Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- output_ft_more_layers_books3_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-books3-8e-05/checkpoint-20/optimizer.pt +3 -0
- output_ft_more_layers_books3_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-books3-8e-05/checkpoint-130/rng_state.pth +3 -0
- output_ft_more_layers_books3_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-books3-8e-05/checkpoint-130/scheduler.pt +3 -0
- output_ft_more_layers_books3_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-books3-8e-05/checkpoint-430/scheduler.pt +3 -0
- output_ft_more_layers_books3_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-books3-8e-05/checkpoint-460/optimizer.pt +3 -0
- output_ft_more_layers_books3_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-books3-8e-05/checkpoint-80/scheduler.pt +3 -0
- output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-540/trainer_state.json +843 -0
- output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-550/README.md +202 -0
- output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-550/adapter_config.json +31 -0
- output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-550/trainer_state.json +858 -0
- output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-560/README.md +202 -0
- output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-560/adapter_config.json +31 -0
- output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-560/trainer_state.json +873 -0
- output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-570/README.md +202 -0
- output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-570/adapter_config.json +31 -0
- output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-570/trainer_state.json +888 -0
- output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-580/README.md +202 -0
- output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-580/adapter_config.json +31 -0
- output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-580/trainer_state.json +903 -0
- output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-590/README.md +202 -0
- output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-590/adapter_config.json +31 -0
- output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-590/trainer_state.json +918 -0
- output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-600/README.md +202 -0
- output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-600/adapter_config.json +31 -0
- output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-600/trainer_state.json +933 -0
- output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-610/README.md +202 -0
- output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-610/adapter_config.json +31 -0
- output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-610/trainer_state.json +948 -0
- output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-620/README.md +202 -0
- output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-620/adapter_config.json +31 -0
- output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-620/trainer_state.json +963 -0
- output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-630/README.md +202 -0
- output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-630/adapter_config.json +31 -0
- output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-630/trainer_state.json +978 -0
- output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-640/README.md +202 -0
- output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-640/adapter_config.json +31 -0
- output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-640/trainer_state.json +993 -0
- output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-650/README.md +202 -0
- output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-650/adapter_config.json +31 -0
- output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-650/trainer_state.json +1008 -0
- output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-660/README.md +202 -0
- output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-660/adapter_config.json +31 -0
- output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-660/trainer_state.json +1023 -0
- output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-670/README.md +202 -0
- output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-670/adapter_config.json +31 -0
- output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-670/trainer_state.json +1038 -0
- output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-675/README.md +202 -0
- output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-675/adapter_config.json +31 -0
- output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-675/trainer_state.json +1038 -0
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-10/README.md +202 -0
output_ft_more_layers_books3_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-books3-8e-05/checkpoint-20/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6db085f28537d5c62aef24b0903bb0eac2c8ad2a65c4be42ea30949e1229b5f4
|
3 |
+
size 134432453
|
output_ft_more_layers_books3_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-books3-8e-05/checkpoint-130/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:602f503f7cd2e84c0b6719714b66d34e98b340f44b02ba8ffc44df096e786100
|
3 |
+
size 14575
|
output_ft_more_layers_books3_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-books3-8e-05/checkpoint-130/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:27d264918de6062217fe14f2ec79bd3c51c2927dd66c780c5e047809958d2db3
|
3 |
+
size 627
|
output_ft_more_layers_books3_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-books3-8e-05/checkpoint-430/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e2040546bf5999f3c3548cecaa97d281c807e5f7aaafcca6331b19c5a60e9a72
|
3 |
+
size 627
|
output_ft_more_layers_books3_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-books3-8e-05/checkpoint-460/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dc4116362643ecf40c4a1d9614b9703e7c83464f80f37b77d7af6cadc918e1a6
|
3 |
+
size 134432453
|
output_ft_more_layers_books3_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-books3-8e-05/checkpoint-80/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3deea210a363c4c23987c79a9187f1acbe6a628d62ecdf9bfb4c8168baee6c2c
|
3 |
+
size 627
|
output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-540/trainer_state.json
ADDED
@@ -0,0 +1,843 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.6284925937652588,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-80",
|
4 |
+
"epoch": 7.2,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 540,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.37591353058815,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.5979,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.6375348567962646,
|
21 |
+
"eval_runtime": 43.9032,
|
22 |
+
"eval_samples_per_second": 22.777,
|
23 |
+
"eval_steps_per_second": 2.847,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.4210415482521057,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.624,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.6352741718292236,
|
36 |
+
"eval_runtime": 44.0038,
|
37 |
+
"eval_samples_per_second": 22.725,
|
38 |
+
"eval_steps_per_second": 2.841,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.3714869022369385,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.6205,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.633917212486267,
|
51 |
+
"eval_runtime": 43.9878,
|
52 |
+
"eval_samples_per_second": 22.734,
|
53 |
+
"eval_steps_per_second": 2.842,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.36149370670318604,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.6165,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.6323453187942505,
|
66 |
+
"eval_runtime": 43.9629,
|
67 |
+
"eval_samples_per_second": 22.746,
|
68 |
+
"eval_steps_per_second": 2.843,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.35420870780944824,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.6599,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.6314094066619873,
|
81 |
+
"eval_runtime": 43.9048,
|
82 |
+
"eval_samples_per_second": 22.777,
|
83 |
+
"eval_steps_per_second": 2.847,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.33472639322280884,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.5591,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.6304500102996826,
|
96 |
+
"eval_runtime": 44.0293,
|
97 |
+
"eval_samples_per_second": 22.712,
|
98 |
+
"eval_steps_per_second": 2.839,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.3210572898387909,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.6328,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.6291298866271973,
|
111 |
+
"eval_runtime": 43.8599,
|
112 |
+
"eval_samples_per_second": 22.8,
|
113 |
+
"eval_steps_per_second": 2.85,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.32792502641677856,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.5967,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.6284925937652588,
|
126 |
+
"eval_runtime": 43.8492,
|
127 |
+
"eval_samples_per_second": 22.805,
|
128 |
+
"eval_steps_per_second": 2.851,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.457350492477417,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.5461,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.6317176818847656,
|
141 |
+
"eval_runtime": 43.8568,
|
142 |
+
"eval_samples_per_second": 22.801,
|
143 |
+
"eval_steps_per_second": 2.85,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.6296346187591553,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.5933,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.635717511177063,
|
156 |
+
"eval_runtime": 43.8409,
|
157 |
+
"eval_samples_per_second": 22.81,
|
158 |
+
"eval_steps_per_second": 2.851,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.7165963053703308,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.5319,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.6375973224639893,
|
171 |
+
"eval_runtime": 43.8486,
|
172 |
+
"eval_samples_per_second": 22.806,
|
173 |
+
"eval_steps_per_second": 2.851,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.7370977997779846,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.5413,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.6369796991348267,
|
186 |
+
"eval_runtime": 43.9803,
|
187 |
+
"eval_samples_per_second": 22.737,
|
188 |
+
"eval_steps_per_second": 2.842,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.726448118686676,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.5226,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.6377675533294678,
|
201 |
+
"eval_runtime": 43.8627,
|
202 |
+
"eval_samples_per_second": 22.798,
|
203 |
+
"eval_steps_per_second": 2.85,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.7822732925415039,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.5477,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.6378459930419922,
|
216 |
+
"eval_runtime": 43.9081,
|
217 |
+
"eval_samples_per_second": 22.775,
|
218 |
+
"eval_steps_per_second": 2.847,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.7607081532478333,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 1.5604,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 1.637563705444336,
|
231 |
+
"eval_runtime": 43.9092,
|
232 |
+
"eval_samples_per_second": 22.774,
|
233 |
+
"eval_steps_per_second": 2.847,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 0.9361194372177124,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 1.4091,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 1.6557352542877197,
|
246 |
+
"eval_runtime": 43.9308,
|
247 |
+
"eval_samples_per_second": 22.763,
|
248 |
+
"eval_steps_per_second": 2.845,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 1.0848534107208252,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 1.4629,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 1.6792665719985962,
|
261 |
+
"eval_runtime": 43.8829,
|
262 |
+
"eval_samples_per_second": 22.788,
|
263 |
+
"eval_steps_per_second": 2.848,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 1.0759488344192505,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 1.3685,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 1.682196855545044,
|
276 |
+
"eval_runtime": 43.8735,
|
277 |
+
"eval_samples_per_second": 22.793,
|
278 |
+
"eval_steps_per_second": 2.849,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 1.2871410846710205,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 1.4443,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 1.6869845390319824,
