited execute loop Traceback (most recent call last): File "/usr/bin/airflow", line 8, in <module> sys.exit(main()) File "/usr/lib/python3.10/site-packages/airflow/__main__.py", line 38, in main args.func(args) File "/usr/lib/python3.10/site-packages/airflow/cli/cli_parser.py", line 51, in command return func(*args, **kwargs) File "/usr/lib/python3.10/site-packages/airflow/utils/cli.py", line 99, in wrapper return f(*args, **kwargs) File "/usr/lib/python3.10/site-packages/airflow/cli/commands/scheduler_command.py", line 75, in scheduler _run_scheduler_job(args=args) File "/usr/lib/python3.10/site-packages/airflow/cli/commands/scheduler_command.py", line 46, in _run_scheduler_job job.run() File "/usr/lib/python3.10/site-packages/airflow/jobs/base_job.py", line 244, in run self._execute() File "/usr/lib/python3.10/site-packages/airflow/jobs/scheduler_job.py", line 752, in _execute self._run_scheduler_loop() File "/usr/lib/python3.10/site-packages/airflow/jobs/scheduler_job.py", line 873, in _run_scheduler_loop next_event = timers.run(blocking=False) File "/usr/lib/python3.10/sched.py", line 151, in run action(*argument, **kwargs) File "/usr/lib/python3.10/site-packages/airflow/utils/event_scheduler.py", line 36, in repeat action(*args, **kwargs) File "/usr/lib/python3.10/site-packages/airflow/utils/session.py", line 71, in wrapper return func(*args, session=session, **kwargs) File "/usr/lib/python3.10/site-packages/airflow/jobs/scheduler_job.py", line 1390, in _find_zombies self.executor.send_callback(request) File "/usr/lib/python3.10/site-packages/airflow/executors/base_executor.py", line 363, in send_callback self.callback_sink.send(request) File "/usr/lib/python3.10/site-packages/airflow/utils/session.py", line 71, in wrapper return func(*args, session=session, **kwargs) File "/usr/lib/python3.10/site-packages/airflow/callbacks/database_callback_sink.py", line 34, in send db_callback = DbCallbackRequest(callback=callback, priority_weight=10) File "<string>", line 4, in __init__ File "/usr/lib/python3.10/site-packages/sqlalchemy/orm/state.py", line 481, in _initialize_instance with util.safe_reraise(): File "/usr/lib/python3.10/site-packages/sqlalchemy/util/langhelpers.py", line 70, in __exit__ compat.raise_( File "/usr/lib/python3.10/site-packages/sqlalchemy/util/compat.py", line 208, in raise_ raise exception File "/usr/lib/python3.10/site-packages/sqlalchemy/orm/state.py", line 479, in _initialize_instance return manager.original_init(*mixed[1:], **kwargs) File "/usr/lib/python3.10/site-packages/airflow/models/db_callback_request.py", line 44, in __init__ self.callback_data = callback.to_json() File "/usr/lib/python3.10/site-packages/airflow/callbacks/callback_requests.py", line 79, in to_json return json.dumps(dict_obj) File "/usr/lib/python3.10/json/__init__.py", line 231, in dumps return _default_encoder.encode(obj) File "/usr/lib/python3.10/json/encoder.py", line 199, in encode chunks = self.iterencode(o, _one_shot=True) File "/usr/lib/python3.10/json/encoder.py", line 257, in iterencode return _iterencode(o, 0) File "/usr/lib/python3.10/json/encoder.py", line 179, in default raise TypeError(f'Object of type {o.__class__.__name__} ' TypeError: Object of type datetime is not JSON serializable ``` ### What you think should happen instead The scheduler should handle zombie jobs without crashing. ### How to reproduce The following conditions are necessary: - dag-processor and scheduler run in separated containers - AirFlow uses the CeleryExecutor - There are zombie jobs ### Operating System Alpine Linux 3.16.1 ### Versions of Apache Airflow Providers ``` apache-airflow-providers-apache-hdfs==3.0.1 apache-airflow-providers-celery==3.0.0 apache-airflow-providers-cncf-kubernetes==4.2.0 apache-airflow-providers-common-sql==1.0.0 apache-airflow-providers-datadog==3.0.0 apache-airflow-providers-exasol==2.1.3 apache-airflow-providers-ftp==3.1.0 apache-airflow-providers-http==4.0.0 apache-airflow-providers-imap==3.0.0 apache-airflow-providers-jenkins==3.0.0 apache-airflow-providers-microsoft-mssql==3.1.0 apache-airflow-providers-odbc==3.1.0 apache-airflow-providers-oracle==3.1.0 apache-airflow-providers-postgres==5.1.0 apache-airflow-providers-redis==3.0.0 apache-airflow-providers-slack==5.1.0 apache-airflow-providers-sqlite==3.1.0 apache-airflow-providers-ssh==3.1.0 ``` ### Deployment Other 3rd-party Helm chart ### Deployment details One Pod on Kubernetes containing the following containers - 1 Container for the webserver service - 1 Container for the scheduler service - 1 Container for the dag-processor service - 1 Container for the flower service - 1 Container for the redis service - 2 or 3 containers for the celery workers services Due to a previous issue crashing the scheduler with the message `UNEXPECTED COMMIT - THIS WILL BREAK HA LOCKS`, we substitute `scheduler_job.py` with the file `https://raw.githubusercontent.com/tanelk/airflow/a4b22932e5ac9c2b6f37c8c58345eee0f63cae09/airflow/jobs/scheduler_job.py`. Sadly I don't remember which issue or MR exactly but it was related to scheduler and dag-processor running in separate containers. ### Anything else It looks like that only the **combination of CeleryExecutor and separated scheduler and dag-processor** services crashes the scheduler when handling zombie jobs. The KubernetesExecutor with separated scheduler and dag-processor doesn't crash the scheduler. It looks like the CeleryExecutor with scheduler and dag-processor in the same container doesn't crash the scheduler. ### Are you willing to submit PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/25343
https://github.com/apache/airflow/pull/25471
3421ecc21bafaf355be5b79ec4ed19768e53275a
d7e14ba0d612d8315238f9d0cba4ef8c44b6867c
"2022-07-27T15:28:28Z"
python
"2022-08-02T21:50:40Z"
closed
apache/airflow
https://github.com/apache/airflow
25,330
["airflow/operators/bash.py"]
User defined `env` clobbers PATH, BashOperator can't find bash
### Apache Airflow version main (development) ### What happened NixOS is unconventional in some ways. For instance `which bash` prints `/run/current-system/sw/bin/bash`, which isn't a place that most people expect to go looking for bash. I can't be sure if this is the reason--or if it's some other peculiarity--but on NixOS, cases where `BashOperator` defines an `env` cause the task to fail with this error: ``` venv ❯ airflow dags test nopath "$(date +%Y-%m-%d)" [2022-07-26 21:54:09,704] {dagbag.py:508} INFO - Filling up the DagBag from /home/matt/today/dags [2022-07-26 21:54:10,129] {base_executor.py:91} INFO - Adding to queue: ['<TaskInstance: nopath.nopath backfill__2022-07-26T00:00:00+00:00 [queued]>'] [2022-07-26 21:54:15,148] {subprocess.py:62} INFO - Tmp dir root location: /tmp [2022-07-26 21:54:15,149] {subprocess.py:74} INFO - Running command: ['bash', '-c', 'echo hello world'] [2022-07-26 21:54:15,238] {debug_executor.py:84} ERROR - Failed to execute task: [Errno 2] No such file or directory: 'bash'. Traceback (most recent call last): File "/home/matt/src/airflow/airflow/executors/debug_executor.py", line 78, in _run_task ti.run(job_id=ti.job_id, **params) File "/home/matt/src/airflow/airflow/utils/session.py", line 71, in wrapper return func(*args, session=session, **kwargs) File "/home/matt/src/airflow/airflow/models/taskinstance.py", line 1782, in run self._run_raw_task( File "/home/matt/src/airflow/airflow/utils/session.py", line 68, in wrapper return func(*args, **kwargs) File "/home/matt/src/airflow/airflow/models/taskinstance.py", line 1445, in _run_raw_task self._execute_task_with_callbacks(context, test_mode) File "/home/matt/src/airflow/airflow/models/taskinstance.py", line 1623, in _execute_task_with_callbacks result = self._execute_task(context, task_orig) File "/home/matt/src/airflow/airflow/models/taskinstance.py", line 1694, in _execute_task result = execute_callable(context=context) File "/home/matt/src/airflow/airflow/operators/bash.py", line 183, in execute result = self.subprocess_hook.run_command( File "/home/matt/src/airflow/airflow/hooks/subprocess.py", line 76, in run_command self.sub_process = Popen( File "/nix/store/cgxc3jz7idrb1wnb2lard9rvcx6aw2si-python3-3.9.6/lib/python3.9/subprocess.py", line 951, in __init__ self._execute_child(args, executable, preexec_fn, close_fds, File "/nix/store/cgxc3jz7idrb1wnb2lard9rvcx6aw2si-python3-3.9.6/lib/python3.9/subprocess.py", line 1821, in _execute_child raise child_exception_type(errno_num, err_msg, err_filename) FileNotFoundError: [Errno 2] No such file or directory: 'bash' ``` On the other hand, tasks succeed if: - The author doesn't use the `env` kwarg - `env` is replaced with `append_env` - they use `env` to explicitly set `PATH` to a folder containing `bash` - or they are run on a more conventional system (like my MacBook) Here is a DAG which demonstrates this: ```python3 from airflow.models import DAG from airflow.operators.bash import BashOperator from datetime import datetime, timedelta with DAG( dag_id="withpath", start_date=datetime(1970, 1, 1), schedule_interval=None, ) as withpath: BashOperator( task_id="withpath", env={"PATH": "/run/current-system/sw/bin/", "WORLD": "world"}, bash_command="echo hello $WORLD", ) with DAG( dag_id="nopath", start_date=datetime(1970, 1, 1), schedule_interval=None, ) as nopath: BashOperator( task_id="nopath", env={"WORLD": "world"}, bash_command="echo hello $WORLD", ) ``` `withpath` succeeds, but `nopath` fails, showing the above error. ### What you think should happen instead Unless the user explicitly sets PATH via the `env` kwarg, airflow should populate it with whatever it finds in the enclosing environment. ### How to reproduce I can reproduce it reliably, but only on this machine. I'm willing to fix this myself--since I can test it right here--but I'm filing this issue because I need a hint. Where should I start? ### Operating System NixOS 21.11 (Porcupine) ### Versions of Apache Airflow Providers n/a ### Deployment Virtualenv installation ### Deployment details _No response_ ### Anything else _No response_ ### Are you willing to submit PR? - [X] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/25330
https://github.com/apache/airflow/pull/25331
900c81b87a76a9df8a3a6435a0d42348e88c5bbb
c3adf3e65d32d8145e2341989a5336c3e5269e62
"2022-07-27T04:25:45Z"
python
"2022-07-28T17:39:35Z"
closed
apache/airflow
https://github.com/apache/airflow
25,322
["docs/apache-airflow-providers-amazon/connections/aws.rst", "docs/apache-airflow-providers-amazon/img/aws-base-conn-airflow.png", "docs/apache-airflow-providers-amazon/logging/s3-task-handler.rst", "docs/spelling_wordlist.txt"]
Amazon S3 for logging using IAM role for service accounts(IRSA)
### What do you see as an issue? I am using the latest Helm Chart version (see the version below) to deploy Airflow on Amazon EKS and trying to configure S3 for logging. We have few docs that explain how to add logging variables through `values.yaml` but that isn't sufficient for configuring S3 logging with IRSA. I couldn't find any other logs that explains this configuration in detail hence i am adding solution below Here is the link that i am referring to.. Amazon S3 for Logging https://github.com/apache/airflow/blob/main/docs/apache-airflow-providers-amazon/logging/s3-task-handler.rst Airflow config ``` apiVersion: v2 name: airflow version: 1.6.0 appVersion: 2.3.3 ``` ### Solving the problem **I have managed to get S3 logging working with IAM role for service accounts(IRSA).** # Writing logs to Amazon S3 using AWS IRSA ## Step1: Create IAM role for service account (IRSA) Create IRSA using `eksctl or terraform`. This command uses eksctl to create IAM role and service account ```sh eksctl create iamserviceaccount --cluster="<EKS_CLUSTER_ID>" --name="<SERVICE_ACCOUNT_NAME>" --namespace=airflow --attach-policy-arn="<IAM_POLICY_ARN>" --approve # e.g., eksctl create iamserviceaccount --cluster=airflow-eks-cluster --name=airflow-sa --namespace=airflow --attach-policy-arn=arn:aws:iam::aws:policy/AmazonS3FullAccess --approve ``` ## Step2: Update Helm Chart `values.yaml` with Service Account Add the above Service Account (e.g., `airflow-sa`) to Helm Chart `values.yaml` under the following sections. We are using the existing `serviceAccount` hence `create: false` with existing name as `name: airflow-sa`. Annotations may not be required as this will be added by **Step1**. Adding this for readability ```yaml workers: serviceAccount: create: false name: airflow-sa # Annotations to add to worker Kubernetes service account. annotations: eks.amazonaws.com/role-arn: <ENTER_IAM_ROLE_ARN_CREATED_BY_EKSCTL_COMMAND> webserver: serviceAccount: create: false name: airflow-sa # Annotations to add to worker Kubernetes service account. annotations: eks.amazonaws.com/role-arn: <ENTER_IAM_ROLE_ARN_CREATED_BY_EKSCTL_COMMAND config: logging: remote_logging: 'True' logging_level: 'INFO' remote_base_log_folder: 's3://<ENTER_YOUR_BUCKET_NAME>/<FOLDER_PATH' remote_log_conn_id: 'aws_s3_conn' # notice this name is be used in Step3 delete_worker_pods: 'False' encrypt_s3_logs: 'True' ``` ## Step3: Create S3 connection in Airflow Web UI Now the final step to create connections under Airflow UI before executing the DAGs - Login to Airflow Web UI and Navigate to `Admin -> Connections` - Create connection for S3 and select the options as shown in the image <img width="861" alt="image (1)" src="https://user-images.githubusercontent.com/19464259/181126084-2a0ddf43-01a4-4abd-9031-b53fb4d8870f.png"> ## Step4: Verify the logs - Execute example DAGs - Verify the logs in S3 bucket - Verify the logs from Airflow UI from DAGs log ### Anything else _No response_ ### Are you willing to submit PR? - [X] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/25322
https://github.com/apache/airflow/pull/25931
3326a0d493c92b15eea8cd9a874729db7b7a255c
bd3d6d3ee71839ec3628fa47294e0b3b8a6a6b9f
"2022-07-26T23:10:41Z"
python
"2022-10-10T08:40:10Z"
closed
apache/airflow
https://github.com/apache/airflow
25,313
["airflow/providers/google/cloud/transfers/sql_to_gcs.py"]
BaseSQLToGCSOperator parquet export format not limiting file size bug
### Apache Airflow Provider(s) google ### Versions of Apache Airflow Providers apache-airflow-providers-google==6.8.0 ### Apache Airflow version 2.3.2 ### Operating System Debian GNU/Linux 11 (bullseye) ### Deployment Docker-Compose ### Deployment details _No response_ ### What happened When using the `PostgresToGCSOperator(..., export_format='parquet', approx_max_file_size_bytes=Y, ...)`, when a temporary file exceeds the size defined by Y, the current file is not yielded, and no new chunk is created. Meaning that only 1 chunk will be uploaded irregardless of the size specified Y. I believe [this](https://github.com/apache/airflow/blob/d876b4aa6d86f589b9957a2e69484c9e5365eba8/airflow/providers/google/cloud/transfers/sql_to_gcs.py#L253) line of code which is responsible for verifying whether the temporary file has exceeded its size, to be the culprit, considering the call to `tmp_file_handle.tell()` is always returning 0 after a `parquet_writer.write_table(tbl)` call [[here]](https://github.com/apache/airflow/blob/d876b4aa6d86f589b9957a2e69484c9e5365eba8/airflow/providers/google/cloud/transfers/sql_to_gcs.py#L240). Therefore, regardless of the size of the temporary file already being bigger than the defined approximate limit Y, no new file will be created and only a single chunk will be uploaded. ### What you think should happen instead This behaviour is erroneous as when the temporary file exceeds the size defined by Y, it should upload the current temporary file and then create a new file to upload after successfully uploading the current file to GCS. A possible fix could be to use the `import os` package to determine the size of the temporary file with `os.stat(tmp_file_handle).st_size`, instead of using `tmp_file_handle.tell()`. ### How to reproduce 1. Create a postgres connection on airflow with id `postgres_test_conn`. 2. Create a gcp connection on airflow with id `gcp_test_conn`. 3. In the database referenced by the `postgres_test_conn`, in the public schema create a table `large_table`, where the total amount of data In the table is big enough to exceed the 10MB limit defined in the `approx_max_file_size_bytes` parameter. 4. Create a bucket named `issue_BaseSQLToGCSOperator_bucket`, in the gcp account referenced by the `gcp_test_conn`. 5. Create the dag exemplified in the excerpt below, and manually trigger the dag to fetch all the data from `large_table`, to insert in the `issue_BaseSQLToGCSOperator_bucket`. We should expect multiple chunks to be created, but due to this bug, only 1 chunk will be uploaded with the whole data from `large_table`. ```python import pendulum from airflow import DAG from airflow.providers.google.cloud.transfers.postgres_to_gcs import PostgresToGCSOperator with DAG( dag_id="issue_BaseSQLToGCSOperator", start_date=pendulum.parse("2022-01-01"), )as dag: task = PostgresToGCSOperator( task_id='extract_task', filename='uploading-{}.parquet', bucket="issue_BaseSQLToGCSOperator_bucket", export_format='parquet', approx_max_file_size_bytes=10_485_760, sql="SELECT * FROM large_table", postgres_conn_id='postgres_test_conn', gcp_conn_id='gcp_test_conn', ) ``` ### Anything else _No response_ ### Are you willing to submit PR? - [X] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/25313
https://github.com/apache/airflow/pull/25469
d0048414a6d3bdc282cc738af0185a9a1cd63ef8
803c0e252fc78a424a181a34a93e689fa9aaaa09
"2022-07-26T16:15:12Z"
python
"2022-08-03T06:06:26Z"
closed
apache/airflow
https://github.com/apache/airflow
25,297
["airflow/exceptions.py", "airflow/models/taskinstance.py", "tests/models/test_taskinstance.py"]
on_failure_callback is not called when task is terminated externally
### Apache Airflow version 2.2.5 ### What happened `on_failure_callback` is not called when task is terminated externally. A similar issue was reported in [#14422](https://github.com/apache/airflow/issues/14422) and fixed in [#15172](https://github.com/apache/airflow/pull/15172). However, the code that fixed this was changed in a later PR [#16301](https://github.com/apache/airflow/pull/16301), after which `task_instance._run_finished_callback` is no longer called when SIGTERM is received (https://github.com/apache/airflow/pull/16301/files#diff-d80fa918cc75c4d6aa582d5e29eeb812ba21371d6977fde45a4749668b79a515L85). ### What you think should happen instead `on_failure_callback` should be called when task fails regardless of how the task fails. ### How to reproduce DAG file: ``` import datetime import pendulum from airflow.models import DAG from airflow.operators.bash_operator import BashOperator DEFAULT_ARGS = { 'email': ['example@airflow.com'] } TZ = pendulum.timezone("America/Los_Angeles") test_dag = DAG( dag_id='test_callback_in_manually_terminated_dag', schedule_interval='*/10 * * * *', default_args=DEFAULT_ARGS, catchup=False, start_date=datetime.datetime(2022, 7, 14, 0, 0, tzinfo=TZ) ) with test_dag: BashOperator( task_id='manually_terminated_task', bash_command='echo start; sleep 60', on_failure_callback=lambda context: print('This on_failure_back should be called when task fails.') ) ``` While the task instance is running, either force quitting the scheduler or manually updating its state to None in the database will cause the task to get SIGTERM and terminate. In either case, a failure callback will not be called which does not match the behavior of previous versions of Airflow. The stack trace is attached below and `on_failure_callback` is not called. ``` [2022-07-15, 02:02:24 UTC] {process_utils.py:124} INFO - Sending Signals.SIGTERM to group 10571. PIDs of all processes in the group: [10573, 10575, 10571] [2022-07-15, 02:02:24 UTC] {process_utils.py:75} INFO - Sending the signal Signals.SIGTERM to group 10571 [2022-07-15, 02:02:24 UTC] {taskinstance.py:1431} ERROR - Received SIGTERM. Terminating subprocesses. [2022-07-15, 02:02:24 UTC] {subprocess.py:99} INFO - Sending SIGTERM signal to process group [2022-07-15, 02:02:24 UTC] {process_utils.py:70} INFO - Process psutil.Process(pid=10575, status='terminated', started='02:02:11') (10575) terminated with exit code None [2022-07-15, 02:02:24 UTC] {taskinstance.py:1776} ERROR - Task failed with exception Traceback (most recent call last): File "/opt/python3.7/lib/python3.7/site-packages/airflow/operators/bash.py", line 182, in execute cwd=self.cwd, File "/opt/python3.7/lib/python3.7/site-packages/airflow/hooks/subprocess.py", line 87, in run_command for raw_line in iter(self.sub_process.stdout.readline, b''): File "/opt/python3.7/lib/python3.7/site-packages/airflow/models/taskinstance.py", line 1433, in signal_handler raise AirflowException("Task received SIGTERM signal") airflow.exceptions.AirflowException: Task received SIGTERM signal [2022-07-15, 02:02:24 UTC] {taskinstance.py:1289} INFO - Marking task as FAILED. dag_id=test_callback_in_manually_terminated_dag, task_id=manually_terminated_task, execution_date=20220715T015100, start_date=20220715T020211, end_date=20220715T020224 [2022-07-15, 02:02:24 UTC] {logging_mixin.py:109} WARNING - /opt/python3.7/lib/python3.7/site-packages/airflow/utils/email.py:108 PendingDeprecationWarning: Fetching SMTP credentials from configuration variables will be deprecated in a future release. Please set credentials using a connection instead. [2022-07-15, 02:02:24 UTC] {configuration.py:381} WARNING - section/key [smtp/smtp_user] not found in config [2022-07-15, 02:02:24 UTC] {email.py:214} INFO - Email alerting: attempt 1 [2022-07-15, 02:02:24 UTC] {configuration.py:381} WARNING - section/key [smtp/smtp_user] not found in config [2022-07-15, 02:02:24 UTC] {email.py:214} INFO - Email alerting: attempt 1 [2022-07-15, 02:02:24 UTC] {taskinstance.py:1827} ERROR - Failed to send email to: ['example@airflow.com'] ... OSError: [Errno 101] Network is unreachable [2022-07-15, 02:02:24 UTC] {standard_task_runner.py:98} ERROR - Failed to execute job 159 for task manually_terminated_task (Task received SIGTERM signal; 10571) [2022-07-15, 02:02:24 UTC] {process_utils.py:70} INFO - Process psutil.Process(pid=10571, status='terminated', exitcode=1, started='02:02:11') (10571) terminated with exit code 1 [2022-07-15, 02:02:24 UTC] {process_utils.py:70} INFO - Process psutil.Process(pid=10573, status='terminated', started='02:02:11') (10573) terminated with exit code None ``` ### Operating System CentOS Linux 7 ### Deployment Other Docker-based deployment ### Anything else This is an issue in 2.2.5. However, I notice that it appears to be fixed in the main branch by PR [#21877](https://github.com/apache/airflow/pull/21877/files#diff-62f7d8a52fefdb8e05d4f040c6d3459b4a56fe46976c24f68843dbaeb5a98487R1885-R1887) although it was not intended to fix this issue. Is there a timeline for getting that PR into a release? We are happy to test it out to see if it fixes the issue once it's released. ### Are you willing to submit PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/25297
https://github.com/apache/airflow/pull/29743
38b901ec3f07e6e65880b11cc432fb8ad6243629
671b88eb3423e86bb331eaf7829659080cbd184e
"2022-07-26T04:32:52Z"
python
"2023-02-24T23:08:32Z"
closed
apache/airflow
https://github.com/apache/airflow
25,295
["airflow/models/param.py", "tests/models/test_param.py"]
ParamsDict represents the class object itself, not keys and values on Task Instance Details
### Apache Airflow version 2.3.3 (latest released) ### What happened ParamsDict's printable presentation shows the class object itself like `<airflow.models.param.ParamsDict object at 0x7fd0eba9bb80>` on the page of Task Instance Detail because it does not have `__repr__` method in its class. <img width="791" alt="image" src="https://user-images.githubusercontent.com/16971553/180902761-88b9dd9f-7102-4e49-b8b8-0282b31dda56.png"> It used to be `dict` object and what keys and values Params include are shown on UI before replacing Params with the advanced Params by #17100. ### What you think should happen instead It was originally shown below when it was `dict` object. ![image](https://user-images.githubusercontent.com/16971553/180904396-7b527877-5bc6-48d2-938f-7d338dfd79a7.png) I think it can be fixed by adding `__repr__` method to the class like below. ```python class ParamsDict(dict): ... def __repr__(self): return f"{self.dump()}" ``` ### How to reproduce I guess it all happens on Airflow using 2.2.0+ ### Operating System Linux, but it's not depending on OS ### Versions of Apache Airflow Providers _No response_ ### Deployment Other ### Deployment details _No response_ ### Anything else _No response_ ### Are you willing to submit PR? - [X] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/25295
https://github.com/apache/airflow/pull/25305
285c23a2f90f4c765053aedbd3f92c9f58a84d28
df388a3d5364b748993e61b522d0b68ff8b8124a
"2022-07-26T01:51:45Z"
python
"2022-07-27T07:13:27Z"
closed
apache/airflow
https://github.com/apache/airflow
25,274
["airflow/providers/common/sql/hooks/sql.py", "tests/providers/common/sql/hooks/test_dbapi.py"]
Apache Airflow SqlSensor DbApiHook Error
### Apache Airflow version 2.3.3 (latest released) ### What happened I trying to make SqlSensor to work with Oracle database, I've installed all the required provider and successfully tested the connection. When I run SqlSensor I got this error message `ERROR - Failed to execute job 32 for task check_exec_date (The connection type is not supported by SqlSensor. The associated hook should be a subclass of `DbApiHook`. Got OracleHook; 419)` ### What you think should happen instead _No response_ ### How to reproduce _No response_ ### Operating System Ubuntu 20.04.4 LTS ### Versions of Apache Airflow Providers apache-airflow-providers-common-sql==1.0.0 apache-airflow-providers-ftp==3.0.0 apache-airflow-providers-http==3.0.0 apache-airflow-providers-imap==3.0.0 apache-airflow-providers-oracle==3.2.0 apache-airflow-providers-postgres==5.1.0 apache-airflow-providers-sqlite==3.0.0 ### Deployment Other ### Deployment details Run on Windows Subsystem for Linux ### Anything else _No response_ ### Are you willing to submit PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/25274
https://github.com/apache/airflow/pull/25293
7e295b7d992f4ed13911e593f15fd18e0d4c16f6
b0fd105f4ade9933476470f6e247dd5fa518ffc9
"2022-07-25T08:47:00Z"
python
"2022-07-27T22:11:12Z"
closed
apache/airflow
https://github.com/apache/airflow
25,271
["airflow/plugins_manager.py", "airflow/utils/entry_points.py", "tests/plugins/test_plugins_manager.py", "tests/utils/test_entry_points.py", "tests/www/views/test_views.py"]
Version 2.3.3 breaks "Plugins as Python packages" feature
### Apache Airflow version 2.3.3 (latest released) ### What happened In 2.3.3 If I use https://airflow.apache.org/docs/apache-airflow/stable/plugins.html#plugins-as-python-packages feature, then I see these Error: short: `ValueError: The name 'airs' is already registered for this blueprint. Use 'name=' to provide a unique name.` long: > i'm trying to reproduce it... If I don't use it(workarounding by AIRFLOW__CORE__PLUGINS_FOLDER), errors doesn't occur. It didn't happend in 2.3.2 and earlier ### What you think should happen instead Looks like plugins are import multiple times if it is plugins-as-python-packages. Perhaps flask's major version change is the main cause. Presumably, in flask 1.0, duplicate registration of blueprint was quietly filtered out, but in 2.0 it seems to have been changed to generate an error. (I am trying to find out if this hypothesis is correct) Anyway, use the latest version of FAB is important. we will have to adapt to this change, so plugins will have to be imported once regardless how it defined. ### How to reproduce > It was reproduced in the environment used at work, but it is difficult to disclose or explain it. > I'm working to reproduce it with the breeze command, and I open the issue first with the belief that it's not just me. ### Operating System CentOS Linux release 7.9.2009 (Core) ### Versions of Apache Airflow Providers ```sh $ SHIV_INTERPRETER=1 airsflow -m pip freeze | grep apache- apache-airflow==2.3.3 apache-airflow-providers-apache-hive==3.1.0 apache-airflow-providers-apache-spark==2.1.0 apache-airflow-providers-celery==3.0.0 apache-airflow-providers-common-sql==1.0.0 apache-airflow-providers-ftp==3.1.0 apache-airflow-providers-http==3.0.0 apache-airflow-providers-imap==3.0.0 apache-airflow-providers-postgres==5.1.0 apache-airflow-providers-redis==3.0.0 apache-airflow-providers-sqlite==3.1.0 ``` but I think these are irrelevant. ### Deployment Other 3rd-party Helm chart ### Deployment details docker image based on centos7, python 3.9.10 interpreter, self-written helm2 chart .... ... but I think these are irrelevant. ### Anything else _No response_ ### Are you willing to submit PR? - [X] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/25271
https://github.com/apache/airflow/pull/25296
cd14f3f65ad5011058ab53f2119198d6c082e82c
c30dc5e64d7229cbf8e9fbe84cfa790dfef5fb8c
"2022-07-25T07:11:29Z"
python
"2022-08-03T13:01:43Z"
closed
apache/airflow
https://github.com/apache/airflow
25,241
["airflow/www/views.py", "tests/www/views/test_views_grid.py"]
Add has_dataset_outlets in /grid_data
Return `has_dataset_outlets` in /grid_data so we can know whether to check for downstream dataset events in grid view. Also: add `operator` Also be mindful of performance on those endpoints (e.g do things in a bulk query), and it should be part of the acceptance criteria.
