Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-110/trainer_state.json +198 -0
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-120/README.md +202 -0
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-120/adapter_config.json +31 -0
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-120/trainer_state.json +213 -0
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-130/README.md +202 -0
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-130/adapter_config.json +31 -0
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-130/trainer_state.json +228 -0
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-140/README.md +202 -0
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-140/adapter_config.json +31 -0
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-140/trainer_state.json +243 -0
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-150/README.md +202 -0
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-150/adapter_config.json +31 -0
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-150/trainer_state.json +258 -0
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-160/README.md +202 -0
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-160/adapter_config.json +31 -0
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-160/trainer_state.json +273 -0
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-170/README.md +202 -0
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-170/adapter_config.json +31 -0
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-170/trainer_state.json +288 -0
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-180/README.md +202 -0
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-180/adapter_config.json +31 -0
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-180/trainer_state.json +303 -0
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-190/README.md +202 -0
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-190/adapter_config.json +31 -0
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-190/trainer_state.json +318 -0
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-200/README.md +202 -0
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-200/adapter_config.json +31 -0
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-200/trainer_state.json +333 -0
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-210/README.md +202 -0
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-210/adapter_config.json +31 -0
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-210/trainer_state.json +348 -0
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-220/README.md +202 -0
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-220/adapter_config.json +31 -0
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-220/trainer_state.json +363 -0
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-230/README.md +202 -0
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-230/adapter_config.json +31 -0
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-230/trainer_state.json +378 -0
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-240/README.md +202 -0
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-240/adapter_config.json +31 -0
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-240/trainer_state.json +393 -0
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-250/README.md +202 -0
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-250/adapter_config.json +31 -0
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-250/trainer_state.json +408 -0
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-260/README.md +202 -0
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-260/adapter_config.json +31 -0
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-260/trainer_state.json +423 -0
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-270/README.md +202 -0
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-270/adapter_config.json +31 -0
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-270/trainer_state.json +438 -0
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-280/README.md +202 -0
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-110/trainer_state.json
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.7508132457733154,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-80",
|
4 |
+
"epoch": 1.4666666666666668,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 110,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.3951323926448822,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.8421,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.7700647115707397,
|
21 |
+
"eval_runtime": 43.86,
|
22 |
+
"eval_samples_per_second": 22.8,
|
23 |
+
"eval_steps_per_second": 2.85,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.3800930380821228,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.7715,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.7666271924972534,
|
36 |
+
"eval_runtime": 43.8435,
|
37 |
+
"eval_samples_per_second": 22.808,
|
38 |
+
"eval_steps_per_second": 2.851,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.3974359333515167,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.7799,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.7623893022537231,
|
51 |
+
"eval_runtime": 43.863,
|
52 |
+
"eval_samples_per_second": 22.798,
|
53 |
+
"eval_steps_per_second": 2.85,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.37877357006073,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.7416,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.7585530281066895,
|
66 |
+
"eval_runtime": 43.8506,
|
67 |
+
"eval_samples_per_second": 22.805,
|
68 |
+
"eval_steps_per_second": 2.851,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.3691335618495941,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.754,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.7555732727050781,
|
81 |
+
"eval_runtime": 43.8591,
|
82 |
+
"eval_samples_per_second": 22.8,
|
83 |
+
"eval_steps_per_second": 2.85,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.3394964337348938,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.639,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.7534734010696411,
|
96 |
+
"eval_runtime": 43.8608,
|
97 |
+
"eval_samples_per_second": 22.799,
|
98 |
+
"eval_steps_per_second": 2.85,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.317234069108963,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.7729,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.7515993118286133,
|
111 |
+
"eval_runtime": 43.8388,
|
112 |
+
"eval_samples_per_second": 22.811,
|
113 |
+
"eval_steps_per_second": 2.851,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.3309251666069031,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.8009,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.7508132457733154,
|
126 |
+
"eval_runtime": 43.8535,
|
127 |
+
"eval_samples_per_second": 22.803,
|
128 |
+
"eval_steps_per_second": 2.85,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.4126473367214203,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.6602,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.753326177597046,
|
141 |
+
"eval_runtime": 43.86,
|
142 |
+
"eval_samples_per_second": 22.8,
|
143 |
+
"eval_steps_per_second": 2.85,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.5640483498573303,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.5879,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.7581162452697754,
|
156 |
+
"eval_runtime": 43.8488,
|
157 |
+
"eval_samples_per_second": 22.806,
|
158 |
+
"eval_steps_per_second": 2.851,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.6418269276618958,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.7067,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.7590935230255127,
|
171 |
+
"eval_runtime": 43.8372,
|
172 |
+
"eval_samples_per_second": 22.812,
|
173 |
+
"eval_steps_per_second": 2.851,
|
174 |
+
"step": 110
|
175 |
+
}
|
176 |
+
],
|
177 |
+
"logging_steps": 10,
|
178 |
+
"max_steps": 675,
|
179 |
+
"num_input_tokens_seen": 0,
|
180 |
+
"num_train_epochs": 9,
|
181 |
+
"save_steps": 10,
|
182 |
+
"stateful_callbacks": {
|
183 |
+
"TrainerControl": {
|
184 |
+
"args": {
|
185 |
+
"should_epoch_stop": false,
|
186 |
+
"should_evaluate": false,
|
187 |
+
"should_log": false,
|
188 |
+
"should_save": true,
|
189 |
+
"should_training_stop": false
|
190 |
+
},
|
191 |
+
"attributes": {}
|
192 |
+
}
|
193 |
+
},
|
194 |
+
"total_flos": 1.80246791847936e+16,
|
195 |
+
"train_batch_size": 8,
|
196 |
+
"trial_name": null,
|
197 |
+
"trial_params": null
|
198 |
+
}
|
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-120/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-120/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"dense",
|
24 |
+
"dense_4h_to_h",
|
25 |
+
"query_key_value",
|
26 |
+
"dense_h_to_4h"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-120/trainer_state.json
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.7508132457733154,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-80",
|
4 |
+
"epoch": 1.6,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 120,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.3951323926448822,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.8421,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.7700647115707397,
|
21 |
+
"eval_runtime": 43.86,
|
22 |
+
"eval_samples_per_second": 22.8,
|
23 |
+
"eval_steps_per_second": 2.85,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.3800930380821228,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.7715,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.7666271924972534,
|
36 |
+
"eval_runtime": 43.8435,
|
37 |
+
"eval_samples_per_second": 22.808,
|
38 |
+
"eval_steps_per_second": 2.851,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.3974359333515167,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.7799,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.7623893022537231,
|
51 |
+
"eval_runtime": 43.863,
|
52 |
+
"eval_samples_per_second": 22.798,
|
53 |
+
"eval_steps_per_second": 2.85,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.37877357006073,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.7416,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.7585530281066895,
|
66 |
+
"eval_runtime": 43.8506,
|
67 |
+
"eval_samples_per_second": 22.805,
|
68 |
+
"eval_steps_per_second": 2.851,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.3691335618495941,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.754,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.7555732727050781,
|
81 |
+
"eval_runtime": 43.8591,
|
82 |
+
"eval_samples_per_second": 22.8,
|
83 |
+
"eval_steps_per_second": 2.85,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.3394964337348938,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.639,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.7534734010696411,
|
96 |
+
"eval_runtime": 43.8608,
|
97 |
+
"eval_samples_per_second": 22.799,
|
98 |
+
"eval_steps_per_second": 2.85,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.317234069108963,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.7729,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.7515993118286133,
|
111 |
+
"eval_runtime": 43.8388,
|
112 |
+
"eval_samples_per_second": 22.811,
|
113 |
+
"eval_steps_per_second": 2.851,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.3309251666069031,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.8009,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.7508132457733154,
|
126 |
+
"eval_runtime": 43.8535,
|
127 |
+
"eval_samples_per_second": 22.803,
|
128 |
+
"eval_steps_per_second": 2.85,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.4126473367214203,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.6602,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.753326177597046,
|
141 |
+
"eval_runtime": 43.86,
|
142 |
+
"eval_samples_per_second": 22.8,
|
143 |
+
"eval_steps_per_second": 2.85,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.5640483498573303,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.5879,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.7581162452697754,
|
156 |
+
"eval_runtime": 43.8488,
|
157 |
+
"eval_samples_per_second": 22.806,
|
158 |
+
"eval_steps_per_second": 2.851,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.6418269276618958,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.7067,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.7590935230255127,
|
171 |
+
"eval_runtime": 43.8372,
|
172 |
+
"eval_samples_per_second": 22.812,
|
173 |
+
"eval_steps_per_second": 2.851,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.603199303150177,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.7311,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.760871410369873,
|
186 |
+
"eval_runtime": 43.828,
|
187 |
+
"eval_samples_per_second": 22.816,
|
188 |
+
"eval_steps_per_second": 2.852,
|
189 |
+
"step": 120
|
190 |
+
}
|
191 |
+
],
|
192 |
+
"logging_steps": 10,
|
193 |
+
"max_steps": 675,
|
194 |
+
"num_input_tokens_seen": 0,
|
195 |
+
"num_train_epochs": 9,
|
196 |
+
"save_steps": 10,
|
197 |
+
"stateful_callbacks": {
|
198 |
+
"TrainerControl": {
|
199 |
+
"args": {
|
200 |
+
"should_epoch_stop": false,
|
201 |
+
"should_evaluate": false,
|
202 |
+
"should_log": false,
|
203 |
+
"should_save": true,
|
204 |
+
"should_training_stop": false
|
205 |
+
},
|
206 |
+
"attributes": {}
|
207 |
+
}
|
208 |
+
},
|
209 |
+
"total_flos": 1.96632863834112e+16,
|
210 |
+
"train_batch_size": 8,
|
211 |
+
"trial_name": null,
|
212 |
+
"trial_params": null
|
213 |
+
}
|
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-130/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-130/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"dense",
|
24 |
+
"dense_4h_to_h",
|
25 |
+
"query_key_value",
|
26 |
+
"dense_h_to_4h"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-130/trainer_state.json
ADDED
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.7508132457733154,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-80",
|
4 |
+
"epoch": 1.7333333333333334,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 130,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.3951323926448822,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.8421,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.7700647115707397,
|
21 |
+
"eval_runtime": 43.86,
|
22 |
+
"eval_samples_per_second": 22.8,
|
23 |
+
"eval_steps_per_second": 2.85,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.3800930380821228,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.7715,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.7666271924972534,
|
36 |
+
"eval_runtime": 43.8435,
|
37 |
+
"eval_samples_per_second": 22.808,
|
38 |
+
"eval_steps_per_second": 2.851,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.3974359333515167,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.7799,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.7623893022537231,
|
51 |
+
"eval_runtime": 43.863,
|
52 |
+
"eval_samples_per_second": 22.798,
|
53 |
+
"eval_steps_per_second": 2.85,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.37877357006073,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.7416,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.7585530281066895,
|
66 |
+
"eval_runtime": 43.8506,
|
67 |
+
"eval_samples_per_second": 22.805,
|
68 |
+
"eval_steps_per_second": 2.851,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.3691335618495941,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.754,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.7555732727050781,
|
81 |
+
"eval_runtime": 43.8591,
|
82 |
+
"eval_samples_per_second": 22.8,
|
83 |
+
"eval_steps_per_second": 2.85,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.3394964337348938,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.639,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.7534734010696411,
|
96 |
+
"eval_runtime": 43.8608,
|
97 |
+
"eval_samples_per_second": 22.799,
|
98 |
+
"eval_steps_per_second": 2.85,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.317234069108963,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.7729,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.7515993118286133,