|
291 |
+
"eval_runtime": 43.8534,
|
292 |
+
"eval_samples_per_second": 22.803,
|
293 |
+
"eval_steps_per_second": 2.85,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 1.2004164457321167,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 1.3451,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 1.6853325366973877,
|
306 |
+
"eval_runtime": 43.8718,
|
307 |
+
"eval_samples_per_second": 22.794,
|
308 |
+
"eval_steps_per_second": 2.849,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 1.2714128494262695,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 1.4547,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 1.6859557628631592,
|
321 |
+
"eval_runtime": 43.8724,
|
322 |
+
"eval_samples_per_second": 22.793,
|
323 |
+
"eval_steps_per_second": 2.849,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 1.3297241926193237,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 1.4088,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 1.6856082677841187,
|
336 |
+
"eval_runtime": 43.8409,
|
337 |
+
"eval_samples_per_second": 22.81,
|
338 |
+
"eval_steps_per_second": 2.851,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 1.1967905759811401,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 1.3735,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 1.7015950679779053,
|
351 |
+
"eval_runtime": 43.8446,
|
352 |
+
"eval_samples_per_second": 22.808,
|
353 |
+
"eval_steps_per_second": 2.851,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 1.5186768770217896,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 1.2487,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 1.7492223978042603,
|
366 |
+
"eval_runtime": 43.84,
|
367 |
+
"eval_samples_per_second": 22.81,
|
368 |
+
"eval_steps_per_second": 2.851,
|
369 |
+
"step": 240
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.3333333333333335,
|
373 |
+
"grad_norm": 1.5129271745681763,
|
374 |
+
"learning_rate": 5.037037037037037e-05,
|
375 |
+
"loss": 1.2959,
|
376 |
+
"step": 250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 3.3333333333333335,
|
380 |
+
"eval_loss": 1.7475690841674805,
|
381 |
+
"eval_runtime": 43.8475,
|
382 |
+
"eval_samples_per_second": 22.806,
|
383 |
+
"eval_steps_per_second": 2.851,
|
384 |
+
"step": 250
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 3.466666666666667,
|
388 |
+
"grad_norm": 1.5553545951843262,
|
389 |
+
"learning_rate": 4.918518518518519e-05,
|
390 |
+
"loss": 1.278,
|
391 |
+
"step": 260
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 3.466666666666667,
|
395 |
+
"eval_loss": 1.749650239944458,
|
396 |
+
"eval_runtime": 43.8575,
|
397 |
+
"eval_samples_per_second": 22.801,
|
398 |
+
"eval_steps_per_second": 2.85,
|
399 |
+
"step": 260
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 3.6,
|
403 |
+
"grad_norm": 1.6911894083023071,
|
404 |
+
"learning_rate": 4.8e-05,
|
405 |
+
"loss": 1.1815,
|
406 |
+
"step": 270
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 3.6,
|
410 |
+
"eval_loss": 1.751675009727478,
|
411 |
+
"eval_runtime": 43.8693,
|
412 |
+
"eval_samples_per_second": 22.795,
|
413 |
+
"eval_steps_per_second": 2.849,
|
414 |
+
"step": 270
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 3.7333333333333334,
|
418 |
+
"grad_norm": 1.7207773923873901,
|
419 |
+
"learning_rate": 4.681481481481481e-05,
|
420 |
+
"loss": 1.227,
|
421 |
+
"step": 280
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 3.7333333333333334,
|
425 |
+
"eval_loss": 1.7532404661178589,
|
426 |
+
"eval_runtime": 43.9788,
|
427 |
+
"eval_samples_per_second": 22.738,
|
428 |
+
"eval_steps_per_second": 2.842,
|
429 |
+
"step": 280
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 3.8666666666666667,
|
433 |
+
"grad_norm": 1.6659716367721558,
|
434 |
+
"learning_rate": 4.5629629629629636e-05,
|
435 |
+
"loss": 1.2699,
|
436 |
+
"step": 290
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 3.8666666666666667,
|
440 |
+
"eval_loss": 1.7546659708023071,
|
441 |
+
"eval_runtime": 44.0345,
|
442 |
+
"eval_samples_per_second": 22.709,
|
443 |
+
"eval_steps_per_second": 2.839,
|
444 |
+
"step": 290
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 4.0,
|
448 |
+
"grad_norm": 1.7288299798965454,
|
449 |
+
"learning_rate": 4.444444444444445e-05,
|
450 |
+
"loss": 1.2414,
|
451 |
+
"step": 300
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 4.0,
|
455 |
+
"eval_loss": 1.7534445524215698,
|
456 |
+
"eval_runtime": 43.9971,
|
457 |
+
"eval_samples_per_second": 22.729,
|
458 |
+
"eval_steps_per_second": 2.841,
|
459 |
+
"step": 300
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 4.133333333333334,
|
463 |
+
"grad_norm": 1.8176274299621582,
|
464 |
+
"learning_rate": 4.3259259259259264e-05,
|
465 |
+
"loss": 1.1231,
|
466 |
+
"step": 310
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 4.133333333333334,
|
470 |
+
"eval_loss": 1.8118728399276733,
|
471 |
+
"eval_runtime": 44.0255,
|
472 |
+
"eval_samples_per_second": 22.714,
|
473 |
+
"eval_steps_per_second": 2.839,
|
474 |
+
"step": 310
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 4.266666666666667,
|
478 |
+
"grad_norm": 1.881231427192688,
|
479 |
+
"learning_rate": 4.2074074074074075e-05,
|
480 |
+
"loss": 1.1311,
|
481 |
+
"step": 320
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 4.266666666666667,
|
485 |
+
"eval_loss": 1.824351191520691,
|
486 |
+
"eval_runtime": 43.871,
|
487 |
+
"eval_samples_per_second": 22.794,
|
488 |
+
"eval_steps_per_second": 2.849,
|
489 |
+
"step": 320
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 4.4,
|
493 |
+
"grad_norm": 1.8982057571411133,
|
494 |
+
"learning_rate": 4.088888888888889e-05,
|
495 |
+
"loss": 1.1046,
|
496 |
+
"step": 330
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 4.4,
|
500 |
+
"eval_loss": 1.813114881515503,
|
501 |
+
"eval_runtime": 43.8506,
|
502 |
+
"eval_samples_per_second": 22.805,
|
503 |
+
"eval_steps_per_second": 2.851,
|
504 |
+
"step": 330
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 4.533333333333333,
|
508 |
+
"grad_norm": 1.9931222200393677,
|
509 |
+
"learning_rate": 3.970370370370371e-05,
|
510 |
+
"loss": 1.0596,
|
511 |
+
"step": 340
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"epoch": 4.533333333333333,
|
515 |
+
"eval_loss": 1.8187421560287476,
|
516 |
+
"eval_runtime": 43.8637,
|
517 |
+
"eval_samples_per_second": 22.798,
|
518 |
+
"eval_steps_per_second": 2.85,
|
519 |
+
"step": 340
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 4.666666666666667,
|
523 |
+
"grad_norm": 2.02201247215271,
|
524 |
+
"learning_rate": 3.851851851851852e-05,
|
525 |
+
"loss": 1.1469,
|
526 |
+
"step": 350
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 4.666666666666667,
|
530 |
+
"eval_loss": 1.8229775428771973,
|
531 |
+
"eval_runtime": 43.9111,
|
532 |
+
"eval_samples_per_second": 22.773,
|
533 |
+
"eval_steps_per_second": 2.847,
|
534 |
+
"step": 350
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 4.8,
|
538 |
+
"grad_norm": 2.220625638961792,
|
539 |
+
"learning_rate": 3.733333333333334e-05,
|
540 |
+
"loss": 1.1344,
|
541 |
+
"step": 360
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 4.8,
|
545 |
+
"eval_loss": 1.817935585975647,
|
546 |
+
"eval_runtime": 43.9794,
|
547 |
+
"eval_samples_per_second": 22.738,
|
548 |
+
"eval_steps_per_second": 2.842,
|
549 |
+
"step": 360
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 4.933333333333334,
|
553 |
+
"grad_norm": 2.0401487350463867,
|
554 |
+
"learning_rate": 3.614814814814815e-05,
|
555 |
+
"loss": 1.1922,
|
556 |
+
"step": 370
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 4.933333333333334,
|
560 |
+
"eval_loss": 1.8182997703552246,
|
561 |
+
"eval_runtime": 43.8807,
|
562 |
+
"eval_samples_per_second": 22.789,
|
563 |
+
"eval_steps_per_second": 2.849,
|
564 |
+
"step": 370
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 5.066666666666666,
|
568 |
+
"grad_norm": 1.8822356462478638,
|
569 |
+
"learning_rate": 3.4962962962962965e-05,
|
570 |
+
"loss": 1.0486,
|
571 |
+
"step": 380
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 5.066666666666666,
|
575 |
+
"eval_loss": 1.8343256711959839,
|
576 |
+
"eval_runtime": 43.9715,
|
577 |
+
"eval_samples_per_second": 22.742,
|
578 |
+
"eval_steps_per_second": 2.843,
|
579 |
+
"step": 380
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 5.2,
|
583 |
+
"grad_norm": 2.383836030960083,
|
584 |
+
"learning_rate": 3.377777777777778e-05,
|
585 |
+
"loss": 1.0039,
|
586 |
+
"step": 390
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"epoch": 5.2,
|
590 |
+
"eval_loss": 1.8889024257659912,
|
591 |
+
"eval_runtime": 43.906,
|
592 |
+
"eval_samples_per_second": 22.776,
|
593 |
+
"eval_steps_per_second": 2.847,
|
594 |
+
"step": 390
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 5.333333333333333,
|
598 |
+
"grad_norm": 2.403280019760132,
|
599 |
+
"learning_rate": 3.259259259259259e-05,
|
600 |
+
"loss": 0.9946,
|
601 |
+
"step": 400
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 5.333333333333333,
|
605 |
+
"eval_loss": 1.8832476139068604,
|
606 |
+
"eval_runtime": 43.8654,
|
607 |
+
"eval_samples_per_second": 22.797,
|
608 |
+
"eval_steps_per_second": 2.85,
|
609 |
+
"step": 400
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 5.466666666666667,
|
613 |
+
"grad_norm": 2.34110164642334,
|
614 |
+
"learning_rate": 3.140740740740741e-05,
|
615 |
+
"loss": 1.0302,
|
616 |
+
"step": 410
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"epoch": 5.466666666666667,
|
620 |
+
"eval_loss": 1.8810956478118896,
|
621 |
+
"eval_runtime": 43.8937,
|
622 |
+
"eval_samples_per_second": 22.782,
|
623 |
+
"eval_steps_per_second": 2.848,
|
624 |
+
"step": 410
|
625 |
+
},
|
626 |
+
{
|
627 |
+
"epoch": 5.6,
|
628 |
+
"grad_norm": 2.32973575592041,
|
629 |
+
"learning_rate": 3.0222222222222225e-05,
|
630 |
+
"loss": 1.0062,
|
631 |
+
"step": 420
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"epoch": 5.6,
|
635 |
+
"eval_loss": 1.8806273937225342,
|
636 |
+
"eval_runtime": 43.9433,
|
637 |
+
"eval_samples_per_second": 22.757,
|
638 |
+
"eval_steps_per_second": 2.845,
|
639 |
+
"step": 420
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 5.733333333333333,
|
643 |
+
"grad_norm": 2.426825523376465,
|
644 |
+
"learning_rate": 2.9037037037037042e-05,
|
645 |
+
"loss": 1.0493,
|
646 |
+
"step": 430
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 5.733333333333333,
|
650 |
+
"eval_loss": 1.8787455558776855,
|
651 |
+
"eval_runtime": 43.9876,
|
652 |
+
"eval_samples_per_second": 22.734,
|
653 |
+
"eval_steps_per_second": 2.842,
|
654 |
+
"step": 430
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 5.866666666666667,
|
658 |
+
"grad_norm": 2.2383341789245605,
|
659 |
+
"learning_rate": 2.7851851851851856e-05,
|
660 |
+
"loss": 1.0728,
|
661 |
+
"step": 440
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 5.866666666666667,
|
665 |
+
"eval_loss": 1.8792084455490112,
|
666 |
+
"eval_runtime": 43.9918,
|
667 |
+
"eval_samples_per_second": 22.732,
|
668 |
+
"eval_steps_per_second": 2.841,
|
669 |
+
"step": 440
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 6.0,
|
673 |
+
"grad_norm": 2.4239635467529297,
|
674 |
+
"learning_rate": 2.6666666666666667e-05,
|
675 |
+
"loss": 1.0199,
|
676 |
+
"step": 450
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 6.0,
|
680 |
+
"eval_loss": 1.8804157972335815,
|
681 |
+
"eval_runtime": 43.9689,
|
682 |
+
"eval_samples_per_second": 22.743,
|
683 |
+
"eval_steps_per_second": 2.843,
|
684 |
+
"step": 450
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"epoch": 6.133333333333334,
|
688 |
+
"grad_norm": 3.0071866512298584,
|
689 |
+
"learning_rate": 2.5481481481481484e-05,
|
690 |
+
"loss": 0.9486,
|
691 |
+
"step": 460
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"epoch": 6.133333333333334,
|
695 |
+
"eval_loss": 1.930755376815796,
|
696 |
+
"eval_runtime": 43.9812,
|
697 |
+
"eval_samples_per_second": 22.737,
|
698 |
+
"eval_steps_per_second": 2.842,
|
699 |
+
"step": 460
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 6.266666666666667,
|
703 |
+
"grad_norm": 2.432983875274658,
|
704 |
+
"learning_rate": 2.4296296296296298e-05,
|
705 |
+
"loss": 0.8858,
|
706 |
+
"step": 470
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 6.266666666666667,
|
710 |
+
"eval_loss": 1.9468986988067627,
|
711 |
+
"eval_runtime": 43.9889,
|
712 |
+
"eval_samples_per_second": 22.733,
|
713 |
+
"eval_steps_per_second": 2.842,
|
714 |
+
"step": 470
|
715 |
+
},
|
716 |
+
{
|
717 |
+
"epoch": 6.4,
|
718 |
+
"grad_norm": 2.591848850250244,
|
719 |
+