https://github.com/apache/airflow/issues/25241
https://github.com/apache/airflow/pull/25323
e994f2b0201ca9dfa3397d22b5ac9d10a11a8931
d2df9fe7860d1e795040e40723828c192aca68be
"2022-07-22T19:28:28Z"
python
"2022-07-28T10:34:06Z"
closed
apache/airflow
https://github.com/apache/airflow
25,240
["airflow/www/forms.py", "tests/www/views/test_views_connection.py"]
Strip white spaces from values entered into fields in Airflow UI Connections form
### Apache Airflow version 2.3.3 (latest released) ### What happened I accidentally (and then intentionally) added leading and trailing white spaces while adding connection parameters in Airflow UI Connections form. What followed was an error message that was not so helpful in tracking down the input error by the user. ### What you think should happen instead Ideally, I expected that there should be a frontend or backend logic that strips off accidental leading or trailing white spaces when adding Connections parameters in Airflow. ### How to reproduce Intentionally add leading or trailing white spaces while adding Connections parameters. <img width="981" alt="Screenshot 2022-07-22 at 18 49 54" src="https://user-images.githubusercontent.com/9834450/180497315-0898d803-c104-4d93-b464-c0b33a466b4d.png"> ### Operating System Mac OS ### Versions of Apache Airflow Providers _No response_ ### Deployment Astronomer ### Deployment details _No response_ ### Anything else _No response_ ### Are you willing to submit PR? - [X] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/25240
https://github.com/apache/airflow/pull/32292
410d0c0f86aaec71e2c0050f5adbc53fb7b441e7
394cedb01abd6539f6334a40757bf186325eb1dd
"2022-07-22T18:02:47Z"
python
"2023-07-11T20:04:08Z"
closed
apache/airflow
https://github.com/apache/airflow
25,210
["airflow/datasets/manager.py", "airflow/models/dataset.py", "tests/datasets/test_manager.py", "tests/models/test_taskinstance.py"]
Many tasks updating dataset at once causes some of them to fail
### Apache Airflow version main (development) ### What happened I have 16 dags which all update the same dataset. They're set to finish at the same time (when the seconds on the clock are 00). About three quarters of them behave as expected, but the other quarter fails with errors like: ``` [2022-07-21, 06:06:00 UTC] {standard_task_runner.py:97} ERROR - Failed to execute job 8 for task increment_source ((psycopg2.errors.UniqueViolation) duplicate key value violates unique constraint "dataset_dag_run_queue_pkey" DETAIL: Key (dataset_id, target_dag_id)=(1, simple_dataset_sink) already exists. [SQL: INSERT INTO dataset_dag_run_queue (dataset_id, target_dag_id, created_at) VALUES (%(dataset_id)s, %(target_dag_id)s, %(created_at)s)] [parameters: {'dataset_id': 1, 'target_dag_id': 'simple_dataset_sink', 'created_at': datetime.datetime(2022, 7, 21, 6, 6, 0, 131730, tzinfo=Timezone('UTC'))}] (Background on this error at: https://sqlalche.me/e/14/gkpj); 375) ``` I've prepaired a gist with the details: https://gist.github.com/MatrixManAtYrService/b5e58be0949eab9180608d0760288d4d ### What you think should happen instead All dags should succeed ### How to reproduce See this gist: https://gist.github.com/MatrixManAtYrService/b5e58be0949eab9180608d0760288d4d Summary: Unpause all of the dags which we expect to collide, wait two minutes. Some will have collided. ### Operating System docker/debian ### Versions of Apache Airflow Providers n/a ### Deployment Astronomer ### Deployment details `astro dev start` targeting commit: cff7d9194f549d801947f47dfce4b5d6870bfaaa be sure to have `pause` in requirements.txt ### Anything else _No response_ ### Are you willing to submit PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/25210
https://github.com/apache/airflow/pull/26103
a2db8fcb7df1a266e82e17b937c9c1cf01a16a42
4dd628c26697d759aebb81a7ac2fe85a79194328
"2022-07-21T06:28:32Z"
python
"2022-09-01T20:28:45Z"
closed
apache/airflow
https://github.com/apache/airflow
25,200
["airflow/models/baseoperator.py", "airflow/models/dagrun.py", "airflow/models/taskinstance.py", "airflow/ti_deps/dep_context.py", "airflow/ti_deps/deps/trigger_rule_dep.py", "tests/models/test_dagrun.py", "tests/models/test_taskinstance.py", "tests/ti_deps/deps/test_trigger_rule_dep.py"]
DAG Run fails when chaining multiple empty mapped tasks
### Apache Airflow version 2.3.3 (latest released) ### What happened On Kubernetes Executor and Local Executor (others not tested) a significant fraction of the DAG Runs of a DAG that has two consecutive mapped tasks which are are being passed an empty list are marked as failed when all tasks are either succeeding or being skipped. ![image](https://user-images.githubusercontent.com/13177948/180075030-705b3a15-c554-49c1-8470-ecd10ee1d2dc.png) ### What you think should happen instead The DAG Run should be marked success. ### How to reproduce Run the following DAG on Kubernetes Executor or Local Executor. The real world version of this DAG has several mapped tasks that all point to the same list, and that list is frequently empty. I have made a minimal reproducible example. ```py from datetime import datetime from airflow import DAG from airflow.decorators import task with DAG(dag_id="break_mapping", start_date=datetime(2022, 3, 4)) as dag: @task def add_one(x: int): return x + 1 @task def say_hi(): print("Hi") added_values = add_one.expand(x=[]) added_more_values = add_one.expand(x=[]) say_hi() >> added_values added_values >> added_more_values ``` ### Operating System Debian Bullseye ### Versions of Apache Airflow Providers ``` apache-airflow-providers-amazon==1!4.0.0 apache-airflow-providers-cncf-kubernetes==1!4.1.0 apache-airflow-providers-elasticsearch==1!4.0.0 apache-airflow-providers-ftp==1!3.0.0 apache-airflow-providers-google==1!8.1.0 apache-airflow-providers-http==1!3.0.0 apache-airflow-providers-imap==1!3.0.0 apache-airflow-providers-microsoft-azure==1!4.0.0 apache-airflow-providers-mysql==1!3.0.0 apache-airflow-providers-postgres==1!5.0.0 apache-airflow-providers-redis==1!3.0.0 apache-airflow-providers-slack==1!5.0.0 apache-airflow-providers-sqlite==1!3.0.0 apache-airflow-providers-ssh==1!3.0.0 ``` ### Deployment Astronomer ### Deployment details Local was tested on docker compose (from astro-cli) ### Anything else _No response_ ### Are you willing to submit PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/25200
https://github.com/apache/airflow/pull/25995
1e19807c7ea0d7da11b224658cd9a6e3e7a14bc5
5697e9fdfa9d5af2d48f7037c31972c2db1f4397
"2022-07-20T20:33:42Z"
python
"2022-09-01T12:03:31Z"
closed
apache/airflow
https://github.com/apache/airflow
25,179
["airflow/providers/apache/livy/hooks/livy.py", "airflow/providers/apache/livy/operators/livy.py", "airflow/providers/apache/livy/sensors/livy.py", "tests/providers/apache/livy/hooks/test_livy.py"]
Add auth_type to LivyHook
### Apache Airflow Provider(s) apache-livy ### Versions of Apache Airflow Providers apache-airflow-providers-apache-livy==3.0.0 ### Apache Airflow version 2.3.3 (latest released) ### Operating System Ubuntu 18.04 ### Deployment Other 3rd-party Helm chart ### Deployment details _No response_ ### What happened This is a feature request as apposed to an issue. I want to use the `LivyHook` to communicate with a Kerberized cluster. As such, I am using `requests_kerberos.HTTPKerberosAuth` as the authentication type. Currently, I am implementing this as follows: ```python from airflow.providers.apache.livy.hooks.livy import LivyHook as NativeHook from requests_kerberos import HTTPKerberosAuth as NativeAuth class HTTPKerberosAuth(NativeAuth): def __init__(self, *ignore_args, **kwargs): super().__init__(**kwargs) class LivyHook(NativeHook): def __init__(self, auth_type=HTTPKerberosAuth, **kwargs): super().__init__(**kwargs) self.auth_type = auth_type ``` ### What you think should happen instead _No response_ ### How to reproduce _No response_ ### Anything else _No response_ ### Are you willing to submit PR? - [X] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/25179
https://github.com/apache/airflow/pull/25183
ae7bf474109410fa838ab2728ae6d581cdd41808
7d3e799f7e012d2d5c1fe24ce2bea01e68a5a193
"2022-07-20T10:09:03Z"
python
"2022-08-07T13:49:22Z"
closed
apache/airflow
https://github.com/apache/airflow
25,165
["airflow/decorators/base.py", "tests/decorators/test_mapped.py", "tests/utils/test_task_group.py"]
Dynamic Tasks inside of TaskGroup do not have group_id prepended to task_id
### Apache Airflow version 2.3.3 (latest released) ### What happened As the title states, if you have dynamically mapped tasks inside of a `TaskGroup`, those tasks do not get the `group_id` prepended to their respective `task_id`s. This causes at least a couple of undesirable side effects: 1. Task names are truncated in Grid/Graph* View. The tasks below are named `plus_one` and `plus_two`: ![Screenshot from 2022-07-19 13-29-05](https://user-images.githubusercontent.com/7269927/179826453-a4293c14-2a83-4739-acf2-8b378e4e85e9.png) ![Screenshot from 2022-07-19 13-47-47](https://user-images.githubusercontent.com/7269927/179826442-b9e3d24d-52ff-49fc-a8cc-fe1cb5143bcb.png) Presumably this is because the UI normally strips off the `group_id` prefix. \* Graph View was very inconsistent in my experience. Sometimes the names are truncated, and sometimes they render correctly. I haven't figured out the pattern behind this behavior. 2. Duplicate `task_id`s between groups result in a `airflow.exceptions.DuplicateTaskIdFound`, even if the `group_id` would normally disambiguate them. ### What you think should happen instead These dynamic tasks inside of a group should have the `group_id` prepended for consistent behavior. ### How to reproduce ``` #!/usr/bin/env python3 import datetime from airflow.decorators import dag, task from airflow.utils.task_group import TaskGroup @dag( start_date=datetime.datetime(2022, 7, 19), schedule_interval=None, ) def test_dag(): with TaskGroup(group_id='group'): @task def plus_one(x: int): return x + 1 plus_one.expand(x=[1, 2, 3]) with TaskGroup(group_id='ggg'): @task def plus_two(x: int): return x + 2 plus_two.expand(x=[1, 2, 3]) dag = test_dag() if __name__ == '__main__': dag.cli() ``` ### Operating System CentOS Stream 8 ### Versions of Apache Airflow Providers N/A ### Deployment Other ### Deployment details Standalone ### Anything else Possibly related: #12309 ### Are you willing to submit PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/25165
https://github.com/apache/airflow/pull/26081
6a8f0167436b8b582aeb92a93d3f69d006b36f7b
9c4ab100e5b069c86bd00bb7860794df0e32fc2e
"2022-07-19T18:58:28Z"
python
"2022-09-01T08:46:47Z"
closed
apache/airflow
https://github.com/apache/airflow
25,163
["airflow/providers/common/sql/operators/sql.py", "tests/providers/common/sql/operators/test_sql.py"]
Common-SQL Operators Various Bugs
### Apache Airflow Provider(s) common-sql ### Versions of Apache Airflow Providers `apache-airflow-providers-common-sql==1.0.0` ### Apache Airflow version 2.3.3 (latest released) ### Operating System macOS Monterey 12.3.1 ### Deployment Astronomer ### Deployment details _No response_ ### What happened - `SQLTableCheckOperator` builds multiple checks in such a way that if two or more checks are given, and one is not a fully aggregated statement, then the SQL fails as it is missing a `GROUP BY` clause. - `SQLColumnCheckOperator` provides only the last SQL query built from the columns, so when a check fails, it will only give the correct SQL in the exception statement by coincidence. ### What you think should happen instead - Multiple checks should not need a `GROUP BY` clause - Either the correct SQL statement, or no SQL statement, should be returned in the exception message. ### How to reproduce For the `SQLTableCheckOperator`, using the operator like so: ``` table_cheforestfire_costs_table_checkscks = SQLTableCheckOperator( task_id="forestfire_costs_table_checks", table=SNOWFLAKE_FORESTFIRE_COST_TABLE, checks={ "row_count_check": {"check_statement": "COUNT(*) = 9"}, "total_cost_check": {"check_statement": "land_damage_cost + property_damage_cost + lost_profits_cost = total_cost"} } ) ``` For the `SQLColumnCheckOperator`, using the operator like so: ``` cost_column_checks = SQLColumnCheckOperator( task_id="cost_column_checks", table=SNOWFLAKE_COST_TABLE, column_mapping={ "ID": {"null_check": {"equal_to": 0}}, "LAND_DAMAGE_COST": {"min": {"geq_to": 0}}, "PROPERTY_DAMAGE_COST": {"min": {"geq_to": 0}}, "LOST_PROFITS_COST": {"min": {"geq_to": 0}}, } ) ``` and ensuring that any of the `ID`, `LAND_DAMAGE_COST`, or `PROPERTY_DAMAGE_COST` checks fail. An example DAG with the correct environment and data can be found [here](https://github.com/astronomer/airflow-data-quality-demo/blob/main/dags/snowflake_examples/complex_snowflake_transform.py). ### Anything else _No response_ ### Are you willing to submit PR? - [X] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/25163
https://github.com/apache/airflow/pull/25164
d66e427c4d21bc479caa629299a786ca83747994
be7cb1e837b875f44fcf7903329755245dd02dc3
"2022-07-19T18:18:01Z"
python
"2022-07-22T14:01:27Z"
closed
apache/airflow
https://github.com/apache/airflow
25,149
["airflow/models/dagbag.py", "airflow/www/security.py", "tests/models/test_dagbag.py", "tests/www/views/test_views_home.py"]
DAG.access_control can't sync when clean access_control
### Apache Airflow version 2.3.3 (latest released) ### What happened I change my DAG from ```python with DAG( 'test', access_control={'team':{'can_edit','can_read'}}, ) as dag: ... ``` to ```python with DAG( 'test', ) as dag: ... ``` Remove `access_control` arguments, Scheduler can't sync permissions to db. If we write code like this, ```python with DAG( 'test', access_control = {'team': {}} ) as dag: ... ``` It works. ### What you think should happen instead It should clear permissions to `test` DAG on Role `team`. I think we should give a consistent behaviour of permissions sync. If we give `access_control` argument, permissions assigned in Web will clear when we update DAG file. ### How to reproduce _No response_ ### Operating System CentOS Linux release 7.9.2009 (Core) ### Versions of Apache Airflow Providers ``` airflow-code-editor==5.2.2 apache-airflow==2.3.3 apache-airflow-providers-celery==3.0.0 apache-airflow-providers-ftp==3.0.0 apache-airflow-providers-http==3.0.0 apache-airflow-providers-imap==3.0.0 apache-airflow-providers-microsoft-psrp==2.0.0 apache-airflow-providers-microsoft-winrm==3.0.0 apache-airflow-providers-mysql==3.0.0 apache-airflow-providers-redis==3.0.0 apache-airflow-providers-samba==4.0.0 apache-airflow-providers-sftp==3.0.0 apache-airflow-providers-sqlite==3.0.0 apache-airflow-providers-ssh==3.0.0 ``` ### Deployment Virtualenv installation ### Deployment details _No response_ ### Anything else _No response_ ### Are you willing to submit PR? - [X] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/25149
https://github.com/apache/airflow/pull/30340
97ad7cee443c7f4ee6c0fbaabcc73de16f99a5e5
2c0c8b8bfb5287e10dc40b73f326bbf9a0437bb1
"2022-07-19T09:37:48Z"
python
"2023-04-26T14:11:14Z"
closed
apache/airflow
https://github.com/apache/airflow
25,103
["airflow/api_connexion/openapi/v1.yaml", "tests/api_connexion/endpoints/test_variable_endpoint.py"]
API `variables/{variable_key}` request fails if key has character `/`
### Apache Airflow version 2.3.2 ### What happened Created a variable e.g. `a/variable` and couldn't get or delete it ### What you think should happen instead i shouldn't've been allowed to create a variable with `/`, or the GET and DELETE should work ### How to reproduce ![image](https://user-images.githubusercontent.com/98349137/179311482-e3a74683-d855-4013-b27a-01dfae7db0ff.png) ![image](https://user-images.githubusercontent.com/98349137/179311639-7640b0b5-38c6-4002-a04c-5bcd8f8a0784.png) ``` DELETE /variables/{variable_key} GET /variables/{variable_key} ``` create a variable with `/`, and then try and get it. the get will 404, even after html escape. delete also fails `GET /variables/` works just fine ### Operating System astro ### Versions of Apache Airflow Providers _No response_ ### Deployment Astronomer ### Deployment details _No response_ ### Anything else _No response_ ### Are you willing to submit PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/25103
https://github.com/apache/airflow/pull/25774
98aac5dc282b139f0e726aac512b04a6693ba83d
a1beede41fb299b215f73f987a572c34f628de36
"2022-07-15T21:22:11Z"
python
"2022-08-18T06:08:27Z"
closed
apache/airflow
https://github.com/apache/airflow
25,095
["airflow/models/taskinstance.py", "airflow/models/taskreschedule.py", "airflow/serialization/serialized_objects.py", "airflow/ti_deps/deps/ready_to_reschedule.py", "tests/models/test_taskinstance.py", "tests/serialization/test_dag_serialization.py", "tests/ti_deps/deps/test_ready_to_reschedule_dep.py"]
Dynamically mapped sensor with mode='reschedule' fails with violated foreign key constraint
### Apache Airflow version 2.3.3 (latest released) ### What happened If you are using [Dynamic Task Mapping](https://airflow.apache.org/docs/apache-airflow/stable/concepts/dynamic-task-mapping.html) to map a Sensor with `.partial(mode='reschedule')`, and if that sensor fails its poke condition even once, the whole sensor task will immediately die with an error like: ``` [2022-07-14, 10:45:05 CDT] {standard_task_runner.py:92} ERROR - Failed to execute job 19 for task check_reschedule ((sqlite3.IntegrityError) FOREIGN KEY constraint failed [SQL: INSERT INTO task_reschedule (task_id, dag_id, run_id, map_index, try_number, start_date, end_date, duration, reschedule_date) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?)] [parameters: ('check_reschedule', 'test_dag', 'manual__2022-07-14T20:44:02.708517+00:00', -1, 1, '2022-07-14 20:45:05.874988', '2022-07-14 20:45:05.900895', 0.025907, '2022-07-14 20:45:10.898820')] (Background on this error at: https://sqlalche.me/e/14/gkpj); 2973372) ``` A similar error arises when using a Postgres backend: ``` [2022-07-14, 11:09:22 CDT] {standard_task_runner.py:92} ERROR - Failed to execute job 17 for task check_reschedule ((psycopg2.errors.ForeignKeyViolation) insert or update on table "task_reschedule" violates foreign key constraint "task_reschedule_ti_fkey" DETAIL: Key (dag_id, task_id, run_id, map_index)=(test_dag, check_reschedule, manual__2022-07-14T21:08:13.462782+00:00, -1) is not present in table "task_instance". [SQL: INSERT INTO task_reschedule (task_id, dag_id, run_id, map_index, try_number, start_date, end_date, duration, reschedule_date) VALUES (%(task_id)s, %(dag_id)s, %(run_id)s, %(map_index)s, %(try_number)s, %(start_date)s, %(end_date)s, %(duration)s, %(reschedule_date)s) RETURNING task_reschedule.id] [parameters: {'task_id': 'check_reschedule', 'dag_id': 'test_dag', 'run_id': 'manual__2022-07-14T21:08:13.462782+00:00', 'map_index': -1, 'try_number': 1, 'start_date': datetime.datetime(2022, 7, 14, 21, 9, 22, 417922, tzinfo=Timezone('UTC')), 'end_date': datetime.datetime(2022, 7, 14, 21, 9, 22, 464495, tzinfo=Timezone('UTC')), 'duration': 0.046573, 'reschedule_date': datetime.datetime(2022, 7, 14, 21, 9, 27, 458623, tzinfo=Timezone('UTC'))}] (Background on this error at: https://sqlalche.me/e/14/gkpj); 2983150) ``` `mode='poke'` seems to behave as expected. As far as I can tell, this affects all Sensor types. ### What you think should happen instead This combination of features should work without error. ### How to reproduce ``` #!/usr/bin/env python3 import datetime from airflow.decorators import dag, task from airflow.sensors.bash import BashSensor @dag( start_date=datetime.datetime(2022, 7, 14), schedule_interval=None, ) def test_dag(): @task def get_tasks(): return ['(($RANDOM % 2 == 0))'] * 10 tasks = get_tasks() BashSensor.partial(task_id='check_poke', mode='poke', poke_interval=5).expand(bash_command=tasks) BashSensor.partial(task_id='check_reschedule', mode='reschedule', poke_interval=5).expand(bash_command=tasks) dag = test_dag() if __name__ == '__main__': dag.cli() ``` ### Operating System CentOS Stream 8 ### Versions of Apache Airflow Providers N/A ### Deployment Other ### Deployment details Standalone ### Anything else _No response_ ### Are you willing to submit PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/25095
https://github.com/apache/airflow/pull/25594
84718f92334b7e43607ab617ef31f3ffc4257635
5f3733ea310b53a0a90c660dc94dd6e1ad5755b7
"2022-07-15T13:35:48Z"
python
"2022-08-11T07:30:33Z"
closed
apache/airflow
https://github.com/apache/airflow
25,092
["airflow/providers/microsoft/mssql/hooks/mssql.py", "tests/providers/microsoft/mssql/hooks/test_mssql.py"]
MsSqlHook.get_sqlalchemy_engine uses pyodbc instead of pymssql
### Apache Airflow Provider(s) microsoft-mssql ### Versions of Apache Airflow Providers apache-airflow-providers-microsoft-mssql==2.0.1 ### Apache Airflow version 2.2.2 ### Operating System Ubuntu 20.04 ### Deployment Official Apache Airflow Helm Chart ### Deployment details _No response_ ### What happened `MsSqlHook.get_sqlalchemy_engine` uses the default mssql driver: `pyodbc` instead of `pymssql`. - If pyodbc is installed: we get `sqlalchemy.exc.InterfaceError: (pyodbc.InterfaceError)` - Otherwise we get: `ModuleNotFoundError` PS: Looking at the code it should still apply up to provider version 3.0.0 (lastest version). ### What you think should happen instead The default driver used by `sqlalchemy.create_engine` for mssql is `pyodbc`. To use `pymssql` with `create_engine` we need to have the uri start with `mssql+pymssql://` (currently the hook uses `DBApiHook.get_uri` which starts with `mssql://`. ### How to reproduce ```python >>> from contextlib import closing >>> from airflow.providers.microsoft.mssql.hooks.mssql import MsSqlHook >>> >>> hook = MsSqlHook() >>> with closing(hook.get_sqlalchemy_engine().connect()) as c: >>> with closing(c.execute("SELECT SUSER_SNAME()")) as res: >>> r = res.fetchone() ``` Will raise an exception due to the wrong driver being used. ### Anything else Demo for sqlalchemy default mssql driver choice: ```bash # pip install sqlalchemy ... Successfully installed sqlalchemy-1.4.39 # pip install pymssql ... Successfully installed pymssql-2.2.5 ``` ```python >>> from sqlalchemy import create_engine >>> create_engine("mssql://test:pwd@test:1433") Traceback (most recent call last): File "<stdin>", line 1, in <module> File "<string>", line 2, in create_engine File "/usr/local/lib/python3.7/site-packages/sqlalchemy/util/deprecations.py", line 309, in warned return fn(*args, **kwargs) File "/usr/local/lib/python3.7/site-packages/sqlalchemy/engine/create.py", line 560, in create_engine dbapi = dialect_cls.dbapi(**dbapi_args) File "/usr/local/lib/python3.7/site-packages/sqlalchemy/connectors/pyodbc.py", line 43, in dbapi return __import__("pyodbc") ModuleNotFoundError: No module named 'pyodbc' ``` ### Are you willing to submit PR? - [X] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/25092
https://github.com/apache/airflow/pull/25185