|
111 |
+
"eval_runtime": 43.8388,
|
112 |
+
"eval_samples_per_second": 22.811,
|
113 |
+
"eval_steps_per_second": 2.851,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.3309251666069031,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.8009,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.7508132457733154,
|
126 |
+
"eval_runtime": 43.8535,
|
127 |
+
"eval_samples_per_second": 22.803,
|
128 |
+
"eval_steps_per_second": 2.85,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.4126473367214203,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.6602,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.753326177597046,
|
141 |
+
"eval_runtime": 43.86,
|
142 |
+
"eval_samples_per_second": 22.8,
|
143 |
+
"eval_steps_per_second": 2.85,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.5640483498573303,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.5879,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.7581162452697754,
|
156 |
+
"eval_runtime": 43.8488,
|
157 |
+
"eval_samples_per_second": 22.806,
|
158 |
+
"eval_steps_per_second": 2.851,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.6418269276618958,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.7067,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.7590935230255127,
|
171 |
+
"eval_runtime": 43.8372,
|
172 |
+
"eval_samples_per_second": 22.812,
|
173 |
+
"eval_steps_per_second": 2.851,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.603199303150177,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.7311,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.760871410369873,
|
186 |
+
"eval_runtime": 43.828,
|
187 |
+
"eval_samples_per_second": 22.816,
|
188 |
+
"eval_steps_per_second": 2.852,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.7207424640655518,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.7103,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.761257529258728,
|
201 |
+
"eval_runtime": 43.8422,
|
202 |
+
"eval_samples_per_second": 22.809,
|
203 |
+
"eval_steps_per_second": 2.851,
|
204 |
+
"step": 130
|
205 |
+
}
|
206 |
+
],
|
207 |
+
"logging_steps": 10,
|
208 |
+
"max_steps": 675,
|
209 |
+
"num_input_tokens_seen": 0,
|
210 |
+
"num_train_epochs": 9,
|
211 |
+
"save_steps": 10,
|
212 |
+
"stateful_callbacks": {
|
213 |
+
"TrainerControl": {
|
214 |
+
"args": {
|
215 |
+
"should_epoch_stop": false,
|
216 |
+
"should_evaluate": false,
|
217 |
+
"should_log": false,
|
218 |
+
"should_save": true,
|
219 |
+
"should_training_stop": false
|
220 |
+
},
|
221 |
+
"attributes": {}
|
222 |
+
}
|
223 |
+
},
|
224 |
+
"total_flos": 2.13018935820288e+16,
|
225 |
+
"train_batch_size": 8,
|
226 |
+
"trial_name": null,
|
227 |
+
"trial_params": null
|
228 |
+
}
|
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-140/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-140/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"dense",
|
24 |
+
"dense_4h_to_h",
|
25 |
+
"query_key_value",
|
26 |
+
"dense_h_to_4h"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-140/trainer_state.json
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.7508132457733154,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-80",
|
4 |
+
"epoch": 1.8666666666666667,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 140,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.3951323926448822,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.8421,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.7700647115707397,
|
21 |
+
"eval_runtime": 43.86,
|
22 |
+
"eval_samples_per_second": 22.8,
|
23 |
+
"eval_steps_per_second": 2.85,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.3800930380821228,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.7715,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.7666271924972534,
|
36 |
+
"eval_runtime": 43.8435,
|
37 |
+
"eval_samples_per_second": 22.808,
|
38 |
+
"eval_steps_per_second": 2.851,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.3974359333515167,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.7799,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.7623893022537231,
|
51 |
+
"eval_runtime": 43.863,
|
52 |
+
"eval_samples_per_second": 22.798,
|
53 |
+
"eval_steps_per_second": 2.85,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.37877357006073,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.7416,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.7585530281066895,
|
66 |
+
"eval_runtime": 43.8506,
|
67 |
+
"eval_samples_per_second": 22.805,
|
68 |
+
"eval_steps_per_second": 2.851,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.3691335618495941,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.754,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.7555732727050781,
|
81 |
+
"eval_runtime": 43.8591,
|
82 |
+
"eval_samples_per_second": 22.8,
|
83 |
+
"eval_steps_per_second": 2.85,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.3394964337348938,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.639,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.7534734010696411,
|
96 |
+
"eval_runtime": 43.8608,
|
97 |
+
"eval_samples_per_second": 22.799,
|
98 |
+
"eval_steps_per_second": 2.85,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.317234069108963,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.7729,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.7515993118286133,
|
111 |
+
"eval_runtime": 43.8388,
|
112 |
+
"eval_samples_per_second": 22.811,
|
113 |
+
"eval_steps_per_second": 2.851,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.3309251666069031,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.8009,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.7508132457733154,
|
126 |
+
"eval_runtime": 43.8535,
|
127 |
+
"eval_samples_per_second": 22.803,
|
128 |
+
"eval_steps_per_second": 2.85,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.4126473367214203,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.6602,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.753326177597046,
|
141 |
+
"eval_runtime": 43.86,
|
142 |
+
"eval_samples_per_second": 22.8,
|
143 |
+
"eval_steps_per_second": 2.85,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.5640483498573303,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.5879,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.7581162452697754,
|
156 |
+
"eval_runtime": 43.8488,
|
157 |
+
"eval_samples_per_second": 22.806,
|
158 |
+
"eval_steps_per_second": 2.851,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.6418269276618958,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.7067,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.7590935230255127,
|
171 |
+
"eval_runtime": 43.8372,
|
172 |
+
"eval_samples_per_second": 22.812,
|
173 |
+
"eval_steps_per_second": 2.851,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.603199303150177,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.7311,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.760871410369873,
|
186 |
+
"eval_runtime": 43.828,
|
187 |
+
"eval_samples_per_second": 22.816,
|
188 |
+
"eval_steps_per_second": 2.852,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.7207424640655518,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.7103,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.761257529258728,
|
201 |
+
"eval_runtime": 43.8422,
|
202 |
+
"eval_samples_per_second": 22.809,
|
203 |
+
"eval_steps_per_second": 2.851,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.6793868541717529,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.6574,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.7610187530517578,
|
216 |
+
"eval_runtime": 43.8261,
|
217 |
+
"eval_samples_per_second": 22.817,
|
218 |
+
"eval_steps_per_second": 2.852,
|
219 |
+
"step": 140
|
220 |
+
}
|
221 |
+
],
|
222 |
+
"logging_steps": 10,
|
223 |
+
"max_steps": 675,
|
224 |
+
"num_input_tokens_seen": 0,
|
225 |
+
"num_train_epochs": 9,
|
226 |
+
"save_steps": 10,
|
227 |
+
"stateful_callbacks": {
|
228 |
+
"TrainerControl": {
|
229 |
+
"args": {
|
230 |
+
"should_epoch_stop": false,
|
231 |
+
"should_evaluate": false,
|
232 |
+
"should_log": false,
|
233 |
+
"should_save": true,
|
234 |
+
"should_training_stop": false
|
235 |
+
},
|
236 |
+
"attributes": {}
|
237 |
+
}
|
238 |
+
},
|
239 |
+
"total_flos": 2.29405007806464e+16,
|
240 |
+
"train_batch_size": 8,
|
241 |
+
"trial_name": null,
|
242 |
+
"trial_params": null
|
243 |
+
}
|
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-150/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-150/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"dense",
|
24 |
+
"dense_4h_to_h",
|
25 |
+
"query_key_value",
|
26 |
+
"dense_h_to_4h"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-150/trainer_state.json
ADDED
@@ -0,0 +1,258 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.7508132457733154,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-80",
|
4 |
+
"epoch": 2.0,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 150,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.3951323926448822,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.8421,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.7700647115707397,
|
21 |
+
"eval_runtime": 43.86,
|
22 |
+
"eval_samples_per_second": 22.8,
|
23 |
+
"eval_steps_per_second": 2.85,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.3800930380821228,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.7715,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.7666271924972534,
|
36 |
+
"eval_runtime": 43.8435,
|
37 |
+
"eval_samples_per_second": 22.808,
|
38 |
+
"eval_steps_per_second": 2.851,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.3974359333515167,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.7799,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.7623893022537231,
|
51 |
+
"eval_runtime": 43.863,
|
52 |
+
"eval_samples_per_second": 22.798,
|
53 |
+
"eval_steps_per_second": 2.85,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.37877357006073,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.7416,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.7585530281066895,
|
66 |
+
"eval_runtime": 43.8506,
|
67 |
+
"eval_samples_per_second": 22.805,
|
68 |
+
"eval_steps_per_second": 2.851,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.3691335618495941,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.754,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.7555732727050781,
|
81 |
+
"eval_runtime": 43.8591,
|
82 |
+
"eval_samples_per_second": 22.8,
|
83 |
+
"eval_steps_per_second": 2.85,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.3394964337348938,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.639,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.7534734010696411,
|
96 |
+
"eval_runtime": 43.8608,
|
97 |
+
"eval_samples_per_second": 22.799,
|
98 |
+
"eval_steps_per_second": 2.85,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.317234069108963,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.7729,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.7515993118286133,
|
111 |
+
"eval_runtime": 43.8388,
|
112 |
+
"eval_samples_per_second": 22.811,
|
113 |
+
"eval_steps_per_second": 2.851,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.3309251666069031,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.8009,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.7508132457733154,
|
126 |
+
"eval_runtime": 43.8535,
|
127 |
+
"eval_samples_per_second": 22.803,
|
128 |
+
"eval_steps_per_second": 2.85,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.4126473367214203,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.6602,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.753326177597046,
|
141 |
+
"eval_runtime": 43.86,
|
142 |
+
"eval_samples_per_second": 22.8,
|
143 |
+
"eval_steps_per_second": 2.85,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.5640483498573303,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.5879,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.7581162452697754,
|
156 |
+
"eval_runtime": 43.8488,
|
157 |
+
"eval_samples_per_second": 22.806,
|
158 |
+
"eval_steps_per_second": 2.851,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.6418269276618958,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.7067,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.7590935230255127,
|
171 |
+
"eval_runtime": 43.8372,
|
172 |
+
"eval_samples_per_second": 22.812,
|
173 |
+
"eval_steps_per_second": 2.851,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.603199303150177,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.7311,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.760871410369873,
|
186 |
+
"eval_runtime": 43.828,
|
187 |
+
"eval_samples_per_second": 22.816,
|
188 |
+
"eval_steps_per_second": 2.852,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.7207424640655518,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.7103,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.761257529258728,
|
201 |
+
"eval_runtime": 43.8422,
|
202 |
+
"eval_samples_per_second": 22.809,
|
203 |
+
"eval_steps_per_second": 2.851,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.6793868541717529,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.6574,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.7610187530517578,
|
216 |
+
"eval_runtime": 43.8261,
|
217 |
+
"eval_samples_per_second": 22.817,
|
218 |
+
"eval_steps_per_second": 2.852,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.7147842049598694,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 1.6357,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 1.763314962387085,
|
231 |
+
"eval_runtime": 43.8315,
|
232 |
+
"eval_samples_per_second": 22.815,
|
233 |
+
"eval_steps_per_second": 2.852,
|
234 |
+
"step": 150
|
235 |
+
}
|
236 |
+
],
|
237 |
+
"logging_steps": 10,
|
238 |
+
"max_steps": 675,
|
239 |
+
"num_input_tokens_seen": 0,
|
240 |
+
"num_train_epochs": 9,
|
241 |
+
"save_steps": 10,
|
242 |
+
"stateful_callbacks": {
|
243 |
+
"TrainerControl": {
|
244 |
+
"args": {
|
245 |
+
"should_epoch_stop": false,
|
246 |
+
"should_evaluate": false,
|
247 |
+
"should_log": false,
|
248 |
+
"should_save": true,
|
249 |
+
"should_training_stop": false
|
250 |
+
},
|
251 |
+
"attributes": {}
|
252 |
+
}
|
253 |
+
},
|
254 |
+
"total_flos": 2.4579107979264e+16,
|
255 |
+
"train_batch_size": 8,
|
256 |
+
"trial_name": null,
|
257 |
+
"trial_params": null
|
258 |
+
}
|
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-160/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-160/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"dense",
|
24 |
+
"dense_4h_to_h",
|
25 |
+
"query_key_value",
|
26 |
+
"dense_h_to_4h"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-160/trainer_state.json
ADDED
@@ -0,0 +1,273 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.7508132457733154,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-80",
|
4 |
+
"epoch": 2.1333333333333333,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 160,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.3951323926448822,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.8421,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.7700647115707397,
|
21 |
+
"eval_runtime": 43.86,
|
22 |
+
"eval_samples_per_second": 22.8,
|
23 |
+
"eval_steps_per_second": 2.85,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.3800930380821228,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.7715,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.7666271924972534,
|
36 |
+
"eval_runtime": 43.8435,
|
37 |
+
"eval_samples_per_second": 22.808,
|
38 |
+
"eval_steps_per_second": 2.851,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.3974359333515167,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.7799,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.7623893022537231,
|
51 |
+
"eval_runtime": 43.863,
|
52 |
+
"eval_samples_per_second": 22.798,
|
53 |
+
"eval_steps_per_second": 2.85,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.37877357006073,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.7416,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.7585530281066895,