"learning_rate": 2.3111111111111112e-05,
|
720 |
+
"loss": 0.9818,
|
721 |
+
"step": 480
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"epoch": 6.4,
|
725 |
+
"eval_loss": 1.9322350025177002,
|
726 |
+
"eval_runtime": 44.0412,
|
727 |
+
"eval_samples_per_second": 22.706,
|
728 |
+
"eval_steps_per_second": 2.838,
|
729 |
+
"step": 480
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 6.533333333333333,
|
733 |
+
"grad_norm": 2.5453197956085205,
|
734 |
+
"learning_rate": 2.192592592592593e-05,
|
735 |
+
"loss": 0.84,
|
736 |
+
"step": 490
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"epoch": 6.533333333333333,
|
740 |
+
"eval_loss": 1.9371347427368164,
|
741 |
+
"eval_runtime": 44.0174,
|
742 |
+
"eval_samples_per_second": 22.718,
|
743 |
+
"eval_steps_per_second": 2.84,
|
744 |
+
"step": 490
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 6.666666666666667,
|
748 |
+
"grad_norm": 2.4433412551879883,
|
749 |
+
"learning_rate": 2.074074074074074e-05,
|
750 |
+
"loss": 0.9686,
|
751 |
+
"step": 500
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 6.666666666666667,
|
755 |
+
"eval_loss": 1.9340929985046387,
|
756 |
+
"eval_runtime": 43.9473,
|
757 |
+
"eval_samples_per_second": 22.755,
|
758 |
+
"eval_steps_per_second": 2.844,
|
759 |
+
"step": 500
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 6.8,
|
763 |
+
"grad_norm": 2.7762234210968018,
|
764 |
+
"learning_rate": 1.9555555555555557e-05,
|
765 |
+
"loss": 0.974,
|
766 |
+
"step": 510
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 6.8,
|
770 |
+
"eval_loss": 1.936902642250061,
|
771 |
+
"eval_runtime": 43.9918,
|
772 |
+
"eval_samples_per_second": 22.732,
|
773 |
+
"eval_steps_per_second": 2.841,
|
774 |
+
"step": 510
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 6.933333333333334,
|
778 |
+
"grad_norm": 2.706693410873413,
|
779 |
+
"learning_rate": 1.837037037037037e-05,
|
780 |
+
"loss": 0.9366,
|
781 |
+
"step": 520
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"epoch": 6.933333333333334,
|
785 |
+
"eval_loss": 1.9351890087127686,
|
786 |
+
"eval_runtime": 43.9647,
|
787 |
+
"eval_samples_per_second": 22.746,
|
788 |
+
"eval_steps_per_second": 2.843,
|
789 |
+
"step": 520
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 7.066666666666666,
|
793 |
+
"grad_norm": 2.338547706604004,
|
794 |
+
"learning_rate": 1.7185185185185185e-05,
|
795 |
+
"loss": 0.9285,
|
796 |
+
"step": 530
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"epoch": 7.066666666666666,
|
800 |
+
"eval_loss": 1.9464186429977417,
|
801 |
+
"eval_runtime": 43.9646,
|
802 |
+
"eval_samples_per_second": 22.746,
|
803 |
+
"eval_steps_per_second": 2.843,
|
804 |
+
"step": 530
|
805 |
+
},
|
806 |
+
{
|
807 |
+
"epoch": 7.2,
|
808 |
+
"grad_norm": 2.846348285675049,
|
809 |
+
"learning_rate": 1.6000000000000003e-05,
|
810 |
+
"loss": 0.8663,
|
811 |
+
"step": 540
|
812 |
+
},
|
813 |
+
{
|
814 |
+
"epoch": 7.2,
|
815 |
+
"eval_loss": 1.9812690019607544,
|
816 |
+
"eval_runtime": 43.966,
|
817 |
+
"eval_samples_per_second": 22.745,
|
818 |
+
"eval_steps_per_second": 2.843,
|
819 |
+
"step": 540
|
820 |
+
}
|
821 |
+
],
|
822 |
+
"logging_steps": 10,
|
823 |
+
"max_steps": 675,
|
824 |
+
"num_input_tokens_seen": 0,
|
825 |
+
"num_train_epochs": 9,
|
826 |
+
"save_steps": 10,
|
827 |
+
"stateful_callbacks": {
|
828 |
+
"TrainerControl": {
|
829 |
+
"args": {
|
830 |
+
"should_epoch_stop": false,
|
831 |
+
"should_evaluate": false,
|
832 |
+
"should_log": false,
|
833 |
+
"should_save": true,
|
834 |
+
"should_training_stop": false
|
835 |
+
},
|
836 |
+
"attributes": {}
|
837 |
+
}
|
838 |
+
},
|
839 |
+
"total_flos": 8.84847887253504e+16,
|
840 |
+
"train_batch_size": 8,
|
841 |
+
"trial_name": null,
|
842 |
+
"trial_params": null
|
843 |
+
}
|
output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-550/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-550/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"dense",
|
24 |
+
"query_key_value",
|
25 |
+
"dense_h_to_4h",
|
26 |
+
"dense_4h_to_h"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-550/trainer_state.json
ADDED
@@ -0,0 +1,858 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.6284925937652588,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-80",
|
4 |
+
"epoch": 7.333333333333333,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 550,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.37591353058815,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.5979,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.6375348567962646,
|
21 |
+
"eval_runtime": 43.9032,
|
22 |
+
"eval_samples_per_second": 22.777,
|
23 |
+
"eval_steps_per_second": 2.847,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.4210415482521057,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.624,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.6352741718292236,
|
36 |
+
"eval_runtime": 44.0038,
|
37 |
+
"eval_samples_per_second": 22.725,
|
38 |
+
"eval_steps_per_second": 2.841,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.3714869022369385,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.6205,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.633917212486267,
|
51 |
+
"eval_runtime": 43.9878,
|
52 |
+
"eval_samples_per_second": 22.734,
|
53 |
+
"eval_steps_per_second": 2.842,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.36149370670318604,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.6165,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.6323453187942505,
|
66 |
+
"eval_runtime": 43.9629,
|
67 |
+
"eval_samples_per_second": 22.746,
|
68 |
+
"eval_steps_per_second": 2.843,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.35420870780944824,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.6599,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.6314094066619873,
|
81 |
+
"eval_runtime": 43.9048,
|
82 |
+
"eval_samples_per_second": 22.777,
|
83 |
+
"eval_steps_per_second": 2.847,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.33472639322280884,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.5591,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.6304500102996826,
|
96 |
+
"eval_runtime": 44.0293,
|
97 |
+
"eval_samples_per_second": 22.712,
|
98 |
+
"eval_steps_per_second": 2.839,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.3210572898387909,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.6328,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.6291298866271973,
|
111 |
+
"eval_runtime": 43.8599,
|
112 |
+
"eval_samples_per_second": 22.8,
|
113 |
+
"eval_steps_per_second": 2.85,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.32792502641677856,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.5967,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.6284925937652588,
|
126 |
+
"eval_runtime": 43.8492,
|
127 |
+
"eval_samples_per_second": 22.805,
|
128 |
+
"eval_steps_per_second": 2.851,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.457350492477417,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.5461,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.6317176818847656,
|
141 |
+
"eval_runtime": 43.8568,
|
142 |
+
"eval_samples_per_second": 22.801,
|
143 |
+
"eval_steps_per_second": 2.85,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.6296346187591553,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.5933,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.635717511177063,
|
156 |
+
"eval_runtime": 43.8409,
|
157 |
+
"eval_samples_per_second": 22.81,
|
158 |
+
"eval_steps_per_second": 2.851,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.7165963053703308,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.5319,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.6375973224639893,
|
171 |
+
"eval_runtime": 43.8486,
|
172 |
+
"eval_samples_per_second": 22.806,
|
173 |
+
"eval_steps_per_second": 2.851,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.7370977997779846,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.5413,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.6369796991348267,
|
186 |
+
"eval_runtime": 43.9803,
|
187 |
+
"eval_samples_per_second": 22.737,
|
188 |
+
"eval_steps_per_second": 2.842,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.726448118686676,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.5226,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.6377675533294678,
|
201 |
+
"eval_runtime": 43.8627,
|
202 |
+
"eval_samples_per_second": 22.798,
|
203 |
+
"eval_steps_per_second": 2.85,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.7822732925415039,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.5477,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.6378459930419922,
|
216 |
+
"eval_runtime": 43.9081,
|
217 |
+
"eval_samples_per_second": 22.775,
|
218 |
+
"eval_steps_per_second": 2.847,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.7607081532478333,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 1.5604,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 1.637563705444336,
|
231 |
+
"eval_runtime": 43.9092,
|
232 |
+
"eval_samples_per_second": 22.774,
|
233 |
+
"eval_steps_per_second": 2.847,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 0.9361194372177124,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 1.4091,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 1.6557352542877197,
|
246 |
+
"eval_runtime": 43.9308,
|
247 |
+
"eval_samples_per_second": 22.763,
|
248 |
+
"eval_steps_per_second": 2.845,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 1.0848534107208252,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 1.4629,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 1.6792665719985962,
|
261 |
+
"eval_runtime": 43.8829,
|
262 |
+
"eval_samples_per_second": 22.788,
|
263 |
+
"eval_steps_per_second": 2.848,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 1.0759488344192505,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 1.3685,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 1.682196855545044,
|
276 |
+
"eval_runtime": 43.8735,
|
277 |
+
"eval_samples_per_second": 22.793,
|
278 |
+
"eval_steps_per_second": 2.849,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 1.2871410846710205,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 1.4443,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 1.6869845390319824,
|
291 |
+
"eval_runtime": 43.8534,
|
292 |
+
"eval_samples_per_second": 22.803,
|
293 |
+
"eval_steps_per_second": 2.85,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 1.2004164457321167,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 1.3451,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 1.6853325366973877,
|
306 |
+
"eval_runtime": 43.8718,
|
307 |
+
"eval_samples_per_second": 22.794,
|
308 |
+
"eval_steps_per_second": 2.849,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 1.2714128494262695,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 1.4547,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 1.6859557628631592,
|
321 |
+
"eval_runtime": 43.8724,
|
322 |
+
"eval_samples_per_second": 22.793,
|
323 |
+
"eval_steps_per_second": 2.849,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 1.3297241926193237,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 1.4088,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 1.6856082677841187,
|
336 |
+
"eval_runtime": 43.8409,
|
337 |
+
"eval_samples_per_second": 22.81,
|
338 |
+
"eval_steps_per_second": 2.851,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 1.1967905759811401,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 1.3735,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 1.7015950679779053,
|
351 |
+
"eval_runtime": 43.8446,
|
352 |
+
"eval_samples_per_second": 22.808,
|
353 |
+
"eval_steps_per_second": 2.851,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 1.5186768770217896,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 1.2487,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 1.7492223978042603,
|
366 |
+
"eval_runtime": 43.84,
|
367 |
+
"eval_samples_per_second": 22.81,
|
368 |
+
"eval_steps_per_second": 2.851,
|
369 |
+
"step": 240
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.3333333333333335,
|
373 |
+
"grad_norm": 1.5129271745681763,
|
374 |
+
"learning_rate": 5.037037037037037e-05,
|
375 |
+
"loss": 1.2959,
|
376 |
+
"step": 250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 3.3333333333333335,
|
380 |
+
"eval_loss": 1.7475690841674805,
|
381 |
+
"eval_runtime": 43.8475,
|
382 |
+
"eval_samples_per_second": 22.806,
|
383 |
+
"eval_steps_per_second": 2.851,
|
384 |