a01cc5b0b8e4ce3b24970d763e4adccfb4e69f09
df5a54d21d6991d6cae05c38e1562da2196e76aa
"2022-07-15T12:42:02Z"
python
"2022-08-05T15:41:43Z"
closed
apache/airflow
https://github.com/apache/airflow
25,090
["airflow/jobs/scheduler_job.py", "airflow/models/dag.py", "airflow/timetables/base.py", "airflow/timetables/simple.py", "airflow/www/views.py", "newsfragments/25090.significant.rst"]
More natural sorting of DAG runs in the grid view
### Apache Airflow version 2.3.2 ### What happened Dag with schedule to run once every hour. Dag was started manually at 12:44, lets call this run 1 At 13:00 the scheduled run started, lets call this run 2. It appears before run 1 in the grid view. See attached screenshot ![image](https://user-images.githubusercontent.com/89977373/179212616-4113a1d5-ea61-4e0b-9c3f-3e4eba8318bc.png) ### What you think should happen instead Dags in grid view should appear in the order they are started. ### How to reproduce _No response_ ### Operating System Debian GNU/Linux 11 (bullseye) ### Versions of Apache Airflow Providers apache-airflow==2.3.2 apache-airflow-client==2.1.0 apache-airflow-providers-celery==3.0.0 apache-airflow-providers-cncf-kubernetes==4.0.2 apache-airflow-providers-docker==3.0.0 apache-airflow-providers-ftp==2.1.2 apache-airflow-providers-http==2.1.2 apache-airflow-providers-imap==2.2.3 apache-airflow-providers-postgres==5.0.0 apache-airflow-providers-sqlite==2.1.3 ### Deployment Other Docker-based deployment ### Deployment details _No response_ ### Anything else _No response_ ### Are you willing to submit PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/25090
https://github.com/apache/airflow/pull/25633
a1beede41fb299b215f73f987a572c34f628de36
36eea1c8e05a6791d144e74f4497855e35baeaac
"2022-07-15T11:16:35Z"
python
"2022-08-18T06:28:06Z"
closed
apache/airflow
https://github.com/apache/airflow
25,036
["airflow/example_dags/example_datasets.py", "airflow/models/taskinstance.py", "tests/models/test_taskinstance.py"]
Test that dataset not updated when task skipped
the AIP specifies that when a task is skipped, that we don’t mark the dataset as “updated”. we should simply add a test that verifies that this is what happens (and make changes if necessary) @blag, i tried to make this an issue so i could assign to you but can't. anyway, can reference in PR with `closes`
https://github.com/apache/airflow/issues/25036
https://github.com/apache/airflow/pull/25086
808035e00aaf59a8012c50903a09d3f50bd92ca4
f0c9ac9da6db3a00668743adc9b55329ec567066
"2022-07-13T19:31:16Z"
python
"2022-07-19T03:43:42Z"
closed
apache/airflow
https://github.com/apache/airflow
25,033
["airflow/models/dag.py", "airflow/www/templates/airflow/dag.html", "airflow/www/templates/airflow/dags.html", "airflow/www/views.py", "tests/models/test_dag.py", "tests/www/views/test_views_base.py"]
next run should show deps fulfillment e.g. 0 of 3
on dags page (i.e. the home page) we have a "next run" column. for dataset-driven dags, since we can't know for certain when it will be, we could instead show how many deps are fulfilled, e.g. `0 of 1` and perhaps make it a link to the datasets that the dag is dependened on. here's a sample query that returns the dags which _are_ ready to run. but for this feature you'd need to get the num deps fulfilled and the total num deps. ```python # these dag ids are triggered by datasets, and they are ready to go. dataset_triggered_dag_info_list = { x.dag_id: (x.first_event_time, x.last_event_time) for x in session.query( DatasetDagRef.dag_id, func.max(DDRQ.created_at).label('last_event_time'), func.max(DDRQ.created_at).label('first_event_time'), ) .join( DDRQ, and_( DDRQ.dataset_id == DatasetDagRef.dataset_id, DDRQ.target_dag_id == DatasetDagRef.dag_id, ), isouter=True, ) .group_by(DatasetDagRef.dag_id) .having(func.count() == func.sum(case((DDRQ.target_dag_id.is_not(None), 1), else_=0))) .all() } ```
https://github.com/apache/airflow/issues/25033
https://github.com/apache/airflow/pull/25141
47b72056c46931aef09d63d6d80fbdd3d9128b09
03a81b66de408631147f9353de6ffd3c1df45dbf
"2022-07-13T19:19:26Z"
python
"2022-07-21T18:28:47Z"
closed
apache/airflow
https://github.com/apache/airflow
25,019
["airflow/providers/amazon/aws/log/cloudwatch_task_handler.py", "airflow/providers/amazon/provider.yaml", "docs/apache-airflow-providers-amazon/index.rst", "generated/provider_dependencies.json", "tests/providers/amazon/aws/log/test_cloudwatch_task_handler.py"]
update watchtower version in amazon provider
### Description there is limitation to version 2 https://github.com/apache/airflow/blob/809d95ec06447c9579383d15136190c0963b3c1b/airflow/providers/amazon/provider.yaml#L48 ### Use case/motivation using up to date version of the library ### Related issues didnt find ### Are you willing to submit a PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/25019
https://github.com/apache/airflow/pull/34747
7764a51ac9b021a77a57707bc7e750168e9e0da0
c01abd1c2eed8f60fec5b9d6cc0232b54efa52de
"2022-07-13T09:37:45Z"
python
"2023-10-06T14:35:09Z"
closed
apache/airflow
https://github.com/apache/airflow
24,996
["airflow/models/dag.py", "airflow/models/taskmixin.py", "tests/models/test_dag.py"]
Airflow doesn't set default task group while calling dag.add_tasks
### Apache Airflow version 2.3.3 (latest released) ### What happened Airflow set default task group while creating operator if dag parameter is set https://github.com/apache/airflow/blob/main/airflow/models/baseoperator.py#L236 However, It doesn't set the default task group while adding a task using dag.add_task function https://github.com/apache/airflow/blob/main/airflow/models/dag.py#L2179 This broke the code at line no https://github.com/apache/airflow/blob/main/airflow/models/taskmixin.py#L312 and getting the error Cannot check for mapped dependants when not attached to a DAG. Please add below line in dag.add_task function also: if dag: task_group = TaskGroupContext.get_current_task_group(dag) if task_group: task_id = task_group.child_id(task_id) ### What you think should happen instead It should not break if task is added using dag.add_task ### How to reproduce don't dag parameter while creating operator object. add task using add_task in dag. ### Operating System Any ### Versions of Apache Airflow Providers _No response_ ### Deployment Official Apache Airflow Helm Chart ### Deployment details _No response_ ### Anything else _No response_ ### Are you willing to submit PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/24996
https://github.com/apache/airflow/pull/25000
45e5150714e0a5a8e82e3fa6d0b337b92cbeb067
ce0a6e51c2d4ee87e008e28897b2450778b51003
"2022-07-12T11:28:04Z"
python
"2022-08-05T15:17:38Z"
closed
apache/airflow
https://github.com/apache/airflow
24,953
["airflow/providers/oracle/example_dags/__init__.py", "airflow/providers/oracle/example_dags/example_oracle.py", "docs/apache-airflow-providers-oracle/index.rst", "docs/apache-airflow-providers-oracle/operators/index.rst"]
oracle hook _map_param() incorrect
### Apache Airflow Provider(s) oracle ### Versions of Apache Airflow Providers _No response_ ### Apache Airflow version 2.3.3 (latest released) ### Operating System OEL 7.6 ### Deployment Virtualenv installation ### Deployment details _No response_ ### What happened [_map_param()](https://github.com/apache/airflow/blob/main/airflow/providers/oracle/hooks/oracle.py#L36) function from Oracle hook has an incorrect check of types: ``` PARAM_TYPES = {bool, float, int, str} def _map_param(value): if value in PARAM_TYPES: # In this branch, value is a Python type; calling it produces # an instance of the type which is understood by the Oracle driver # in the out parameter mapping mechanism. value = value() return value ``` `if value in PARAM_TYPES` never gets True for all the mentioned variables types: ``` PARAM_TYPES = {bool, float, int, str} >>> "abc" in PARAM_TYPES False >>> 123 in PARAM_TYPES False >>> True in PARAM_TYPES False >>> float(5.5) in PARAM_TYPES False ``` The correct condition would be `if type(value) in PARAM_TYPES` **But**, if we only fix this condition, next in positive case (type(value) in PARAM_TYPES = True) one more issue occurs with `value = value()` `bool`, `float`, `int` or `str` are not callable `TypeError: 'int' object is not callable` This line is probaby here for passing a python callable into sql statement of procedure params in tasks, is it? If so, need to correct: `if type(value) not in PARAM_TYPES` Here is the full fix: ``` def _map_param(value): if type(value) not in PARAM_TYPES: value = value() return value ``` Next casses are tested: ``` def oracle_callable(n=123): return n def oracle_pass(): return 123 task1 = OracleStoredProcedureOperator( task_id='task1', oracle_conn_id='oracle_conn', procedure='AIRFLOW_TEST', parameters={'var':oracle_callable} ) task2 = OracleStoredProcedureOperator( task_id='task2', oracle_conn_id='oracle_conn', procedure='AIRFLOW_TEST', parameters={'var':oracle_callable()} ) task3 = OracleStoredProcedureOperator( task_id='task3', oracle_conn_id='oracle_conn', procedure='AIRFLOW_TEST', parameters={'var':oracle_callable(456)} ) task4 = OracleStoredProcedureOperator( task_id='task4', oracle_conn_id='oracle_conn', procedure='AIRFLOW_TEST', parameters={'var':oacle_pass} ) ``` ### What you think should happen instead _No response_ ### How to reproduce _No response_ ### Anything else _No response_ ### Are you willing to submit PR? - [X] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/24953
https://github.com/apache/airflow/pull/30979
130b6763db364426d1d794641b256d7f2ce0b93d
edebfe3f2f2c7fc2b6b345c6bc5f3a82e7d47639
"2022-07-10T23:01:34Z"
python
"2023-05-09T18:32:15Z"
closed
apache/airflow
https://github.com/apache/airflow
24,938
["airflow/providers/databricks/operators/databricks.py"]
Add support for dynamic databricks connection id
### Apache Airflow Provider(s) databricks ### Versions of Apache Airflow Providers apache-airflow-providers-databricks==3.0.0 # Latest ### Apache Airflow version 2.3.2 (latest released) ### Operating System Linux ### Deployment Official Apache Airflow Helm Chart ### Deployment details _No response_ ### What happened _No response_ ### What you think should happen instead ### Motivation In a single airflow deployment, we are looking to have the ability to support multiple databricks connections ( `databricks_conn_id`) at runtime. This can be helpful to run the same DAG against multiple testing lanes(a.k.a. different development/testing Databricks environments). ### Potential Solution We can pass the connection id via the Airflow DAG run configuration at runtime. For this, `databricks_conn_id` is required to be a templated field. ### How to reproduce Minor enhancement/new feature ### Anything else _No response_ ### Are you willing to submit PR? - [X] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/24938
https://github.com/apache/airflow/pull/24945
7fc5e0b24a8938906ad23eaa1262c9fb74ee2df1
8dfe7bf5ff090a675353a49da21407dffe2fc15e
"2022-07-09T07:55:53Z"
python
"2022-07-11T14:47:31Z"
closed
apache/airflow
https://github.com/apache/airflow
24,936
["airflow/example_dags/example_dag_decorator.py", "airflow/example_dags/example_sla_dag.py", "airflow/models/dag.py", "docs/spelling_wordlist.txt"]
Type hints for taskflow @dag decorator
### Description I find no type hints when write a DAG use TaskFlowApi. `dag` and `task` decorator is a simple wrapper without detail arguments provide in docstring. ### Use case/motivation _No response_ ### Related issues _No response_ ### Are you willing to submit a PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/24936
https://github.com/apache/airflow/pull/25044
61fc4899d71821fd051944d5d9732f7d402edf6c
be63c36bf1667c8a420d34e70e5a5efd7ca42815
"2022-07-09T03:25:14Z"
python
"2022-07-15T01:29:57Z"
closed
apache/airflow
https://github.com/apache/airflow
24,921
["airflow/providers/docker/operators/docker.py", "tests/providers/docker/operators/test_docker.py"]
Add options to Docker Operator
### Description I'm trying to add options like log-opt max-size 5 and I can't. ### Use case/motivation I'm working in Hummingbot and I would like to offer the community a system to manage multiple bots, rebalance portfolio, etc. Our system needs a terminal to execute commands so currently I'm not able to use airflow to accomplish this task. ### Related issues _No response_ ### Are you willing to submit a PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/24921
https://github.com/apache/airflow/pull/26653
fd27584b3dc355eaf0c0cd7a4cd65e0e580fcf6d
19d6f54704949d017b028e644bbcf45f5b53120b
"2022-07-08T12:01:04Z"
python
"2022-09-27T14:42:37Z"
closed
apache/airflow
https://github.com/apache/airflow
24,919
["airflow/models/taskinstance.py", "tests/models/test_taskinstance.py"]
Send default email if file "html_content_template" not found
### Apache Airflow version 2.3.2 (latest released) ### What happened I created a new email template to be sent when there are task failures. I accidentally added the path to the `[email] html_content_template` and `[email] subject_template` with a typo and no email was sent. The task's log is the following: ``` Traceback (most recent call last): File "/home/user/.conda/envs/airflow/lib/python3.9/site-packages/airflow/models/taskinstance.py", line 1942, in handle_failure self.email_alert(error, task) File "/home/user/.conda/envs/airflow/lib/python3.9/site-packages/airflow/models/taskinstance.py", line 2323, in email_alert subject, html_content, html_content_err = self.get_email_subject_content(exception, task=task) File "/home/user/.conda/envs/airflow/lib/python3.9/site-packages/airflow/models/taskinstance.py", line 2315, in get_email_subject_content subject = render('subject_template', default_subject) File "/home/user/.conda/envs/airflow/lib/python3.9/site-packages/airflow/models/taskinstance.py", line 2311, in render with open(path) as f: FileNotFoundError: [Errno 2] No such file or directory: '/home/user/airflow/config/templates/email_failure_subject.tmpl' ``` I've looked the TaskInstance class (https://github.com/apache/airflow/blob/main/airflow/models/taskinstance.py). I've seen that the `render` function (https://github.com/apache/airflow/blob/bcf2c418d261c6244e60e4c2d5de42b23b714bd1/airflow/models/taskinstance.py#L2271) has a `content` parameter, which is not used inside. I guess the solution to this bug is simple: just add a `try - catch` block and return the default content in the `catch` part. ### What you think should happen instead _No response_ ### How to reproduce _No response_ ### Operating System CentOS Linux 8 ### Versions of Apache Airflow Providers _No response_ ### Deployment Other ### Deployment details Conda environment ### Anything else _No response_ ### Are you willing to submit PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/24919
https://github.com/apache/airflow/pull/24943
b7f51b9156b780ebf4ca57b9f10b820043f61651
fd6f537eab7430cb10ea057194bfc9519ff0bb38
"2022-07-08T11:07:00Z"
python
"2022-07-18T18:22:03Z"
closed
apache/airflow
https://github.com/apache/airflow
24,844
["airflow/www/static/js/api/useGridData.test.js", "airflow/www/static/js/api/useGridData.ts"]
grid_data api keep refreshing when backfill DAG runs
### Apache Airflow version 2.3.2 (latest released) ### What happened ![image](https://user-images.githubusercontent.com/95274553/177323814-fa75af14-6018-4f9d-9468-4e681b572dcc.png) ### What you think should happen instead _No response_ ### How to reproduce _No response_ ### Operating System 186-Ubuntu ### Versions of Apache Airflow Providers 2.3.2 ### Deployment Other ### Deployment details _No response_ ### Anything else _No response_ ### Are you willing to submit PR? - [X] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/24844
https://github.com/apache/airflow/pull/25042
38d6c28f9cf9ee4f663d068032830911f7a8e3a3
de6938e173773d88bd741e43c7b0aa16d8a1a167
"2022-07-05T12:09:40Z"
python
"2022-07-20T10:30:22Z"
closed
apache/airflow
https://github.com/apache/airflow
24,820
["airflow/models/dag.py", "tests/models/test_dag.py"]
Dag disappears when DAG tag is longer than 100 char limit
### Apache Airflow version 2.2.5 ### What happened We added new DAG tags to a couple of our DAGs. In the case when the tag was longer than the 100 character limit the DAG was not showing in the UI and wasn't scheduled. It was however possible to reach it by typing in the URL to the DAG. Usually when DAGs are broken there will be an error message in the UI, but this problem did not render any error message. This problem occurred to one of our templated DAGs. Only one DAG broke and it was the one with a DAG tag which was too long. When we fixed the length, the DAG was scheduled and was visible in the UI again. ### What you think should happen instead Exclude the dag if it is over the 100 character limit or show an error message in the UI. ### How to reproduce Add a DAG tag which is longer than 100 characters. ### Operating System Ubuntu ### Versions of Apache Airflow Providers _No response_ ### Deployment Other 3rd-party Helm chart ### Deployment details Running Airflow in Kubernetes. Syncing DAGs from S3 with https://tech.scribd.com/blog/2020/breaking-up-the-dag-repo.html ### Anything else _No response_ ### Are you willing to submit PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/24820
https://github.com/apache/airflow/pull/25196
a5cbcb56774d09b67c68f87187f2f48d6e70e5f0
4b28635b2085a07047c398be6cc1ac0252a691f7
"2022-07-04T07:59:19Z"
python
"2022-07-25T13:46:27Z"
closed
apache/airflow
https://github.com/apache/airflow
24,783
["airflow/operators/python.py", "tests/operators/test_python.py"]
Check if virtualenv is installed fails
### Apache Airflow version 2.3.0 ### What happened When using a `PythonVirtualenvOperator` it is checked if `virtualenv` is installed by `if not shutil.which("virtualenv"):` https://github.com/apache/airflow/blob/a1679be85aa49c0d6a7ba2c31acb519a5bcdf594/airflow/operators/python.py#L398 Actually, this expression checks if `virtualenv` is on PATH. If Airflow is installed in a virtual environment itself and `virtualenv` is not installed in the environment the check might pass but `virtualenv` cannot be used as it is not present in the environment. ### What you think should happen instead It should be checked if `virtualenv` is actually available in the environment. ```python if importlib.util.find_spec("virtualenv") is None: raise AirflowException('PythonVirtualenvOperator requires virtualenv, please install it.') ``` https://stackoverflow.com/a/14050282 ### How to reproduce _No response_ ### Operating System Ubuntu 20.04 ### Versions of Apache Airflow Providers _No response_ ### Deployment Virtualenv installation ### Deployment details _No response_ ### Anything else _No response_ ### Are you willing to submit PR? - [X] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/24783
https://github.com/apache/airflow/pull/32939
16e0830a5dfe42b9ab0bbca7f8023bf050bbced0
ddcd474a5e2ce4568cca646eb1f5bce32b4ba0ed
"2022-07-01T12:24:38Z"
python
"2023-07-30T04:57:22Z"
closed
apache/airflow
https://github.com/apache/airflow
24,773
["airflow/providers/amazon/aws/secrets/secrets_manager.py"]
AWS secret manager: AccessDeniedException is not a valid Exception
### Apache Airflow version 2.3.1 ### What happened Airflow AWS Secret manager handles `AccesssDeniedException` in [secret_manager.py](https://github.com/apache/airflow/blob/providers-amazon/4.0.0/airflow/providers/amazon/aws/secrets/secrets_manager.py#L272) whereas it's not a valid exception for the client ``` File "/usr/local/lib/python3.9/site-packages/airflow/models/variable.py", line 265, in get_variable_from_secrets var_val = secrets_backend.get_variable(key=key) File "/usr/local/lib/python3.9/site-packages/airflow/providers/amazon/aws/secrets/secrets_manager.py", line 238, in get_variable return self._get_secret(self.variables_prefix, key) File "/usr/local/lib/python3.9/site-packages/airflow/providers/amazon/aws/secrets/secrets_manager.py", line 275, in _get_secret except self.client.exceptions.AccessDeniedException: File "/home/astro/.local/lib/python3.9/site-packages/botocore/errorfactory.py", line 51, in __getattr__ raise AttributeError( AttributeError: <botocore.errorfactory.SecretsManagerExceptions object at 0x7f19cd3c09a0> object has no attribute 'AccessDeniedException'. Valid exceptions are: DecryptionFailure, EncryptionFailure, InternalServiceError, InvalidNextTokenException, InvalidParameterException, InvalidRequestException, LimitExceededException, MalformedPolicyDocumentException, PreconditionNotMetException, PublicPolicyException, ResourceExistsException, ResourceNotFoundException ``` ### What you think should happen instead Handle exception specific to [get_secret_value](https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/secretsmanager.html#SecretsManager.Client.get_secret_value) ### How to reproduce This happened during a unique case where the 100s of secrets are loaded at once. I'm assuming the request is hanging over 30s ### Operating System Debian GNU/Linux 10 (buster) ### Versions of Apache Airflow Providers apache-airflow-providers-amazon==3.4.0 ### Deployment Astronomer ### Deployment details _No response_ ### Anything else _No response_ ### Are you willing to submit PR? - [X] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/24773
https://github.com/apache/airflow/pull/24898
f69e597dfcbb6fa7e7f1a3ff2b5013638567abc3
60c2a3bf82b4fe923b8006f6694f74823af87537
"2022-07-01T05:15:40Z"
python
"2022-07-08T14:21:42Z"
closed
apache/airflow
https://github.com/apache/airflow
24,755
["airflow/utils/serve_logs.py", "newsfragments/24755.improvement.rst"]
Log server on celery worker does not work in IPv6-only setup
### Apache Airflow version 2.2.5 ### What happened I deployed the Airflow helm chart in a Kubernetes cluster that only allows IPv6 traffic. When I want to look at a task log in the UI there is this message: ``` *** Fetching from: http://airflow-v1-worker-0.airflow-v1-worker.airflow.svc.cluster.local:8793/log/my-dag/my-task/2022-06-28T00:00:00+00:00/1.log *** Failed to fetch log file from worker. [Errno 111] Connection refused ``` So the webserver cannot fetch the logfile from the worker. This happens in my opinion because the gunicorn application listens to `0.0.0.0` (IPv4), see [code](https://github.com/apache/airflow/blob/main/airflow/utils/serve_logs.py#L142) or worker log below, and the inter-pod communication in my cluster is IPv6. ``` ~ » k logs airflow-v1-worker-0 -c airflow-worker -p [2022-06-30 14:51:52 +0000] [49] [INFO] Starting gunicorn 20.1.0 [2022-06-30 14:51:52 +0000] [49] [INFO] Listening at: http://0.0.0.0:8793 (49) [2022-06-30 14:51:52 +0000] [49] [INFO] Using worker: sync [2022-06-30 14:51:52 +0000] [50] [INFO] Booting worker with pid: 50 [2022-06-30 14:51:52 +0000] [51] [INFO] Booting worker with pid: 51 -------------- celery@airflow-v1-worker-0 v5.2.3 (dawn-chorus) --- ***** ----- -- ******* ---- Linux-5.10.118-x86_64-with-glibc2.28 2022-06-30 14:51:53 - *** --- * --- - ** ---------- [config] - ** ---------- .> app: airflow.executors.celery_executor:0x7f73b8d23d00 - ** ---------- .> transport: redis://:**@airflow-v1-redis-master.airflow.svc.cluster.local:6379/1 - ** ---------- .> results: postgresql://airflow:**@airflow-v1-pgbouncer.airflow.svc.cluster.local:6432/airflow_backend_db - *** --- * --- .> concurrency: 16 (prefork) -- ******* ---- .> task events: OFF (enable -E to monitor tasks in this worker) --- ***** ----- -------------- [queues] .> default exchange=default(direct) key=default [tasks] . airflow.executors.celery_executor.execute_command ``` ### What you think should happen instead The gunicorn webserver should (configurably) listen to IPv6 traffic. ### How to reproduce _No response_ ### Operating System Debian GNU/Linux 10 (buster) ### Versions of Apache Airflow Providers _No response_ ### Deployment Other 3rd-party Helm chart ### Deployment details _No response_ ### Anything else _No response_ ### Are you willing to submit PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/24755
https://github.com/apache/airflow/pull/24846