|
66 |
+
"eval_runtime": 43.8506,
|
67 |
+
"eval_samples_per_second": 22.805,
|
68 |
+
"eval_steps_per_second": 2.851,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.3691335618495941,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.754,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.7555732727050781,
|
81 |
+
"eval_runtime": 43.8591,
|
82 |
+
"eval_samples_per_second": 22.8,
|
83 |
+
"eval_steps_per_second": 2.85,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.3394964337348938,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.639,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.7534734010696411,
|
96 |
+
"eval_runtime": 43.8608,
|
97 |
+
"eval_samples_per_second": 22.799,
|
98 |
+
"eval_steps_per_second": 2.85,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.317234069108963,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.7729,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.7515993118286133,
|
111 |
+
"eval_runtime": 43.8388,
|
112 |
+
"eval_samples_per_second": 22.811,
|
113 |
+
"eval_steps_per_second": 2.851,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.3309251666069031,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.8009,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.7508132457733154,
|
126 |
+
"eval_runtime": 43.8535,
|
127 |
+
"eval_samples_per_second": 22.803,
|
128 |
+
"eval_steps_per_second": 2.85,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.4126473367214203,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.6602,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.753326177597046,
|
141 |
+
"eval_runtime": 43.86,
|
142 |
+
"eval_samples_per_second": 22.8,
|
143 |
+
"eval_steps_per_second": 2.85,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.5640483498573303,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.5879,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.7581162452697754,
|
156 |
+
"eval_runtime": 43.8488,
|
157 |
+
"eval_samples_per_second": 22.806,
|
158 |
+
"eval_steps_per_second": 2.851,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.6418269276618958,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.7067,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.7590935230255127,
|
171 |
+
"eval_runtime": 43.8372,
|
172 |
+
"eval_samples_per_second": 22.812,
|
173 |
+
"eval_steps_per_second": 2.851,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.603199303150177,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.7311,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.760871410369873,
|
186 |
+
"eval_runtime": 43.828,
|
187 |
+
"eval_samples_per_second": 22.816,
|
188 |
+
"eval_steps_per_second": 2.852,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.7207424640655518,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.7103,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.761257529258728,
|
201 |
+
"eval_runtime": 43.8422,
|
202 |
+
"eval_samples_per_second": 22.809,
|
203 |
+
"eval_steps_per_second": 2.851,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.6793868541717529,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.6574,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.7610187530517578,
|
216 |
+
"eval_runtime": 43.8261,
|
217 |
+
"eval_samples_per_second": 22.817,
|
218 |
+
"eval_steps_per_second": 2.852,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.7147842049598694,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 1.6357,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 1.763314962387085,
|
231 |
+
"eval_runtime": 43.8315,
|
232 |
+
"eval_samples_per_second": 22.815,
|
233 |
+
"eval_steps_per_second": 2.852,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 0.8159098625183105,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 1.62,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 1.7846354246139526,
|
246 |
+
"eval_runtime": 43.8212,
|
247 |
+
"eval_samples_per_second": 22.82,
|
248 |
+
"eval_steps_per_second": 2.853,
|
249 |
+
"step": 160
|
250 |
+
}
|
251 |
+
],
|
252 |
+
"logging_steps": 10,
|
253 |
+
"max_steps": 675,
|
254 |
+
"num_input_tokens_seen": 0,
|
255 |
+
"num_train_epochs": 9,
|
256 |
+
"save_steps": 10,
|
257 |
+
"stateful_callbacks": {
|
258 |
+
"TrainerControl": {
|
259 |
+
"args": {
|
260 |
+
"should_epoch_stop": false,
|
261 |
+
"should_evaluate": false,
|
262 |
+
"should_log": false,
|
263 |
+
"should_save": true,
|
264 |
+
"should_training_stop": false
|
265 |
+
},
|
266 |
+
"attributes": {}
|
267 |
+
}
|
268 |
+
},
|
269 |
+
"total_flos": 2.62177151778816e+16,
|
270 |
+
"train_batch_size": 8,
|
271 |
+
"trial_name": null,
|
272 |
+
"trial_params": null
|
273 |
+
}
|
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-170/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-170/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"dense",
|
24 |
+
"dense_4h_to_h",
|
25 |
+
"query_key_value",
|
26 |
+
"dense_h_to_4h"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-170/trainer_state.json
ADDED
@@ -0,0 +1,288 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.7508132457733154,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-80",
|
4 |
+
"epoch": 2.2666666666666666,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 170,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.3951323926448822,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.8421,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.7700647115707397,
|
21 |
+
"eval_runtime": 43.86,
|
22 |
+
"eval_samples_per_second": 22.8,
|
23 |
+
"eval_steps_per_second": 2.85,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.3800930380821228,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.7715,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.7666271924972534,
|
36 |
+
"eval_runtime": 43.8435,
|
37 |
+
"eval_samples_per_second": 22.808,
|
38 |
+
"eval_steps_per_second": 2.851,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.3974359333515167,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.7799,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.7623893022537231,
|
51 |
+
"eval_runtime": 43.863,
|
52 |
+
"eval_samples_per_second": 22.798,
|
53 |
+
"eval_steps_per_second": 2.85,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.37877357006073,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.7416,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.7585530281066895,
|
66 |
+
"eval_runtime": 43.8506,
|
67 |
+
"eval_samples_per_second": 22.805,
|
68 |
+
"eval_steps_per_second": 2.851,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.3691335618495941,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.754,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.7555732727050781,
|
81 |
+
"eval_runtime": 43.8591,
|
82 |
+
"eval_samples_per_second": 22.8,
|
83 |
+
"eval_steps_per_second": 2.85,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.3394964337348938,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.639,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.7534734010696411,
|
96 |
+
"eval_runtime": 43.8608,
|
97 |
+
"eval_samples_per_second": 22.799,
|
98 |
+
"eval_steps_per_second": 2.85,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.317234069108963,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.7729,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.7515993118286133,
|
111 |
+
"eval_runtime": 43.8388,
|
112 |
+
"eval_samples_per_second": 22.811,
|
113 |
+
"eval_steps_per_second": 2.851,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.3309251666069031,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.8009,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.7508132457733154,
|
126 |
+
"eval_runtime": 43.8535,
|
127 |
+
"eval_samples_per_second": 22.803,
|
128 |
+
"eval_steps_per_second": 2.85,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.4126473367214203,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.6602,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.753326177597046,
|
141 |
+
"eval_runtime": 43.86,
|
142 |
+
"eval_samples_per_second": 22.8,
|
143 |
+
"eval_steps_per_second": 2.85,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.5640483498573303,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.5879,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.7581162452697754,
|
156 |
+
"eval_runtime": 43.8488,
|
157 |
+
"eval_samples_per_second": 22.806,
|
158 |
+
"eval_steps_per_second": 2.851,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.6418269276618958,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.7067,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.7590935230255127,
|
171 |
+
"eval_runtime": 43.8372,
|
172 |
+
"eval_samples_per_second": 22.812,
|
173 |
+
"eval_steps_per_second": 2.851,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.603199303150177,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.7311,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.760871410369873,
|
186 |
+
"eval_runtime": 43.828,
|
187 |
+
"eval_samples_per_second": 22.816,
|
188 |
+
"eval_steps_per_second": 2.852,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.7207424640655518,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.7103,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.761257529258728,
|
201 |
+
"eval_runtime": 43.8422,
|
202 |
+
"eval_samples_per_second": 22.809,
|
203 |
+
"eval_steps_per_second": 2.851,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.6793868541717529,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.6574,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.7610187530517578,
|
216 |
+
"eval_runtime": 43.8261,
|
217 |
+
"eval_samples_per_second": 22.817,
|
218 |
+
"eval_steps_per_second": 2.852,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.7147842049598694,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 1.6357,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 1.763314962387085,
|
231 |
+
"eval_runtime": 43.8315,
|
232 |
+
"eval_samples_per_second": 22.815,
|
233 |
+
"eval_steps_per_second": 2.852,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 0.8159098625183105,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 1.62,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 1.7846354246139526,
|
246 |
+
"eval_runtime": 43.8212,
|
247 |
+
"eval_samples_per_second": 22.82,
|
248 |
+
"eval_steps_per_second": 2.853,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 1.0052918195724487,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 1.5109,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 1.8005082607269287,
|
261 |
+
"eval_runtime": 43.8314,
|
262 |
+
"eval_samples_per_second": 22.815,
|
263 |
+
"eval_steps_per_second": 2.852,
|
264 |
+
"step": 170
|
265 |
+
}
|
266 |
+
],
|
267 |
+
"logging_steps": 10,
|
268 |
+
"max_steps": 675,
|
269 |
+
"num_input_tokens_seen": 0,
|
270 |
+
"num_train_epochs": 9,
|
271 |
+
"save_steps": 10,
|
272 |
+
"stateful_callbacks": {
|
273 |
+
"TrainerControl": {
|
274 |
+
"args": {
|
275 |
+
"should_epoch_stop": false,
|
276 |
+
"should_evaluate": false,
|
277 |
+
"should_log": false,
|
278 |
+
"should_save": true,
|
279 |
+
"should_training_stop": false
|
280 |
+
},
|
281 |
+
"attributes": {}
|
282 |
+
}
|
283 |
+
},
|
284 |
+
"total_flos": 2.78563223764992e+16,
|
285 |
+
"train_batch_size": 8,
|
286 |
+
"trial_name": null,
|
287 |
+
"trial_params": null
|
288 |
+
}
|
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-180/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-180/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"dense",
|
24 |
+
"dense_4h_to_h",
|
25 |
+
"query_key_value",
|
26 |
+
"dense_h_to_4h"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-180/trainer_state.json
ADDED
@@ -0,0 +1,303 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.7508132457733154,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-80",
|
4 |
+
"epoch": 2.4,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 180,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.3951323926448822,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.8421,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.7700647115707397,
|
21 |
+
"eval_runtime": 43.86,
|
22 |
+
"eval_samples_per_second": 22.8,
|
23 |
+
"eval_steps_per_second": 2.85,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.3800930380821228,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.7715,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.7666271924972534,
|
36 |
+
"eval_runtime": 43.8435,
|
37 |
+
"eval_samples_per_second": 22.808,
|
38 |
+
"eval_steps_per_second": 2.851,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.3974359333515167,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.7799,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.7623893022537231,
|
51 |
+
"eval_runtime": 43.863,
|
52 |
+
"eval_samples_per_second": 22.798,
|
53 |
+
"eval_steps_per_second": 2.85,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.37877357006073,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.7416,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.7585530281066895,
|
66 |
+
"eval_runtime": 43.8506,
|
67 |
+
"eval_samples_per_second": 22.805,
|
68 |
+
"eval_steps_per_second": 2.851,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.3691335618495941,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.754,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.7555732727050781,
|
81 |
+
"eval_runtime": 43.8591,
|
82 |
+
"eval_samples_per_second": 22.8,
|
83 |
+
"eval_steps_per_second": 2.85,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.3394964337348938,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.639,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.7534734010696411,
|
96 |
+
"eval_runtime": 43.8608,
|
97 |
+
"eval_samples_per_second": 22.799,
|
98 |
+
"eval_steps_per_second": 2.85,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.317234069108963,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.7729,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.7515993118286133,
|
111 |
+
"eval_runtime": 43.8388,
|
112 |
+
"eval_samples_per_second": 22.811,
|
113 |
+
"eval_steps_per_second": 2.851,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.3309251666069031,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.8009,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.7508132457733154,
|
126 |
+
"eval_runtime": 43.8535,
|
127 |
+
"eval_samples_per_second": 22.803,
|
128 |
+
"eval_steps_per_second": 2.85,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.4126473367214203,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.6602,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.753326177597046,
|
141 |
+
"eval_runtime": 43.86,
|
142 |
+
"eval_samples_per_second": 22.8,
|
143 |
+
"eval_steps_per_second": 2.85,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.5640483498573303,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.5879,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.7581162452697754,
|
156 |
+
"eval_runtime": 43.8488,
|
157 |
+
"eval_samples_per_second": 22.806,
|
158 |
+
"eval_steps_per_second": 2.851,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.6418269276618958,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.7067,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.7590935230255127,
|
171 |
+
"eval_runtime": 43.8372,
|
172 |
+
"eval_samples_per_second": 22.812,
|
173 |
+
"eval_steps_per_second": 2.851,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.603199303150177,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.7311,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.760871410369873,
|
186 |
+
"eval_runtime": 43.828,
|
187 |
+
"eval_samples_per_second": 22.816,
|
188 |
+
"eval_steps_per_second": 2.852,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.7207424640655518,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.7103,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.761257529258728,
|
201 |
+
"eval_runtime": 43.8422,
|
202 |
+
"eval_samples_per_second": 22.809,
|
203 |
+
"eval_steps_per_second": 2.851,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.6793868541717529,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.6574,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.7610187530517578,