+
"step": 250
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 3.466666666666667,
|
388 |
+
"grad_norm": 1.5553545951843262,
|
389 |
+
"learning_rate": 4.918518518518519e-05,
|
390 |
+
"loss": 1.278,
|
391 |
+
"step": 260
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 3.466666666666667,
|
395 |
+
"eval_loss": 1.749650239944458,
|
396 |
+
"eval_runtime": 43.8575,
|
397 |
+
"eval_samples_per_second": 22.801,
|
398 |
+
"eval_steps_per_second": 2.85,
|
399 |
+
"step": 260
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 3.6,
|
403 |
+
"grad_norm": 1.6911894083023071,
|
404 |
+
"learning_rate": 4.8e-05,
|
405 |
+
"loss": 1.1815,
|
406 |
+
"step": 270
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 3.6,
|
410 |
+
"eval_loss": 1.751675009727478,
|
411 |
+
"eval_runtime": 43.8693,
|
412 |
+
"eval_samples_per_second": 22.795,
|
413 |
+
"eval_steps_per_second": 2.849,
|
414 |
+
"step": 270
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 3.7333333333333334,
|
418 |
+
"grad_norm": 1.7207773923873901,
|
419 |
+
"learning_rate": 4.681481481481481e-05,
|
420 |
+
"loss": 1.227,
|
421 |
+
"step": 280
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 3.7333333333333334,
|
425 |
+
"eval_loss": 1.7532404661178589,
|
426 |
+
"eval_runtime": 43.9788,
|
427 |
+
"eval_samples_per_second": 22.738,
|
428 |
+
"eval_steps_per_second": 2.842,
|
429 |
+
"step": 280
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 3.8666666666666667,
|
433 |
+
"grad_norm": 1.6659716367721558,
|
434 |
+
"learning_rate": 4.5629629629629636e-05,
|
435 |
+
"loss": 1.2699,
|
436 |
+
"step": 290
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 3.8666666666666667,
|
440 |
+
"eval_loss": 1.7546659708023071,
|
441 |
+
"eval_runtime": 44.0345,
|
442 |
+
"eval_samples_per_second": 22.709,
|
443 |
+
"eval_steps_per_second": 2.839,
|
444 |
+
"step": 290
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 4.0,
|
448 |
+
"grad_norm": 1.7288299798965454,
|
449 |
+
"learning_rate": 4.444444444444445e-05,
|
450 |
+
"loss": 1.2414,
|
451 |
+
"step": 300
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 4.0,
|
455 |
+
"eval_loss": 1.7534445524215698,
|
456 |
+
"eval_runtime": 43.9971,
|
457 |
+
"eval_samples_per_second": 22.729,
|
458 |
+
"eval_steps_per_second": 2.841,
|
459 |
+
"step": 300
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 4.133333333333334,
|
463 |
+
"grad_norm": 1.8176274299621582,
|
464 |
+
"learning_rate": 4.3259259259259264e-05,
|
465 |
+
"loss": 1.1231,
|
466 |
+
"step": 310
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 4.133333333333334,
|
470 |
+
"eval_loss": 1.8118728399276733,
|
471 |
+
"eval_runtime": 44.0255,
|
472 |
+
"eval_samples_per_second": 22.714,
|
473 |
+
"eval_steps_per_second": 2.839,
|
474 |
+
"step": 310
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 4.266666666666667,
|
478 |
+
"grad_norm": 1.881231427192688,
|
479 |
+
"learning_rate": 4.2074074074074075e-05,
|
480 |
+
"loss": 1.1311,
|
481 |
+
"step": 320
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 4.266666666666667,
|
485 |
+
"eval_loss": 1.824351191520691,
|
486 |
+
"eval_runtime": 43.871,
|
487 |
+
"eval_samples_per_second": 22.794,
|
488 |
+
"eval_steps_per_second": 2.849,
|
489 |
+
"step": 320
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 4.4,
|
493 |
+
"grad_norm": 1.8982057571411133,
|
494 |
+
"learning_rate": 4.088888888888889e-05,
|
495 |
+
"loss": 1.1046,
|
496 |
+
"step": 330
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 4.4,
|
500 |
+
"eval_loss": 1.813114881515503,
|
501 |
+
"eval_runtime": 43.8506,
|
502 |
+
"eval_samples_per_second": 22.805,
|
503 |
+
"eval_steps_per_second": 2.851,
|
504 |
+
"step": 330
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 4.533333333333333,
|
508 |
+
"grad_norm": 1.9931222200393677,
|
509 |
+
"learning_rate": 3.970370370370371e-05,
|
510 |
+
"loss": 1.0596,
|
511 |
+
"step": 340
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"epoch": 4.533333333333333,
|
515 |
+
"eval_loss": 1.8187421560287476,
|
516 |
+
"eval_runtime": 43.8637,
|
517 |
+
"eval_samples_per_second": 22.798,
|
518 |
+
"eval_steps_per_second": 2.85,
|
519 |
+
"step": 340
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 4.666666666666667,
|
523 |
+
"grad_norm": 2.02201247215271,
|
524 |
+
"learning_rate": 3.851851851851852e-05,
|
525 |
+
"loss": 1.1469,
|
526 |
+
"step": 350
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 4.666666666666667,
|
530 |
+
"eval_loss": 1.8229775428771973,
|
531 |
+
"eval_runtime": 43.9111,
|
532 |
+
"eval_samples_per_second": 22.773,
|
533 |
+
"eval_steps_per_second": 2.847,
|
534 |
+
"step": 350
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 4.8,
|
538 |
+
"grad_norm": 2.220625638961792,
|
539 |
+
"learning_rate": 3.733333333333334e-05,
|
540 |
+
"loss": 1.1344,
|
541 |
+
"step": 360
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 4.8,
|
545 |
+
"eval_loss": 1.817935585975647,
|
546 |
+
"eval_runtime": 43.9794,
|
547 |
+
"eval_samples_per_second": 22.738,
|
548 |
+
"eval_steps_per_second": 2.842,
|
549 |
+
"step": 360
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 4.933333333333334,
|
553 |
+
"grad_norm": 2.0401487350463867,
|
554 |
+
"learning_rate": 3.614814814814815e-05,
|
555 |
+
"loss": 1.1922,
|
556 |
+
"step": 370
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 4.933333333333334,
|
560 |
+
"eval_loss": 1.8182997703552246,
|
561 |
+
"eval_runtime": 43.8807,
|
562 |
+
"eval_samples_per_second": 22.789,
|
563 |
+
"eval_steps_per_second": 2.849,
|
564 |
+
"step": 370
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 5.066666666666666,
|
568 |
+
"grad_norm": 1.8822356462478638,
|
569 |
+
"learning_rate": 3.4962962962962965e-05,
|
570 |
+
"loss": 1.0486,
|
571 |
+
"step": 380
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 5.066666666666666,
|
575 |
+
"eval_loss": 1.8343256711959839,
|
576 |
+
"eval_runtime": 43.9715,
|
577 |
+
"eval_samples_per_second": 22.742,
|
578 |
+
"eval_steps_per_second": 2.843,
|
579 |
+
"step": 380
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 5.2,
|
583 |
+
"grad_norm": 2.383836030960083,
|
584 |
+
"learning_rate": 3.377777777777778e-05,
|
585 |
+
"loss": 1.0039,
|
586 |
+
"step": 390
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"epoch": 5.2,
|
590 |
+
"eval_loss": 1.8889024257659912,
|
591 |
+
"eval_runtime": 43.906,
|
592 |
+
"eval_samples_per_second": 22.776,
|
593 |
+
"eval_steps_per_second": 2.847,
|
594 |
+
"step": 390
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 5.333333333333333,
|
598 |
+
"grad_norm": 2.403280019760132,
|
599 |
+
"learning_rate": 3.259259259259259e-05,
|
600 |
+
"loss": 0.9946,
|
601 |
+
"step": 400
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 5.333333333333333,
|
605 |
+
"eval_loss": 1.8832476139068604,
|
606 |
+
"eval_runtime": 43.8654,
|
607 |
+
"eval_samples_per_second": 22.797,
|
608 |
+
"eval_steps_per_second": 2.85,
|
609 |
+
"step": 400
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 5.466666666666667,
|
613 |
+
"grad_norm": 2.34110164642334,
|
614 |
+
"learning_rate": 3.140740740740741e-05,
|
615 |
+
"loss": 1.0302,
|
616 |
+
"step": 410
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"epoch": 5.466666666666667,
|
620 |
+
"eval_loss": 1.8810956478118896,
|
621 |
+
"eval_runtime": 43.8937,
|
622 |
+
"eval_samples_per_second": 22.782,
|
623 |
+
"eval_steps_per_second": 2.848,
|
624 |
+
"step": 410
|
625 |
+
},
|
626 |
+
{
|
627 |
+
"epoch": 5.6,
|
628 |
+
"grad_norm": 2.32973575592041,
|
629 |
+
"learning_rate": 3.0222222222222225e-05,
|
630 |
+
"loss": 1.0062,
|
631 |
+
"step": 420
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"epoch": 5.6,
|
635 |
+
"eval_loss": 1.8806273937225342,
|
636 |
+
"eval_runtime": 43.9433,
|
637 |
+
"eval_samples_per_second": 22.757,
|
638 |
+
"eval_steps_per_second": 2.845,
|
639 |
+
"step": 420
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 5.733333333333333,
|
643 |
+
"grad_norm": 2.426825523376465,
|
644 |
+
"learning_rate": 2.9037037037037042e-05,
|
645 |
+
"loss": 1.0493,
|
646 |
+
"step": 430
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 5.733333333333333,
|
650 |
+
"eval_loss": 1.8787455558776855,
|
651 |
+
"eval_runtime": 43.9876,
|
652 |
+
"eval_samples_per_second": 22.734,
|
653 |
+
"eval_steps_per_second": 2.842,
|
654 |
+
"step": 430
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 5.866666666666667,
|
658 |
+
"grad_norm": 2.2383341789245605,
|
659 |
+
"learning_rate": 2.7851851851851856e-05,
|
660 |
+
"loss": 1.0728,
|
661 |
+
"step": 440
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 5.866666666666667,
|
665 |
+
"eval_loss": 1.8792084455490112,
|
666 |
+
"eval_runtime": 43.9918,
|
667 |
+
"eval_samples_per_second": 22.732,
|
668 |
+
"eval_steps_per_second": 2.841,
|
669 |
+
"step": 440
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 6.0,
|
673 |
+
"grad_norm": 2.4239635467529297,
|
674 |
+
"learning_rate": 2.6666666666666667e-05,
|
675 |
+
"loss": 1.0199,
|
676 |
+
"step": 450
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 6.0,
|
680 |
+
"eval_loss": 1.8804157972335815,
|
681 |
+
"eval_runtime": 43.9689,
|
682 |
+
"eval_samples_per_second": 22.743,
|
683 |
+
"eval_steps_per_second": 2.843,
|
684 |
+
"step": 450
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"epoch": 6.133333333333334,
|
688 |
+
"grad_norm": 3.0071866512298584,
|
689 |
+
"learning_rate": 2.5481481481481484e-05,
|
690 |
+
"loss": 0.9486,
|
691 |
+
"step": 460
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"epoch": 6.133333333333334,
|
695 |
+
"eval_loss": 1.930755376815796,
|
696 |
+
"eval_runtime": 43.9812,
|
697 |
+
"eval_samples_per_second": 22.737,
|
698 |
+
"eval_steps_per_second": 2.842,
|
699 |
+
"step": 460
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 6.266666666666667,
|
703 |
+
"grad_norm": 2.432983875274658,
|
704 |
+
"learning_rate": 2.4296296296296298e-05,
|
705 |
+
"loss": 0.8858,
|
706 |
+
"step": 470
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 6.266666666666667,
|
710 |
+
"eval_loss": 1.9468986988067627,
|
711 |
+
"eval_runtime": 43.9889,
|
712 |
+
"eval_samples_per_second": 22.733,
|
713 |
+
"eval_steps_per_second": 2.842,
|
714 |
+
"step": 470
|
715 |
+
},
|
716 |
+
{
|
717 |
+
"epoch": 6.4,
|
718 |
+
"grad_norm": 2.591848850250244,
|
719 |
+
"learning_rate": 2.3111111111111112e-05,
|
720 |
+
"loss": 0.9818,
|
721 |
+
"step": 480
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"epoch": 6.4,
|
725 |
+
"eval_loss": 1.9322350025177002,
|
726 |
+
"eval_runtime": 44.0412,
|
727 |
+
"eval_samples_per_second": 22.706,
|
728 |
+
"eval_steps_per_second": 2.838,
|
729 |
+
"step": 480
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 6.533333333333333,
|
733 |
+
"grad_norm": 2.5453197956085205,
|
734 |
+
"learning_rate": 2.192592592592593e-05,
|
735 |
+
"loss": 0.84,
|
736 |
+
"step": 490
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"epoch": 6.533333333333333,
|
740 |
+
"eval_loss": 1.9371347427368164,
|
741 |
+
"eval_runtime": 44.0174,
|
742 |
+
"eval_samples_per_second": 22.718,
|
743 |
+
"eval_steps_per_second": 2.84,
|
744 |
+
"step": 490
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 6.666666666666667,
|
748 |
+
"grad_norm": 2.4433412551879883,
|
749 |
+
"learning_rate": 2.074074074074074e-05,
|
750 |
+
"loss": 0.9686,
|
751 |
+
"step": 500
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 6.666666666666667,
|
755 |
+
"eval_loss": 1.9340929985046387,
|
756 |
+
"eval_runtime": 43.9473,
|
757 |
+
"eval_samples_per_second": 22.755,
|
758 |
+
"eval_steps_per_second": 2.844,
|
759 |
+
"step": 500
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 6.8,
|
763 |
+
"grad_norm": 2.7762234210968018,
|
764 |
+
"learning_rate": 1.9555555555555557e-05,
|
765 |
+
"loss": 0.974,
|
766 |
+
"step": 510
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 6.8,
|
770 |
+
"eval_loss": 1.936902642250061,
|
771 |
+
"eval_runtime": 43.9918,
|
772 |
+
"eval_samples_per_second": 22.732,
|
773 |
+
"eval_steps_per_second": 2.841,
|
774 |
+
"step": 510
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 6.933333333333334,
|
778 |
+
"grad_norm": 2.706693410873413,
|
779 |
+
"learning_rate": 1.837037037037037e-05,
|
780 |
+
"loss": 0.9366,
|
781 |
+
"step": 520
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"epoch": 6.933333333333334,
|
785 |
+
"eval_loss": 1.9351890087127686,
|
786 |
+
"eval_runtime": 43.9647,
|
787 |
+
"eval_samples_per_second": 22.746,
|
788 |
+
"eval_steps_per_second": 2.843,
|
789 |
+
"step": 520
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 7.066666666666666,