7f749b653ce363b1450346b61c7f6c406f72cd66
2f29bfefb59b0014ae9e5f641d3f6f46c4341518
"2022-06-30T14:09:25Z"
python
"2022-07-07T20:16:36Z"
closed
apache/airflow
https://github.com/apache/airflow
24,753
["airflow/providers/amazon/aws/operators/glue.py"]
Allow back script_location in Glue to be None *again*
### Apache Airflow version 2.3.2 (latest released) ### What happened On this commit someone broke the AWS Glue provider by enforcing the script_location to be a string: https://github.com/apache/airflow/commit/27b77d37a9b2e63e95a123c31085e580fc82b16c Then someone realized that (see comment thread [there](https://github.com/apache/airflow/commit/27b77d37a9b2e63e95a123c31085e580fc82b16c#r72466413)) and created a new PR to allow None to be parsed again here: https://github.com/apache/airflow/pull/23357 But the parameters no longer have the `Optional[str]` typing and now the error persists with this traceback: ```Traceback (most recent call last): File "/home/airflow/.local/lib/python3.7/site-packages/airflow/providers/amazon/aws/operators/glue.py", line 163, in __init__ super().__init__(*args, **kwargs) File "/home/airflow/.local/lib/python3.7/site-packages/airflow/models/baseoperator.py", line 373, in apply_defaults raise AirflowException(f"missing keyword argument {missing_args.pop()!r}") airflow.exceptions.AirflowException: missing keyword argument 'script_location' ``` ### What you think should happen instead Please revert the change and add `Optional[str]` here: https://github.com/apache/airflow/blob/main/airflow/providers/amazon/aws/operators/glue.py#L69 ### How to reproduce Use the class without a script_location ### Operating System Linux ### Versions of Apache Airflow Providers Apache airflow 2.3.2 ### Deployment Official Apache Airflow Helm Chart ### Deployment details _No response_ ### Anything else _No response_ ### Are you willing to submit PR? - [X] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/24753
https://github.com/apache/airflow/pull/24754
1b3905ef6eb5630e8d12975d9e91600ffb832471
49925be66483ce942bcd4827df9dbd41c3ef41cf
"2022-06-30T13:37:57Z"
python
"2022-07-01T14:02:27Z"
closed
apache/airflow
https://github.com/apache/airflow
24,748
["airflow/config_templates/config.yml", "airflow/config_templates/default_airflow.cfg", "airflow/kubernetes/kube_client.py", "tests/kubernetes/test_client.py"]
Configuring retry policy of the the kubernetes CoreV1Api ApiClient
### Description Can we add the option to configure the Retry policy of the kubernetes CoreV1Api? Or set it to default have some more resilient configuration. Today it appears to retry operations 3 times but with 0 backoff in between each try. Causing temporary network glitches to result in fatal errors. Following the flow below: 1. `airflow.kubernetes.kube_client.get_kube_client()` Calls `load_kube_config()` without any configuration set, this assigns a default configuration with `retries=None` to `CoreV1Api.set_default()` 1b. Creates `CoreV1Api()` with `api_client=None` 1c. `ApiClient()` default constructor creates a default configuration object via `Configuration.get_default_copy(), this is the default injected above` 2. On request, through some complicated flow inside `ApiClient` and urllib3, this `configuration.retries` eventually finds its way into urllib `HTTPConnectionPool`, where if unset, it uses `urllib3.util.Retry.DEFAULT`, this has a policy of 3x retries with 0 backoff time in between. ------ Configuring the ApiClient would mean changing the `get_kube_client()` to something roughly resembling: ``` client_config = Configuration() client_config.retries = Retry(total=3, backoff=LOAD_FROM_CONFIG) config.load_kube_config(...., client_configuration=client_config) apiclient = ApiClient(client_config) return CoreV1Api(apiclient) ``` I don't know myself how fine granularity is best to expose to be configurable from airflow. The retry object has a lot of different options, so do the rest of the kubernetes client Configuration object. Maybe it should be injected from a plugin rather than config-file? Maybe urllib or kubernets library have other ways to set default config? ### Use case/motivation Our Kubernetes API server had some unknown hickup for 10 seconds, this caused the Airflow kubernetes executor to crash, restarting airflow and then it started killing pods that were running fine, showing following log: "Reset the following 1 orphaned TaskInstances" If the retries would have had some backoff it would have likely survived this hickup. See attachment for the full stack trace, it's too long to include inline. Here is the most interesting parts: ``` 2022-06-29 21:25:49 Class={kubernetes_executor.py:111} Level=ERROR Unknown error in KubernetesJobWatcher. Failing ... 2022-06-29 21:25:49 Class={connectionpool.py:810} Level=WARNING Retrying (Retry(total=2, connect=None, read=None, redirect=None, status=None)) after connection broken by 'NewConnectionError('<urllib3.connection.HTTPSConnection object at 0x7fbe35de0c70>: Failed to establish a new connection: [Errno 111] Connection refused')': /api/v1/namespaces/default/pods/REDACTED 2022-06-29 21:25:49 urllib3.exceptions.ProtocolError: ("Connection broken: InvalidChunkLength(got length b'', 0 bytes read)", InvalidChunkLength(got length b'', 0 bytes read)) 2022-06-29 21:25:49 Class={connectionpool.py:810} Level=WARNING Retrying (Retry(total=1, connect=None, read=None, redirect=None, status=None)) after connection broken by 'NewConnectionError('<urllib3.connection.HTTPSConnection object at 0x7fbe315ec040>: Failed to establish a new connection: [Errno 111] Connection refused')': /api/v1/namespaces/default/pods/REDACTED 2022-06-29 21:25:49 Class={connectionpool.py:810} Level=WARNING Retrying (Retry(total=0, connect=None, read=None, redirect=None, status=None)) after connection broken by 'NewConnectionError('<urllib3.connection.HTTPSConnection object at 0x7fbe315ec670>: Failed to establish a new connection: [Errno 111] Connection refused')': /api/v1/namespaces/default/pods/REDACTED ... 2022-06-29 21:25:50 Class={kubernetes_executor.py:813} Level=INFO Shutting down Kubernetes executor ... 2022-06-29 21:26:08 Class={scheduler_job.py:696} Level=INFO Starting the scheduler ... 2022-06-29 21:27:29 Class={scheduler_job.py:1285} Level=INFO Message=Reset the following 1 orphaned TaskInstances: ``` [airflowkubernetsretrycrash.log](https://github.com/apache/airflow/files/9017815/airflowkubernetsretrycrash.log) From airflow version 2.3.2 ### Related issues _No response_ ### Are you willing to submit a PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/24748
https://github.com/apache/airflow/pull/29809
440bf46ff0b417c80461cf84a68bd99d718e19a9
dcffbb4aff090e6c7b6dc96a4a68b188424ae174
"2022-06-30T08:27:01Z"
python
"2023-04-14T13:37:42Z"
closed
apache/airflow
https://github.com/apache/airflow
24,736
["airflow/sensors/time_sensor.py", "tests/sensors/test_time_sensor.py"]
TimeSensorAsync breaks if target_time is timezone-aware
### Apache Airflow version 2.3.2 (latest released) ### What happened `TimeSensorAsync` fails with the following error if `target_time` is aware: ``` [2022-06-29, 05:09:11 CDT] {taskinstance.py:1889} ERROR - Task failed with exception Traceback (most recent call last): File "/opt/conda/envs/production/lib/python3.9/site-packages/airflow/sensors/time_sensor.py", line 60, in execute trigger=DateTimeTrigger(moment=self.target_datetime), File "/opt/conda/envs/production/lib/python3.9/site-packages/airflow/triggers/temporal.py", line 42, in __init__ raise ValueError(f"The passed datetime must be using Pendulum's UTC, not {moment.tzinfo!r}") ValueError: The passed datetime must be using Pendulum's UTC, not Timezone('America/Chicago') ``` ### What you think should happen instead Given the fact that `TimeSensor` correctly handles timezones (#9882), this seems like a bug. `TimeSensorAsync` should be a drop-in replacement for `TimeSensor`, and therefore should have the same timezone behavior. ### How to reproduce ``` #!/usr/bin/env python3 import datetime from airflow.decorators import dag from airflow.sensors.time_sensor import TimeSensor, TimeSensorAsync import pendulum @dag( start_date=datetime.datetime(2022, 6, 29), schedule_interval='@daily', ) def time_sensor_dag(): naive_time1 = datetime.time( 0, 1) aware_time1 = datetime.time( 0, 1).replace(tzinfo=pendulum.local_timezone()) naive_time2 = pendulum.time(23, 59) aware_time2 = pendulum.time(23, 59).replace(tzinfo=pendulum.local_timezone()) TimeSensor(task_id='naive_time1', target_time=naive_time1, mode='reschedule') TimeSensor(task_id='naive_time2', target_time=naive_time2, mode='reschedule') TimeSensor(task_id='aware_time1', target_time=aware_time1, mode='reschedule') TimeSensor(task_id='aware_time2', target_time=aware_time2, mode='reschedule') TimeSensorAsync(task_id='async_naive_time1', target_time=naive_time1) TimeSensorAsync(task_id='async_naive_time2', target_time=naive_time2) TimeSensorAsync(task_id='async_aware_time1', target_time=aware_time1) # fails TimeSensorAsync(task_id='async_aware_time2', target_time=aware_time2) # fails dag = time_sensor_dag() ``` This can also happen if the `target_time` is naive and `core.default_timezone = system`. ### Operating System CentOS Stream 8 ### Versions of Apache Airflow Providers N/A ### Deployment Other ### Deployment details Standalone ### Anything else _No response_ ### Are you willing to submit PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/24736
https://github.com/apache/airflow/pull/25221
f53bd5df2a0b370a14f811b353229ad3e9c66662
ddaf74df9b1e9a4698d719f81931e822b21b0a95
"2022-06-29T15:28:16Z"
python
"2022-07-22T21:03:46Z"
closed
apache/airflow
https://github.com/apache/airflow
24,725
["airflow/www/templates/airflow/dag.html"]
Trigger DAG from templated view tab producing bad request
### Body Reproduced on main branch. The bug: When clicking Trigger DAG from templated view tab it resulted in a BAD REQUEST page however DAG run is created (it also produce the UI alert "it should start any moment now") To compare trying to trigger DAG from log tab works as expected so the issue seems to be relevant only to to the specific tab. ![trigger dag](https://user-images.githubusercontent.com/45845474/176372793-02ca6760-57f7-4a89-b85e-68411561009f.gif) ### Committer - [X] I acknowledge that I am a maintainer/committer of the Apache Airflow project.
https://github.com/apache/airflow/issues/24725
https://github.com/apache/airflow/pull/25729
f24e706ff7a84fd36ea39dc3399346c357d40bd9
69663b245a9a67b6f05324ce7b141a1bd9b05e0a
"2022-06-29T07:06:00Z"
python
"2022-08-17T13:21:30Z"
closed
apache/airflow
https://github.com/apache/airflow
24,692
["airflow/providers/apache/hive/hooks/hive.py", "tests/providers/apache/hive/hooks/test_hive.py"]
Error for Hive Server2 Connection Document
### What do you see as an issue? In this Document https://airflow.apache.org/docs/apache-airflow-providers-apache-hive/stable/connections/hiveserver2.html Describe , In Extra must use the "auth_mechanism " but in the sources Code used "authMechanism". ### Solving the problem use same words. ### Anything else None ### Are you willing to submit PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/24692
https://github.com/apache/airflow/pull/24713
13908c2c914cf08f9d962a4d3b6ae54fbdf1d223
cef97fccd511c8e5485df24f27b82fa3e46929d7
"2022-06-28T01:16:20Z"
python
"2022-06-29T14:12:23Z"
closed
apache/airflow
https://github.com/apache/airflow
24,681
["airflow/providers/docker/operators/docker.py", "tests/providers/docker/operators/test_docker.py"]
Docker is not pushing last line over xcom
### Apache Airflow Provider(s) docker ### Versions of Apache Airflow Providers apache-airflow-providers-docker==2.7.0 docker==5.0.3 ### Apache Airflow version 2.3.2 (latest released) ### Operating System 20.04.4 LTS (Focal Fossa) ### Deployment Docker-Compose ### Deployment details Deployed using docker compose command ### What happened Below is my dockeroperator code ``` extract_data_from_presto = DockerOperator( task_id='download_data', image=IMAGE_NAME, api_version='auto', auto_remove=True, mount_tmp_dir=False, docker_url='unix://var/run/docker.sock', network_mode="host", tty=True, xcom_all=False, mounts=MOUNTS, environment={ "PYTHONPATH": "/opt", }, command=f"test.py", retries=3, dag=dag, ) ``` Last line printed in docker is not getting pushed over xcom. In my case last line in docker is `[2022-06-27, 08:31:34 UTC] {docker.py:312} INFO - {"day": 20220627, "batch": 1656318682, "source": "all", "os": "ubuntu"}` However the xcom value returned shown in UI is empty <img width="1329" alt="image" src="https://user-images.githubusercontent.com/25153155/175916850-8f50c579-9d26-44bc-94ae-6d072701ff0b.png"> ### What you think should happen instead It should have return the `{"day": 20220627, "batch": 1656318682, "source": "all", "os": "ubuntu"}` as output of return_value ### How to reproduce I am not able to exactly produce it with example but it's failing with my application. So I extended the DockerOperator class in my code & copy pasted the `_run_image_with_mounts` method and added 2 print statements ``` print(f"log lines from attach {log_lines}") try: if self.xcom_all: return [stringify(line).strip() for line in self.cli.logs(**log_parameters)] else: lines = [stringify(line).strip() for line in self.cli.logs(**log_parameters, tail=1)] print(f"lines from logs: {lines}") ``` Value of log_lines comes from this [line](https://github.com/apache/airflow/blob/main/airflow/providers/docker/operators/docker.py#L309) The output of this is as below. First line is last print in my docker code ``` [2022-06-27, 14:43:26 UTC] {pipeline.py:103} INFO - {"day": 20220627, "batch": 1656340990, "os": "ubuntu", "source": "all"} [2022-06-27, 14:43:27 UTC] {logging_mixin.py:115} INFO - log lines from attach ['2022-06-27, 14:43:15 UTC - root - read_from_presto - INFO - Processing datetime is 2022-06-27 14:43:10.755685', '2022-06-27, 14:43:15 UTC - pyhive.presto - presto - INFO - SHOW COLUMNS FROM <truncated data as it's too long>, '{"day": 20220627, "batch": 1656340990, "os": "ubuntu", "source": "all"}'] [2022-06-27, 14:43:27 UTC] {logging_mixin.py:115} INFO - lines from logs: ['{', '"', 'd', 'a', 'y', '"', ':', '', '2', '0', '2', '2', '0', '6', '2', '7', ',', '', '"', 'b', 'a', 't', 'c', 'h', '"', ':', '', '1', '6', '5', '6', '3', '4', '0', '9', '9', '0', ',', '', '"', 'o', 's', '"', ':', '', '"', 'u', 'b', 'u', 'n', 't', 'u', '"', ',', '', '"', 's', 'o', 'u', 'r', 'c', 'e', '"', ':', '', '"', 'a', 'l', 'l', '"', '}', '', ''] ``` From above you can see for some unknown reason `self.cli.logs(**log_parameters, tail=1)` returns array of characters. This changes was brough as part of [change](https://github.com/apache/airflow/commit/2f4a3d4d4008a95fc36971802c514fef68e8a5d4) Before that it was returning the data from log_lines My suggestion to modify the code as below ``` if self.xcom_all: return [stringify(line).strip() for line in log_lines] else: lines = [stringify(line).strip() for line in log_lines] return lines[-1] if lines else None ``` ### Anything else _No response_ ### Are you willing to submit PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/24681
https://github.com/apache/airflow/pull/24726
6fd06fa8c274b39e4ed716f8d347229e017ba8e5
cc6a44bdc396a305fd53c7236427c578e9d4d0b7
"2022-06-27T14:59:41Z"
python
"2022-07-05T10:43:43Z"
closed
apache/airflow
https://github.com/apache/airflow
24,678
["airflow/templates.py"]
Macro prev_execution_date is always empty
### Apache Airflow version 2.3.2 (latest released) ### What happened The variable `prev_execution_date` is empty on the first run meaning, all usage will automatically trigger a None error. ### What you think should happen instead A default date should be provided instead, either the DAG's `start_date` or a default `datetime.min` as during the first run, it will always trigger an error effectively preventing the DAG from running and hence, always returning an error. ### How to reproduce Pass the variables/macros to any Task: ``` { "execution_datetime": '{{ ts_nodash }}', "prev_execution_datetime": '{{ prev_start_date_success | ts_nodash }}' #.strftime("%Y%m%dT%H%M%S") } ``` Whilst the logical execution date (`execution_datetime`) works, the previous succesful logical execution date `prev_execution_datetime` automatically blows up when applying the `ts_nodash` filter. This effectively makes it impossible to use said macro ever, as it will always fail. ### Operating System Ubuntu ### Versions of Apache Airflow Providers _No response_ ### Deployment Official Apache Airflow Helm Chart ### Deployment details _No response_ ### Anything else _No response_ ### Are you willing to submit PR? - [X] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/24678
https://github.com/apache/airflow/pull/25593
1594d7706378303409590c57ab1b17910e5d09e8
741c20770230c83a95f74fe7ad7cc9f95329f2cc
"2022-06-27T12:59:53Z"
python
"2022-08-09T10:34:40Z"
closed
apache/airflow
https://github.com/apache/airflow
24,653
["airflow/operators/trigger_dagrun.py"]
Mapped TriggerDagRunOperator causes SerializationError due to operator_extra_links 'property' object is not iterable
### Apache Airflow version 2.3.2 (latest released) ### What happened Hi, I have a kind of issue with launching several subDags via mapping TriggerDagRunOperator (mapping over `conf` parameter). Here is the demo example of my typical DAG: ```python from airflow import DAG from airflow.operators.python_operator import PythonOperator from airflow.operators.trigger_dagrun import TriggerDagRunOperator from airflow import XComArg from datetime import datetime with DAG( 'triggerer', schedule_interval=None, catchup=False, start_date=datetime(2019, 12, 2) ) as dag: t1 = PythonOperator( task_id='first', python_callable=lambda : list(map(lambda i: {"x": i}, list(range(10)))), ) t2 = TriggerDagRunOperator.partial( task_id='second', trigger_dag_id='mydag' ).expand(conf=XComArg(t1)) t1 >> t2 ``` But when Airflow tries to import such DAG it throws the following SerializationError (which I observed both in UI and in $AIRFLOW_HOME/logs/scheduler/latest/<my_dag_name>.py.log): ``` Broken DAG: [/home/aliona/airflow/dags/triggerer_dag.py] Traceback (most recent call last): File "/home/aliona/airflow/venv/lib/python3.10/site-packages/airflow/serialization/serialized_objects.py", line 638, in _serialize_node serialize_op['_operator_extra_links'] = cls._serialize_operator_extra_links( File "/home/aliona/airflow/venv/lib/python3.10/site-packages/airflow/serialization/serialized_objects.py", line 933, in _serialize_operator_extra_links for operator_extra_link in operator_extra_links: TypeError: 'property' object is not iterable During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/aliona/airflow/venv/lib/python3.10/site-packages/airflow/serialization/serialized_objects.py", line 1106, in to_dict json_dict = {"__version": cls.SERIALIZER_VERSION, "dag": cls.serialize_dag(var)} File "/home/aliona/airflow/venv/lib/python3.10/site-packages/airflow/serialization/serialized_objects.py", line 1014, in serialize_dag raise SerializationError(f'Failed to serialize DAG {dag.dag_id!r}: {e}') airflow.exceptions.SerializationError: Failed to serialize DAG 'triggerer': 'property' object is not iterable ``` How it appears in the UI: ![image](https://user-images.githubusercontent.com/23297330/175775674-f3375c0e-7ea7-4b6a-84e8-b02ee8f02062.png) ### What you think should happen instead I think that TriggerDagRunOperator mapped over `conf` parameter should serialize and work well by default. During the debugging process and trying to make everything work I found out that simple non-mapped TriggerDagRunOperator has value `['Triggered DAG']` in `operator_extra_links` field, so, it is Lisr. But as for mapped TriggerDagRunOperator, it is 'property'. I don't have any idea why during the serialization process Airflow cannot get value of this property, but I tried to reinitialize this field with `['Triggered DAG']` value and finally I fixed this issue in a such way. For now, for every case of using mapped TriggerDagRunOperator I also use such code at the end of my dag file: ```python # here 'second' is the name of corresponding mapped TriggerDagRunOperator task (see demo code above) t2_patch = dag.task_dict['second'] t2_patch.operator_extra_links=['Triggered DAG'] dag.task_dict.update({'second': t2_patch}) ``` So, for every mapped TriggerDagRunOperator task I manually change value of operator_extra_links property to `['Triggered DAG']` and as a result there is no any SerializationError. I have a lot of such cases, and all of them are working good with this fix, all subDags are launched, mapped configuration is passed correctly. Also I can wait for end of their execution or not, all this options also work correctly. ### How to reproduce 1. Create dag with mapped TriggerDagRunOperator tasks (main parameters such as task_id, trigger_dag_id and others are in `partial section`, in `expand` section use conf parameter with non-empty iterable value), as, for example: ```python t2 = TriggerDagRunOperator.partial( task_id='second', trigger_dag_id='mydag' ).expand(conf=[{'x': 1}]) ``` 2. Try to serialize dag, and error will appear. The full example of failing dag file: ```python from airflow import DAG from airflow.operators.python_operator import PythonOperator from airflow.operators.trigger_dagrun import TriggerDagRunOperator from airflow import XComArg from datetime import datetime with DAG( 'triggerer', schedule_interval=None, catchup=False, start_date=datetime(2019, 12, 2) ) as dag: t1 = PythonOperator( task_id='first', python_callable=lambda : list(map(lambda i: {"x": i}, list(range(10)))), ) t2 = TriggerDagRunOperator.partial( task_id='second', trigger_dag_id='mydag' ).expand(conf=[{'a': 1}]) t1 >> t2 # uncomment these lines to fix an error # t2_patch = dag.task_dict['second'] # t2_patch.operator_extra_links=['Triggered DAG'] # dag.task_dict.update({'second': t2_patch}) ``` As subDag ('mydag') I use these DAG: ```python from airflow import DAG from airflow.operators.python_operator import PythonOperator from datetime import datetime with DAG( 'mydag', schedule_interval=None, catchup=False, start_date=datetime(2019, 12, 2) ) as dag: t1 = PythonOperator( task_id='first', python_callable=lambda : print("first"), ) t2 = PythonOperator( task_id='second', python_callable=lambda : print("second"), ) t1 >> t2 ``` ### Operating System Ubuntu 22.04 LTS ### Versions of Apache Airflow Providers apache-airflow-providers-ftp==2.1.2 apache-airflow-providers-http==2.1.2 apache-airflow-providers-imap==2.2.3 apache-airflow-providers-sqlite==2.1.3 ### Deployment Virtualenv installation ### Deployment details Python 3.10.4 pip 22.0.2 ### Anything else Currently for demonstration purposes I am using fully local Airflow installation: single node, SequentialExecutor and SQLite database backend. But such issue also appeared for multi-node installation with either CeleryExecutor or LocalExecutor and PostgreSQL database in the backend. ### Are you willing to submit PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/24653
https://github.com/apache/airflow/pull/24676