|
216 |
+
"eval_runtime": 43.8261,
|
217 |
+
"eval_samples_per_second": 22.817,
|
218 |
+
"eval_steps_per_second": 2.852,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.7147842049598694,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 1.6357,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 1.763314962387085,
|
231 |
+
"eval_runtime": 43.8315,
|
232 |
+
"eval_samples_per_second": 22.815,
|
233 |
+
"eval_steps_per_second": 2.852,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 0.8159098625183105,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 1.62,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 1.7846354246139526,
|
246 |
+
"eval_runtime": 43.8212,
|
247 |
+
"eval_samples_per_second": 22.82,
|
248 |
+
"eval_steps_per_second": 2.853,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 1.0052918195724487,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 1.5109,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 1.8005082607269287,
|
261 |
+
"eval_runtime": 43.8314,
|
262 |
+
"eval_samples_per_second": 22.815,
|
263 |
+
"eval_steps_per_second": 2.852,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 1.089106559753418,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 1.5658,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 1.8088901042938232,
|
276 |
+
"eval_runtime": 43.8245,
|
277 |
+
"eval_samples_per_second": 22.818,
|
278 |
+
"eval_steps_per_second": 2.852,
|
279 |
+
"step": 180
|
280 |
+
}
|
281 |
+
],
|
282 |
+
"logging_steps": 10,
|
283 |
+
"max_steps": 675,
|
284 |
+
"num_input_tokens_seen": 0,
|
285 |
+
"num_train_epochs": 9,
|
286 |
+
"save_steps": 10,
|
287 |
+
"stateful_callbacks": {
|
288 |
+
"TrainerControl": {
|
289 |
+
"args": {
|
290 |
+
"should_epoch_stop": false,
|
291 |
+
"should_evaluate": false,
|
292 |
+
"should_log": false,
|
293 |
+
"should_save": true,
|
294 |
+
"should_training_stop": false
|
295 |
+
},
|
296 |
+
"attributes": {}
|
297 |
+
}
|
298 |
+
},
|
299 |
+
"total_flos": 2.94949295751168e+16,
|
300 |
+
"train_batch_size": 8,
|
301 |
+
"trial_name": null,
|
302 |
+
"trial_params": null
|
303 |
+
}
|
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-190/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-190/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"dense",
|
24 |
+
"dense_4h_to_h",
|
25 |
+
"query_key_value",
|
26 |
+
"dense_h_to_4h"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-190/trainer_state.json
ADDED
@@ -0,0 +1,318 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.7508132457733154,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-80",
|
4 |
+
"epoch": 2.533333333333333,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 190,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.3951323926448822,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.8421,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.7700647115707397,
|
21 |
+
"eval_runtime": 43.86,
|
22 |
+
"eval_samples_per_second": 22.8,
|
23 |
+
"eval_steps_per_second": 2.85,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.3800930380821228,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.7715,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.7666271924972534,
|
36 |
+
"eval_runtime": 43.8435,
|
37 |
+
"eval_samples_per_second": 22.808,
|
38 |
+
"eval_steps_per_second": 2.851,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.3974359333515167,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.7799,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.7623893022537231,
|
51 |
+
"eval_runtime": 43.863,
|
52 |
+
"eval_samples_per_second": 22.798,
|
53 |
+
"eval_steps_per_second": 2.85,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.37877357006073,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.7416,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.7585530281066895,
|
66 |
+
"eval_runtime": 43.8506,
|
67 |
+
"eval_samples_per_second": 22.805,
|
68 |
+
"eval_steps_per_second": 2.851,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.3691335618495941,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.754,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.7555732727050781,
|
81 |
+
"eval_runtime": 43.8591,
|
82 |
+
"eval_samples_per_second": 22.8,
|
83 |
+
"eval_steps_per_second": 2.85,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.3394964337348938,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.639,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.7534734010696411,
|
96 |
+
"eval_runtime": 43.8608,
|
97 |
+
"eval_samples_per_second": 22.799,
|
98 |
+
"eval_steps_per_second": 2.85,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.317234069108963,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.7729,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.7515993118286133,
|
111 |
+
"eval_runtime": 43.8388,
|
112 |
+
"eval_samples_per_second": 22.811,
|
113 |
+
"eval_steps_per_second": 2.851,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.3309251666069031,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.8009,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.7508132457733154,
|
126 |
+
"eval_runtime": 43.8535,
|
127 |
+
"eval_samples_per_second": 22.803,
|
128 |
+
"eval_steps_per_second": 2.85,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.4126473367214203,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.6602,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.753326177597046,
|
141 |
+
"eval_runtime": 43.86,
|
142 |
+
"eval_samples_per_second": 22.8,
|
143 |
+
"eval_steps_per_second": 2.85,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.5640483498573303,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.5879,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.7581162452697754,
|
156 |
+
"eval_runtime": 43.8488,
|
157 |
+
"eval_samples_per_second": 22.806,
|
158 |
+
"eval_steps_per_second": 2.851,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.6418269276618958,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.7067,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.7590935230255127,
|
171 |
+
"eval_runtime": 43.8372,
|
172 |
+
"eval_samples_per_second": 22.812,
|
173 |
+
"eval_steps_per_second": 2.851,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.603199303150177,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.7311,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.760871410369873,
|
186 |
+
"eval_runtime": 43.828,
|
187 |
+
"eval_samples_per_second": 22.816,
|
188 |
+
"eval_steps_per_second": 2.852,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.7207424640655518,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.7103,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.761257529258728,
|
201 |
+
"eval_runtime": 43.8422,
|
202 |
+
"eval_samples_per_second": 22.809,
|
203 |
+
"eval_steps_per_second": 2.851,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.6793868541717529,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.6574,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.7610187530517578,
|
216 |
+
"eval_runtime": 43.8261,
|
217 |
+
"eval_samples_per_second": 22.817,
|
218 |
+
"eval_steps_per_second": 2.852,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.7147842049598694,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 1.6357,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 1.763314962387085,
|
231 |
+
"eval_runtime": 43.8315,
|
232 |
+
"eval_samples_per_second": 22.815,
|
233 |
+
"eval_steps_per_second": 2.852,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 0.8159098625183105,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 1.62,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 1.7846354246139526,
|
246 |
+
"eval_runtime": 43.8212,
|
247 |
+
"eval_samples_per_second": 22.82,
|
248 |
+
"eval_steps_per_second": 2.853,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 1.0052918195724487,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 1.5109,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 1.8005082607269287,
|
261 |
+
"eval_runtime": 43.8314,
|
262 |
+
"eval_samples_per_second": 22.815,
|
263 |
+
"eval_steps_per_second": 2.852,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 1.089106559753418,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 1.5658,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 1.8088901042938232,
|
276 |
+
"eval_runtime": 43.8245,
|
277 |
+
"eval_samples_per_second": 22.818,
|
278 |
+
"eval_steps_per_second": 2.852,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 1.1667160987854004,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 1.6316,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 1.8114306926727295,
|
291 |
+
"eval_runtime": 43.8195,
|
292 |
+
"eval_samples_per_second": 22.821,
|
293 |
+
"eval_steps_per_second": 2.853,
|
294 |
+
"step": 190
|
295 |
+
}
|
296 |
+
],
|
297 |
+
"logging_steps": 10,
|
298 |
+
"max_steps": 675,
|
299 |
+
"num_input_tokens_seen": 0,
|
300 |
+
"num_train_epochs": 9,
|
301 |
+
"save_steps": 10,
|
302 |
+
"stateful_callbacks": {
|
303 |
+
"TrainerControl": {
|
304 |
+
"args": {
|
305 |
+
"should_epoch_stop": false,
|
306 |
+
"should_evaluate": false,
|
307 |
+
"should_log": false,
|
308 |
+
"should_save": true,
|
309 |
+
"should_training_stop": false
|
310 |
+
},
|
311 |
+
"attributes": {}
|
312 |
+
}
|
313 |
+
},
|
314 |
+
"total_flos": 3.11335367737344e+16,
|
315 |
+
"train_batch_size": 8,
|
316 |
+
"trial_name": null,
|
317 |
+
"trial_params": null
|
318 |
+
}
|
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-200/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-200/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"dense",
|
24 |
+
"dense_4h_to_h",
|
25 |
+
"query_key_value",
|
26 |
+
"dense_h_to_4h"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-200/trainer_state.json
ADDED
@@ -0,0 +1,333 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.7508132457733154,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-80",
|
4 |
+
"epoch": 2.6666666666666665,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 200,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.3951323926448822,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.8421,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.7700647115707397,
|
21 |
+
"eval_runtime": 43.86,
|
22 |
+
"eval_samples_per_second": 22.8,
|
23 |
+
"eval_steps_per_second": 2.85,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.3800930380821228,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.7715,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.7666271924972534,
|
36 |
+
"eval_runtime": 43.8435,
|
37 |
+
"eval_samples_per_second": 22.808,
|
38 |
+
"eval_steps_per_second": 2.851,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.3974359333515167,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.7799,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.7623893022537231,
|
51 |
+
"eval_runtime": 43.863,
|
52 |
+
"eval_samples_per_second": 22.798,
|
53 |
+
"eval_steps_per_second": 2.85,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.37877357006073,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.7416,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.7585530281066895,
|
66 |
+
"eval_runtime": 43.8506,
|
67 |
+
"eval_samples_per_second": 22.805,
|
68 |
+
"eval_steps_per_second": 2.851,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.3691335618495941,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.754,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.7555732727050781,
|
81 |
+
"eval_runtime": 43.8591,
|
82 |
+
"eval_samples_per_second": 22.8,
|
83 |
+
"eval_steps_per_second": 2.85,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.3394964337348938,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.639,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.7534734010696411,
|
96 |
+
"eval_runtime": 43.8608,
|
97 |
+
"eval_samples_per_second": 22.799,
|
98 |
+
"eval_steps_per_second": 2.85,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.317234069108963,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.7729,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.7515993118286133,
|
111 |
+
"eval_runtime": 43.8388,
|
112 |
+
"eval_samples_per_second": 22.811,
|
113 |
+
"eval_steps_per_second": 2.851,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.3309251666069031,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.8009,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.7508132457733154,
|
126 |
+
"eval_runtime": 43.8535,
|
127 |
+
"eval_samples_per_second": 22.803,
|
128 |
+
"eval_steps_per_second": 2.85,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.4126473367214203,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.6602,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.753326177597046,
|
141 |
+
"eval_runtime": 43.86,
|
142 |
+
"eval_samples_per_second": 22.8,
|
143 |
+
"eval_steps_per_second": 2.85,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.5640483498573303,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.5879,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.7581162452697754,
|
156 |
+
"eval_runtime": 43.8488,
|
157 |
+
"eval_samples_per_second": 22.806,
|
158 |
+
"eval_steps_per_second": 2.851,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.6418269276618958,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.7067,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.7590935230255127,
|
171 |
+
"eval_runtime": 43.8372,
|
172 |
+
"eval_samples_per_second": 22.812,
|
173 |
+
"eval_steps_per_second": 2.851,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.603199303150177,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.7311,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.760871410369873,
|
186 |
+
"eval_runtime": 43.828,
|
187 |
+
"eval_samples_per_second": 22.816,
|
188 |
+
"eval_steps_per_second": 2.852,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.7207424640655518,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.7103,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.761257529258728,
|
201 |
+
"eval_runtime": 43.8422,
|
202 |
+
"eval_samples_per_second": 22.809,
|
203 |
+
"eval_steps_per_second": 2.851,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.6793868541717529,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.6574,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.7610187530517578,
|
216 |
+
"eval_runtime": 43.8261,
|
217 |
+
"eval_samples_per_second": 22.817,
|
218 |
+
"eval_steps_per_second": 2.852,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.7147842049598694,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 1.6357,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 1.763314962387085,
|
231 |
+
"eval_runtime": 43.8315,
|
232 |
+
"eval_samples_per_second": 22.815,
|
233 |
+
"eval_steps_per_second": 2.852,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 0.8159098625183105,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 1.62,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 1.7846354246139526,
|
246 |
+
"eval_runtime": 43.8212,
|
247 |
+
"eval_samples_per_second": 22.82,
|
248 |
+
"eval_steps_per_second": 2.853,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 1.0052918195724487,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 1.5109,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 1.8005082607269287,
|
261 |
+
"eval_runtime": 43.8314,
|
262 |
+
"eval_samples_per_second": 22.815,
|
263 |
+
"eval_steps_per_second": 2.852,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 1.089106559753418,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 1.5658,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 1.8088901042938232,
|
276 |
+
"eval_runtime": 43.8245,
|
277 |
+
"eval_samples_per_second": 22.818,
|
278 |
+
"eval_steps_per_second": 2.852,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 1.1667160987854004,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 1.6316,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 1.8114306926727295,
|
291 |
+
"eval_runtime": 43.8195,
|
292 |
+
"eval_samples_per_second": 22.821,
|
293 |
+