|
793 |
+
"grad_norm": 2.338547706604004,
|
794 |
+
"learning_rate": 1.7185185185185185e-05,
|
795 |
+
"loss": 0.9285,
|
796 |
+
"step": 530
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"epoch": 7.066666666666666,
|
800 |
+
"eval_loss": 1.9464186429977417,
|
801 |
+
"eval_runtime": 43.9646,
|
802 |
+
"eval_samples_per_second": 22.746,
|
803 |
+
"eval_steps_per_second": 2.843,
|
804 |
+
"step": 530
|
805 |
+
},
|
806 |
+
{
|
807 |
+
"epoch": 7.2,
|
808 |
+
"grad_norm": 2.846348285675049,
|
809 |
+
"learning_rate": 1.6000000000000003e-05,
|
810 |
+
"loss": 0.8663,
|
811 |
+
"step": 540
|
812 |
+
},
|
813 |
+
{
|
814 |
+
"epoch": 7.2,
|
815 |
+
"eval_loss": 1.9812690019607544,
|
816 |
+
"eval_runtime": 43.966,
|
817 |
+
"eval_samples_per_second": 22.745,
|
818 |
+
"eval_steps_per_second": 2.843,
|
819 |
+
"step": 540
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 7.333333333333333,
|
823 |
+
"grad_norm": 2.754952907562256,
|
824 |
+
"learning_rate": 1.4814814814814815e-05,
|
825 |
+
"loss": 0.8033,
|
826 |
+
"step": 550
|
827 |
+
},
|
828 |
+
{
|
829 |
+
"epoch": 7.333333333333333,
|
830 |
+
"eval_loss": 1.9769660234451294,
|
831 |
+
"eval_runtime": 43.9067,
|
832 |
+
"eval_samples_per_second": 22.776,
|
833 |
+
"eval_steps_per_second": 2.847,
|
834 |
+
"step": 550
|
835 |
+
}
|
836 |
+
],
|
837 |
+
"logging_steps": 10,
|
838 |
+
"max_steps": 675,
|
839 |
+
"num_input_tokens_seen": 0,
|
840 |
+
"num_train_epochs": 9,
|
841 |
+
"save_steps": 10,
|
842 |
+
"stateful_callbacks": {
|
843 |
+
"TrainerControl": {
|
844 |
+
"args": {
|
845 |
+
"should_epoch_stop": false,
|
846 |
+
"should_evaluate": false,
|
847 |
+
"should_log": false,
|
848 |
+
"should_save": true,
|
849 |
+
"should_training_stop": false
|
850 |
+
},
|
851 |
+
"attributes": {}
|
852 |
+
}
|
853 |
+
},
|
854 |
+
"total_flos": 9.0123395923968e+16,
|
855 |
+
"train_batch_size": 8,
|
856 |
+
"trial_name": null,
|
857 |
+
"trial_params": null
|
858 |
+
}
|
output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-560/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-560/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"dense",
|
24 |
+
"query_key_value",
|
25 |
+
"dense_h_to_4h",
|
26 |
+
"dense_4h_to_h"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-560/trainer_state.json
ADDED
@@ -0,0 +1,873 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.6284925937652588,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-80",
|
4 |
+
"epoch": 7.466666666666667,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 560,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.37591353058815,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.5979,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.6375348567962646,
|
21 |
+
"eval_runtime": 43.9032,
|
22 |
+
"eval_samples_per_second": 22.777,
|
23 |
+
"eval_steps_per_second": 2.847,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.4210415482521057,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.624,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.6352741718292236,
|
36 |
+
"eval_runtime": 44.0038,
|
37 |
+
"eval_samples_per_second": 22.725,
|
38 |
+
"eval_steps_per_second": 2.841,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.3714869022369385,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.6205,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.633917212486267,
|
51 |
+
"eval_runtime": 43.9878,
|
52 |
+
"eval_samples_per_second": 22.734,
|
53 |
+
"eval_steps_per_second": 2.842,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.36149370670318604,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.6165,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.6323453187942505,
|
66 |
+
"eval_runtime": 43.9629,
|
67 |
+
"eval_samples_per_second": 22.746,
|
68 |
+
"eval_steps_per_second": 2.843,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.35420870780944824,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.6599,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.6314094066619873,
|
81 |
+
"eval_runtime": 43.9048,
|
82 |
+
"eval_samples_per_second": 22.777,
|
83 |
+
"eval_steps_per_second": 2.847,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.33472639322280884,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.5591,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.6304500102996826,
|
96 |
+
"eval_runtime": 44.0293,
|
97 |
+
"eval_samples_per_second": 22.712,
|
98 |
+
"eval_steps_per_second": 2.839,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.3210572898387909,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.6328,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.6291298866271973,
|
111 |
+
"eval_runtime": 43.8599,
|
112 |
+
"eval_samples_per_second": 22.8,
|
113 |
+
"eval_steps_per_second": 2.85,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.32792502641677856,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.5967,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.6284925937652588,
|
126 |
+
"eval_runtime": 43.8492,
|
127 |
+
"eval_samples_per_second": 22.805,
|
128 |
+
"eval_steps_per_second": 2.851,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.457350492477417,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.5461,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.6317176818847656,
|
141 |
+
"eval_runtime": 43.8568,
|
142 |
+
"eval_samples_per_second": 22.801,
|
143 |
+
"eval_steps_per_second": 2.85,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.6296346187591553,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.5933,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.635717511177063,
|
156 |
+
"eval_runtime": 43.8409,
|
157 |
+
"eval_samples_per_second": 22.81,
|
158 |
+
"eval_steps_per_second": 2.851,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.7165963053703308,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.5319,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.6375973224639893,
|
171 |
+
"eval_runtime": 43.8486,
|
172 |
+
"eval_samples_per_second": 22.806,
|
173 |
+
"eval_steps_per_second": 2.851,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.7370977997779846,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.5413,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.6369796991348267,
|
186 |
+
"eval_runtime": 43.9803,
|
187 |
+
"eval_samples_per_second": 22.737,
|
188 |
+
"eval_steps_per_second": 2.842,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.726448118686676,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.5226,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.6377675533294678,
|
201 |
+
"eval_runtime": 43.8627,
|
202 |
+
"eval_samples_per_second": 22.798,
|
203 |
+
"eval_steps_per_second": 2.85,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.7822732925415039,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.5477,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.6378459930419922,
|
216 |
+
"eval_runtime": 43.9081,
|
217 |
+
"eval_samples_per_second": 22.775,
|
218 |
+
"eval_steps_per_second": 2.847,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.7607081532478333,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 1.5604,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 1.637563705444336,
|
231 |
+
"eval_runtime": 43.9092,
|
232 |
+
"eval_samples_per_second": 22.774,
|
233 |
+
"eval_steps_per_second": 2.847,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 0.9361194372177124,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 1.4091,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 1.6557352542877197,
|
246 |
+
"eval_runtime": 43.9308,
|
247 |
+
"eval_samples_per_second": 22.763,
|
248 |
+
"eval_steps_per_second": 2.845,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 1.0848534107208252,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 1.4629,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 1.6792665719985962,
|
261 |
+
"eval_runtime": 43.8829,
|
262 |
+
"eval_samples_per_second": 22.788,
|
263 |
+
"eval_steps_per_second": 2.848,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 1.0759488344192505,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 1.3685,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 1.682196855545044,
|
276 |
+
"eval_runtime": 43.8735,
|
277 |
+
"eval_samples_per_second": 22.793,
|
278 |
+
"eval_steps_per_second": 2.849,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 1.2871410846710205,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 1.4443,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 1.6869845390319824,
|
291 |
+
"eval_runtime": 43.8534,
|
292 |
+
"eval_samples_per_second": 22.803,
|
293 |
+
"eval_steps_per_second": 2.85,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 1.2004164457321167,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 1.3451,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 1.6853325366973877,
|
306 |
+
"eval_runtime": 43.8718,
|
307 |
+
"eval_samples_per_second": 22.794,
|
308 |
+
"eval_steps_per_second": 2.849,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 1.2714128494262695,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 1.4547,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 1.6859557628631592,
|
321 |
+
"eval_runtime": 43.8724,
|
322 |
+
"eval_samples_per_second": 22.793,
|
323 |
+
"eval_steps_per_second": 2.849,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 1.3297241926193237,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 1.4088,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 1.6856082677841187,
|
336 |
+
"eval_runtime": 43.8409,
|
337 |
+
"eval_samples_per_second": 22.81,
|
338 |
+
"eval_steps_per_second": 2.851,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 1.1967905759811401,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 1.3735,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 1.7015950679779053,
|
351 |
+
"eval_runtime": 43.8446,
|
352 |
+
"eval_samples_per_second": 22.808,
|
353 |
+
"eval_steps_per_second": 2.851,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 1.5186768770217896,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 1.2487,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 1.7492223978042603,
|
366 |
+
"eval_runtime": 43.84,
|
367 |
+
"eval_samples_per_second": 22.81,
|
368 |
+
"eval_steps_per_second": 2.851,
|
369 |
+
"step": 240
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.3333333333333335,
|
373 |
+
"grad_norm": 1.5129271745681763,
|
374 |
+
"learning_rate": 5.037037037037037e-05,
|
375 |
+
"loss": 1.2959,
|
376 |
+
"step": 250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 3.3333333333333335,
|
380 |
+
"eval_loss": 1.7475690841674805,
|
381 |
+
"eval_runtime": 43.8475,
|
382 |
+
"eval_samples_per_second": 22.806,
|
383 |
+
"eval_steps_per_second": 2.851,
|
384 |
+
"step": 250
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 3.466666666666667,
|
388 |
+
"grad_norm": 1.5553545951843262,
|
389 |
+
"learning_rate": 4.918518518518519e-05,
|
390 |
+
"loss": 1.278,
|
391 |
+
"step": 260
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 3.466666666666667,
|
395 |
+
"eval_loss": 1.749650239944458,
|
396 |
+
"eval_runtime": 43.8575,
|
397 |
+
"eval_samples_per_second": 22.801,
|
398 |
+
"eval_steps_per_second": 2.85,
|
399 |
+
"step": 260
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 3.6,
|
403 |
+
"grad_norm": 1.6911894083023071,
|
404 |
+
"learning_rate": 4.8e-05,
|
405 |
+
"loss": 1.1815,
|
406 |
+
"step": 270
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 3.6,
|
410 |
+
"eval_loss": 1.751675009727478,
|
411 |
+
"eval_runtime": 43.8693,
|
412 |
+
"eval_samples_per_second": 22.795,
|
413 |
+
"eval_steps_per_second": 2.849,
|
414 |
+
"step": 270
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 3.7333333333333334,
|
418 |
+
"grad_norm": 1.7207773923873901,
|
419 |
+
"learning_rate": 4.681481481481481e-05,
|
420 |
+
"loss": 1.227,
|
421 |
+
"step": 280
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 3.7333333333333334,
|
425 |
+
"eval_loss": 1.7532404661178589,
|
426 |
+
"eval_runtime": 43.9788,
|
427 |
+
"eval_samples_per_second": 22.738,
|
428 |
+
"eval_steps_per_second": 2.842,
|
429 |
+
"step": 280
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 3.8666666666666667,
|
433 |
+
"grad_norm": 1.6659716367721558,
|
434 |
+
"learning_rate": 4.5629629629629636e-05,
|
435 |
+
"loss": 1.2699,
|
436 |
+
"step": 290
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 3.8666666666666667,
|
440 |
+
"eval_loss": 1.7546659708023071,
|
441 |
+
"eval_runtime": 44.0345,
|
442 |
+