48ceda22bdbee50b2d6ca24767164ce485f3c319
8dcafdfcdddc77fdfd2401757dcbc15bfec76d6b
"2022-06-25T14:13:29Z"
python
"2022-06-28T02:59:00Z"
closed
apache/airflow
https://github.com/apache/airflow
24,618
["airflow/providers/oracle/hooks/oracle.py", "airflow/utils/db.py", "docs/apache-airflow-providers-oracle/connections/oracle.rst", "tests/providers/oracle/hooks/test_oracle.py"]
Failed to retrieve data from Oracle database with UTF-8 charset
### Apache Airflow Provider(s) oracle ### Versions of Apache Airflow Providers apache-airflow-providers-oracle==3.1.0 ### Apache Airflow version 2.3.2 (latest released) ### Operating System Linux 4.19.79-1.el7.x86_64 ### Deployment Docker-Compose ### Deployment details Oracle Database 12c Enterprise Edition Release 12.2.0.1.0 Python: 3.8 Oracle database charset: UTF-8 (returned by `SELECT value FROM nls_database_parameters WHERE parameter = 'NLS_NCHAR_CHARACTERSET'`) Oracle's client environment: - LC_CTYPE=C.UTF-8 - NLS_LANG=AMERICAN_AMERICA.CL8MSWIN1251 - LC_ALL=C.UTF-8 ### What happened Any query to Oracle database with UTF8 charset failed with error: > oracledb.exceptions.NotSupportedError: DPY-3012: national character set id 871 is not supported by python-oracledb in thin mode ### What you think should happen instead Definetelly, it should work, as it was in previous Oracle provider version (3.0.0). Quick search shows that `python-oracledb` package, which replaces `cx_Oracle` in 3.1.0, uses **thin** driver mode by default, and it seems that UTF-8 codepage is not supported in that mode ( [see this issue](https://stackoverflow.com/questions/72465536/python-oracledb-new-cx-oracle-connection-generating-notsupportederror-dpy-3012) ). In order to get to thick mode, a call to `oracledb.init_oracle_client()` is required before any connection made ( [see here](https://python-oracledb.readthedocs.io/en/latest/api_manual/module.html#oracledb.init_oracle_client) ). Indeed, if I add this call to `airflow/providers/oracle/hooks/oracle.py`, everything works fine. Resulting code looks like this: ``` import math import warnings from datetime import datetime from typing import Dict, List, Optional, Union import oracledb oracledb.init_oracle_client() ... ``` Downgrade to version 3.0.0 also helps, but I suppose it should be some permanent solution, like adding a configuration parameter or so. ### How to reproduce - Setup an Oracle database with UTF8 charset - Setup an Airflow connection with `oracle` type - Create an operator which issues a `SELECT` statement against the database ### Anything else Task execution log as follows: > [2022-06-23, 17:35:36 MSK] {task_command.py:370} INFO - Running <TaskInstance: nip-stage-load2.load-dict.load-sa_user scheduled__2022-06-22T00:00:00+00:00 [running]> on host dwh_develop_scheduler > [2022-06-23, 17:35:37 MSK] {taskinstance.py:1569} INFO - Exporting the following env vars: > AIRFLOW_CTX_DAG_EMAIL=airflow@example.com > AIRFLOW_CTX_DAG_OWNER=airflow > AIRFLOW_CTX_DAG_ID=nip-stage-load2 > AIRFLOW_CTX_TASK_ID=load-dict.load-sa_user > AIRFLOW_CTX_EXECUTION_DATE=2022-06-22T00:00:00+00:00 > AIRFLOW_CTX_TRY_NUMBER=1 > AIRFLOW_CTX_DAG_RUN_ID=scheduled__2022-06-22T00:00:00+00:00 > [2022-06-23, 17:35:37 MSK] {base.py:68} INFO - Using connection ID 'nip_standby' for task execution. > [2022-06-23, 17:35:37 MSK] {base.py:68} INFO - Using connection ID 'stage' for task execution. > [2022-06-23, 17:35:37 MSK] {data_transfer.py:198} INFO - Executing: > SELECT * FROM GMP.SA_USER > [2022-06-23, 17:35:37 MSK] {base.py:68} INFO - Using connection ID 'nip_standby' for task execution. > [2022-06-23, 17:35:37 MSK] {taskinstance.py:1889} ERROR - Task failed with exception > Traceback (most recent call last): > File "/home/airflow/.local/lib/python3.8/site-packages/dwh_etl/operators/data_transfer.py", line 265, in execute > if not self.no_check and self.compare_datasets(self.object_name, src, dest): > File "/home/airflow/.local/lib/python3.8/site-packages/dwh_etl/operators/data_transfer.py", line 199, in compare_datasets > src_df = src.get_pandas_df(sql) > File "/home/airflow/.local/lib/python3.8/site-packages/airflow/hooks/dbapi.py", line 128, in get_pandas_df > with closing(self.get_conn()) as conn: > File "/home/airflow/.local/lib/python3.8/site-packages/airflow/providers/oracle/hooks/oracle.py", line 149, in get_conn > conn = oracledb.connect(**conn_config) > File "/home/airflow/.local/lib/python3.8/site-packages/oracledb/connection.py", line 1000, in connect > return conn_class(dsn=dsn, pool=pool, params=params, **kwargs) > File "/home/airflow/.local/lib/python3.8/site-packages/oracledb/connection.py", line 128, in __init__ > impl.connect(params_impl) > File "src/oracledb/impl/thin/connection.pyx", line 345, in oracledb.thin_impl.ThinConnImpl.connect > File "src/oracledb/impl/thin/connection.pyx", line 163, in oracledb.thin_impl.ThinConnImpl._connect_with_params > File "src/oracledb/impl/thin/connection.pyx", line 129, in oracledb.thin_impl.ThinConnImpl._connect_with_description > File "src/oracledb/impl/thin/connection.pyx", line 250, in oracledb.thin_impl.ThinConnImpl._connect_with_address > File "src/oracledb/impl/thin/protocol.pyx", line 197, in oracledb.thin_impl.Protocol._connect_phase_two > File "src/oracledb/impl/thin/protocol.pyx", line 263, in oracledb.thin_impl.Protocol._process_message > File "src/oracledb/impl/thin/protocol.pyx", line 242, in oracledb.thin_impl.Protocol._process_message > File "src/oracledb/impl/thin/messages.pyx", line 280, in oracledb.thin_impl.Message.process > File "src/oracledb/impl/thin/messages.pyx", line 2094, in oracledb.thin_impl.ProtocolMessage._process_message > File "/home/airflow/.local/lib/python3.8/site-packages/oracledb/errors.py", line 103, in _raise_err > raise exc_type(_Error(message)) from cause > oracledb.exceptions.NotSupportedError: DPY-3012: national character set id 871 is not supported by python-oracledb in thin mode ### Are you willing to submit PR? - [x] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/24618
https://github.com/apache/airflow/pull/26576
ee21c1bac4cb5bb1c19ea9e5e84ee9b5854ab039
b254a9f4bead4e5d4f74c633446da38550f8e0a1
"2022-06-23T14:49:31Z"
python
"2022-09-28T06:14:46Z"
closed
apache/airflow
https://github.com/apache/airflow
24,574
["airflow/providers/airbyte/hooks/airbyte.py", "airflow/providers/airbyte/operators/airbyte.py", "tests/providers/airbyte/hooks/test_airbyte.py"]
`AirbyteHook` add cancel job option
### Apache Airflow Provider(s) airbyte ### Versions of Apache Airflow Providers I want to cancel the job if it running more than specific time . Task is getting timeout however, airbyte job was not cancelled. it seems, on kill feature has not implemented Workaround: Create a custom operator and implement cancel hook and call it in on kill function. def on_kill(self): if (self.job_id): self.log.error('on_kill: stopping airbyte Job %s',self.job_id) self.hook.cancel_job(self.job_id) ### Apache Airflow version 2.0.2 ### Operating System Linux ### Deployment MWAA ### Deployment details Airflow 2.0.2 ### What happened airbyte job was not cancelled upon timeout ### What you think should happen instead it should cancel the job ### How to reproduce Make sure job runs more than timeout sync_source_destination = AirbyteTriggerSyncOperator( task_id=f'airbyte_{key}', airbyte_conn_id='airbyte_con', connection_id=key, asynchronous=False, execution_timeout=timedelta(minutes=2) ) ### Anything else _No response_ ### Are you willing to submit PR? - [X] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/24574
https://github.com/apache/airflow/pull/24593
45b11d4ed1412c00ebf32a03ab5ea3a06274f208
c118b2836f7211a0c3762cff8634b7b9a0d1cf0b
"2022-06-21T03:16:53Z"
python
"2022-06-29T06:43:53Z"
closed
apache/airflow
https://github.com/apache/airflow
24,572
["docs/apache-airflow-providers-snowflake/connections/snowflake.rst"]
Snowflake Provider connection documentation is misleading
### What do you see as an issue? Relevant page: https://airflow.apache.org/docs/apache-airflow-providers-snowflake/stable/connections/snowflake.html ## Behavior in the Airflow package The `SnowflakeHook` object in Airflow behaves oddly compared to some other database hooks like Postgres (so extra clarity in the documentation is beneficial). Most notably, the `SnowflakeHook` does _not_ make use of the either the `host` or `port` of the `Connection` object it consumes. It is completely pointless to specify these two fields. When constructing the URL in a runtime context, `snowflake.sqlalchemy.URL` is used for parsing. `URL()` allows for either `account` or `host` to be specified as kwargs. Either one of these 2 kwargs will correspond with what we'd conventionally call the host in a typical URL's anatomy. However, because `SnowflakeHook` never parses `host`, any `host` defined in the Connection object would never get this far into the parsing. ## Issue with the documentation Right now the documentation does not make clear that it is completely pointless to specify the `host`. The documentation correctly omits the port, but says that the host is optional. It does not warn the user about this field never being consumed at all by the `SnowflakeHook` ([source here](https://github.com/apache/airflow/blob/main/airflow/providers/snowflake/hooks/snowflake.py)). This can lead to some confusion especially because the Snowflake URI consumed by `SQLAlchemy` (which many people using Snowflake will be familiar with) uses either the "account" or "host" as its host. So a user coming from SQLAlchemy may think it is fine to post the account as the "host" and skip filling in the "account" inside the extras (after all, it's "extra"), whereas that doesn't work. I would argue that if it is correct to omit the `port` in the documentation (which it is), then `host` should also be excluded. Furthermore, the documentation reinforces this confusion with the last few lines, where an environment variable example connection is defined that uses a host. Finally, the documentation says "When specifying the connection in environment variable you should specify it using URI syntax", which is no longer true as of 2.3.0. ### Solving the problem I have 3 proposals for how the documentation should be updated to better reflect how the `SnowflakeHook` actually works. 1. The `Host` option should not be listed as part of the "Configuring the Connection" section. 2. The example URI should remove the host. The new example URI would look like this: `snowflake://user:password@/db-schema?account=account&database=snow-db&region=us-east&warehouse=snow-warehouse`. This URI with a blank host works fine; you can test this yourself: ```python from airflow.models.connection import Connection c = Connection(conn_id="foo", uri="snowflake://user:password@/db-schema?account=account&database=snow-db&region=us-east&warehouse=snow-warehouse") print(c.host) print(c.extra_dejson) ``` 3. An example should be provided of a valid Snowflake construction using the JSON. This example would not only work on its own merits of defining an environment variable connection valid for 2.3.0, but it also would highlight some of the idiosyncrasies of how Airflow defines connections to Snowflake. This would also be valuable as a reference for the AWS `SecretsManagerBackend` for when `full_url_mode` is set to `False`. ### Anything else I wasn't sure whether to label this issue as a provider issue or documentation issue; I saw templates for either but not both. ### Are you willing to submit PR? - [X] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/24572
https://github.com/apache/airflow/pull/24573
02d8f96bfbc43e780db0220dd7647af0c0f46093
2fb93f88b120777330b6ed13b24fa07df279c41e
"2022-06-21T01:41:15Z"
python
"2022-06-27T21:58:10Z"
closed
apache/airflow
https://github.com/apache/airflow
24,566
["airflow/migrations/versions/0080_2_0_2_change_default_pool_slots_to_1.py"]
Migration changes column to NOT NULL without updating NULL data first
### Apache Airflow version 2.3.2 (latest released) ### What happened During upgrade from Airflow 1.x, I've encountered migration failure in migration https://github.com/apache/airflow/blob/05c542dfa8eee9b4cdca4e9370f459ce807354b2/airflow/migrations/versions/0080_2_0_2_change_default_pool_slots_to_1.py In PR #20962 on these lines https://github.com/apache/airflow/pull/20962/files#diff-9e46226bab06a05ef0040d1f8cc08c81ba94455ca9a170a0417352466242f2c1L61-L63 the update was removed, which breaks if the original table contains nulls in that column (at least in postgres DB). ### What you think should happen instead _No response_ ### How to reproduce - Have pre 2.0.2 version deployed, where the column was nullable. - Have task instance with `pool_slots = NULL` - Try to migrate to latest version (or any version after #20962 was merged) ### Operating System Custom NixOS ### Versions of Apache Airflow Providers _No response_ ### Deployment Other ### Deployment details We have NixOS with Airflow installed using setup.py with postgres as a DB. ### Anything else ``` INFO [alembic.runtime.migration] Running upgrade 449b4072c2da -> 8646922c8a04, Change default ``pool_slots`` to ``1`` Traceback (most recent call last): File "/nix/store/[redacted-hash1]-python3.9-SQLAlchemy-1.4.9/lib/python3.9/site-packages/sqlalchemy/engine/base.py", line 1705, in _execute_context self.dialect.do_execute( File "/nix/store/[redacted-hash1]-python3.9-SQLAlchemy-1.4.9/lib/python3.9/site-packages/sqlalchemy/engine/default.py", line 716, in do_execute cursor.execute(statement, parameters) psycopg2.errors.NotNullViolation: column "pool_slots" contains null values The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/nix/store/[redacted-hash2]-python3.9-apache-airflow-2.3.2/bin/.airflow-wrapped", line 9, in <module> sys.exit(main()) File "/nix/store/[redacted-hash2]-python3.9-apache-airflow-2.3.2/lib/python3.9/site-packages/airflow/__main__.py", line 38, in main args.func(args) File "/nix/store/[redacted-hash2]-python3.9-apache-airflow-2.3.2/lib/python3.9/site-packages/airflow/cli/cli_parser.py", line 51, in command return func(*args, **kwargs) File "/nix/store/[redacted-hash2]-python3.9-apache-airflow-2.3.2/lib/python3.9/site-packages/airflow/cli/commands/db_command.py", line 35, in initdb db.initdb() File "/nix/store/[redacted-hash2]-python3.9-apache-airflow-2.3.2/lib/python3.9/site-packages/airflow/utils/session.py", line 71, in wrapper return func(*args, session=session, **kwargs) File "/nix/store/[redacted-hash2]-python3.9-apache-airflow-2.3.2/lib/python3.9/site-packages/airflow/utils/db.py", line 648, in initdb upgradedb(session=session) File "/nix/store/[redacted-hash2]-python3.9-apache-airflow-2.3.2/lib/python3.9/site-packages/airflow/utils/session.py", line 68, in wrapper return func(*args, **kwargs) File "/nix/store/[redacted-hash2]-python3.9-apache-airflow-2.3.2/lib/python3.9/site-packages/airflow/utils/db.py", line 1449, in upgradedb command.upgrade(config, revision=to_revision or 'heads') File "/nix/store/[redacted-hash3]-python3.9-alembic-1.7.7/lib/python3.9/site-packages/alembic/command.py", line 320, in upgrade script.run_env() File "/nix/store/[redacted-hash3]-python3.9-alembic-1.7.7/lib/python3.9/site-packages/alembic/script/base.py", line 563, in run_env util.load_python_file(self.dir, "env.py") File "/nix/store/[redacted-hash3]-python3.9-alembic-1.7.7/lib/python3.9/site-packages/alembic/util/pyfiles.py", line 92, in load_python_file module = load_module_py(module_id, path) File "/nix/store/[redacted-hash3]-python3.9-alembic-1.7.7/lib/python3.9/site-packages/alembic/util/pyfiles.py", line 108, in load_module_py spec.loader.exec_module(module) # type: ignore File "<frozen importlib._bootstrap_external>", line 850, in exec_module File "<frozen importlib._bootstrap>", line 228, in _call_with_frames_removed File "/nix/store/[redacted-hash2]-python3.9-apache-airflow-2.3.2/lib/python3.9/site-packages/airflow/migrations/env.py", line 107, in <module> run_migrations_online() File "/nix/store/[redacted-hash2]-python3.9-apache-airflow-2.3.2/lib/python3.9/site-packages/airflow/migrations/env.py", line 101, in run_migrations_online context.run_migrations() File "<string>", line 8, in run_migrations File "/nix/store/[redacted-hash3]-python3.9-alembic-1.7.7/lib/python3.9/site-packages/alembic/runtime/environment.py", line 851, in run_migrations self.get_context().run_migrations(**kw) File "/nix/store/[redacted-hash3]-python3.9-alembic-1.7.7/lib/python3.9/site-packages/alembic/runtime/migration.py", line 620, in run_migrations step.migration_fn(**kw) File "/nix/store/[redacted-hash2]-python3.9-apache-airflow-2.3.2/lib/python3.9/site-packages/airflow/migrations/versions/0080_2_0_2_change_default_pool_slots_to_1.py", line 41, in upgrade batch_op.alter_column("pool_slots", existing_type=sa.Integer, nullable=False, server_default='1') File "/nix/store/lb7982cwd56am6nzx1ix0aljz416w6mw-python3-3.9.6/lib/python3.9/contextlib.py", line 124, in __exit__ next(self.gen) File "/nix/store/[redacted-hash3]-python3.9-alembic-1.7.7/lib/python3.9/site-packages/alembic/operations/base.py", line 374, in batch_alter_table impl.flush() File "/nix/store/[redacted-hash3]-python3.9-alembic-1.7.7/lib/python3.9/site-packages/alembic/operations/batch.py", line 108, in flush fn(*arg, **kw) File "/nix/store/[redacted-hash3]-python3.9-alembic-1.7.7/lib/python3.9/site-packages/alembic/ddl/postgresql.py", line 170, in alter_column super(PostgresqlImpl, self).alter_column( File "/nix/store/[redacted-hash3]-python3.9-alembic-1.7.7/lib/python3.9/site-packages/alembic/ddl/impl.py", line 227, in alter_column self._exec( File "/nix/store/[redacted-hash3]-python3.9-alembic-1.7.7/lib/python3.9/site-packages/alembic/ddl/impl.py", line 193, in _exec return conn.execute(construct, multiparams) File "/nix/store/[redacted-hash1]-python3.9-SQLAlchemy-1.4.9/lib/python3.9/site-packages/sqlalchemy/engine/base.py", line 1200, in execute return meth(self, multiparams, params, _EMPTY_EXECUTION_OPTS) File "/nix/store/[redacted-hash1]-python3.9-SQLAlchemy-1.4.9/lib/python3.9/site-packages/sqlalchemy/sql/ddl.py", line 77, in _execute_on_connection return connection._execute_ddl( File "/nix/store/[redacted-hash1]-python3.9-SQLAlchemy-1.4.9/lib/python3.9/site-packages/sqlalchemy/engine/base.py", line 1290, in _execute_ddl ret = self._execute_context( File "/nix/store/[redacted-hash1]-python3.9-SQLAlchemy-1.4.9/lib/python3.9/site-packages/sqlalchemy/engine/base.py", line 1748, in _execute_context self._handle_dbapi_exception( File "/nix/store/[redacted-hash1]-python3.9-SQLAlchemy-1.4.9/lib/python3.9/site-packages/sqlalchemy/engine/base.py", line 1929, in _handle_dbapi_exception util.raise_( File "/nix/store/[redacted-hash1]-python3.9-SQLAlchemy-1.4.9/lib/python3.9/site-packages/sqlalchemy/util/compat.py", line 211, in raise_ raise exception File "/nix/store/[redacted-hash1]-python3.9-SQLAlchemy-1.4.9/lib/python3.9/site-packages/sqlalchemy/engine/base.py", line 1705, in _execute_context self.dialect.do_execute( File "/nix/store/[redacted-hash1]-python3.9-SQLAlchemy-1.4.9/lib/python3.9/site-packages/sqlalchemy/engine/default.py", line 716, in do_execute cursor.execute(statement, parameters) sqlalchemy.exc.IntegrityError: (psycopg2.errors.NotNullViolation) column "pool_slots" contains null values [SQL: ALTER TABLE task_instance ALTER COLUMN pool_slots SET NOT NULL] (Background on this error at: http://sqlalche.me/e/14/gkpj) ``` ### Are you willing to submit PR? - [X] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/24566
https://github.com/apache/airflow/pull/24585
75db755f4b06b4cfdd3eb2651dbf88ddba2d831f
9f58e823329d525c0e2b3950ada7e0e047ee7cfd
"2022-06-20T17:57:34Z"
python
"2022-06-29T01:55:41Z"
closed
apache/airflow
https://github.com/apache/airflow
24,526
["docs/apache-airflow/installation/upgrading.rst", "docs/spelling_wordlist.txt"]
upgrading from 2.2.3 or 2.2.5 to 2.3.2 fails on migration-job