"eval_steps_per_second": 2.853,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 1.215566873550415,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 1.4806,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 1.811687707901001,
|
306 |
+
"eval_runtime": 43.8494,
|
307 |
+
"eval_samples_per_second": 22.805,
|
308 |
+
"eval_steps_per_second": 2.851,
|
309 |
+
"step": 200
|
310 |
+
}
|
311 |
+
],
|
312 |
+
"logging_steps": 10,
|
313 |
+
"max_steps": 675,
|
314 |
+
"num_input_tokens_seen": 0,
|
315 |
+
"num_train_epochs": 9,
|
316 |
+
"save_steps": 10,
|
317 |
+
"stateful_callbacks": {
|
318 |
+
"TrainerControl": {
|
319 |
+
"args": {
|
320 |
+
"should_epoch_stop": false,
|
321 |
+
"should_evaluate": false,
|
322 |
+
"should_log": false,
|
323 |
+
"should_save": true,
|
324 |
+
"should_training_stop": false
|
325 |
+
},
|
326 |
+
"attributes": {}
|
327 |
+
}
|
328 |
+
},
|
329 |
+
"total_flos": 3.2772143972352e+16,
|
330 |
+
"train_batch_size": 8,
|
331 |
+
"trial_name": null,
|
332 |
+
"trial_params": null
|
333 |
+
}
|
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-210/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-210/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"dense",
|
24 |
+
"dense_4h_to_h",
|
25 |
+
"query_key_value",
|
26 |
+
"dense_h_to_4h"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-210/trainer_state.json
ADDED
@@ -0,0 +1,348 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.7508132457733154,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-80",
|
4 |
+
"epoch": 2.8,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 210,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.3951323926448822,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.8421,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.7700647115707397,
|
21 |
+
"eval_runtime": 43.86,
|
22 |
+
"eval_samples_per_second": 22.8,
|
23 |
+
"eval_steps_per_second": 2.85,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.3800930380821228,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.7715,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.7666271924972534,
|
36 |
+
"eval_runtime": 43.8435,
|
37 |
+
"eval_samples_per_second": 22.808,
|
38 |
+
"eval_steps_per_second": 2.851,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.3974359333515167,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.7799,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.7623893022537231,
|
51 |
+
"eval_runtime": 43.863,
|
52 |
+
"eval_samples_per_second": 22.798,
|
53 |
+
"eval_steps_per_second": 2.85,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.37877357006073,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.7416,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.7585530281066895,
|
66 |
+
"eval_runtime": 43.8506,
|
67 |
+
"eval_samples_per_second": 22.805,
|
68 |
+
"eval_steps_per_second": 2.851,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.3691335618495941,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.754,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.7555732727050781,
|
81 |
+
"eval_runtime": 43.8591,
|
82 |
+
"eval_samples_per_second": 22.8,
|
83 |
+
"eval_steps_per_second": 2.85,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.3394964337348938,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.639,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.7534734010696411,
|
96 |
+
"eval_runtime": 43.8608,
|
97 |
+
"eval_samples_per_second": 22.799,
|
98 |
+
"eval_steps_per_second": 2.85,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.317234069108963,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.7729,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.7515993118286133,
|
111 |
+
"eval_runtime": 43.8388,
|
112 |
+
"eval_samples_per_second": 22.811,
|
113 |
+
"eval_steps_per_second": 2.851,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.3309251666069031,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.8009,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.7508132457733154,
|
126 |
+
"eval_runtime": 43.8535,
|
127 |
+
"eval_samples_per_second": 22.803,
|
128 |
+
"eval_steps_per_second": 2.85,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.4126473367214203,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.6602,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.753326177597046,
|
141 |
+
"eval_runtime": 43.86,
|
142 |
+
"eval_samples_per_second": 22.8,
|
143 |
+
"eval_steps_per_second": 2.85,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.5640483498573303,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.5879,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.7581162452697754,
|
156 |
+
"eval_runtime": 43.8488,
|
157 |
+
"eval_samples_per_second": 22.806,
|
158 |
+
"eval_steps_per_second": 2.851,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.6418269276618958,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.7067,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.7590935230255127,
|
171 |
+
"eval_runtime": 43.8372,
|
172 |
+
"eval_samples_per_second": 22.812,
|
173 |
+
"eval_steps_per_second": 2.851,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.603199303150177,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.7311,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.760871410369873,
|
186 |
+
"eval_runtime": 43.828,
|
187 |
+
"eval_samples_per_second": 22.816,
|
188 |
+
"eval_steps_per_second": 2.852,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.7207424640655518,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.7103,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.761257529258728,
|
201 |
+
"eval_runtime": 43.8422,
|
202 |
+
"eval_samples_per_second": 22.809,
|
203 |
+
"eval_steps_per_second": 2.851,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.6793868541717529,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.6574,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.7610187530517578,
|
216 |
+
"eval_runtime": 43.8261,
|
217 |
+
"eval_samples_per_second": 22.817,
|
218 |
+
"eval_steps_per_second": 2.852,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.7147842049598694,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 1.6357,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 1.763314962387085,
|
231 |
+
"eval_runtime": 43.8315,
|
232 |
+
"eval_samples_per_second": 22.815,
|
233 |
+
"eval_steps_per_second": 2.852,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 0.8159098625183105,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 1.62,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 1.7846354246139526,
|
246 |
+
"eval_runtime": 43.8212,
|
247 |
+
"eval_samples_per_second": 22.82,
|
248 |
+
"eval_steps_per_second": 2.853,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 1.0052918195724487,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 1.5109,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 1.8005082607269287,
|
261 |
+
"eval_runtime": 43.8314,
|
262 |
+
"eval_samples_per_second": 22.815,
|
263 |
+
"eval_steps_per_second": 2.852,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 1.089106559753418,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 1.5658,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 1.8088901042938232,
|
276 |
+
"eval_runtime": 43.8245,
|
277 |
+
"eval_samples_per_second": 22.818,
|
278 |
+
"eval_steps_per_second": 2.852,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 1.1667160987854004,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 1.6316,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 1.8114306926727295,
|
291 |
+
"eval_runtime": 43.8195,
|
292 |
+
"eval_samples_per_second": 22.821,
|
293 |
+
"eval_steps_per_second": 2.853,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 1.215566873550415,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 1.4806,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 1.811687707901001,
|
306 |
+
"eval_runtime": 43.8494,
|
307 |
+
"eval_samples_per_second": 22.805,
|
308 |
+
"eval_steps_per_second": 2.851,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 1.1638202667236328,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 1.5345,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 1.8096415996551514,
|
321 |
+
"eval_runtime": 43.8206,
|
322 |
+
"eval_samples_per_second": 22.82,
|
323 |
+
"eval_steps_per_second": 2.853,
|
324 |
+
"step": 210
|
325 |
+
}
|
326 |
+
],
|
327 |
+
"logging_steps": 10,
|
328 |
+
"max_steps": 675,
|
329 |
+
"num_input_tokens_seen": 0,
|
330 |
+
"num_train_epochs": 9,
|
331 |
+
"save_steps": 10,
|
332 |
+
"stateful_callbacks": {
|
333 |
+
"TrainerControl": {
|
334 |
+
"args": {
|
335 |
+
"should_epoch_stop": false,
|
336 |
+
"should_evaluate": false,
|
337 |
+
"should_log": false,
|
338 |
+
"should_save": true,
|
339 |
+
"should_training_stop": false
|
340 |
+
},
|
341 |
+
"attributes": {}
|
342 |
+
}
|
343 |
+
},
|
344 |
+
"total_flos": 3.44107511709696e+16,
|
345 |
+
"train_batch_size": 8,
|
346 |
+
"trial_name": null,
|
347 |
+
"trial_params": null
|
348 |
+
}
|
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-220/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-220/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"dense",
|
24 |
+
"dense_4h_to_h",
|
25 |
+
"query_key_value",
|
26 |
+
"dense_h_to_4h"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-220/trainer_state.json
ADDED
@@ -0,0 +1,363 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.7508132457733154,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-80",
|
4 |
+
"epoch": 2.9333333333333336,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 220,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.3951323926448822,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.8421,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.7700647115707397,
|
21 |
+
"eval_runtime": 43.86,
|
22 |
+
"eval_samples_per_second": 22.8,
|
23 |
+
"eval_steps_per_second": 2.85,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.3800930380821228,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.7715,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.7666271924972534,
|
36 |
+
"eval_runtime": 43.8435,
|
37 |
+
"eval_samples_per_second": 22.808,
|
38 |
+
"eval_steps_per_second": 2.851,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.3974359333515167,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.7799,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.7623893022537231,
|
51 |
+
"eval_runtime": 43.863,
|
52 |
+
"eval_samples_per_second": 22.798,
|
53 |
+
"eval_steps_per_second": 2.85,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.37877357006073,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.7416,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.7585530281066895,
|
66 |
+
"eval_runtime": 43.8506,
|
67 |
+
"eval_samples_per_second": 22.805,
|
68 |
+
"eval_steps_per_second": 2.851,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.3691335618495941,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.754,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.7555732727050781,
|
81 |
+
"eval_runtime": 43.8591,
|
82 |
+
"eval_samples_per_second": 22.8,
|
83 |
+
"eval_steps_per_second": 2.85,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.3394964337348938,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.639,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.7534734010696411,
|
96 |
+
"eval_runtime": 43.8608,
|
97 |
+
"eval_samples_per_second": 22.799,
|
98 |
+
"eval_steps_per_second": 2.85,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.317234069108963,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.7729,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.7515993118286133,
|
111 |
+
"eval_runtime": 43.8388,
|
112 |
+
"eval_samples_per_second": 22.811,
|
113 |
+
"eval_steps_per_second": 2.851,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.3309251666069031,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.8009,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.7508132457733154,
|
126 |
+
"eval_runtime": 43.8535,
|
127 |
+
"eval_samples_per_second": 22.803,
|
128 |
+
"eval_steps_per_second": 2.85,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.4126473367214203,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.6602,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.753326177597046,
|
141 |
+
"eval_runtime": 43.86,
|
142 |
+
"eval_samples_per_second": 22.8,
|
143 |
+
"eval_steps_per_second": 2.85,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.5640483498573303,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.5879,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.7581162452697754,
|
156 |
+
"eval_runtime": 43.8488,
|
157 |
+
"eval_samples_per_second": 22.806,
|
158 |
+
"eval_steps_per_second": 2.851,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.6418269276618958,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.7067,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.7590935230255127,
|
171 |
+
"eval_runtime": 43.8372,
|
172 |
+
"eval_samples_per_second": 22.812,
|
173 |
+
"eval_steps_per_second": 2.851,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.603199303150177,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.7311,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.760871410369873,
|
186 |
+
"eval_runtime": 43.828,
|
187 |
+
"eval_samples_per_second": 22.816,
|
188 |
+
"eval_steps_per_second": 2.852,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.7207424640655518,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.7103,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.761257529258728,
|
201 |
+
"eval_runtime": 43.8422,
|
202 |
+
"eval_samples_per_second": 22.809,
|
203 |
+
"eval_steps_per_second": 2.851,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.6793868541717529,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.6574,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.7610187530517578,
|
216 |
+
"eval_runtime": 43.8261,
|
217 |
+
"eval_samples_per_second": 22.817,
|
218 |
+
"eval_steps_per_second": 2.852,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.7147842049598694,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 1.6357,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 1.763314962387085,
|
231 |
+
"eval_runtime": 43.8315,
|
232 |
+
"eval_samples_per_second": 22.815,
|
233 |
+
"eval_steps_per_second": 2.852,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 0.8159098625183105,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 1.62,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 1.7846354246139526,
|
246 |
+
"eval_runtime": 43.8212,
|
247 |
+
"eval_samples_per_second": 22.82,
|
248 |
+
"eval_steps_per_second": 2.853,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 1.0052918195724487,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 1.5109,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 1.8005082607269287,
|
261 |
+
"eval_runtime": 43.8314,
|
262 |
+
"eval_samples_per_second": 22.815,
|
263 |
+
"eval_steps_per_second": 2.852,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 1.089106559753418,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 1.5658,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 1.8088901042938232,
|
276 |
+
"eval_runtime": 43.8245,
|
277 |
+
"eval_samples_per_second": 22.818,
|
278 |
+
"eval_steps_per_second": 2.852,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 1.1667160987854004,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 1.6316,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 1.8114306926727295,
|
291 |
+
"eval_runtime": 43.8195,
|
292 |
+
"eval_samples_per_second": 22.821,
|
293 |
+
"eval_steps_per_second": 2.853,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 1.215566873550415,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 1.4806,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 1.811687707901001,
|
306 |
+
"eval_runtime": 43.8494,
|
307 |
+
"eval_samples_per_second": 22.805,
|
308 |
+
"eval_steps_per_second": 2.851,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 1.1638202667236328,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 1.5345,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 1.8096415996551514,