"eval_samples_per_second": 22.709,
|
443 |
+
"eval_steps_per_second": 2.839,
|
444 |
+
"step": 290
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 4.0,
|
448 |
+
"grad_norm": 1.7288299798965454,
|
449 |
+
"learning_rate": 4.444444444444445e-05,
|
450 |
+
"loss": 1.2414,
|
451 |
+
"step": 300
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 4.0,
|
455 |
+
"eval_loss": 1.7534445524215698,
|
456 |
+
"eval_runtime": 43.9971,
|
457 |
+
"eval_samples_per_second": 22.729,
|
458 |
+
"eval_steps_per_second": 2.841,
|
459 |
+
"step": 300
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 4.133333333333334,
|
463 |
+
"grad_norm": 1.8176274299621582,
|
464 |
+
"learning_rate": 4.3259259259259264e-05,
|
465 |
+
"loss": 1.1231,
|
466 |
+
"step": 310
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 4.133333333333334,
|
470 |
+
"eval_loss": 1.8118728399276733,
|
471 |
+
"eval_runtime": 44.0255,
|
472 |
+
"eval_samples_per_second": 22.714,
|
473 |
+
"eval_steps_per_second": 2.839,
|
474 |
+
"step": 310
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 4.266666666666667,
|
478 |
+
"grad_norm": 1.881231427192688,
|
479 |
+
"learning_rate": 4.2074074074074075e-05,
|
480 |
+
"loss": 1.1311,
|
481 |
+
"step": 320
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 4.266666666666667,
|
485 |
+
"eval_loss": 1.824351191520691,
|
486 |
+
"eval_runtime": 43.871,
|
487 |
+
"eval_samples_per_second": 22.794,
|
488 |
+
"eval_steps_per_second": 2.849,
|
489 |
+
"step": 320
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 4.4,
|
493 |
+
"grad_norm": 1.8982057571411133,
|
494 |
+
"learning_rate": 4.088888888888889e-05,
|
495 |
+
"loss": 1.1046,
|
496 |
+
"step": 330
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 4.4,
|
500 |
+
"eval_loss": 1.813114881515503,
|
501 |
+
"eval_runtime": 43.8506,
|
502 |
+
"eval_samples_per_second": 22.805,
|
503 |
+
"eval_steps_per_second": 2.851,
|
504 |
+
"step": 330
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 4.533333333333333,
|
508 |
+
"grad_norm": 1.9931222200393677,
|
509 |
+
"learning_rate": 3.970370370370371e-05,
|
510 |
+
"loss": 1.0596,
|
511 |
+
"step": 340
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"epoch": 4.533333333333333,
|
515 |
+
"eval_loss": 1.8187421560287476,
|
516 |
+
"eval_runtime": 43.8637,
|
517 |
+
"eval_samples_per_second": 22.798,
|
518 |
+
"eval_steps_per_second": 2.85,
|
519 |
+
"step": 340
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 4.666666666666667,
|
523 |
+
"grad_norm": 2.02201247215271,
|
524 |
+
"learning_rate": 3.851851851851852e-05,
|
525 |
+
"loss": 1.1469,
|
526 |
+
"step": 350
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 4.666666666666667,
|
530 |
+
"eval_loss": 1.8229775428771973,
|
531 |
+
"eval_runtime": 43.9111,
|
532 |
+
"eval_samples_per_second": 22.773,
|
533 |
+
"eval_steps_per_second": 2.847,
|
534 |
+
"step": 350
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 4.8,
|
538 |
+
"grad_norm": 2.220625638961792,
|
539 |
+
"learning_rate": 3.733333333333334e-05,
|
540 |
+
"loss": 1.1344,
|
541 |
+
"step": 360
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 4.8,
|
545 |
+
"eval_loss": 1.817935585975647,
|
546 |
+
"eval_runtime": 43.9794,
|
547 |
+
"eval_samples_per_second": 22.738,
|
548 |
+
"eval_steps_per_second": 2.842,
|
549 |
+
"step": 360
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 4.933333333333334,
|
553 |
+
"grad_norm": 2.0401487350463867,
|
554 |
+
"learning_rate": 3.614814814814815e-05,
|
555 |
+
"loss": 1.1922,
|
556 |
+
"step": 370
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 4.933333333333334,
|
560 |
+
"eval_loss": 1.8182997703552246,
|
561 |
+
"eval_runtime": 43.8807,
|
562 |
+
"eval_samples_per_second": 22.789,
|
563 |
+
"eval_steps_per_second": 2.849,
|
564 |
+
"step": 370
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 5.066666666666666,
|
568 |
+
"grad_norm": 1.8822356462478638,
|
569 |
+
"learning_rate": 3.4962962962962965e-05,
|
570 |
+
"loss": 1.0486,
|
571 |
+
"step": 380
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 5.066666666666666,
|
575 |
+
"eval_loss": 1.8343256711959839,
|
576 |
+
"eval_runtime": 43.9715,
|
577 |
+
"eval_samples_per_second": 22.742,
|
578 |
+
"eval_steps_per_second": 2.843,
|
579 |
+
"step": 380
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 5.2,
|
583 |
+
"grad_norm": 2.383836030960083,
|
584 |
+
"learning_rate": 3.377777777777778e-05,
|
585 |
+
"loss": 1.0039,
|
586 |
+
"step": 390
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"epoch": 5.2,
|
590 |
+
"eval_loss": 1.8889024257659912,
|
591 |
+
"eval_runtime": 43.906,
|
592 |
+
"eval_samples_per_second": 22.776,
|
593 |
+
"eval_steps_per_second": 2.847,
|
594 |
+
"step": 390
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 5.333333333333333,
|
598 |
+
"grad_norm": 2.403280019760132,
|
599 |
+
"learning_rate": 3.259259259259259e-05,
|
600 |
+
"loss": 0.9946,
|
601 |
+
"step": 400
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 5.333333333333333,
|
605 |
+
"eval_loss": 1.8832476139068604,
|
606 |
+
"eval_runtime": 43.8654,
|
607 |
+
"eval_samples_per_second": 22.797,
|
608 |
+
"eval_steps_per_second": 2.85,
|
609 |
+
"step": 400
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 5.466666666666667,
|
613 |
+
"grad_norm": 2.34110164642334,
|
614 |
+
"learning_rate": 3.140740740740741e-05,
|
615 |
+
"loss": 1.0302,
|
616 |
+
"step": 410
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"epoch": 5.466666666666667,
|
620 |
+
"eval_loss": 1.8810956478118896,
|
621 |
+
"eval_runtime": 43.8937,
|
622 |
+
"eval_samples_per_second": 22.782,
|
623 |
+
"eval_steps_per_second": 2.848,
|
624 |
+
"step": 410
|
625 |
+
},
|
626 |
+
{
|
627 |
+
"epoch": 5.6,
|
628 |
+
"grad_norm": 2.32973575592041,
|
629 |
+
"learning_rate": 3.0222222222222225e-05,
|
630 |
+
"loss": 1.0062,
|
631 |
+
"step": 420
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"epoch": 5.6,
|
635 |
+
"eval_loss": 1.8806273937225342,
|
636 |
+
"eval_runtime": 43.9433,
|
637 |
+
"eval_samples_per_second": 22.757,
|
638 |
+
"eval_steps_per_second": 2.845,
|
639 |
+
"step": 420
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 5.733333333333333,
|
643 |
+
"grad_norm": 2.426825523376465,
|
644 |
+
"learning_rate": 2.9037037037037042e-05,
|
645 |
+
"loss": 1.0493,
|
646 |
+
"step": 430
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 5.733333333333333,
|
650 |
+
"eval_loss": 1.8787455558776855,
|
651 |
+
"eval_runtime": 43.9876,
|
652 |
+
"eval_samples_per_second": 22.734,
|
653 |
+
"eval_steps_per_second": 2.842,
|
654 |
+
"step": 430
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 5.866666666666667,
|
658 |
+
"grad_norm": 2.2383341789245605,
|
659 |
+
"learning_rate": 2.7851851851851856e-05,
|
660 |
+
"loss": 1.0728,
|
661 |
+
"step": 440
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 5.866666666666667,
|
665 |
+
"eval_loss": 1.8792084455490112,
|
666 |
+
"eval_runtime": 43.9918,
|
667 |
+
"eval_samples_per_second": 22.732,
|
668 |
+
"eval_steps_per_second": 2.841,
|
669 |
+
"step": 440
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 6.0,
|
673 |
+
"grad_norm": 2.4239635467529297,
|
674 |
+
"learning_rate": 2.6666666666666667e-05,
|
675 |
+
"loss": 1.0199,
|
676 |
+
"step": 450
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 6.0,
|
680 |
+
"eval_loss": 1.8804157972335815,
|
681 |
+
"eval_runtime": 43.9689,
|
682 |
+
"eval_samples_per_second": 22.743,
|
683 |
+
"eval_steps_per_second": 2.843,
|
684 |
+
"step": 450
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"epoch": 6.133333333333334,
|
688 |
+
"grad_norm": 3.0071866512298584,
|
689 |
+
"learning_rate": 2.5481481481481484e-05,
|
690 |
+
"loss": 0.9486,
|
691 |
+
"step": 460
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"epoch": 6.133333333333334,
|
695 |
+
"eval_loss": 1.930755376815796,
|
696 |
+
"eval_runtime": 43.9812,
|
697 |
+
"eval_samples_per_second": 22.737,
|
698 |
+
"eval_steps_per_second": 2.842,
|
699 |
+
"step": 460
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 6.266666666666667,
|
703 |
+
"grad_norm": 2.432983875274658,
|
704 |
+
"learning_rate": 2.4296296296296298e-05,
|
705 |
+
"loss": 0.8858,
|
706 |
+
"step": 470
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 6.266666666666667,
|
710 |
+
"eval_loss": 1.9468986988067627,
|
711 |
+
"eval_runtime": 43.9889,
|
712 |
+
"eval_samples_per_second": 22.733,
|
713 |
+
"eval_steps_per_second": 2.842,
|
714 |
+
"step": 470
|
715 |
+
},
|
716 |
+
{
|
717 |
+
"epoch": 6.4,
|
718 |
+
"grad_norm": 2.591848850250244,
|
719 |
+
"learning_rate": 2.3111111111111112e-05,
|
720 |
+
"loss": 0.9818,
|
721 |
+
"step": 480
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"epoch": 6.4,
|
725 |
+
"eval_loss": 1.9322350025177002,
|
726 |
+
"eval_runtime": 44.0412,
|
727 |
+
"eval_samples_per_second": 22.706,
|
728 |
+
"eval_steps_per_second": 2.838,
|
729 |
+
"step": 480
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 6.533333333333333,
|
733 |
+
"grad_norm": 2.5453197956085205,
|
734 |
+
"learning_rate": 2.192592592592593e-05,
|
735 |
+
"loss": 0.84,
|
736 |
+
"step": 490
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"epoch": 6.533333333333333,
|
740 |
+
"eval_loss": 1.9371347427368164,
|
741 |
+
"eval_runtime": 44.0174,
|
742 |
+
"eval_samples_per_second": 22.718,
|
743 |
+
"eval_steps_per_second": 2.84,
|
744 |
+
"step": 490
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 6.666666666666667,
|
748 |
+
"grad_norm": 2.4433412551879883,
|
749 |
+
"learning_rate": 2.074074074074074e-05,
|
750 |
+
"loss": 0.9686,
|
751 |
+
"step": 500
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 6.666666666666667,
|
755 |
+
"eval_loss": 1.9340929985046387,
|
756 |
+
"eval_runtime": 43.9473,
|
757 |
+
"eval_samples_per_second": 22.755,
|
758 |
+
"eval_steps_per_second": 2.844,
|
759 |
+
"step": 500
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 6.8,
|
763 |
+
"grad_norm": 2.7762234210968018,
|
764 |
+
"learning_rate": 1.9555555555555557e-05,
|
765 |
+
"loss": 0.974,
|
766 |
+
"step": 510
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 6.8,
|
770 |
+
"eval_loss": 1.936902642250061,
|
771 |
+
"eval_runtime": 43.9918,
|
772 |
+
"eval_samples_per_second": 22.732,
|
773 |
+
"eval_steps_per_second": 2.841,
|
774 |
+
"step": 510
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 6.933333333333334,
|
778 |
+
"grad_norm": 2.706693410873413,
|
779 |
+
"learning_rate": 1.837037037037037e-05,
|
780 |
+
"loss": 0.9366,
|
781 |
+
"step": 520
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"epoch": 6.933333333333334,
|
785 |
+
"eval_loss": 1.9351890087127686,
|
786 |
+
"eval_runtime": 43.9647,
|
787 |
+
"eval_samples_per_second": 22.746,
|
788 |
+
"eval_steps_per_second": 2.843,
|
789 |
+
"step": 520
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 7.066666666666666,
|
793 |
+
"grad_norm": 2.338547706604004,
|
794 |
+
"learning_rate": 1.7185185185185185e-05,
|
795 |
+
"loss": 0.9285,
|
796 |
+
"step": 530
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"epoch": 7.066666666666666,
|
800 |
+
"eval_loss": 1.9464186429977417,
|
801 |
+
"eval_runtime": 43.9646,
|
802 |
+
"eval_samples_per_second": 22.746,
|
803 |
+
"eval_steps_per_second": 2.843,
|
804 |
+
"step": 530
|
805 |
+
},
|
806 |
+
{
|
807 |
+
"epoch": 7.2,
|
808 |
+
"grad_norm": 2.846348285675049,
|
809 |
+
"learning_rate": 1.6000000000000003e-05,
|
810 |
+
"loss": 0.8663,
|
811 |
+
"step": 540
|
812 |
+
},
|
813 |
+
{
|
814 |
+
"epoch": 7.2,
|
815 |
+
"eval_loss": 1.9812690019607544,
|
816 |
+
"eval_runtime": 43.966,
|
817 |
+
"eval_samples_per_second": 22.745,
|
818 |
+
"eval_steps_per_second": 2.843,
|
819 |
+
"step": 540
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 7.333333333333333,
|
823 |
+
"grad_norm": 2.754952907562256,
|
824 |
+
"learning_rate": 1.4814814814814815e-05,
|
825 |
+
"loss": 0.8033,
|
826 |
+
"step": 550
|
827 |
+
},
|
828 |
+
{
|
829 |
+
"epoch": 7.333333333333333,
|
830 |
+
"eval_loss": 1.9769660234451294,
|
831 |
+
"eval_runtime": 43.9067,
|
832 |
+
"eval_samples_per_second": 22.776,
|
833 |
+
"eval_steps_per_second": 2.847,
|
834 |
+
"step": 550
|
835 |
+
},
|
836 |
+
{
|
837 |
+
"epoch": 7.466666666666667,
|
838 |
+
"grad_norm": 2.7049484252929688,
|
839 |
+
"learning_rate": 1.362962962962963e-05,
|
840 |
+
"loss": 0.8823,
|
841 |
+
"step": 560
|
842 |
+
},
|
843 |
+
{
|
844 |
+
"epoch": 7.466666666666667,
|
845 |
+
"eval_loss": 1.9782260656356812,
|
846 |
+
"eval_runtime": 43.8715,
|
847 |
+
"eval_samples_per_second": 22.794,
|
848 |
+
"eval_steps_per_second": 2.849,
|
849 |
+
"step": 560