### Apache Airflow version 2.3.2 (latest released) ### What happened Upgrade Airflow 2.2.3 or 2.2.5 -> 2.3.2 fails on migration-job. **first time upgrade execution:** ``` Referencing column 'task_id' and referenced column 'task_id' in foreign key constraint 'task_map_task_instance_fkey' are incompatible.") [SQL: CREATE TABLE task_map ( dag_id VARCHAR(250) COLLATE utf8mb3_bin NOT NULL, task_id VARCHAR(250) COLLATE utf8mb3_bin NOT NULL, run_id VARCHAR(250) COLLATE utf8mb3_bin NOT NULL, map_index INTEGER NOT NULL, length INTEGER NOT NULL, `keys` JSON, PRIMARY KEY (dag_id, task_id, run_id, map_index), CONSTRAINT task_map_length_not_negative CHECK (length >= 0), CONSTRAINT task_map_task_instance_fkey FOREIGN KEY(dag_id, task_id, run_id, map_index) REFERENCES task_instance (dag_id, task_id, run_id, map_index) ON DELETE CASCADE ) ] ``` **after the first failed execution (should be due to the first failed execution):** ``` Can't DROP 'task_reschedule_ti_fkey'; check that column/key exists") [SQL: ALTER TABLE task_reschedule DROP FOREIGN KEY task_reschedule_ti_fkey[] ``` ### What you think should happen instead The migration-job shouldn't fail ;) ### How to reproduce Everytime in my environment just need to create a snapshot from last working DB-Snapshot (Airflow Version 2.2.3) and then deploy Airflow 2.3.2. I can update in between to 2.2.5 but ran into the same issue by update to 2.3.2. ### Operating System Debian GNU/Linux 10 (buster) - apache/airflow:2.3.2-python3.8 (hub.docker.com) ### Versions of Apache Airflow Providers apache-airflow-providers-amazon==2.4.0 apache-airflow-providers-celery==2.1.0 apache-airflow-providers-cncf-kubernetes==2.2.0 apache-airflow-providers-docker==2.3.0 apache-airflow-providers-elasticsearch==2.1.0 apache-airflow-providers-ftp==2.0.1 apache-airflow-providers-google==6.2.0 apache-airflow-providers-grpc==2.0.1 apache-airflow-providers-hashicorp==2.1.1 apache-airflow-providers-http==2.0.1 apache-airflow-providers-imap==2.0.1 apache-airflow-providers-microsoft-azure==3.4.0 apache-airflow-providers-mysql==2.1.1 apache-airflow-providers-odbc==2.0.1 apache-airflow-providers-postgres==2.4.0 apache-airflow-providers-redis==2.0.1 apache-airflow-providers-sendgrid==2.0.1 apache-airflow-providers-sftp==2.3.0 apache-airflow-providers-slack==4.1.0 apache-airflow-providers-sqlite==2.0.1 apache-airflow-providers-ssh==2.3.0 apache-airflow-providers-tableau==2.1.4 ### Deployment Official Apache Airflow Helm Chart ### Deployment details - K8s Rev: v1.21.12-eks-a64ea69 - helm chart version: 1.6.0 - Database: AWS RDS MySQL 8.0.28 ### Anything else Full error Log **first** execution: ``` /home/airflow/.local/lib/python3.8/site-packages/airflow/configuration.py:529: DeprecationWarning: The auth_backend option in [api[] has been renamed to auth_backends - the old setting has been used, but please update your config. option = self._get_option_from_config_file(deprecated_key, deprecated_section, key, kwargs, section) /home/airflow/.local/lib/python3.8/site-packages/airflow/configuration.py:356: FutureWarning: The auth_backends setting in [api[] has had airflow.api.auth.backend.session added in the running config, which is needed by the UI. Please update your config before Apache Airflow 3.0. warnings.warn( DB: mysql+mysqldb://airflow:***@test-airflow2-db-blue.fsgfsdcfds76.eu-central-1.rds.amazonaws.com:3306/airflow Performing upgrade with database mysql+mysqldb://airflow:***@test-airflow2-db-blue.fsgfsdcfds76.eu-central-1.rds.amazonaws.com:3306/airflow [2022-06-17 12:19:59,724[] {db.py:920} WARNING - Found 33 duplicates in table task_fail. Will attempt to move them. [2022-06-17 12:36:18,813[] {db.py:1448} INFO - Creating tables INFO [alembic.runtime.migration[] Context impl MySQLImpl. INFO [alembic.runtime.migration[] Will assume non-transactional DDL. INFO [alembic.runtime.migration[] Running upgrade be2bfac3da23 -> c381b21cb7e4, Create a ``session`` table to store web session data INFO [alembic.runtime.migration[] Running upgrade c381b21cb7e4 -> 587bdf053233, Add index for ``dag_id`` column in ``job`` table. INFO [alembic.runtime.migration[] Running upgrade 587bdf053233 -> 5e3ec427fdd3, Increase length of email and username in ``ab_user`` and ``ab_register_user`` table to ``256`` characters INFO [alembic.runtime.migration[] Running upgrade 5e3ec427fdd3 -> 786e3737b18f, Add ``timetable_description`` column to DagModel for UI. INFO [alembic.runtime.migration[] Running upgrade 786e3737b18f -> f9da662e7089, Add ``LogTemplate`` table to track changes to config values ``log_filename_template`` INFO [alembic.runtime.migration[] Running upgrade f9da662e7089 -> e655c0453f75, Add ``map_index`` column to TaskInstance to identify task-mapping, and a ``task_map`` table to track mapping values from XCom. Traceback (most recent call last): File "/home/airflow/.local/lib/python3.8/site-packages/sqlalchemy/engine/base.py", line 1705, in _execute_context self.dialect.do_execute( File "/home/airflow/.local/lib/python3.8/site-packages/sqlalchemy/engine/default.py", line 716, in do_execute cursor.execute(statement, parameters) File "/home/airflow/.local/lib/python3.8/site-packages/MySQLdb/cursors.py", line 206, in execute res = self._query(query) File "/home/airflow/.local/lib/python3.8/site-packages/MySQLdb/cursors.py", line 319, in _query db.query(q) File "/home/airflow/.local/lib/python3.8/site-packages/MySQLdb/connections.py", line 254, in query _mysql.connection.query(self, query) MySQLdb._exceptions.OperationalError: (3780, "Referencing column 'task_id' and referenced column 'task_id' in foreign key constraint 'task_map_task_instance_fkey' are incompatible.") The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/home/airflow/.local/bin/airflow", line 8, in <module> sys.exit(main()) File "/home/airflow/.local/lib/python3.8/site-packages/airflow/__main__.py", line 38, in main args.func(args) File "/home/airflow/.local/lib/python3.8/site-packages/airflow/cli/cli_parser.py", line 51, in command return func(*args, **kwargs) File "/home/airflow/.local/lib/python3.8/site-packages/airflow/utils/cli.py", line 99, in wrapper return f(*args, **kwargs) File "/home/airflow/.local/lib/python3.8/site-packages/airflow/cli/commands/db_command.py", line 82, in upgradedb db.upgradedb(to_revision=to_revision, from_revision=from_revision, show_sql_only=args.show_sql_only) File "/home/airflow/.local/lib/python3.8/site-packages/airflow/utils/session.py", line 71, in wrapper return func(*args, session=session, **kwargs) File "/home/airflow/.local/lib/python3.8/site-packages/airflow/utils/db.py", line 1449, in upgradedb command.upgrade(config, revision=to_revision or 'heads') File "/home/airflow/.local/lib/python3.8/site-packages/alembic/command.py", line 322, in upgrade script.run_env() File "/home/airflow/.local/lib/python3.8/site-packages/alembic/script/base.py", line 569, in run_env util.load_python_file(self.dir, "env.py") File "/home/airflow/.local/lib/python3.8/site-packages/alembic/util/pyfiles.py", line 94, in load_python_file module = load_module_py(module_id, path) File "/home/airflow/.local/lib/python3.8/site-packages/alembic/util/pyfiles.py", line 110, in load_module_py spec.loader.exec_module(module) # type: ignore File "<frozen importlib._bootstrap_external>", line 843, in exec_module File "<frozen importlib._bootstrap>", line 219, in _call_with_frames_removed File "/home/airflow/.local/lib/python3.8/site-packages/airflow/migrations/env.py", line 107, in <module> run_migrations_online() File "/home/airflow/.local/lib/python3.8/site-packages/airflow/migrations/env.py", line 101, in run_migrations_online context.run_migrations() File "<string>", line 8, in run_migrations File "/home/airflow/.local/lib/python3.8/site-packages/alembic/runtime/environment.py", line 853, in run_migrations self.get_context().run_migrations(**kw) File "/home/airflow/.local/lib/python3.8/site-packages/alembic/runtime/migration.py", line 623, in run_migrations step.migration_fn(**kw) File "/home/airflow/.local/lib/python3.8/site-packages/airflow/migrations/versions/0100_2_3_0_add_taskmap_and_map_id_on_taskinstance.py", line 75, in upgrade op.create_table( File "<string>", line 8, in create_table File "<string>", line 3, in create_table File "/home/airflow/.local/lib/python3.8/site-packages/alembic/operations/ops.py", line 1254, in create_table return operations.invoke(op) File "/home/airflow/.local/lib/python3.8/site-packages/alembic/operations/base.py", line 394, in invoke return fn(self, operation) File "/home/airflow/.local/lib/python3.8/site-packages/alembic/operations/toimpl.py", line 114, in create_table operations.impl.create_table(table) File "/home/airflow/.local/lib/python3.8/site-packages/alembic/ddl/impl.py", line 354, in create_table self._exec(schema.CreateTable(table)) File "/home/airflow/.local/lib/python3.8/site-packages/alembic/ddl/impl.py", line 195, in _exec return conn.execute(construct, multiparams) File "/home/airflow/.local/lib/python3.8/site-packages/sqlalchemy/engine/base.py", line 1200, in execute return meth(self, multiparams, params, _EMPTY_EXECUTION_OPTS) File "/home/airflow/.local/lib/python3.8/site-packages/sqlalchemy/sql/ddl.py", line 77, in _execute_on_connection return connection._execute_ddl( File "/home/airflow/.local/lib/python3.8/site-packages/sqlalchemy/engine/base.py", line 1290, in _execute_ddl ret = self._execute_context( File "/home/airflow/.local/lib/python3.8/site-packages/sqlalchemy/engine/base.py", line 1748, in _execute_context self._handle_dbapi_exception( File "/home/airflow/.local/lib/python3.8/site-packages/sqlalchemy/engine/base.py", line 1929, in _handle_dbapi_exception util.raise_( File "/home/airflow/.local/lib/python3.8/site-packages/sqlalchemy/util/compat.py", line 211, in raise_ raise exception File "/home/airflow/.local/lib/python3.8/site-packages/sqlalchemy/engine/base.py", line 1705, in _execute_context self.dialect.do_execute( File "/home/airflow/.local/lib/python3.8/site-packages/sqlalchemy/engine/default.py", line 716, in do_execute cursor.execute(statement, parameters) File "/home/airflow/.local/lib/python3.8/site-packages/MySQLdb/cursors.py", line 206, in execute res = self._query(query) File "/home/airflow/.local/lib/python3.8/site-packages/MySQLdb/cursors.py", line 319, in _query db.query(q) File "/home/airflow/.local/lib/python3.8/site-packages/MySQLdb/connections.py", line 254, in query _mysql.connection.query(self, query) sqlalchemy.exc.OperationalError: (MySQLdb._exceptions.OperationalError) (3780, "Referencing column 'task_id' and referenced column 'task_id' in foreign key constraint 'task_map_task_instance_fkey' are incompatible.") [SQL: CREATE TABLE task_map ( dag_id VARCHAR(250) COLLATE utf8mb3_bin NOT NULL, task_id VARCHAR(250) COLLATE utf8mb3_bin NOT NULL, run_id VARCHAR(250) COLLATE utf8mb3_bin NOT NULL, map_index INTEGER NOT NULL, length INTEGER NOT NULL, `keys` JSON, PRIMARY KEY (dag_id, task_id, run_id, map_index), CONSTRAINT task_map_length_not_negative CHECK (length >= 0), CONSTRAINT task_map_task_instance_fkey FOREIGN KEY(dag_id, task_id, run_id, map_index) REFERENCES task_instance (dag_id, task_id, run_id, map_index) ON DELETE CASCADE ) ] (Background on this error at: http://sqlalche.me/e/14/e3q8) ``` Full error Log **after** first execution (should caused by first execution): ``` /home/airflow/.local/lib/python3.8/site-packages/airflow/configuration.py:529: DeprecationWarning: The auth_backend option in [api[] has been renamed to auth_backends - the old setting has been used, but please update your config. option = self._get_option_from_config_file(deprecated_key, deprecated_section, key, kwargs, section) /home/airflow/.local/lib/python3.8/site-packages/airflow/configuration.py:356: FutureWarning: The auth_backends setting in [api[] has had airflow.api.auth.backend.session added in the running config, which is needed by the UI. Please update your config before Apache Airflow 3.0. warnings.warn( DB: mysql+mysqldb://airflow:***@test-airflow2-db-blue.cndbtlpttl69.eu-central-1.rds.amazonaws.com:3306/airflow Performing upgrade with database mysql+mysqldb://airflow:***@test-airflow2-db-blue.cndbtlpttl69.eu-central-1.rds.amazonaws.com:3306/airflow [2022-06-17 12:41:53,882[] {db.py:1448} INFO - Creating tables INFO [alembic.runtime.migration[] Context impl MySQLImpl. INFO [alembic.runtime.migration[] Will assume non-transactional DDL. INFO [alembic.runtime.migration[] Running upgrade f9da662e7089 -> e655c0453f75, Add ``map_index`` column to TaskInstance to identify task-mapping, and a ``task_map`` table to track mapping values from XCom. Traceback (most recent call last): File "/home/airflow/.local/lib/python3.8/site-packages/sqlalchemy/engine/base.py", line 1705, in _execute_context self.dialect.do_execute( File "/home/airflow/.local/lib/python3.8/site-packages/sqlalchemy/engine/default.py", line 716, in do_execute cursor.execute(statement, parameters) File "/home/airflow/.local/lib/python3.8/site-packages/MySQLdb/cursors.py", line 206, in execute res = self._query(query) File "/home/airflow/.local/lib/python3.8/site-packages/MySQLdb/cursors.py", line 319, in _query db.query(q) File "/home/airflow/.local/lib/python3.8/site-packages/MySQLdb/connections.py", line 254, in query _mysql.connection.query(self, query) MySQLdb._exceptions.OperationalError: (1091, "Can't DROP 'task_reschedule_ti_fkey'; check that column/key exists") The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/home/airflow/.local/bin/airflow", line 8, in <module> sys.exit(main()) File "/home/airflow/.local/lib/python3.8/site-packages/airflow/__main__.py", line 38, in main args.func(args) File "/home/airflow/.local/lib/python3.8/site-packages/airflow/cli/cli_parser.py", line 51, in command return func(*args, **kwargs) File "/home/airflow/.local/lib/python3.8/site-packages/airflow/utils/cli.py", line 99, in wrapper return f(*args, **kwargs) File "/home/airflow/.local/lib/python3.8/site-packages/airflow/cli/commands/db_command.py", line 82, in upgradedb db.upgradedb(to_revision=to_revision, from_revision=from_revision, show_sql_only=args.show_sql_only) File "/home/airflow/.local/lib/python3.8/site-packages/airflow/utils/session.py", line 71, in wrapper return func(*args, session=session, **kwargs) File "/home/airflow/.local/lib/python3.8/site-packages/airflow/utils/db.py", line 1449, in upgradedb command.upgrade(config, revision=to_revision or 'heads') File "/home/airflow/.local/lib/python3.8/site-packages/alembic/command.py", line 322, in upgrade script.run_env() File "/home/airflow/.local/lib/python3.8/site-packages/alembic/script/base.py", line 569, in run_env util.load_python_file(self.dir, "env.py") File "/home/airflow/.local/lib/python3.8/site-packages/alembic/util/pyfiles.py", line 94, in load_python_file module = load_module_py(module_id, path) File "/home/airflow/.local/lib/python3.8/site-packages/alembic/util/pyfiles.py", line 110, in load_module_py spec.loader.exec_module(module) # type: ignore File "<frozen importlib._bootstrap_external>", line 843, in exec_module File "<frozen importlib._bootstrap>", line 219, in _call_with_frames_removed File "/home/airflow/.local/lib/python3.8/site-packages/airflow/migrations/env.py", line 107, in <module> run_migrations_online() File "/home/airflow/.local/lib/python3.8/site-packages/airflow/migrations/env.py", line 101, in run_migrations_online context.run_migrations() File "<string>", line 8, in run_migrations File "/home/airflow/.local/lib/python3.8/site-packages/alembic/runtime/environment.py", line 853, in run_migrations self.get_context().run_migrations(**kw) File "/home/airflow/.local/lib/python3.8/site-packages/alembic/runtime/migration.py", line 623, in run_migrations step.migration_fn(**kw) File "/home/airflow/.local/lib/python3.8/site-packages/airflow/migrations/versions/0100_2_3_0_add_taskmap_and_map_id_on_taskinstance.py", line 49, in upgrade batch_op.drop_index("idx_task_reschedule_dag_task_run") File "/usr/local/lib/python3.8/contextlib.py", line 120, in __exit__ next(self.gen) File "/home/airflow/.local/lib/python3.8/site-packages/alembic/operations/base.py", line 376, in batch_alter_table impl.flush() File "/home/airflow/.local/lib/python3.8/site-packages/alembic/operations/batch.py", line 111, in flush fn(*arg, **kw) File "/home/airflow/.local/lib/python3.8/site-packages/alembic/ddl/mysql.py", line 155, in drop_constraint super(MySQLImpl, self).drop_constraint(const) File "/home/airflow/.local/lib/python3.8/site-packages/alembic/ddl/impl.py", line 338, in drop_constraint self._exec(schema.DropConstraint(const)) File "/home/airflow/.local/lib/python3.8/site-packages/alembic/ddl/impl.py", line 195, in _exec return conn.execute(construct, multiparams) File "/home/airflow/.local/lib/python3.8/site-packages/sqlalchemy/engine/base.py", line 1200, in execute return meth(self, multiparams, params, _EMPTY_EXECUTION_OPTS) File "/home/airflow/.local/lib/python3.8/site-packages/sqlalchemy/sql/ddl.py", line 77, in _execute_on_connection return connection._execute_ddl( File "/home/airflow/.local/lib/python3.8/site-packages/sqlalchemy/engine/base.py", line 1290, in _execute_ddl ret = self._execute_context( File "/home/airflow/.local/lib/python3.8/site-packages/sqlalchemy/engine/base.py", line 1748, in _execute_context self._handle_dbapi_exception( File "/home/airflow/.local/lib/python3.8/site-packages/sqlalchemy/engine/base.py", line 1929, in _handle_dbapi_exception util.raise_( File "/home/airflow/.local/lib/python3.8/site-packages/sqlalchemy/util/compat.py", line 211, in raise_ raise exception File "/home/airflow/.local/lib/python3.8/site-packages/sqlalchemy/engine/base.py", line 1705, in _execute_context self.dialect.do_execute( File "/home/airflow/.local/lib/python3.8/site-packages/sqlalchemy/engine/default.py", line 716, in do_execute cursor.execute(statement, parameters) File "/home/airflow/.local/lib/python3.8/site-packages/MySQLdb/cursors.py", line 206, in execute res = self._query(query) File "/home/airflow/.local/lib/python3.8/site-packages/MySQLdb/cursors.py", line 319, in _query db.query(q) File "/home/airflow/.local/lib/python3.8/site-packages/MySQLdb/connections.py", line 254, in query _mysql.connection.query(self, query) sqlalchemy.exc.OperationalError: (MySQLdb._exceptions.OperationalError) (1091, "Can't DROP 'task_reschedule_ti_fkey'; check that column/key exists") [SQL: ALTER TABLE task_reschedule DROP FOREIGN KEY task_reschedule_ti_fkey[] (Background on this error at: http://sqlalche.me/e/14/e3q8) ``` ### Are you willing to submit PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/24526
https://github.com/apache/airflow/pull/25938
994f18872af8d2977d78e6d1a27314efbeedb886
e2592628cb0a6a37efbacc64064dbeb239e83a50
"2022-06-17T13:59:27Z"
python
"2022-08-25T14:15:28Z"
closed
apache/airflow
https://github.com/apache/airflow
24,525
["airflow/models/baseoperator.py", "tests/models/test_baseoperator.py"]
mini-scheduler raises AttributeError: 'NoneType' object has no attribute 'keys'
### Apache Airflow version 2.3.2 (latest released) ### What happened The mini-scheduler run after a task finishes sometimes fails with an error "AttributeError: 'NoneType' object has no attribute 'keys'"; see full traceback below. ### What you think should happen instead _No response_ ### How to reproduce The minimal reproducing example I could find is this: ```python import pendulum from airflow.models import BaseOperator from airflow.utils.task_group import TaskGroup from airflow.decorators import task from airflow import DAG @task def task0(): pass class Op0(BaseOperator): template_fields = ["some_input"] def __init__(self, some_input, **kwargs): super().__init__(**kwargs) self.some_input = some_input if __name__ == "__main__": with DAG("dag0", start_date=pendulum.now()) as dag: with TaskGroup(group_id="tg1"): Op0(task_id="task1", some_input=task0()) dag.partial_subset("tg1.task1") ``` Running this script with airflow 2.3.2 produces this traceback: ``` Traceback (most recent call last): File "/app/airflow-bug-minimal.py", line 22, in <module> dag.partial_subset("tg1.task1") File "/venv/lib/python3.10/site-packages/airflow/models/dag.py", line 2013, in partial_subset dag.task_dict = { File "/venv/lib/python3.10/site-packages/airflow/models/dag.py", line 2014, in <dictcomp> t.task_id: _deepcopy_task(t) File "/venv/lib/python3.10/site-packages/airflow/models/dag.py", line 2011, in _deepcopy_task return copy.deepcopy(t, memo) File "/usr/local/lib/python3.10/copy.py", line 153, in deepcopy y = copier(memo) File "/venv/lib/python3.10/site-packages/airflow/models/baseoperator.py", line 1156, in __deepcopy__ setattr(result, k, copy.deepcopy(v, memo)) File "/venv/lib/python3.10/site-packages/airflow/models/baseoperator.py", line 1000, in __setattr__ self.set_xcomargs_dependencies() File "/venv/lib/python3.10/site-packages/airflow/models/baseoperator.py", line 1107, in set_xcomargs_dependencies XComArg.apply_upstream_relationship(self, arg) File "/venv/lib/python3.10/site-packages/airflow/models/xcom_arg.py", line 186, in apply_upstream_relationship op.set_upstream(ref.operator) File "/venv/lib/python3.10/site-packages/airflow/models/taskmixin.py", line 241, in set_upstream self._set_relatives(task_or_task_list, upstream=True, edge_modifier=edge_modifier) File "/venv/lib/python3.10/site-packages/airflow/models/taskmixin.py", line 185, in _set_relatives dags: Set["DAG"] = {task.dag for task in [*self.roots, *task_list] if task.has_dag() and task.dag} File "/venv/lib/python3.10/site-packages/airflow/models/taskmixin.py", line 185, in <setcomp> dags: Set["DAG"] = {task.dag for task in [*self.roots, *task_list] if task.has_dag() and task.dag} File "/venv/lib/python3.10/site-packages/airflow/models/dag.py", line 508, in __hash__ val = tuple(self.task_dict.keys()) AttributeError: 'NoneType' object has no attribute 'keys' ``` Note that the call to `dag.partial_subset` usually happens in the mini-scheduler: https://github.com/apache/airflow/blob/2.3.2/airflow/jobs/local_task_job.py#L253 ### Operating System Linux (Debian 9) ### Versions of Apache Airflow Providers _No response_ ### Deployment Other ### Deployment details _No response_ ### Anything else _No response_ ### Are you willing to submit PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/24525
https://github.com/apache/airflow/pull/24865
17564a40a7b8b5dee878cc634077e0a2e63e36fb
c23b31cd786760da8a8e39ecbcf2c0d31e50e594
"2022-06-17T13:08:16Z"
python
"2022-07-06T10:34:48Z"
closed
apache/airflow
https://github.com/apache/airflow
24,487
["airflow/models/expandinput.py", "tests/models/test_mappedoperator.py"]
Dynamic mapping over KubernetesPodOperator results produces triplicate child tasks
### Apache Airflow version 2.3.2 (latest released) ### What happened Attempting to use [dynamic task mapping](https://airflow.apache.org/docs/apache-airflow/2.3.0/concepts/dynamic-task-mapping.html#mapping-over-result-of-classic-operators) on the results of a `KubernetesPodOperator` (or `GKEStartPodOperator`) produces 3x as many downstream task instances as it should. Two-thirds of the downstream tasks fail more or less instantly. ### What you think should happen instead The problem is that the number of downstream tasks is calculated by counting XCOMs associated with the upstream task, assuming that each `task_id` has a single XCOM: https://github.com/apache/airflow/blob/fe5e689adfe3b2f9bcc37d3975ae1aea9b55e28a/airflow/models/mappedoperator.py#L606-L615 However the `KubernetesPodOperator` pushes two XCOMs in its `.execute()` method: https://github.com/apache/airflow/blob/fe5e689adfe3b2f9bcc37d3975ae1aea9b55e28a/airflow/providers/cncf/kubernetes/operators/kubernetes_pod.py#L425-L426 So the number of downstream tasks ends up being 3x what it should. ### How to reproduce Reproducing the behavior requires access to a kubernetes cluster, but in psedo-code, a dag like this should demonstrate the behavior: ``` with DAG(...) as dag: # produces an output list with N elements first_pod = GKEStartPodOperator(..., do_xcom_push=True) # produces 1 output per input, so N task instances are created each with a single output second_pod = GKEStartPodOperator.partial(..., do_xcom_push=True).expand(id=XComArg(first_pod)) # should have N task instances created, but actually gets 3N task instances created third_pod = GKEStartPodOperator.partial(..., do_xcom_push=True).expand(id=XComArg(second_pod)) ``` ### Operating System macOS 12.4 ### Versions of Apache Airflow Providers apache-airflow-providers-cncf-kubernetes==4.1.0 apache-airflow-providers-google==8.0.0 ### Deployment Virtualenv installation ### Deployment details _No response_ ### Anything else When I edit `mappedoperator.py` in my local deployment to filter on the XCOM key things behave as expected: ``` # Collect lengths from mapped upstreams. xcom_query = ( session.query(XCom.task_id, func.count(XCom.map_index)) .group_by(XCom.task_id) .filter( XCom.dag_id == self.dag_id, XCom.run_id == run_id, XCom.key == 'return_value', <------- added this line XCom.task_id.in_(mapped_dep_keys), XCom.map_index >= 0, ) ) ``` ### Are you willing to submit PR? - [X] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/24487
https://github.com/apache/airflow/pull/24530