|
321 |
+
"eval_runtime": 43.8206,
|
322 |
+
"eval_samples_per_second": 22.82,
|
323 |
+
"eval_steps_per_second": 2.853,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 1.2765487432479858,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 1.6074,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 1.810752034187317,
|
336 |
+
"eval_runtime": 43.8178,
|
337 |
+
"eval_samples_per_second": 22.822,
|
338 |
+
"eval_steps_per_second": 2.853,
|
339 |
+
"step": 220
|
340 |
+
}
|
341 |
+
],
|
342 |
+
"logging_steps": 10,
|
343 |
+
"max_steps": 675,
|
344 |
+
"num_input_tokens_seen": 0,
|
345 |
+
"num_train_epochs": 9,
|
346 |
+
"save_steps": 10,
|
347 |
+
"stateful_callbacks": {
|
348 |
+
"TrainerControl": {
|
349 |
+
"args": {
|
350 |
+
"should_epoch_stop": false,
|
351 |
+
"should_evaluate": false,
|
352 |
+
"should_log": false,
|
353 |
+
"should_save": true,
|
354 |
+
"should_training_stop": false
|
355 |
+
},
|
356 |
+
"attributes": {}
|
357 |
+
}
|
358 |
+
},
|
359 |
+
"total_flos": 3.60493583695872e+16,
|
360 |
+
"train_batch_size": 8,
|
361 |
+
"trial_name": null,
|
362 |
+
"trial_params": null
|
363 |
+
}
|
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-230/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-230/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"dense",
|
24 |
+
"dense_4h_to_h",
|
25 |
+
"query_key_value",
|
26 |
+
"dense_h_to_4h"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-230/trainer_state.json
ADDED
@@ -0,0 +1,378 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.7508132457733154,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-80",
|
4 |
+
"epoch": 3.066666666666667,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 230,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.3951323926448822,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.8421,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.7700647115707397,
|
21 |
+
"eval_runtime": 43.86,
|
22 |
+
"eval_samples_per_second": 22.8,
|
23 |
+
"eval_steps_per_second": 2.85,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.3800930380821228,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.7715,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.7666271924972534,
|
36 |
+
"eval_runtime": 43.8435,
|
37 |
+
"eval_samples_per_second": 22.808,
|
38 |
+
"eval_steps_per_second": 2.851,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.3974359333515167,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.7799,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.7623893022537231,
|
51 |
+
"eval_runtime": 43.863,
|
52 |
+
"eval_samples_per_second": 22.798,
|
53 |
+
"eval_steps_per_second": 2.85,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.37877357006073,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.7416,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.7585530281066895,
|
66 |
+
"eval_runtime": 43.8506,
|
67 |
+
"eval_samples_per_second": 22.805,
|
68 |
+
"eval_steps_per_second": 2.851,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.3691335618495941,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.754,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.7555732727050781,
|
81 |
+
"eval_runtime": 43.8591,
|
82 |
+
"eval_samples_per_second": 22.8,
|
83 |
+
"eval_steps_per_second": 2.85,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.3394964337348938,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.639,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.7534734010696411,
|
96 |
+
"eval_runtime": 43.8608,
|
97 |
+
"eval_samples_per_second": 22.799,
|
98 |
+
"eval_steps_per_second": 2.85,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.317234069108963,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.7729,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.7515993118286133,
|
111 |
+
"eval_runtime": 43.8388,
|
112 |
+
"eval_samples_per_second": 22.811,
|
113 |
+
"eval_steps_per_second": 2.851,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.3309251666069031,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.8009,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.7508132457733154,
|
126 |
+
"eval_runtime": 43.8535,
|
127 |
+
"eval_samples_per_second": 22.803,
|
128 |
+
"eval_steps_per_second": 2.85,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.4126473367214203,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.6602,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.753326177597046,
|
141 |
+
"eval_runtime": 43.86,
|
142 |
+
"eval_samples_per_second": 22.8,
|
143 |
+
"eval_steps_per_second": 2.85,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.5640483498573303,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.5879,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.7581162452697754,
|
156 |
+
"eval_runtime": 43.8488,
|
157 |
+
"eval_samples_per_second": 22.806,
|
158 |
+
"eval_steps_per_second": 2.851,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.6418269276618958,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.7067,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.7590935230255127,
|
171 |
+
"eval_runtime": 43.8372,
|
172 |
+
"eval_samples_per_second": 22.812,
|
173 |
+
"eval_steps_per_second": 2.851,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.603199303150177,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.7311,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.760871410369873,
|
186 |
+
"eval_runtime": 43.828,
|
187 |
+
"eval_samples_per_second": 22.816,
|
188 |
+
"eval_steps_per_second": 2.852,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.7207424640655518,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.7103,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.761257529258728,
|
201 |
+
"eval_runtime": 43.8422,
|
202 |
+
"eval_samples_per_second": 22.809,
|
203 |
+
"eval_steps_per_second": 2.851,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.6793868541717529,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.6574,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.7610187530517578,
|
216 |
+
"eval_runtime": 43.8261,
|
217 |
+
"eval_samples_per_second": 22.817,
|
218 |
+
"eval_steps_per_second": 2.852,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.7147842049598694,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 1.6357,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 1.763314962387085,
|
231 |
+
"eval_runtime": 43.8315,
|
232 |
+
"eval_samples_per_second": 22.815,
|
233 |
+
"eval_steps_per_second": 2.852,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 0.8159098625183105,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 1.62,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 1.7846354246139526,
|
246 |
+
"eval_runtime": 43.8212,
|
247 |
+
"eval_samples_per_second": 22.82,
|
248 |
+
"eval_steps_per_second": 2.853,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 1.0052918195724487,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 1.5109,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 1.8005082607269287,
|
261 |
+
"eval_runtime": 43.8314,
|
262 |
+
"eval_samples_per_second": 22.815,
|
263 |
+
"eval_steps_per_second": 2.852,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 1.089106559753418,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 1.5658,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 1.8088901042938232,
|
276 |
+
"eval_runtime": 43.8245,
|
277 |
+
"eval_samples_per_second": 22.818,
|
278 |
+
"eval_steps_per_second": 2.852,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 1.1667160987854004,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 1.6316,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 1.8114306926727295,
|
291 |
+
"eval_runtime": 43.8195,
|
292 |
+
"eval_samples_per_second": 22.821,
|
293 |
+
"eval_steps_per_second": 2.853,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 1.215566873550415,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 1.4806,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 1.811687707901001,
|
306 |
+
"eval_runtime": 43.8494,
|
307 |
+
"eval_samples_per_second": 22.805,
|
308 |
+
"eval_steps_per_second": 2.851,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 1.1638202667236328,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 1.5345,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 1.8096415996551514,
|
321 |
+
"eval_runtime": 43.8206,
|
322 |
+
"eval_samples_per_second": 22.82,
|
323 |
+
"eval_steps_per_second": 2.853,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 1.2765487432479858,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 1.6074,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 1.810752034187317,
|
336 |
+
"eval_runtime": 43.8178,
|
337 |
+
"eval_samples_per_second": 22.822,
|
338 |
+
"eval_steps_per_second": 2.853,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 1.4451857805252075,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 1.5139,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 1.8353334665298462,
|
351 |
+
"eval_runtime": 43.831,
|
352 |
+
"eval_samples_per_second": 22.815,
|
353 |
+
"eval_steps_per_second": 2.852,
|
354 |
+
"step": 230
|
355 |
+
}
|
356 |
+
],
|
357 |
+
"logging_steps": 10,
|
358 |
+
"max_steps": 675,
|
359 |
+
"num_input_tokens_seen": 0,
|
360 |
+
"num_train_epochs": 9,
|
361 |
+
"save_steps": 10,
|
362 |
+
"stateful_callbacks": {
|
363 |
+
"TrainerControl": {
|
364 |
+
"args": {
|
365 |
+
"should_epoch_stop": false,
|
366 |
+
"should_evaluate": false,
|
367 |
+
"should_log": false,
|
368 |
+
"should_save": true,
|
369 |
+
"should_training_stop": false
|
370 |
+
},
|
371 |
+
"attributes": {}
|
372 |
+
}
|
373 |
+
},
|
374 |
+
"total_flos": 3.76879655682048e+16,
|
375 |
+
"train_batch_size": 8,
|
376 |
+
"trial_name": null,
|
377 |
+
"trial_params": null
|
378 |
+
}
|
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-240/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-240/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"dense",
|
24 |
+
"dense_4h_to_h",
|
25 |
+
"query_key_value",
|
26 |
+
"dense_h_to_4h"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-240/trainer_state.json
ADDED
@@ -0,0 +1,393 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.7508132457733154,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-80",
|
4 |
+
"epoch": 3.2,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 240,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.3951323926448822,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.8421,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.7700647115707397,
|
21 |
+
"eval_runtime": 43.86,
|
22 |
+
"eval_samples_per_second": 22.8,
|
23 |
+
"eval_steps_per_second": 2.85,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.3800930380821228,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.7715,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.7666271924972534,
|
36 |
+
"eval_runtime": 43.8435,
|
37 |
+
"eval_samples_per_second": 22.808,
|
38 |
+
"eval_steps_per_second": 2.851,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.3974359333515167,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.7799,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.7623893022537231,
|
51 |
+
"eval_runtime": 43.863,
|
52 |
+
"eval_samples_per_second": 22.798,
|
53 |
+
"eval_steps_per_second": 2.85,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.37877357006073,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.7416,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.7585530281066895,
|
66 |
+
"eval_runtime": 43.8506,
|
67 |
+
"eval_samples_per_second": 22.805,
|
68 |
+
"eval_steps_per_second": 2.851,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.3691335618495941,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.754,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.7555732727050781,
|
81 |
+
"eval_runtime": 43.8591,
|
82 |
+
"eval_samples_per_second": 22.8,
|
83 |
+
"eval_steps_per_second": 2.85,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.3394964337348938,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.639,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.7534734010696411,
|
96 |
+
"eval_runtime": 43.8608,
|
97 |
+
"eval_samples_per_second": 22.799,
|
98 |
+
"eval_steps_per_second": 2.85,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.317234069108963,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.7729,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.7515993118286133,
|
111 |
+
"eval_runtime": 43.8388,
|
112 |
+
"eval_samples_per_second": 22.811,
|
113 |
+
"eval_steps_per_second": 2.851,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.3309251666069031,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.8009,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.7508132457733154,
|
126 |
+
"eval_runtime": 43.8535,
|
127 |
+
"eval_samples_per_second": 22.803,
|
128 |
+
"eval_steps_per_second": 2.85,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.4126473367214203,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.6602,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.753326177597046,
|
141 |
+
"eval_runtime": 43.86,
|
142 |
+
"eval_samples_per_second": 22.8,
|
143 |
+
"eval_steps_per_second": 2.85,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.5640483498573303,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.5879,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.7581162452697754,
|
156 |
+
"eval_runtime": 43.8488,
|
157 |
+
"eval_samples_per_second": 22.806,
|
158 |
+
"eval_steps_per_second": 2.851,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.6418269276618958,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.7067,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.7590935230255127,
|
171 |
+
"eval_runtime": 43.8372,
|
172 |
+
"eval_samples_per_second": 22.812,
|
173 |
+
"eval_steps_per_second": 2.851,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.603199303150177,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.7311,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.760871410369873,
|
186 |
+
"eval_runtime": 43.828,
|
187 |
+
"eval_samples_per_second": 22.816,
|
188 |
+
"eval_steps_per_second": 2.852,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.7207424640655518,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.7103,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.761257529258728,
|
201 |
+
"eval_runtime": 43.8422,
|
202 |
+
"eval_samples_per_second": 22.809,
|
203 |
+
"eval_steps_per_second": 2.851,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.6793868541717529,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.6574,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.7610187530517578,
|
216 |
+
"eval_runtime": 43.8261,
|
217 |
+
"eval_samples_per_second": 22.817,
|
218 |
+
"eval_steps_per_second": 2.852,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.7147842049598694,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 1.6357,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 1.763314962387085,
|
231 |
+
"eval_runtime": 43.8315,
|
232 |
+
"eval_samples_per_second": 22.815,
|
233 |
+
"eval_steps_per_second": 2.852,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 0.8159098625183105,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 1.62,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 1.7846354246139526,
|
246 |
+
"eval_runtime": 43.8212,
|
247 |
+
"eval_samples_per_second": 22.82,
|
248 |
+
"eval_steps_per_second": 2.853,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 1.0052918195724487,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 1.5109,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 1.8005082607269287,
|
261 |
+
"eval_runtime": 43.8314,
|
262 |
+
"eval_samples_per_second": 22.815,
|
263 |
+
"eval_steps_per_second": 2.852,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 1.089106559753418,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 1.5658,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 1.8088901042938232,
|
276 |
+
"eval_runtime": 43.8245,
|
277 |
+
"eval_samples_per_second": 22.818,
|
278 |
+