|
850 |
+
}
|
851 |
+
],
|
852 |
+
"logging_steps": 10,
|
853 |
+
"max_steps": 675,
|
854 |
+
"num_input_tokens_seen": 0,
|
855 |
+
"num_train_epochs": 9,
|
856 |
+
"save_steps": 10,
|
857 |
+
"stateful_callbacks": {
|
858 |
+
"TrainerControl": {
|
859 |
+
"args": {
|
860 |
+
"should_epoch_stop": false,
|
861 |
+
"should_evaluate": false,
|
862 |
+
"should_log": false,
|
863 |
+
"should_save": true,
|
864 |
+
"should_training_stop": false
|
865 |
+
},
|
866 |
+
"attributes": {}
|
867 |
+
}
|
868 |
+
},
|
869 |
+
"total_flos": 9.17620031225856e+16,
|
870 |
+
"train_batch_size": 8,
|
871 |
+
"trial_name": null,
|
872 |
+
"trial_params": null
|
873 |
+
}
|
output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-570/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-570/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"dense",
|
24 |
+
"query_key_value",
|
25 |
+
"dense_h_to_4h",
|
26 |
+
"dense_4h_to_h"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-570/trainer_state.json
ADDED
@@ -0,0 +1,888 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.6284925937652588,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-80",
|
4 |
+
"epoch": 7.6,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 570,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.37591353058815,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.5979,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.6375348567962646,
|
21 |
+
"eval_runtime": 43.9032,
|
22 |
+
"eval_samples_per_second": 22.777,
|
23 |
+
"eval_steps_per_second": 2.847,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.4210415482521057,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.624,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.6352741718292236,
|
36 |
+
"eval_runtime": 44.0038,
|
37 |
+
"eval_samples_per_second": 22.725,
|
38 |
+
"eval_steps_per_second": 2.841,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.3714869022369385,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.6205,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.633917212486267,
|
51 |
+
"eval_runtime": 43.9878,
|
52 |
+
"eval_samples_per_second": 22.734,
|
53 |
+
"eval_steps_per_second": 2.842,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.36149370670318604,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.6165,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.6323453187942505,
|
66 |
+
"eval_runtime": 43.9629,
|
67 |
+
"eval_samples_per_second": 22.746,
|
68 |
+
"eval_steps_per_second": 2.843,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.35420870780944824,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.6599,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.6314094066619873,
|
81 |
+
"eval_runtime": 43.9048,
|
82 |
+
"eval_samples_per_second": 22.777,
|
83 |
+
"eval_steps_per_second": 2.847,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.33472639322280884,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.5591,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.6304500102996826,
|
96 |
+
"eval_runtime": 44.0293,
|
97 |
+
"eval_samples_per_second": 22.712,
|
98 |
+
"eval_steps_per_second": 2.839,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.3210572898387909,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.6328,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.6291298866271973,
|
111 |
+
"eval_runtime": 43.8599,
|
112 |
+
"eval_samples_per_second": 22.8,
|
113 |
+
"eval_steps_per_second": 2.85,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.32792502641677856,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.5967,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.6284925937652588,
|
126 |
+
"eval_runtime": 43.8492,
|
127 |
+
"eval_samples_per_second": 22.805,
|
128 |
+
"eval_steps_per_second": 2.851,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.457350492477417,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.5461,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.6317176818847656,
|
141 |
+
"eval_runtime": 43.8568,
|
142 |
+
"eval_samples_per_second": 22.801,
|
143 |
+
"eval_steps_per_second": 2.85,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.6296346187591553,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.5933,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.635717511177063,
|
156 |
+
"eval_runtime": 43.8409,
|
157 |
+
"eval_samples_per_second": 22.81,
|
158 |
+
"eval_steps_per_second": 2.851,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.7165963053703308,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.5319,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.6375973224639893,
|
171 |
+
"eval_runtime": 43.8486,
|
172 |
+
"eval_samples_per_second": 22.806,
|
173 |
+
"eval_steps_per_second": 2.851,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.7370977997779846,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.5413,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.6369796991348267,
|
186 |
+
"eval_runtime": 43.9803,
|
187 |
+
"eval_samples_per_second": 22.737,
|
188 |
+
"eval_steps_per_second": 2.842,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.726448118686676,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.5226,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.6377675533294678,
|
201 |
+
"eval_runtime": 43.8627,
|
202 |
+
"eval_samples_per_second": 22.798,
|
203 |
+
"eval_steps_per_second": 2.85,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.7822732925415039,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.5477,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.6378459930419922,
|
216 |
+
"eval_runtime": 43.9081,
|
217 |
+
"eval_samples_per_second": 22.775,
|
218 |
+
"eval_steps_per_second": 2.847,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.7607081532478333,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 1.5604,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 1.637563705444336,
|
231 |
+
"eval_runtime": 43.9092,
|
232 |
+
"eval_samples_per_second": 22.774,
|
233 |
+
"eval_steps_per_second": 2.847,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 0.9361194372177124,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 1.4091,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 1.6557352542877197,
|
246 |
+
"eval_runtime": 43.9308,
|
247 |
+
"eval_samples_per_second": 22.763,
|
248 |
+
"eval_steps_per_second": 2.845,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 1.0848534107208252,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 1.4629,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 1.6792665719985962,
|
261 |
+
"eval_runtime": 43.8829,
|
262 |
+
"eval_samples_per_second": 22.788,
|
263 |
+
"eval_steps_per_second": 2.848,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 1.0759488344192505,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 1.3685,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 1.682196855545044,
|
276 |
+
"eval_runtime": 43.8735,
|
277 |
+
"eval_samples_per_second": 22.793,
|
278 |
+
"eval_steps_per_second": 2.849,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 1.2871410846710205,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 1.4443,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 1.6869845390319824,
|
291 |
+
"eval_runtime": 43.8534,
|
292 |
+
"eval_samples_per_second": 22.803,
|
293 |
+
"eval_steps_per_second": 2.85,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 1.2004164457321167,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 1.3451,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 1.6853325366973877,
|
306 |
+
"eval_runtime": 43.8718,
|
307 |
+
"eval_samples_per_second": 22.794,
|
308 |
+
"eval_steps_per_second": 2.849,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 1.2714128494262695,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 1.4547,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 1.6859557628631592,
|
321 |
+
"eval_runtime": 43.8724,
|
322 |
+
"eval_samples_per_second": 22.793,
|
323 |
+
"eval_steps_per_second": 2.849,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 1.3297241926193237,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 1.4088,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 1.6856082677841187,
|
336 |
+
"eval_runtime": 43.8409,
|
337 |
+
"eval_samples_per_second": 22.81,
|
338 |
+
"eval_steps_per_second": 2.851,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 1.1967905759811401,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 1.3735,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 1.7015950679779053,
|
351 |
+
"eval_runtime": 43.8446,
|
352 |
+
"eval_samples_per_second": 22.808,
|
353 |
+
"eval_steps_per_second": 2.851,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 1.5186768770217896,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 1.2487,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 1.7492223978042603,
|
366 |
+
"eval_runtime": 43.84,
|
367 |
+
"eval_samples_per_second": 22.81,
|
368 |
+
"eval_steps_per_second": 2.851,
|
369 |
+
"step": 240
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.3333333333333335,
|
373 |
+
"grad_norm": 1.5129271745681763,
|
374 |
+
"learning_rate": 5.037037037037037e-05,
|
375 |
+
"loss": 1.2959,
|
376 |
+
"step": 250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 3.3333333333333335,
|
380 |
+
"eval_loss": 1.7475690841674805,
|
381 |
+
"eval_runtime": 43.8475,
|
382 |
+
"eval_samples_per_second": 22.806,
|
383 |
+
"eval_steps_per_second": 2.851,
|
384 |
+
"step": 250
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 3.466666666666667,
|
388 |
+
"grad_norm": 1.5553545951843262,
|
389 |
+
"learning_rate": 4.918518518518519e-05,
|
390 |
+
"loss": 1.278,
|
391 |
+
"step": 260
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 3.466666666666667,
|
395 |
+
"eval_loss": 1.749650239944458,
|
396 |
+
"eval_runtime": 43.8575,
|
397 |
+
"eval_samples_per_second": 22.801,
|
398 |
+
"eval_steps_per_second": 2.85,
|
399 |
+
"step": 260
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 3.6,
|
403 |
+
"grad_norm": 1.6911894083023071,
|
404 |
+
"learning_rate": 4.8e-05,
|
405 |
+
"loss": 1.1815,
|
406 |
+
"step": 270
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 3.6,
|
410 |
+
"eval_loss": 1.751675009727478,
|
411 |
+
"eval_runtime": 43.8693,
|
412 |
+
"eval_samples_per_second": 22.795,
|
413 |
+
"eval_steps_per_second": 2.849,
|
414 |
+
"step": 270
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 3.7333333333333334,
|
418 |
+
"grad_norm": 1.7207773923873901,
|
419 |
+
"learning_rate": 4.681481481481481e-05,
|
420 |
+
"loss": 1.227,
|
421 |
+
"step": 280
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 3.7333333333333334,
|
425 |
+
"eval_loss": 1.7532404661178589,
|
426 |
+
"eval_runtime": 43.9788,
|
427 |
+
"eval_samples_per_second": 22.738,
|
428 |
+
"eval_steps_per_second": 2.842,
|
429 |
+
"step": 280
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 3.8666666666666667,
|
433 |
+
"grad_norm": 1.6659716367721558,
|
434 |
+
"learning_rate": 4.5629629629629636e-05,
|
435 |
+
"loss": 1.2699,
|
436 |
+
"step": 290
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 3.8666666666666667,
|
440 |
+
"eval_loss": 1.7546659708023071,
|
441 |
+
"eval_runtime": 44.0345,
|
442 |
+
"eval_samples_per_second": 22.709,
|
443 |
+
"eval_steps_per_second": 2.839,
|
444 |
+
"step": 290
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 4.0,
|
448 |
+
"grad_norm": 1.7288299798965454,
|
449 |
+
"learning_rate": 4.444444444444445e-05,
|
450 |
+
"loss": 1.2414,
|
451 |
+
"step": 300
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 4.0,
|
455 |
+
"eval_loss": 1.7534445524215698,
|
456 |
+
"eval_runtime": 43.9971,
|
457 |
+
"eval_samples_per_second": 22.729,
|
458 |
+
"eval_steps_per_second": 2.841,
|
459 |
+
"step": 300
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 4.133333333333334,
|
463 |
+
"grad_norm": 1.8176274299621582,
|
464 |
+
"learning_rate": 4.3259259259259264e-05,
|
465 |
+
"loss": 1.1231,
|
466 |
+
"step": 310
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 4.133333333333334,
|
470 |
+
"eval_loss": 1.8118728399276733,
|
471 |
+
"eval_runtime": 44.0255,
|
472 |
+
"eval_samples_per_second": 22.714,
|
473 |
+
"eval_steps_per_second": 2.839,
|
474 |
+
"step": 310
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 4.266666666666667,
|
478 |
+
"grad_norm": 1.881231427192688,
|
479 |
+
"learning_rate": 4.2074074074074075e-05,
|
480 |
+
"loss": 1.1311,
|
481 |
+
"step": 320
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 4.266666666666667,
|
485 |
+
"eval_loss": 1.824351191520691,
|
486 |
+