df388a3d5364b748993e61b522d0b68ff8b8124a
a69095fea1722e153a95ef9da93b002b82a02426
"2022-06-15T23:31:31Z"
python
"2022-07-27T08:36:23Z"
closed
apache/airflow
https://github.com/apache/airflow
24,484
["airflow/migrations/versions/0111_2_3_3_add_indexes_for_cascade_deletes.py", "airflow/models/taskfail.py", "airflow/models/taskreschedule.py", "airflow/models/xcom.py", "docs/apache-airflow/migrations-ref.rst"]
`airflow db clean task_instance` takes a long time
### Apache Airflow version 2.3.1 ### What happened When I ran the `airflow db clean task_instance` command, it can take up to 9 hours to complete. The database around 3215220 rows in the `task_instance` table and 51602 rows in the `dag_run` table. The overall size of the database is around 1 TB. I believe the issue is because of the cascade constraints on others tables as well as the lack of indexes on task_instance foreign keys. Running delete on a small number of rows gives this shows most of the time is spent in xcom and task_fail tables ``` explain (analyze,buffers,timing) delete from task_instance t1 where t1.run_id = 'manual__2022-05-11T01:09:05.856703+00:00'; rollback; Trigger for constraint task_reschedule_ti_fkey: time=3.208 calls=23 Trigger for constraint task_map_task_instance_fkey: time=1.848 calls=23 Trigger for constraint xcom_task_instance_fkey: time=4457.779 calls=23 Trigger for constraint rtif_ti_fkey: time=3.135 calls=23 Trigger for constraint task_fail_ti_fkey: time=1164.183 calls=23 ``` I temporarily fixed it by adding these indexes. ``` create index idx_task_reschedule_dr_fkey on task_reschedule (dag_id, run_id); create index idx_xcom_ti_fkey on xcom (dag_id, task_id, run_id, map_index); create index idx_task_fail_ti_fkey on task_fail (dag_id, task_id, run_id, map_index); ``` ### What you think should happen instead It should not take 9 hours to complete a clean up process. Before upgrading to 2.3.x, it was taking no more than 5 minutes. ### How to reproduce _No response_ ### Operating System N/A ### Versions of Apache Airflow Providers _No response_ ### Deployment Astronomer ### Deployment details _No response_ ### Anything else _No response_ ### Are you willing to submit PR? - [X] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/24484
https://github.com/apache/airflow/pull/24488
127f8f4de02422ade8f2c84f84d3262d6efde185
677c42227c08f705142f298ab88915f133cd94e5
"2022-06-15T21:21:18Z"
python
"2022-06-16T18:41:35Z"
closed
apache/airflow
https://github.com/apache/airflow
24,460
["airflow/providers/google/cloud/hooks/bigquery.py", "airflow/providers/google/cloud/operators/bigquery.py", "airflow/providers/google/cloud/triggers/bigquery.py", "docs/apache-airflow-providers-google/operators/cloud/bigquery.rst", "tests/providers/google/cloud/hooks/test_bigquery.py", "tests/providers/google/cloud/operators/test_bigquery.py"]
let BigQueryGetData operator take a query string and as_dict flag
### Description Today the BigQueryGetData airflow.providers.google.cloud.operators.bigquery.BigQueryGetDataOperator only allows you to point to a specific dataset and table and how many rows you want. It already sets up a BigQueryHook so it very easy to implement custom query from a string as well. It would also be very efficient to have a as_dict flag to return the result as a list of dicts. I am not an expert in python but here is my atempt at a modification of the current code (from 8.0.0rc2) ``` python class BigQueryGetDataOperatorX(BaseOperator): """ Fetches the data from a BigQuery table (alternatively fetch data for selected columns) and returns data in a python list. The number of elements in the returned list will be equal to the number of rows fetched. Each element in the list will again be a list where element would represent the columns values for that row. **Example Result**: ``[['Tony', '10'], ['Mike', '20'], ['Steve', '15']]`` .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:BigQueryGetDataOperator` .. note:: If you pass fields to ``selected_fields`` which are in different order than the order of columns already in BQ table, the data will still be in the order of BQ table. For example if the BQ table has 3 columns as ``[A,B,C]`` and you pass 'B,A' in the ``selected_fields`` the data would still be of the form ``'A,B'``. **Example**: :: get_data = BigQueryGetDataOperator( task_id='get_data_from_bq', dataset_id='test_dataset', table_id='Transaction_partitions', max_results=100, selected_fields='DATE', gcp_conn_id='airflow-conn-id' ) :param dataset_id: The dataset ID of the requested table. (templated) :param table_id: The table ID of the requested table. (templated) :param max_results: The maximum number of records (rows) to be fetched from the table. (templated) :param selected_fields: List of fields to return (comma-separated). If unspecified, all fields are returned. :param gcp_conn_id: (Optional) The connection ID used to connect to Google Cloud. :param delegate_to: The account to impersonate using domain-wide delegation of authority, if any. For this to work, the service account making the request must have domain-wide delegation enabled. :param location: The location used for the operation. :param impersonation_chain: Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account (templated). :param query: (Optional) A sql query to execute instead :param as_dict: if True returns the result as a list of dictionaries. default to False """ template_fields: Sequence[str] = ( 'dataset_id', 'table_id', 'max_results', 'selected_fields', 'impersonation_chain', ) ui_color = BigQueryUIColors.QUERY.value def __init__( self, *, dataset_id: Optional[str] = None, table_id: Optional[str] = None, max_results: Optional[int] = 100, selected_fields: Optional[str] = None, gcp_conn_id: str = 'google_cloud_default', delegate_to: Optional[str] = None, location: Optional[str] = None, impersonation_chain: Optional[Union[str, Sequence[str]]] = None, query: Optional[str] = None, as_dict: bool = False, **kwargs, ) -> None: super().__init__(**kwargs) self.dataset_id = dataset_id self.table_id = table_id self.max_results = int(max_results) self.selected_fields = selected_fields self.gcp_conn_id = gcp_conn_id self.delegate_to = delegate_to self.location = location self.impersonation_chain = impersonation_chain self.query = query self.as_dict = as_dict if not query and not table_id: self.log.error('Table_id or query not set. Please provide either a dataset_id + table_id or a query string') def execute(self, context: 'Context') -> list: self.log.info( 'Fetching Data from %s.%s max results: %s', self.dataset_id, self.table_id, self.max_results ) hook = BigQueryHook( gcp_conn_id=self.gcp_conn_id, delegate_to=self.delegate_to, impersonation_chain=self.impersonation_chain, location=self.location, ) if not self.query: if not self.selected_fields: schema: Dict[str, list] = hook.get_schema( dataset_id=self.dataset_id, table_id=self.table_id, ) if "fields" in schema: self.selected_fields = ','.join([field["name"] for field in schema["fields"]]) with hook.list_rows( dataset_id=self.dataset_id, table_id=self.table_id, max_results=self.max_results, selected_fields=self.selected_fields ) as rows: if self.as_dict: table_data = [json.dumps(dict(zip(self.selected_fields, row))).encode('utf-8') for row in rows] else: table_data = [row.values() for row in rows] else: with hook.get_conn().cursor().execute(self.query) as cursor: if self.as_dict: table_data = [json.dumps(dict(zip(self.keys,row))).encode('utf-8') for row in cursor.fetchmany(self.max_results)] else: table_data = [row for row in cursor.fetchmany(self.max_results)] self.log.info('Total extracted rows: %s', len(table_data)) return table_data ``` ### Use case/motivation This would simplify getting data from BigQuery into airflow instead of having to first store the data in a separat table with BigQueryInsertJob and then fetch that. Also simplifies handling the data with as_dict in the same way that many other database connectors in python does. ### Related issues _No response_ ### Are you willing to submit a PR? - [X] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/24460
https://github.com/apache/airflow/pull/30887
dff7e0de362e4cd318d7c285ec102923503eceb3
b8f73768ec13f8d4cc1605cca3fa93be6caac473
"2022-06-15T08:33:25Z"
python
"2023-05-09T06:05:24Z"
closed
apache/airflow
https://github.com/apache/airflow
24,388
["airflow/models/abstractoperator.py", "airflow/models/baseoperator.py", "airflow/models/mappedoperator.py", "airflow/models/taskinstance.py", "airflow/utils/context.py", "tests/decorators/test_python.py", "tests/models/test_mappedoperator.py"]
Unable to access operator attrs within Jinja context for mapped tasks
### Apache Airflow version 2.3.2 (latest released) ### What happened When attempting to generate mapped SQL tasks using a Jinja-templated query that access operator attributes, an exception like the following is thrown: `jinja2.exceptions.UndefinedError: 'airflow.models.mappedoperator.MappedOperator object' has no attribute '<operator attribute>'` For example, when attempting to map `SQLValueCheckOperator` tasks with respect to `database` using a query of `SELECT COUNT(*) FROM {{ task.database }}.tbl;`: `jinja2.exceptions.UndefinedError: 'airflow.models.mappedoperator.MappedOperator object' has no attribute 'database'` Or, when using `SnowflakeOperator` and mapping via `parameters` of a query like `SELECT * FROM {{ task.parameters.tbl }};`: `jinja2.exceptions.UndefinedError: 'airflow.models.mappedoperator.MappedOperator object' has no attribute 'parameters'` ### What you think should happen instead When using Jinja-template SQL queries, the attribute that is being using for the mapping should be accessible via `{{ task.<operator attribute> }}`. Executing the same SQL query with classic, non-mapped tasks allows for this operator attr access from the `task` context object. Ideally, the same interface should apply for both non-mapped and mapped tasks. Also with the preference of using `parameters` over `params` in SQL-type operators, having the ability to map over `parameters` will help folks move from using `params` to `parameters`. ### How to reproduce Consider the following DAG: ```python from pendulum import datetime from airflow.decorators import dag from airflow.operators.sql import SQLValueCheckOperator from airflow.providers.snowflake.operators.snowflake import SnowflakeOperator CORE_SQL = "SELECT COUNT(*) FROM {{ task.database }}.tbl;" SNOWFLAKE_SQL = """SELECT * FROM {{ task.parameters.tbl }};""" @dag(dag_id="map-city", start_date=datetime(2022, 6, 7), schedule_interval=None) def map_city(): classic_sql_value_check = SQLValueCheckOperator( task_id="classic_sql_value_check", conn_id="snowflake", sql=CORE_SQL, database="dev", pass_value=20000, ) mapped_value_check = SQLValueCheckOperator.partial( task_id="check_row_count", conn_id="snowflake", sql=CORE_SQL, pass_value=20000, ).expand(database=["dev", "production"]) classic_snowflake_task = SnowflakeOperator( task_id="classic_snowflake_task", snowflake_conn_id="snowflake", sql=SNOWFLAKE_SQL, parameters={"tbl": "foo"}, ) mapped_snowflake_task = SnowflakeOperator.partial( task_id="mapped_snowflake_task", snowflake_conn_id="snowflake", sql=SNOWFLAKE_SQL ).expand( parameters=[ {"tbl": "foo"}, {"tbl": "bar"}, ] ) _ = map_city() ``` **`SQLValueCheckOperator` tasks** The logs for the "classic_sql_value_check", non-mapped task show the query executing as expected: `[2022-06-11, 02:01:03 UTC] {sql.py:204} INFO - Executing SQL check: SELECT COUNT(*) FROM dev.tbl;` while the mapped "check_row_count" task fails with the following exception: ```bash [2022-06-11, 02:01:03 UTC] {standard_task_runner.py:79} INFO - Running: ['airflow', 'tasks', 'run', 'map-city', 'check_row_count', 'manual__2022-06-11T02:01:01.831761+00:00', '--job-id', '350', '--raw', '--subdir', 'DAGS_FOLDER/map_city.py', '--cfg-path', '/tmp/tmpm5bg9mt5', '--map-index', '0', '--error-file', '/tmp/tmp2kbilt2l'] [2022-06-11, 02:01:03 UTC] {standard_task_runner.py:80} INFO - Job 350: Subtask check_row_count [2022-06-11, 02:01:03 UTC] {task_command.py:370} INFO - Running <TaskInstance: map-city.check_row_count manual__2022-06-11T02:01:01.831761+00:00 map_index=0 [running]> on host 569596df5be5 [2022-06-11, 02:01:03 UTC] {taskinstance.py:1889} ERROR - Task failed with exception Traceback (most recent call last): File "/usr/local/lib/python3.9/site-packages/airflow/models/taskinstance.py", line 1451, in _run_raw_task self._execute_task_with_callbacks(context, test_mode) File "/usr/local/lib/python3.9/site-packages/airflow/models/taskinstance.py", line 1555, in _execute_task_with_callbacks task_orig = self.render_templates(context=context) File "/usr/local/lib/python3.9/site-packages/airflow/models/taskinstance.py", line 2212, in render_templates rendered_task = self.task.render_template_fields(context) File "/usr/local/lib/python3.9/site-packages/airflow/models/mappedoperator.py", line 726, in render_template_fields self._do_render_template_fields( File "/usr/local/lib/python3.9/site-packages/airflow/utils/session.py", line 68, in wrapper return func(*args, **kwargs) File "/usr/local/lib/python3.9/site-packages/airflow/models/abstractoperator.py", line 344, in _do_render_template_fields rendered_content = self.render_template( File "/usr/local/lib/python3.9/site-packages/airflow/models/abstractoperator.py", line 391, in render_template return render_template_to_string(template, context) File "/usr/local/lib/python3.9/site-packages/airflow/utils/helpers.py", line 296, in render_template_to_string return render_template(template, context, native=False) File "/usr/local/lib/python3.9/site-packages/airflow/utils/helpers.py", line 291, in render_template return "".join(nodes) File "<template>", line 13, in root File "/usr/local/lib/python3.9/site-packages/jinja2/runtime.py", line 903, in _fail_with_undefined_error raise self._undefined_exception(self._undefined_message) jinja2.exceptions.UndefinedError: 'airflow.models.mappedoperator.MappedOperator object' has no attribute 'database' ``` **`SnowflakeOperator` tasks** Similarly, the "classic_snowflake_task" non-mapped task is able to execute the SQL query as expected: `[2022-06-11, 02:01:04 UTC] {snowflake.py:324} INFO - Running statement: SELECT * FROM foo;, parameters: {'tbl': 'foo'}` while the mapped "mapped_snowflake_task task fails to execute the query: ```bash [2022-06-11, 02:01:03 UTC] {standard_task_runner.py:79} INFO - Running: ['airflow', 'tasks', 'run', 'map-city', 'mapped_snowflake_task', 'manual__2022-06-11T02:01:01.831761+00:00', '--job-id', '347', '--raw', '--subdir', 'DAGS_FOLDER/map_city.py', '--cfg-path', '/tmp/tmp6kmqs5ew', '--map-index', '0', '--error-file', '/tmp/tmpkufg9xqx'] [2022-06-11, 02:01:03 UTC] {standard_task_runner.py:80} INFO - Job 347: Subtask mapped_snowflake_task [2022-06-11, 02:01:03 UTC] {task_command.py:370} INFO - Running <TaskInstance: map-city.mapped_snowflake_task manual__2022-06-11T02:01:01.831761+00:00 map_index=0 [running]> on host 569596df5be5 [2022-06-11, 02:01:03 UTC] {taskinstance.py:1889} ERROR - Task failed with exception Traceback (most recent call last): File "/usr/local/lib/python3.9/site-packages/airflow/models/taskinstance.py", line 1451, in _run_raw_task self._execute_task_with_callbacks(context, test_mode) File "/usr/local/lib/python3.9/site-packages/airflow/models/taskinstance.py", line 1555, in _execute_task_with_callbacks task_orig = self.render_templates(context=context) File "/usr/local/lib/python3.9/site-packages/airflow/models/taskinstance.py", line 2212, in render_templates rendered_task = self.task.render_template_fields(context) File "/usr/local/lib/python3.9/site-packages/airflow/models/mappedoperator.py", line 726, in render_template_fields self._do_render_template_fields( File "/usr/local/lib/python3.9/site-packages/airflow/utils/session.py", line 68, in wrapper return func(*args, **kwargs) File "/usr/local/lib/python3.9/site-packages/airflow/models/abstractoperator.py", line 344, in _do_render_template_fields rendered_content = self.render_template( File "/usr/local/lib/python3.9/site-packages/airflow/models/abstractoperator.py", line 391, in render_template return render_template_to_string(template, context) File "/usr/local/lib/python3.9/site-packages/airflow/utils/helpers.py", line 296, in render_template_to_string return render_template(template, context, native=False) File "/usr/local/lib/python3.9/site-packages/airflow/utils/helpers.py", line 291, in render_template return "".join(nodes) File "<template>", line 13, in root File "/usr/local/lib/python3.9/site-packages/jinja2/sandbox.py", line 326, in getattr value = getattr(obj, attribute) File "/usr/local/lib/python3.9/site-packages/jinja2/runtime.py", line 910, in __getattr__ return self._fail_with_undefined_error() File "/usr/local/lib/python3.9/site-packages/jinja2/runtime.py", line 903, in _fail_with_undefined_error raise self._undefined_exception(self._undefined_message) jinja2.exceptions.UndefinedError: 'airflow.models.mappedoperator.MappedOperator object' has no attribute 'parameters' ``` ### Operating System Debian GNU/Linux 10 (buster) ### Versions of Apache Airflow Providers apache-airflow-providers-snowflake==2.7.0 ### Deployment Astronomer ### Deployment details Astronomer Runtime 5.0.3 ### Anything else Even though using the `{{ task.<operator attr> }}` method does not work for mapped tasks, there is a workaround. Given the `SnowflakeOperator` example from above attempting to execute the query: `SELECT * FROM {{ task.parameters.tbl }};`, users can modify the templated query to `SELECT * FROM {{ task.mapped_kwargs.parameters[ti.map_index].tbl }};` for successful execution. This workaround isn't very obvious though and requires from solid digging into the new 2.3.0 code. ### Are you willing to submit PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/24388
https://github.com/apache/airflow/pull/26702
ed494594ef213b3633aa3972e1b8b4ad18b88e42
5560a46bfe8a14205c5e8a14f0b5c2ae74ee100c
"2022-06-11T02:28:05Z"
python
"2022-09-27T12:52:52Z"
closed
apache/airflow
https://github.com/apache/airflow
24,360
["airflow/providers/snowflake/transfers/s3_to_snowflake.py", "airflow/providers/snowflake/utils/__init__.py", "airflow/providers/snowflake/utils/common.py", "docs/apache-airflow-providers-snowflake/operators/s3_to_snowflake.rst", "tests/providers/snowflake/transfers/test_s3_to_snowflake.py", "tests/providers/snowflake/utils/__init__.py", "tests/providers/snowflake/utils/test_common.py", "tests/system/providers/snowflake/example_snowflake.py"]
Pattern parameter in S3ToSnowflakeOperator
### Description I would like to propose to add a pattern parameter to allow loading only those files that satisfy the given regex pattern. This function is supported on the Snowflake side, it just requires passing a parameter to the COPY INTO command. [Snowflake documentation/](https://docs.snowflake.com/en/sql-reference/sql/copy-into-table.html#loading-using-pattern-matching) ### Use case/motivation I have multiple files with different schema in one folder. I would like to move to Snowflake only files which meet the given name filter, and I am not able to do it with the prefix parameter. ### Related issues I am not aware ### Are you willing to submit a PR? - [X] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/24360
https://github.com/apache/airflow/pull/24571
5877f45d65d5aa864941efebd2040661b6f89cb1
66e84001df069c76ba8bfefe15956c4018844b92
"2022-06-09T22:13:38Z"
python
"2022-06-22T07:49:02Z"
closed
apache/airflow
https://github.com/apache/airflow
24,352
["airflow/providers/google/cloud/operators/gcs.py", "tests/providers/google/cloud/operators/test_gcs.py"]
GCSDeleteObjectsOperator raises unexpected ValueError for prefix set as empty string
### Apache Airflow Provider(s) google ### Versions of Apache Airflow Providers All versions. ``` apache-airflow-providers-google>=1.0.0b1 apache-airflow-backport-providers-google>=2020.5.20rc1 ``` ### Apache Airflow version 2.3.2 (latest released) ### Operating System macOS 12.3.1 ### Deployment Composer ### Deployment details _No response_ ### What happened I'm currently doing the upgrade check in Airflow 1.10.15 and one of the topics is to change the import locations from contrib to the specific provider. While replacing: `airflow.contrib.operators.gcs_delete_operator.GoogleCloudStorageDeleteOperator` By: `airflow.providers.google.cloud.operators.gcs.GCSDeleteObjectsOperator` An error appeared in the UI: `Broken DAG: [...] Either object or prefix should be set. Both are None` --- Upon further investigation, I found out that while the `GoogleCloudStorageDeleteOperator` from contrib module had this parameter check (as can be seen [here](https://github.com/apache/airflow/blob/v1-10-stable/airflow/contrib/operators/gcs_delete_operator.py#L63)): ```python assert objects is not None or prefix is not None ``` The new `GCSDeleteObjectsOperator` from Google provider module have the following (as can be seen [here](https://github.com/apache/airflow/blob/main/airflow/providers/google/cloud/operators/gcs.py#L308-L309)): ```python if not objects and not prefix: raise ValueError("Either object or prefix should be set. Both are None") ``` --- As it turns out, these conditions are not equivalent, because a variable `prefix` containing the value of an empty string won't raise an error on the first case, but will raise it in the second one. ### What you think should happen instead This behavior does not match with the documentation description, since using a prefix as an empty string is perfectly valid in case the user wants to delete all objects within the bucket. Furthermore, there were no philosophical changes within the API in that timeframe. This code change happened in [this commit](https://github.com/apache/airflow/commit/25e9047a4a4da5fad4f85c366e3a6262c0a4f68e#diff-c45d838a139b258ab703c23c30fd69078108f14a267731bd2be5cc1c8a7c02f5), where the developer's intent was clearly to remove assertions, not to change the logic behind the validation. In fact, it even relates to a PR for [this Airflow JIRA ticket](https://issues.apache.org/jira/browse/AIRFLOW-6193). ### How to reproduce Add a `GCSDeleteObjectsOperator` with a parameter `prefix=""` to a DAG. Example: ```python from datetime import datetime, timedelta from airflow import DAG from airflow.providers.google.cloud.operators.gcs import GCSDeleteObjectsOperator with DAG('test_dag', schedule_interval=timedelta(days=1), start_date=datetime(2022, 1, 1)) as dag: task = GCSDeleteObjectsOperator( task_id='task_that_generates_ValueError', bucket_name='some_bucket', prefix='' ) ``` ### Anything else In my opinion, the error message wasn't very accurate as well, since it just breaks the DAG without pointing out which task is causing the issue. It took me 20 minutes to pinpoint the exact task in my case, since I was dealing with a DAG with a lot of tasks. Adding the `task_id` to the error message could improve the developer experience in that case. ### Are you willing to submit PR? - [X] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/24352
https://github.com/apache/airflow/pull/24353