"eval_steps_per_second": 2.852,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 1.1667160987854004,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 1.6316,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 1.8114306926727295,
|
291 |
+
"eval_runtime": 43.8195,
|
292 |
+
"eval_samples_per_second": 22.821,
|
293 |
+
"eval_steps_per_second": 2.853,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 1.215566873550415,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 1.4806,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 1.811687707901001,
|
306 |
+
"eval_runtime": 43.8494,
|
307 |
+
"eval_samples_per_second": 22.805,
|
308 |
+
"eval_steps_per_second": 2.851,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 1.1638202667236328,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 1.5345,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 1.8096415996551514,
|
321 |
+
"eval_runtime": 43.8206,
|
322 |
+
"eval_samples_per_second": 22.82,
|
323 |
+
"eval_steps_per_second": 2.853,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 1.2765487432479858,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 1.6074,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 1.810752034187317,
|
336 |
+
"eval_runtime": 43.8178,
|
337 |
+
"eval_samples_per_second": 22.822,
|
338 |
+
"eval_steps_per_second": 2.853,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 1.4451857805252075,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 1.5139,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 1.8353334665298462,
|
351 |
+
"eval_runtime": 43.831,
|
352 |
+
"eval_samples_per_second": 22.815,
|
353 |
+
"eval_steps_per_second": 2.852,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 1.697195291519165,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 1.3564,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 1.8831367492675781,
|
366 |
+
"eval_runtime": 43.8285,
|
367 |
+
"eval_samples_per_second": 22.816,
|
368 |
+
"eval_steps_per_second": 2.852,
|
369 |
+
"step": 240
|
370 |
+
}
|
371 |
+
],
|
372 |
+
"logging_steps": 10,
|
373 |
+
"max_steps": 675,
|
374 |
+
"num_input_tokens_seen": 0,
|
375 |
+
"num_train_epochs": 9,
|
376 |
+
"save_steps": 10,
|
377 |
+
"stateful_callbacks": {
|
378 |
+
"TrainerControl": {
|
379 |
+
"args": {
|
380 |
+
"should_epoch_stop": false,
|
381 |
+
"should_evaluate": false,
|
382 |
+
"should_log": false,
|
383 |
+
"should_save": true,
|
384 |
+
"should_training_stop": false
|
385 |
+
},
|
386 |
+
"attributes": {}
|
387 |
+
}
|
388 |
+
},
|
389 |
+
"total_flos": 3.93265727668224e+16,
|
390 |
+
"train_batch_size": 8,
|
391 |
+
"trial_name": null,
|
392 |
+
"trial_params": null
|
393 |
+
}
|
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-250/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-250/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"dense",
|
24 |
+
"dense_4h_to_h",
|
25 |
+
"query_key_value",
|
26 |
+
"dense_h_to_4h"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-250/trainer_state.json
ADDED
@@ -0,0 +1,408 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.7508132457733154,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-80",
|
4 |
+
"epoch": 3.3333333333333335,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 250,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.3951323926448822,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.8421,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.7700647115707397,
|
21 |
+
"eval_runtime": 43.86,
|
22 |
+
"eval_samples_per_second": 22.8,
|
23 |
+
"eval_steps_per_second": 2.85,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.3800930380821228,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.7715,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.7666271924972534,
|
36 |
+
"eval_runtime": 43.8435,
|
37 |
+
"eval_samples_per_second": 22.808,
|
38 |
+
"eval_steps_per_second": 2.851,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.3974359333515167,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.7799,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.7623893022537231,
|
51 |
+
"eval_runtime": 43.863,
|
52 |
+
"eval_samples_per_second": 22.798,
|
53 |
+
"eval_steps_per_second": 2.85,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.37877357006073,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.7416,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.7585530281066895,
|
66 |
+
"eval_runtime": 43.8506,
|
67 |
+
"eval_samples_per_second": 22.805,
|
68 |
+
"eval_steps_per_second": 2.851,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.3691335618495941,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.754,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.7555732727050781,
|
81 |
+
"eval_runtime": 43.8591,
|
82 |
+
"eval_samples_per_second": 22.8,
|
83 |
+
"eval_steps_per_second": 2.85,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.3394964337348938,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.639,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.7534734010696411,
|
96 |
+
"eval_runtime": 43.8608,
|
97 |
+
"eval_samples_per_second": 22.799,
|
98 |
+
"eval_steps_per_second": 2.85,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.317234069108963,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.7729,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.7515993118286133,
|
111 |
+
"eval_runtime": 43.8388,
|
112 |
+
"eval_samples_per_second": 22.811,
|
113 |
+
"eval_steps_per_second": 2.851,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.3309251666069031,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.8009,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.7508132457733154,
|
126 |
+
"eval_runtime": 43.8535,
|
127 |
+
"eval_samples_per_second": 22.803,
|
128 |
+
"eval_steps_per_second": 2.85,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.4126473367214203,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.6602,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.753326177597046,
|
141 |
+
"eval_runtime": 43.86,
|
142 |
+
"eval_samples_per_second": 22.8,
|
143 |
+
"eval_steps_per_second": 2.85,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.5640483498573303,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.5879,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.7581162452697754,
|
156 |
+
"eval_runtime": 43.8488,
|
157 |
+
"eval_samples_per_second": 22.806,
|
158 |
+
"eval_steps_per_second": 2.851,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.6418269276618958,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.7067,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.7590935230255127,
|
171 |
+
"eval_runtime": 43.8372,
|
172 |
+
"eval_samples_per_second": 22.812,
|
173 |
+
"eval_steps_per_second": 2.851,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.603199303150177,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.7311,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.760871410369873,
|
186 |
+
"eval_runtime": 43.828,
|
187 |
+
"eval_samples_per_second": 22.816,
|
188 |
+
"eval_steps_per_second": 2.852,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.7207424640655518,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.7103,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.761257529258728,
|
201 |
+
"eval_runtime": 43.8422,
|
202 |
+
"eval_samples_per_second": 22.809,
|
203 |
+
"eval_steps_per_second": 2.851,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.6793868541717529,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.6574,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.7610187530517578,
|
216 |
+
"eval_runtime": 43.8261,
|
217 |
+
"eval_samples_per_second": 22.817,
|
218 |
+
"eval_steps_per_second": 2.852,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.7147842049598694,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 1.6357,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 1.763314962387085,
|
231 |
+
"eval_runtime": 43.8315,
|
232 |
+
"eval_samples_per_second": 22.815,
|
233 |
+
"eval_steps_per_second": 2.852,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 0.8159098625183105,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 1.62,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 1.7846354246139526,
|
246 |
+
"eval_runtime": 43.8212,
|
247 |
+
"eval_samples_per_second": 22.82,
|
248 |
+
"eval_steps_per_second": 2.853,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 1.0052918195724487,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 1.5109,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 1.8005082607269287,
|
261 |
+
"eval_runtime": 43.8314,
|
262 |
+
"eval_samples_per_second": 22.815,
|
263 |
+
"eval_steps_per_second": 2.852,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 1.089106559753418,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 1.5658,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 1.8088901042938232,
|
276 |
+
"eval_runtime": 43.8245,
|
277 |
+
"eval_samples_per_second": 22.818,
|
278 |
+
"eval_steps_per_second": 2.852,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 1.1667160987854004,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 1.6316,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 1.8114306926727295,
|
291 |
+
"eval_runtime": 43.8195,
|
292 |
+
"eval_samples_per_second": 22.821,
|
293 |
+
"eval_steps_per_second": 2.853,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 1.215566873550415,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 1.4806,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 1.811687707901001,
|
306 |
+
"eval_runtime": 43.8494,
|
307 |
+
"eval_samples_per_second": 22.805,
|
308 |
+
"eval_steps_per_second": 2.851,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 1.1638202667236328,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 1.5345,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 1.8096415996551514,
|
321 |
+
"eval_runtime": 43.8206,
|
322 |
+
"eval_samples_per_second": 22.82,
|
323 |
+
"eval_steps_per_second": 2.853,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 1.2765487432479858,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 1.6074,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 1.810752034187317,
|
336 |
+
"eval_runtime": 43.8178,
|
337 |
+
"eval_samples_per_second": 22.822,
|
338 |
+
"eval_steps_per_second": 2.853,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 1.4451857805252075,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 1.5139,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 1.8353334665298462,
|
351 |
+
"eval_runtime": 43.831,
|
352 |
+
"eval_samples_per_second": 22.815,
|
353 |
+
"eval_steps_per_second": 2.852,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 1.697195291519165,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 1.3564,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 1.8831367492675781,
|
366 |
+
"eval_runtime": 43.8285,
|
367 |
+
"eval_samples_per_second": 22.816,
|
368 |
+
"eval_steps_per_second": 2.852,
|
369 |
+
"step": 240
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.3333333333333335,
|
373 |
+
"grad_norm": 1.650194525718689,
|
374 |
+
"learning_rate": 5.037037037037037e-05,
|
375 |
+
"loss": 1.3952,
|
376 |
+
"step": 250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 3.3333333333333335,
|
380 |
+
"eval_loss": 1.8923019170761108,
|
381 |
+
"eval_runtime": 43.8237,
|
382 |
+
"eval_samples_per_second": 22.819,
|
383 |
+
"eval_steps_per_second": 2.852,
|
384 |
+
"step": 250
|
385 |
+
}
|
386 |
+
],
|
387 |
+
"logging_steps": 10,
|
388 |
+
"max_steps": 675,
|
389 |
+
"num_input_tokens_seen": 0,
|
390 |
+
"num_train_epochs": 9,
|
391 |
+
"save_steps": 10,
|
392 |
+
"stateful_callbacks": {
|
393 |
+
"TrainerControl": {
|
394 |
+
"args": {
|
395 |
+
"should_epoch_stop": false,
|
396 |
+
"should_evaluate": false,
|
397 |
+
"should_log": false,
|
398 |
+
"should_save": true,
|
399 |
+
"should_training_stop": false
|
400 |
+
},
|
401 |
+
"attributes": {}
|
402 |
+
}
|
403 |
+
},
|
404 |
+
"total_flos": 4.096517996544e+16,
|
405 |
+
"train_batch_size": 8,
|
406 |
+
"trial_name": null,
|
407 |
+
"trial_params": null
|
408 |
+
}
|
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-260/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-260/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"dense",
|
24 |
+
"dense_4h_to_h",
|
25 |
+
"query_key_value",
|
26 |
+
"dense_h_to_4h"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-260/trainer_state.json
ADDED
@@ -0,0 +1,423 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.7508132457733154,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-80",
|
4 |
+
"epoch": 3.466666666666667,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 260,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.3951323926448822,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.8421,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.7700647115707397,
|
21 |
+
"eval_runtime": 43.86,
|
22 |
+
"eval_samples_per_second": 22.8,
|
23 |
+
"eval_steps_per_second": 2.85,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.3800930380821228,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.7715,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.7666271924972534,
|
36 |
+
"eval_runtime": 43.8435,
|
37 |
+
"eval_samples_per_second": 22.808,
|
38 |
+
"eval_steps_per_second": 2.851,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.3974359333515167,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.7799,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.7623893022537231,
|
51 |
+
"eval_runtime": 43.863,
|
52 |
+
"eval_samples_per_second": 22.798,
|
53 |
+
"eval_steps_per_second": 2.85,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.37877357006073,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.7416,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.7585530281066895,
|
66 |
+
"eval_runtime": 43.8506,
|
67 |
+
"eval_samples_per_second": 22.805,
|
68 |
+
"eval_steps_per_second": 2.851,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.3691335618495941,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.754,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.7555732727050781,
|
81 |
+
"eval_runtime": 43.8591,
|
82 |
+
"eval_samples_per_second": 22.8,
|
83 |
+
"eval_steps_per_second": 2.85,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.3394964337348938,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.639,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.7534734010696411,
|
96 |
+
"eval_runtime": 43.8608,
|
97 |
+
"eval_samples_per_second": 22.799,
|
98 |
+
"eval_steps_per_second": 2.85,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.317234069108963,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.7729,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.7515993118286133,
|
111 |
+
"eval_runtime": 43.8388,
|
112 |
+
"eval_samples_per_second": 22.811,
|
113 |
+
"eval_steps_per_second": 2.851,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.3309251666069031,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.8009,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.7508132457733154,
|
126 |
+
"eval_runtime": 43.8535,
|
127 |
+
"eval_samples_per_second": 22.803,
|
128 |
+
"eval_steps_per_second": 2.85,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.4126473367214203,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.6602,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.753326177597046,
|
141 |
+
"eval_runtime": 43.86,
|
142 |
+
"eval_samples_per_second": 22.8,
|
143 |
+
"eval_steps_per_second": 2.85,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.5640483498573303,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.5879,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.7581162452697754,
|
156 |
+
"eval_runtime": 43.8488,
|
157 |
+
"eval_samples_per_second": 22.806,
|
158 |
+
"eval_steps_per_second": 2.851,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.6418269276618958,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.7067,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.7590935230255127,
|
171 |
+
"eval_runtime": 43.8372,
|
172 |
+
"eval_samples_per_second": 22.812,
|
173 |
+
"eval_steps_per_second": 2.851,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.603199303150177,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.7311,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.760871410369873,