dd35fdaf35b6e46fd69a1b1da36ae7ffc0505dcb
e7a1c50d62680a521ef90a424b7eff03635081d5
"2022-06-09T17:23:11Z"
python
"2022-06-19T22:07:56Z"
closed
apache/airflow
https://github.com/apache/airflow
24,346
["airflow/utils/db.py"]
Add salesforce_default to List Connection
### Apache Airflow version 2.1.2 ### What happened salesforce_default is not in the list of Connection. ### What you think should happen instead Should be added salesforce_default to ListConnection. ### How to reproduce After resetting DB, look at List Connection. ### Operating System GCP Container ### Versions of Apache Airflow Providers _No response_ ### Deployment Composer ### Deployment details composer-1.17.1-airflow-2.1.2 ### Anything else _No response_ ### Are you willing to submit PR? - [X] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/24346
https://github.com/apache/airflow/pull/24347
e452949610cff67c0e0a9918a8fefa7e8cc4b8c8
6d69dd062f079a8fbf72563fd218017208bfe6c1
"2022-06-09T14:56:06Z"
python
"2022-06-13T18:25:58Z"
closed
apache/airflow
https://github.com/apache/airflow
24,343
["airflow/providers/google/cloud/operators/bigquery.py"]
BigQueryCreateEmptyTableOperator do not deprecated bigquery_conn_id yet
### Apache Airflow version 2.3.2 (latest released) ### What happened `bigquery_conn_id` is deprecated for other operators like `BigQueryDeleteTableOperator` and replaced by `gcp_conn_id` but it's not the case for `BigQueryCreateEmptyTableOperator` ### Are you willing to submit PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/24343
https://github.com/apache/airflow/pull/24376
dd78e29a8c858769c9c21752f319e19af7f64377
8e0bddaea69db4d175f03fa99951f6d82acee84d
"2022-06-09T09:19:46Z"
python
"2022-06-12T21:07:16Z"
closed
apache/airflow
https://github.com/apache/airflow
24,338
["airflow/exceptions.py", "airflow/models/xcom_arg.py", "tests/decorators/test_python.py"]
TaskFlow AirflowSkipException causes downstream step to fail
### Apache Airflow version 2.3.2 (latest released) ### What happened Using TaskFlow API and have 2 tasks that lead to the same downstream task. These tasks check for new data and when found will set an XCom entry of the new filename for the downstream to handle. If no data is found the upstream tasks raise a skip exception. The downstream task has the trigger_rule = none_failed_min_one_success. Problem is that a task which is set to Skip doesn't set any XCom. When the downstream task starts it raises the error: `airflow.exceptions.AirflowException: XComArg result from task2 at airflow_2_3_xcomarg_render_error with key="return_value" is not found!` ### What you think should happen instead Based on trigger rule of "none_failed_min_one_success", expectation is that an upstream task should be allowed to skip and the downstream task will still run. While the downstream does try to start based on trigger rules, it never really gets to run since the error is raised when rendering the arguments. ### How to reproduce Example dag will generate the error if run. ``` from airflow.decorators import dag, task from airflow.exceptions import AirflowSkipException @task def task1(): return "example.csv" @task def task2(): raise AirflowSkipException() @task(trigger_rule="none_failed_min_one_success") def downstream_task(t1, t2): print("task ran") @dag( default_args={"owner": "Airflow", "start_date": "2022-06-07"}, schedule_interval=None, ) def airflow_2_3_xcomarg_render_error(): t1 = task1() t2 = task2() downstream_task(t1, t2) example_dag = airflow_2_3_xcomarg_render_error() ``` ### Operating System Ubuntu 20.04.4 LTS ### Versions of Apache Airflow Providers _No response_ ### Deployment Virtualenv installation ### Deployment details _No response_ ### Anything else _No response_ ### Are you willing to submit PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/24338
https://github.com/apache/airflow/pull/25661
c7215a28f9df71c63408f758ed34253a4dfaa318
a4e38978194ef46565bc1e5ba53ecc65308d09aa
"2022-06-08T20:07:42Z"
python
"2022-08-16T12:05:52Z"
closed
apache/airflow
https://github.com/apache/airflow
24,331
["dev/example_dags/README.md", "dev/example_dags/update_example_dags_paths.py"]
"Example DAGs" link under kubernetes-provider documentation is broken. Getting 404
### What do you see as an issue? _Example DAGs_ folder is not available for _apache-airflow-providers-cncf-kubernetes_ , which results in broken link on documentation page ( https://airflow.apache.org/docs/apache-airflow-providers-cncf-kubernetes/stable/index.html ). Getting 404 error when clicked on _Example DAGs_ link (https://github.com/apache/airflow/tree/main/airflow/providers/cncf/kubernetes/example_dags ) <img width="1464" alt="Screenshot 2022-06-08 at 9 01 56 PM" src="https://user-images.githubusercontent.com/11991059/172657376-8a556e9e-72e5-4aab-9c71-b1da239dbf5c.png"> <img width="1475" alt="Screenshot 2022-06-08 at 9 01 39 PM" src="https://user-images.githubusercontent.com/11991059/172657413-c72d14f2-071f-4452-baf7-0f41504a5a3a.png"> ### Solving the problem Folder named _example_dags_ should be created under link (https://github.com/apache/airflow/tree/main/airflow/providers/cncf/kubernetes/) which should include kubernetes specific DAG examples. ### Anything else _No response_ ### Are you willing to submit PR? - [X] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/24331
https://github.com/apache/airflow/pull/24348
74ac9f788c31512b1fcd9254282905f34cc40666
85c247ae10da5ee93f26352d369f794ff4f2e47c
"2022-06-08T15:33:29Z"
python
"2022-06-09T17:33:11Z"
closed
apache/airflow
https://github.com/apache/airflow
24,328
["airflow/models/taskinstance.py", "tests/models/test_taskinstance.py"]
`TI.log_url` is incorrect with mapped tasks
### Apache Airflow version 2.3.0 ### What happened I had an `on_failure_callback` that sent a `task_instance.log_url` to slack, it no longer behaves correctly - giving me a page with no logs rendered instead of the logs for my task. (Example of failure, URL like: https://XYZ.astronomer.run/dhp2pmdd/log?execution_date=2022-06-05T00%3A00%3A00%2B00%3A00&task_id=create_XXX_zip_files_and_upload&dag_id=my_dag ) ![image](https://user-images.githubusercontent.com/80706212/172645178-b0efb329-d3b4-40f1-81e3-cd358dde9906.png) ### What you think should happen instead The correct behavior would be the URL: https://XYZ.astronomer.run/dhp2pmdd/log?execution_date=2022-06-05T00%3A00%3A00%2B00%3A00&task_id=create_XXX_zip_files_and_upload&dag_id=my_dag&map_index=0 as exemplified: ![image](https://user-images.githubusercontent.com/80706212/172645902-e6179b0c-9612-4ff4-824e-30684aca13b1.png) ### How to reproduce _No response_ ### Operating System Debian/Docker ### Versions of Apache Airflow Providers _No response_ ### Deployment Astronomer ### Deployment details _No response_ ### Anything else _No response_ ### Are you willing to submit PR? - [X] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/24328
https://github.com/apache/airflow/pull/24335
a9c350762db4dca7ab5f6c0bfa0c4537d697b54c
48a6155bb1478245c1dd8b6401e4cce00e129422
"2022-06-08T14:44:49Z"
python
"2022-06-14T20:15:49Z"
closed
apache/airflow
https://github.com/apache/airflow
24,321
["airflow/providers/amazon/aws/sensors/s3.py", "tests/providers/amazon/aws/sensors/test_s3_key.py"]
S3KeySensor wildcard_match only matching key prefixes instead of full patterns
### Apache Airflow Provider(s) amazon ### Versions of Apache Airflow Providers 3.4.0 ### Apache Airflow version 2.3.2 (latest released) ### Operating System Debian GNU/Linux 10 ### Deployment Docker-Compose ### Deployment details _No response_ ### What happened For patterns like "*.zip" the S3KeySensor succeeds for all files, does not take full pattern into account i.e. the ".zip" part). Bug introduced in https://github.com/apache/airflow/pull/22737 ### What you think should happen instead Full pattern match as in version 3.3.0 (in S3KeySensor poke()): ``` ... if self.wildcard_match: return self.get_hook().check_for_wildcard_key(self.bucket_key, self.bucket_name) ... ``` alternatively the files obtained by `files = self.get_hook().get_file_metadata(prefix, bucket_name)` which only match the prefix should be further filtered. ### How to reproduce create a DAG with a key sensor task containing wildcard and suffix, e.g. the following task should succeed only if any ZIP-files are available in "my-bucket", but succeeds for all instead: `S3KeySensor(task_id="wait_for_file", bucket_name="my-bucket", bucket_key="*.zip", wildcard_match=True)` ### Anything else Not directly part of this issue but at the same time I would suggest to include additional file attributes in method _check_key, e.g. the actual key of the files. This way more filters, e.g. exclude specific keys, could be implemented by using the check_fn. ### Are you willing to submit PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/24321
https://github.com/apache/airflow/pull/24378
f8e106a531d2dc502bdfe47c3f460462ab0a156d
7fed7f31c3a895c0df08228541f955efb16fbf79
"2022-06-08T11:44:58Z"
python
"2022-06-11T19:31:17Z"
closed
apache/airflow
https://github.com/apache/airflow
24,318
["airflow/providers/amazon/aws/hooks/emr.py", "airflow/providers/amazon/aws/operators/emr.py"]
`EmrCreateJobFlowOperator` does not work if emr_conn_id param contain credential
### Apache Airflow Provider(s) amazon ### Versions of Apache Airflow Providers _No response_ ### Apache Airflow version 2.3.2 (latest released) ### Operating System os ### Deployment Other ### Deployment details _No response_ ### What happened EmrCreateJobFlowOperator currently have two params for connection `emr_conn_id` and `aws_conn_id`. So it works only when I set `aws_conn_id` containing credentials and an empty `emr_conn_id` and it does not work in the below case - when I set both aws_conn_id and emr_conn_id in the operator and both connection contains credentials i.e it has aws_access_key_id and other params in airflow connection extra ``` Unknown parameter in input: "aws_access_key_id", must be one of: Name, LogUri, LogEncryptionKmsKeyId, AdditionalInfo, AmiVersion, ReleaseLabel, Instances, Steps, BootstrapActions, SupportedProducts, NewSupportedProducts, Applications, Configurations, VisibleToAllUsers, JobFlowRole, ServiceRole, Tags, SecurityConfiguration, AutoScalingRole, ScaleDownBehavior, CustomAmiId, EbsRootVolumeSize, RepoUpgradeOnBoot, KerberosAttributes, StepConcurrencyLevel, ManagedScalingPolicy, PlacementGroupConfigs, AutoTerminationPolicy, OSReleaseLabel ``` - when I set both aws_conn_id and emr_conn_id in the operator and only emr_conn_id connection contains credentials i.e it has aws_access_key_id and other params in airflow connection extra ``` [2022-06-07, 20:49:19 UTC] {taskinstance.py:1826} ERROR - Task failed with exception Traceback (most recent call last): File "/opt/airflow/airflow/providers/amazon/aws/operators/emr.py", line 324, in execute response = emr.create_job_flow(job_flow_overrides) File "/opt/airflow/airflow/providers/amazon/aws/hooks/emr.py", line 87, in create_job_flow response = self.get_conn().run_job_flow(**job_flow_overrides) File "/usr/local/lib/python3.7/site-packages/botocore/client.py", line 508, in _api_call return self._make_api_call(operation_name, kwargs) File "/usr/local/lib/python3.7/site-packages/botocore/client.py", line 895, in _make_api_call operation_model, request_dict, request_context File "/usr/local/lib/python3.7/site-packages/botocore/client.py", line 917, in _make_request return self._endpoint.make_request(operation_model, request_dict) File "/usr/local/lib/python3.7/site-packages/botocore/endpoint.py", line 116, in make_request return self._send_request(request_dict, operation_model) File "/usr/local/lib/python3.7/site-packages/botocore/endpoint.py", line 195, in _send_request request = self.create_request(request_dict, operation_model) File "/usr/local/lib/python3.7/site-packages/botocore/endpoint.py", line 134, in create_request operation_name=operation_model.name, File "/usr/local/lib/python3.7/site-packages/botocore/hooks.py", line 412, in emit return self._emitter.emit(aliased_event_name, **kwargs) File "/usr/local/lib/python3.7/site-packages/botocore/hooks.py", line 256, in emit return self._emit(event_name, kwargs) File "/usr/local/lib/python3.7/site-packages/botocore/hooks.py", line 239, in _emit response = handler(**kwargs) File "/usr/local/lib/python3.7/site-packages/botocore/signers.py", line 103, in handler return self.sign(operation_name, request) File "/usr/local/lib/python3.7/site-packages/botocore/signers.py", line 187, in sign auth.add_auth(request) File "/usr/local/lib/python3.7/site-packages/botocore/auth.py", line 405, in add_auth raise NoCredentialsError() botocore.exceptions.NoCredentialsError: Unable to locate credentials ``` - When I set only aws_conn_id in the operator and it contains credentials ``` Traceback (most recent call last): File "/opt/airflow/airflow/providers/amazon/aws/operators/emr.py", line 324, in execute response = emr.create_job_flow(job_flow_overrides) File "/opt/airflow/airflow/providers/amazon/aws/hooks/emr.py", line 90, in create_job_flow emr_conn = self.get_connection(self.emr_conn_id) File "/opt/airflow/airflow/hooks/base.py", line 67, in get_connection conn = Connection.get_connection_from_secrets(conn_id) File "/opt/airflow/airflow/models/connection.py", line 430, in get_connection_from_secrets raise AirflowNotFoundException(f"The conn_id `{conn_id}` isn't defined") ``` - When I set only emr_conn_id in the operator and it contains credentials ``` [2022-06-07, 20:49:19 UTC] {taskinstance.py:1826} ERROR - Task failed with exception Traceback (most recent call last): File "/opt/airflow/airflow/providers/amazon/aws/operators/emr.py", line 324, in execute response = emr.create_job_flow(job_flow_overrides) File "/opt/airflow/airflow/providers/amazon/aws/hooks/emr.py", line 87, in create_job_flow response = self.get_conn().run_job_flow(**job_flow_overrides) File "/usr/local/lib/python3.7/site-packages/botocore/client.py", line 508, in _api_call return self._make_api_call(operation_name, kwargs) File "/usr/local/lib/python3.7/site-packages/botocore/client.py", line 895, in _make_api_call operation_model, request_dict, request_context File "/usr/local/lib/python3.7/site-packages/botocore/client.py", line 917, in _make_request return self._endpoint.make_request(operation_model, request_dict) File "/usr/local/lib/python3.7/site-packages/botocore/endpoint.py", line 116, in make_request return self._send_request(request_dict, operation_model) File "/usr/local/lib/python3.7/site-packages/botocore/endpoint.py", line 195, in _send_request request = self.create_request(request_dict, operation_model) File "/usr/local/lib/python3.7/site-packages/botocore/endpoint.py", line 134, in create_request operation_name=operation_model.name, File "/usr/local/lib/python3.7/site-packages/botocore/hooks.py", line 412, in emit return self._emitter.emit(aliased_event_name, **kwargs) File "/usr/local/lib/python3.7/site-packages/botocore/hooks.py", line 256, in emit return self._emit(event_name, kwargs) File "/usr/local/lib/python3.7/site-packages/botocore/hooks.py", line 239, in _emit response = handler(**kwargs) File "/usr/local/lib/python3.7/site-packages/botocore/signers.py", line 103, in handler return self.sign(operation_name, request) File "/usr/local/lib/python3.7/site-packages/botocore/signers.py", line 187, in sign auth.add_auth(request) File "/usr/local/lib/python3.7/site-packages/botocore/auth.py", line 405, in add_auth raise NoCredentialsError() botocore.exceptions.NoCredentialsError: Unable to locate credentials ``` - When I set aws_conn_id having credential and emr_conn_id having no credential i.e empty extra field in airflow connection then it work ### What you think should happen instead It should work with even one connection id i.e with aws_conn_id or emr_conn_id and should not fail even emr_conn_id has credentials ### How to reproduce - Create EmrCreateJobFlowOperator and pass both aws_conn_id and emr_conn_id or - Create EmrCreateJobFlowOperator and pass aws_conn_id or emr_conn_id ### Anything else _No response_ ### Are you willing to submit PR? - [X] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/24318
https://github.com/apache/airflow/pull/24306
4daf51a2c388b41201a0a8095e0a97c27d6704c8
99d98336312d188a078721579a3f71060bdde542
"2022-06-08T09:40:10Z"
python
"2022-06-10T13:25:12Z"
closed
apache/airflow
https://github.com/apache/airflow
24,281
["breeze"]
Fix command in breeze
### What do you see as an issue? There is a mistake in the command displayed in breeze. ``` The answer is 'no'. Skipping Installing pipx?. Please run those commands manually (you might need to restart shell between them):i pip -m install pipx pipx ensurepath pipx install -e '/Users/ishiis/github/airflow/dev/breeze/' breeze setup-autocomplete --force After that, both pipx and breeze should be available on your path ``` There is no -m option in pip. ```bash % pip -m install pipx Usage: pip <command> [options] no such option: -m ``` ### Solving the problem Fix the command. ### Anything else _No response_ ### Are you willing to submit PR? - [X] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/24281
https://github.com/apache/airflow/pull/24282
6dc474fc82aa9325081b0c5f2b92c948e2f16f74
69ca427754c54c5496bf90b7fc70fdd646bc92e5
"2022-06-07T11:10:12Z"
python
"2022-06-07T11:13:16Z"
closed
apache/airflow
https://github.com/apache/airflow
24,197
["airflow/providers/cncf/kubernetes/operators/kubernetes_pod.py"]
KubernetesPodOperator rendered template tab does not pretty print `env_vars`
### Apache Airflow version 2.2.5 ### What happened I am using the `KubernetesPodOperator` for airflow tasks in `Airflow 2.2.5` and it doesnot render the `env_vars` in the `rendered template` in a easily human consumable format as it did in `Airflow 1.10.x` ![image](https://user-images.githubusercontent.com/3241700/172024886-81fafb11-62c9-4daf-baff-7b47f3baf7d7.png) ### What you think should happen instead The `env_vars` should be pretty printed in human legible form. ### How to reproduce Create a task with the `KubernetesPodOperator` and check the `Rendered template` tab of the task instance. ### Operating System Docker ### Versions of Apache Airflow Providers 2.2.5 ### Deployment Other Docker-based deployment ### Deployment details _No response_ ### Anything else _No response_ ### Are you willing to submit PR? - [ ] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/24197
https://github.com/apache/airflow/pull/25850
1a087bca3d6ecceab96f9ab818b3b75262222d13
db5543ef608bdd7aefdb5fefea150955d369ddf4
"2022-06-04T20:45:01Z"
python
"2022-08-22T15:43:43Z"
closed
apache/airflow
https://github.com/apache/airflow
24,160
["airflow/providers/google/cloud/operators/bigquery.py", "tests/providers/google/cloud/operators/test_bigquery.py"]
`BigQueryCreateExternalTableOperator` uses deprecated function
### Body The `BigQueryCreateExternalTableOperator` uses `create_external_table`: https://github.com/apache/airflow/blob/cd49a8b9f64c57b5622025baee9247712c692e72/airflow/providers/google/cloud/operators/bigquery.py#L1131-L1147 this function is deprecated: https://github.com/apache/airflow/blob/511d0ee256b819690ccf0f6b30d12340b1dd7f0a/airflow/providers/google/cloud/hooks/bigquery.py#L598-L602 **The task:** Refactor/change the operator to replace `create_external_table` with `create_empty_table`. ### Committer - [X] I acknowledge that I am a maintainer/committer of the Apache Airflow project.
https://github.com/apache/airflow/issues/24160
https://github.com/apache/airflow/pull/24363
626d9db2908563c4b7675db5de2cb1e3acde82e9
c618da444e841afcfd73eeb0bce9c87648c89140
"2022-06-03T11:29:43Z"
python
"2022-07-12T11:17:06Z"
closed
apache/airflow
https://github.com/apache/airflow
24,103
["chart/templates/workers/worker-kedaautoscaler.yaml", "chart/values.schema.json", "chart/values.yaml", "tests/charts/test_keda.py"]
Add support for KEDA HPA Config to Helm Chart
### Description > When managing the scale of a group of replicas using the HorizontalPodAutoscaler, it is possible that the number of replicas keeps fluctuating frequently due to the dynamic nature of the metrics evaluated. This is sometimes referred to as thrashing, or flapping. https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#flapping Sometimes clusters need to restrict the flapping of Airflow worker replicas. KEDA supports [`advanced.horizontalPodAutoscalerConfig`](https://keda.sh/docs/1.4/concepts/scaling-deployments/). It would be great if the users would have the option in the helm chart to configure scale down behavior. ### Use case/motivation KEDA currently cannot set advanced options. We want to set advanced options like `scaleDown.stabilizationWindowSeconds`, `scaleDown.policies`. ### Related issues _No response_ ### Are you willing to submit a PR? - [X] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/24103
https://github.com/apache/airflow/pull/24220
97948ecae7fcbb7dfdfb169cfe653bd20a108def
8639c70f187a7d5b8b4d2f432d2530f6d259eceb
"2022-06-02T10:15:04Z"
python
"2022-06-30T17:16:58Z"
closed
apache/airflow
https://github.com/apache/airflow
24,077
["docs/exts/exampleinclude.py"]
Fix style of example-block
### What do you see as an issue? Style of example-block in the document is broken. <img width="810" alt="example-block" src="https://user-images.githubusercontent.com/12693596/171412272-70ca791b-c798-4080-83ab-e358f290ac31.png"> This problem occurs when browser width is between 1000px and 1280px. See: https://airflow.apache.org/docs/apache-airflow-providers-http/stable/operators.html ### Solving the problem The container class should be removed. ```html <div class="example-block-wrapper docutils container"> ^^^^^^^^^ ... </div> ``` ### Anything else _No response_ ### Are you willing to submit PR? - [X] Yes I am willing to submit a PR! ### Code of Conduct - [X] I agree to follow this project's [Code of Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
https://github.com/apache/airflow/issues/24077
https://github.com/apache/airflow/pull/24078
e41b5a012427b5e7eab49de702b83dba4fc2fa13
5087f96600f6d7cc852b91079e92d00df6a50486
"2022-06-01T14:08:48Z"
python
"2022-06-01T17:50:57Z"