|
186 |
+
"eval_runtime": 43.828,
|
187 |
+
"eval_samples_per_second": 22.816,
|
188 |
+
"eval_steps_per_second": 2.852,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.7207424640655518,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.7103,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.761257529258728,
|
201 |
+
"eval_runtime": 43.8422,
|
202 |
+
"eval_samples_per_second": 22.809,
|
203 |
+
"eval_steps_per_second": 2.851,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.6793868541717529,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.6574,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.7610187530517578,
|
216 |
+
"eval_runtime": 43.8261,
|
217 |
+
"eval_samples_per_second": 22.817,
|
218 |
+
"eval_steps_per_second": 2.852,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.7147842049598694,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 1.6357,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 1.763314962387085,
|
231 |
+
"eval_runtime": 43.8315,
|
232 |
+
"eval_samples_per_second": 22.815,
|
233 |
+
"eval_steps_per_second": 2.852,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 0.8159098625183105,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 1.62,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 1.7846354246139526,
|
246 |
+
"eval_runtime": 43.8212,
|
247 |
+
"eval_samples_per_second": 22.82,
|
248 |
+
"eval_steps_per_second": 2.853,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 1.0052918195724487,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 1.5109,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 1.8005082607269287,
|
261 |
+
"eval_runtime": 43.8314,
|
262 |
+
"eval_samples_per_second": 22.815,
|
263 |
+
"eval_steps_per_second": 2.852,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 1.089106559753418,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 1.5658,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 1.8088901042938232,
|
276 |
+
"eval_runtime": 43.8245,
|
277 |
+
"eval_samples_per_second": 22.818,
|
278 |
+
"eval_steps_per_second": 2.852,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 1.1667160987854004,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 1.6316,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 1.8114306926727295,
|
291 |
+
"eval_runtime": 43.8195,
|
292 |
+
"eval_samples_per_second": 22.821,
|
293 |
+
"eval_steps_per_second": 2.853,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 1.215566873550415,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 1.4806,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 1.811687707901001,
|
306 |
+
"eval_runtime": 43.8494,
|
307 |
+
"eval_samples_per_second": 22.805,
|
308 |
+
"eval_steps_per_second": 2.851,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 1.1638202667236328,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 1.5345,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 1.8096415996551514,
|
321 |
+
"eval_runtime": 43.8206,
|
322 |
+
"eval_samples_per_second": 22.82,
|
323 |
+
"eval_steps_per_second": 2.853,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 1.2765487432479858,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 1.6074,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 1.810752034187317,
|
336 |
+
"eval_runtime": 43.8178,
|
337 |
+
"eval_samples_per_second": 22.822,
|
338 |
+
"eval_steps_per_second": 2.853,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 1.4451857805252075,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 1.5139,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 1.8353334665298462,
|
351 |
+
"eval_runtime": 43.831,
|
352 |
+
"eval_samples_per_second": 22.815,
|
353 |
+
"eval_steps_per_second": 2.852,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 1.697195291519165,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 1.3564,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 1.8831367492675781,
|
366 |
+
"eval_runtime": 43.8285,
|
367 |
+
"eval_samples_per_second": 22.816,
|
368 |
+
"eval_steps_per_second": 2.852,
|
369 |
+
"step": 240
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.3333333333333335,
|
373 |
+
"grad_norm": 1.650194525718689,
|
374 |
+
"learning_rate": 5.037037037037037e-05,
|
375 |
+
"loss": 1.3952,
|
376 |
+
"step": 250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 3.3333333333333335,
|
380 |
+
"eval_loss": 1.8923019170761108,
|
381 |
+
"eval_runtime": 43.8237,
|
382 |
+
"eval_samples_per_second": 22.819,
|
383 |
+
"eval_steps_per_second": 2.852,
|
384 |
+
"step": 250
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 3.466666666666667,
|
388 |
+
"grad_norm": 1.7771501541137695,
|
389 |
+
"learning_rate": 4.918518518518519e-05,
|
390 |
+
"loss": 1.2664,
|
391 |
+
"step": 260
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 3.466666666666667,
|
395 |
+
"eval_loss": 1.8947919607162476,
|
396 |
+
"eval_runtime": 43.851,
|
397 |
+
"eval_samples_per_second": 22.804,
|
398 |
+
"eval_steps_per_second": 2.851,
|
399 |
+
"step": 260
|
400 |
+
}
|
401 |
+
],
|
402 |
+
"logging_steps": 10,
|
403 |
+
"max_steps": 675,
|
404 |
+
"num_input_tokens_seen": 0,
|
405 |
+
"num_train_epochs": 9,
|
406 |
+
"save_steps": 10,
|
407 |
+
"stateful_callbacks": {
|
408 |
+
"TrainerControl": {
|
409 |
+
"args": {
|
410 |
+
"should_epoch_stop": false,
|
411 |
+
"should_evaluate": false,
|
412 |
+
"should_log": false,
|
413 |
+
"should_save": true,
|
414 |
+
"should_training_stop": false
|
415 |
+
},
|
416 |
+
"attributes": {}
|
417 |
+
}
|
418 |
+
},
|
419 |
+
"total_flos": 4.26037871640576e+16,
|
420 |
+
"train_batch_size": 8,
|
421 |
+
"trial_name": null,
|
422 |
+
"trial_params": null
|
423 |
+
}
|
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-270/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-270/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"dense",
|
24 |
+
"dense_4h_to_h",
|
25 |
+
"query_key_value",
|
26 |
+
"dense_h_to_4h"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-270/trainer_state.json
ADDED
@@ -0,0 +1,438 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.7508132457733154,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-80",
|
4 |
+
"epoch": 3.6,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 270,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.3951323926448822,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.8421,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.7700647115707397,
|
21 |
+
"eval_runtime": 43.86,
|
22 |
+
"eval_samples_per_second": 22.8,
|
23 |
+
"eval_steps_per_second": 2.85,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.3800930380821228,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.7715,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.7666271924972534,
|
36 |
+
"eval_runtime": 43.8435,
|
37 |
+
"eval_samples_per_second": 22.808,
|
38 |
+
"eval_steps_per_second": 2.851,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.3974359333515167,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.7799,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.7623893022537231,
|
51 |
+
"eval_runtime": 43.863,
|
52 |
+
"eval_samples_per_second": 22.798,
|
53 |
+
"eval_steps_per_second": 2.85,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.37877357006073,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.7416,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.7585530281066895,
|
66 |
+
"eval_runtime": 43.8506,
|
67 |
+
"eval_samples_per_second": 22.805,
|
68 |
+
"eval_steps_per_second": 2.851,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.3691335618495941,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.754,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.7555732727050781,
|
81 |
+
"eval_runtime": 43.8591,
|
82 |
+
"eval_samples_per_second": 22.8,
|
83 |
+
"eval_steps_per_second": 2.85,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.3394964337348938,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.639,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.7534734010696411,
|
96 |
+
"eval_runtime": 43.8608,
|
97 |
+
"eval_samples_per_second": 22.799,
|
98 |
+
"eval_steps_per_second": 2.85,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.317234069108963,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.7729,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.7515993118286133,
|
111 |
+
"eval_runtime": 43.8388,
|
112 |
+
"eval_samples_per_second": 22.811,
|
113 |
+
"eval_steps_per_second": 2.851,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.3309251666069031,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.8009,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.7508132457733154,
|
126 |
+
"eval_runtime": 43.8535,
|
127 |
+
"eval_samples_per_second": 22.803,
|
128 |
+
"eval_steps_per_second": 2.85,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.4126473367214203,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.6602,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.753326177597046,
|
141 |
+
"eval_runtime": 43.86,
|
142 |
+
"eval_samples_per_second": 22.8,
|
143 |
+
"eval_steps_per_second": 2.85,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.5640483498573303,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.5879,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.7581162452697754,
|
156 |
+
"eval_runtime": 43.8488,
|
157 |
+
"eval_samples_per_second": 22.806,
|
158 |
+
"eval_steps_per_second": 2.851,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.6418269276618958,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.7067,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.7590935230255127,
|
171 |
+
"eval_runtime": 43.8372,
|
172 |
+
"eval_samples_per_second": 22.812,
|
173 |
+
"eval_steps_per_second": 2.851,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.603199303150177,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.7311,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.760871410369873,
|
186 |
+
"eval_runtime": 43.828,
|
187 |
+
"eval_samples_per_second": 22.816,
|
188 |
+
"eval_steps_per_second": 2.852,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.7207424640655518,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.7103,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.761257529258728,
|
201 |
+
"eval_runtime": 43.8422,
|
202 |
+
"eval_samples_per_second": 22.809,
|
203 |
+
"eval_steps_per_second": 2.851,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.6793868541717529,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.6574,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.7610187530517578,
|
216 |
+
"eval_runtime": 43.8261,
|
217 |
+
"eval_samples_per_second": 22.817,
|
218 |
+
"eval_steps_per_second": 2.852,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.7147842049598694,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 1.6357,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 1.763314962387085,
|
231 |
+
"eval_runtime": 43.8315,
|
232 |
+
"eval_samples_per_second": 22.815,
|
233 |
+
"eval_steps_per_second": 2.852,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 0.8159098625183105,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 1.62,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 1.7846354246139526,
|
246 |
+
"eval_runtime": 43.8212,
|
247 |
+
"eval_samples_per_second": 22.82,
|
248 |
+
"eval_steps_per_second": 2.853,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 1.0052918195724487,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 1.5109,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 1.8005082607269287,
|
261 |
+
"eval_runtime": 43.8314,
|
262 |
+
"eval_samples_per_second": 22.815,
|
263 |
+
"eval_steps_per_second": 2.852,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 1.089106559753418,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 1.5658,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 1.8088901042938232,
|
276 |
+
"eval_runtime": 43.8245,
|
277 |
+
"eval_samples_per_second": 22.818,
|
278 |
+
"eval_steps_per_second": 2.852,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 1.1667160987854004,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 1.6316,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 1.8114306926727295,
|
291 |
+
"eval_runtime": 43.8195,
|
292 |
+
"eval_samples_per_second": 22.821,
|
293 |
+
"eval_steps_per_second": 2.853,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 1.215566873550415,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 1.4806,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 1.811687707901001,
|
306 |
+
"eval_runtime": 43.8494,
|
307 |
+
"eval_samples_per_second": 22.805,
|
308 |
+
"eval_steps_per_second": 2.851,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 1.1638202667236328,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 1.5345,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 1.8096415996551514,
|
321 |
+
"eval_runtime": 43.8206,
|
322 |
+
"eval_samples_per_second": 22.82,
|
323 |
+
"eval_steps_per_second": 2.853,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 1.2765487432479858,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 1.6074,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 1.810752034187317,
|
336 |
+
"eval_runtime": 43.8178,
|
337 |
+
"eval_samples_per_second": 22.822,
|
338 |
+
"eval_steps_per_second": 2.853,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 1.4451857805252075,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 1.5139,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 1.8353334665298462,
|
351 |
+
"eval_runtime": 43.831,
|
352 |
+
"eval_samples_per_second": 22.815,
|
353 |
+
"eval_steps_per_second": 2.852,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 1.697195291519165,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 1.3564,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 1.8831367492675781,
|
366 |
+
"eval_runtime": 43.8285,
|
367 |
+
"eval_samples_per_second": 22.816,
|
368 |
+
"eval_steps_per_second": 2.852,
|
369 |
+
"step": 240
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.3333333333333335,
|
373 |
+
"grad_norm": 1.650194525718689,
|
374 |
+
"learning_rate": 5.037037037037037e-05,
|
375 |
+
"loss": 1.3952,
|
376 |
+
"step": 250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 3.3333333333333335,
|
380 |
+
"eval_loss": 1.8923019170761108,
|
381 |
+
"eval_runtime": 43.8237,
|
382 |
+
"eval_samples_per_second": 22.819,
|
383 |
+
"eval_steps_per_second": 2.852,
|
384 |
+
"step": 250
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 3.466666666666667,
|
388 |
+
"grad_norm": 1.7771501541137695,
|
389 |
+
"learning_rate": 4.918518518518519e-05,
|
390 |
+
"loss": 1.2664,
|
391 |
+
"step": 260
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 3.466666666666667,
|
395 |
+
"eval_loss": 1.8947919607162476,
|
396 |
+
"eval_runtime": 43.851,
|
397 |
+
"eval_samples_per_second": 22.804,
|
398 |
+
"eval_steps_per_second": 2.851,
|
399 |
+
"step": 260
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 3.6,
|
403 |
+
"grad_norm": 1.5858917236328125,
|
404 |
+
"learning_rate": 4.8e-05,
|
405 |
+
"loss": 1.4785,
|
406 |
+
"step": 270
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 3.6,
|
410 |
+
"eval_loss": 1.8847408294677734,
|
411 |
+
"eval_runtime": 43.8427,
|
412 |
+
"eval_samples_per_second": 22.809,
|
413 |
+
"eval_steps_per_second": 2.851,
|
414 |
+
"step": 270
|
415 |
+
}
|
416 |
+
],
|
417 |
+
"logging_steps": 10,
|
418 |
+
"max_steps": 675,
|
419 |
+
"num_input_tokens_seen": 0,
|
420 |
+
"num_train_epochs": 9,
|
421 |
+
"save_steps": 10,
|
422 |
+
"stateful_callbacks": {
|
423 |
+
"TrainerControl": {
|
424 |
+
"args": {
|
425 |
+
"should_epoch_stop": false,
|
426 |
+
"should_evaluate": false,
|
427 |
+
"should_log": false,
|
428 |
+
"should_save": true,
|
429 |
+
"should_training_stop": false
|
430 |
+
},
|
431 |
+
"attributes": {}
|
432 |
+
}
|
433 |
+
},
|
434 |
+
"total_flos": 4.42423943626752e+16,
|
435 |
+
"train_batch_size": 8,
|
436 |
+
"trial_name": null,
|
437 |
+
"trial_params": null
|
438 |
+
}
|
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-280/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|