"eval_runtime": 43.871,
|
487 |
+
"eval_samples_per_second": 22.794,
|
488 |
+
"eval_steps_per_second": 2.849,
|
489 |
+
"step": 320
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 4.4,
|
493 |
+
"grad_norm": 1.8982057571411133,
|
494 |
+
"learning_rate": 4.088888888888889e-05,
|
495 |
+
"loss": 1.1046,
|
496 |
+
"step": 330
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 4.4,
|
500 |
+
"eval_loss": 1.813114881515503,
|
501 |
+
"eval_runtime": 43.8506,
|
502 |
+
"eval_samples_per_second": 22.805,
|
503 |
+
"eval_steps_per_second": 2.851,
|
504 |
+
"step": 330
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 4.533333333333333,
|
508 |
+
"grad_norm": 1.9931222200393677,
|
509 |
+
"learning_rate": 3.970370370370371e-05,
|
510 |
+
"loss": 1.0596,
|
511 |
+
"step": 340
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"epoch": 4.533333333333333,
|
515 |
+
"eval_loss": 1.8187421560287476,
|
516 |
+
"eval_runtime": 43.8637,
|
517 |
+
"eval_samples_per_second": 22.798,
|
518 |
+
"eval_steps_per_second": 2.85,
|
519 |
+
"step": 340
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 4.666666666666667,
|
523 |
+
"grad_norm": 2.02201247215271,
|
524 |
+
"learning_rate": 3.851851851851852e-05,
|
525 |
+
"loss": 1.1469,
|
526 |
+
"step": 350
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 4.666666666666667,
|
530 |
+
"eval_loss": 1.8229775428771973,
|
531 |
+
"eval_runtime": 43.9111,
|
532 |
+
"eval_samples_per_second": 22.773,
|
533 |
+
"eval_steps_per_second": 2.847,
|
534 |
+
"step": 350
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 4.8,
|
538 |
+
"grad_norm": 2.220625638961792,
|
539 |
+
"learning_rate": 3.733333333333334e-05,
|
540 |
+
"loss": 1.1344,
|
541 |
+
"step": 360
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 4.8,
|
545 |
+
"eval_loss": 1.817935585975647,
|
546 |
+
"eval_runtime": 43.9794,
|
547 |
+
"eval_samples_per_second": 22.738,
|
548 |
+
"eval_steps_per_second": 2.842,
|
549 |
+
"step": 360
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 4.933333333333334,
|
553 |
+
"grad_norm": 2.0401487350463867,
|
554 |
+
"learning_rate": 3.614814814814815e-05,
|
555 |
+
"loss": 1.1922,
|
556 |
+
"step": 370
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 4.933333333333334,
|
560 |
+
"eval_loss": 1.8182997703552246,
|
561 |
+
"eval_runtime": 43.8807,
|
562 |
+
"eval_samples_per_second": 22.789,
|
563 |
+
"eval_steps_per_second": 2.849,
|
564 |
+
"step": 370
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 5.066666666666666,
|
568 |
+
"grad_norm": 1.8822356462478638,
|
569 |
+
"learning_rate": 3.4962962962962965e-05,
|
570 |
+
"loss": 1.0486,
|
571 |
+
"step": 380
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 5.066666666666666,
|
575 |
+
"eval_loss": 1.8343256711959839,
|
576 |
+
"eval_runtime": 43.9715,
|
577 |
+
"eval_samples_per_second": 22.742,
|
578 |
+
"eval_steps_per_second": 2.843,
|
579 |
+
"step": 380
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 5.2,
|
583 |
+
"grad_norm": 2.383836030960083,
|
584 |
+
"learning_rate": 3.377777777777778e-05,
|
585 |
+
"loss": 1.0039,
|
586 |
+
"step": 390
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"epoch": 5.2,
|
590 |
+
"eval_loss": 1.8889024257659912,
|
591 |
+
"eval_runtime": 43.906,
|
592 |
+
"eval_samples_per_second": 22.776,
|
593 |
+
"eval_steps_per_second": 2.847,
|
594 |
+
"step": 390
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 5.333333333333333,
|
598 |
+
"grad_norm": 2.403280019760132,
|
599 |
+
"learning_rate": 3.259259259259259e-05,
|
600 |
+
"loss": 0.9946,
|
601 |
+
"step": 400
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 5.333333333333333,
|
605 |
+
"eval_loss": 1.8832476139068604,
|
606 |
+
"eval_runtime": 43.8654,
|
607 |
+
"eval_samples_per_second": 22.797,
|
608 |
+
"eval_steps_per_second": 2.85,
|
609 |
+
"step": 400
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 5.466666666666667,
|
613 |
+
"grad_norm": 2.34110164642334,
|
614 |
+
"learning_rate": 3.140740740740741e-05,
|
615 |
+
"loss": 1.0302,
|
616 |
+
"step": 410
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"epoch": 5.466666666666667,
|
620 |
+
"eval_loss": 1.8810956478118896,
|
621 |
+
"eval_runtime": 43.8937,
|
622 |
+
"eval_samples_per_second": 22.782,
|
623 |
+
"eval_steps_per_second": 2.848,
|
624 |
+
"step": 410
|
625 |
+
},
|
626 |
+
{
|
627 |
+
"epoch": 5.6,
|
628 |
+
"grad_norm": 2.32973575592041,
|
629 |
+
"learning_rate": 3.0222222222222225e-05,
|
630 |
+
"loss": 1.0062,
|
631 |
+
"step": 420
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"epoch": 5.6,
|
635 |
+
"eval_loss": 1.8806273937225342,
|
636 |
+
"eval_runtime": 43.9433,
|
637 |
+
"eval_samples_per_second": 22.757,
|
638 |
+
"eval_steps_per_second": 2.845,
|
639 |
+
"step": 420
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 5.733333333333333,
|
643 |
+
"grad_norm": 2.426825523376465,
|
644 |
+
"learning_rate": 2.9037037037037042e-05,
|
645 |
+
"loss": 1.0493,
|
646 |
+
"step": 430
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 5.733333333333333,
|
650 |
+
"eval_loss": 1.8787455558776855,
|
651 |
+
"eval_runtime": 43.9876,
|
652 |
+
"eval_samples_per_second": 22.734,
|
653 |
+
"eval_steps_per_second": 2.842,
|
654 |
+
"step": 430
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 5.866666666666667,
|
658 |
+
"grad_norm": 2.2383341789245605,
|
659 |
+
"learning_rate": 2.7851851851851856e-05,
|
660 |
+
"loss": 1.0728,
|
661 |
+
"step": 440
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 5.866666666666667,
|
665 |
+
"eval_loss": 1.8792084455490112,
|
666 |
+
"eval_runtime": 43.9918,
|
667 |
+
"eval_samples_per_second": 22.732,
|
668 |
+
"eval_steps_per_second": 2.841,
|
669 |
+
"step": 440
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 6.0,
|
673 |
+
"grad_norm": 2.4239635467529297,
|
674 |
+
"learning_rate": 2.6666666666666667e-05,
|
675 |
+
"loss": 1.0199,
|
676 |
+
"step": 450
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 6.0,
|
680 |
+
"eval_loss": 1.8804157972335815,
|
681 |
+
"eval_runtime": 43.9689,
|
682 |
+
"eval_samples_per_second": 22.743,
|
683 |
+
"eval_steps_per_second": 2.843,
|
684 |
+
"step": 450
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"epoch": 6.133333333333334,
|
688 |
+
"grad_norm": 3.0071866512298584,
|
689 |
+
"learning_rate": 2.5481481481481484e-05,
|
690 |
+
"loss": 0.9486,
|
691 |
+
"step": 460
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"epoch": 6.133333333333334,
|
695 |
+
"eval_loss": 1.930755376815796,
|
696 |
+
"eval_runtime": 43.9812,
|
697 |
+
"eval_samples_per_second": 22.737,
|
698 |
+
"eval_steps_per_second": 2.842,
|
699 |
+
"step": 460
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 6.266666666666667,
|
703 |
+
"grad_norm": 2.432983875274658,
|
704 |
+
"learning_rate": 2.4296296296296298e-05,
|
705 |
+
"loss": 0.8858,
|
706 |
+
"step": 470
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 6.266666666666667,
|
710 |
+
"eval_loss": 1.9468986988067627,
|
711 |
+
"eval_runtime": 43.9889,
|
712 |
+
"eval_samples_per_second": 22.733,
|
713 |
+
"eval_steps_per_second": 2.842,
|
714 |
+
"step": 470
|
715 |
+
},
|
716 |
+
{
|
717 |
+
"epoch": 6.4,
|
718 |
+
"grad_norm": 2.591848850250244,
|
719 |
+
"learning_rate": 2.3111111111111112e-05,
|
720 |
+
"loss": 0.9818,
|
721 |
+
"step": 480
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"epoch": 6.4,
|
725 |
+
"eval_loss": 1.9322350025177002,
|
726 |
+
"eval_runtime": 44.0412,
|
727 |
+
"eval_samples_per_second": 22.706,
|
728 |
+
"eval_steps_per_second": 2.838,
|
729 |
+
"step": 480
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 6.533333333333333,
|
733 |
+
"grad_norm": 2.5453197956085205,
|
734 |
+
"learning_rate": 2.192592592592593e-05,
|
735 |
+
"loss": 0.84,
|
736 |
+
"step": 490
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"epoch": 6.533333333333333,
|
740 |
+
"eval_loss": 1.9371347427368164,
|
741 |
+
"eval_runtime": 44.0174,
|
742 |
+
"eval_samples_per_second": 22.718,
|
743 |
+
"eval_steps_per_second": 2.84,
|
744 |
+
"step": 490
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 6.666666666666667,
|
748 |
+
"grad_norm": 2.4433412551879883,
|
749 |
+
"learning_rate": 2.074074074074074e-05,
|
750 |
+
"loss": 0.9686,
|
751 |
+
"step": 500
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 6.666666666666667,
|
755 |
+
"eval_loss": 1.9340929985046387,
|
756 |
+
"eval_runtime": 43.9473,
|
757 |
+
"eval_samples_per_second": 22.755,
|
758 |
+
"eval_steps_per_second": 2.844,
|
759 |
+
"step": 500
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 6.8,
|
763 |
+
"grad_norm": 2.7762234210968018,
|
764 |
+
"learning_rate": 1.9555555555555557e-05,
|
765 |
+
"loss": 0.974,
|
766 |
+
"step": 510
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 6.8,
|
770 |
+
"eval_loss": 1.936902642250061,
|
771 |
+
"eval_runtime": 43.9918,
|
772 |
+
"eval_samples_per_second": 22.732,
|
773 |
+
"eval_steps_per_second": 2.841,
|
774 |
+
"step": 510
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 6.933333333333334,
|
778 |
+
"grad_norm": 2.706693410873413,
|
779 |
+
"learning_rate": 1.837037037037037e-05,
|
780 |
+
"loss": 0.9366,
|
781 |
+
"step": 520
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"epoch": 6.933333333333334,
|
785 |
+
"eval_loss": 1.9351890087127686,
|
786 |
+
"eval_runtime": 43.9647,
|
787 |
+
"eval_samples_per_second": 22.746,
|
788 |
+
"eval_steps_per_second": 2.843,
|
789 |
+
"step": 520
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 7.066666666666666,
|
793 |
+
"grad_norm": 2.338547706604004,
|
794 |
+
"learning_rate": 1.7185185185185185e-05,
|
795 |
+
"loss": 0.9285,
|
796 |
+
"step": 530
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"epoch": 7.066666666666666,
|
800 |
+
"eval_loss": 1.9464186429977417,
|
801 |
+
"eval_runtime": 43.9646,
|
802 |
+
"eval_samples_per_second": 22.746,
|
803 |
+
"eval_steps_per_second": 2.843,
|
804 |
+
"step": 530
|
805 |
+
},
|
806 |
+
{
|
807 |
+
"epoch": 7.2,
|
808 |
+
"grad_norm": 2.846348285675049,
|
809 |
+
"learning_rate": 1.6000000000000003e-05,
|
810 |
+
"loss": 0.8663,
|
811 |
+
"step": 540
|
812 |
+
},
|
813 |
+
{
|
814 |
+
"epoch": 7.2,
|
815 |
+
"eval_loss": 1.9812690019607544,
|
816 |
+
"eval_runtime": 43.966,
|
817 |
+
"eval_samples_per_second": 22.745,
|
818 |
+
"eval_steps_per_second": 2.843,
|
819 |
+
"step": 540
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 7.333333333333333,
|
823 |
+
"grad_norm": 2.754952907562256,
|
824 |
+
"learning_rate": 1.4814814814814815e-05,
|
825 |
+
"loss": 0.8033,
|
826 |
+
"step": 550
|
827 |
+
},
|
828 |
+
{
|
829 |
+
"epoch": 7.333333333333333,
|
830 |
+
"eval_loss": 1.9769660234451294,
|
831 |
+
"eval_runtime": 43.9067,
|
832 |
+
"eval_samples_per_second": 22.776,
|
833 |
+
"eval_steps_per_second": 2.847,
|
834 |
+
"step": 550
|
835 |
+
},
|
836 |
+
{
|
837 |
+
"epoch": 7.466666666666667,
|
838 |
+
"grad_norm": 2.7049484252929688,
|
839 |
+
"learning_rate": 1.362962962962963e-05,
|
840 |
+
"loss": 0.8823,
|
841 |
+
"step": 560
|
842 |
+
},
|
843 |
+
{
|
844 |
+
"epoch": 7.466666666666667,
|
845 |
+
"eval_loss": 1.9782260656356812,
|
846 |
+
"eval_runtime": 43.8715,
|
847 |
+
"eval_samples_per_second": 22.794,
|
848 |
+
"eval_steps_per_second": 2.849,
|
849 |
+
"step": 560
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 7.6,
|
853 |
+
"grad_norm": 2.9233956336975098,
|
854 |
+
"learning_rate": 1.2444444444444446e-05,
|
855 |
+
"loss": 0.8841,
|
856 |
+
"step": 570
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 7.6,
|
860 |
+
"eval_loss": 1.975508451461792,
|
861 |
+
"eval_runtime": 43.8529,
|
862 |
+
"eval_samples_per_second": 22.804,
|
863 |
+
"eval_steps_per_second": 2.85,
|
864 |
+
"step": 570
|
865 |
+
}
|
866 |
+
],
|
867 |
+
"logging_steps": 10,
|
868 |
+
"max_steps": 675,
|
869 |
+
"num_input_tokens_seen": 0,
|
870 |
+
"num_train_epochs": 9,
|
871 |
+
"save_steps": 10,
|
872 |
+
"stateful_callbacks": {
|
873 |
+
"TrainerControl": {
|
874 |
+
"args": {
|
875 |
+
"should_epoch_stop": false,
|
876 |
+
"should_evaluate": false,
|
877 |
+
"should_log": false,
|
878 |
+
"should_save": true,
|
879 |
+
"should_training_stop": false
|
880 |
+
},
|
881 |
+
"attributes": {}
|
882 |
+
}
|
883 |
+
},
|
884 |
+
"total_flos": 9.34006103212032e+16,
|
885 |
+
"train_batch_size": 8,
|
886 |
+
"trial_name": null,
|
887 |
+
"trial_params": null
|
888 |
+
}
|
output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-580/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-580/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"dense",
|
24 |
+
"query_key_value",
|
25 |
+
"dense_h_to_4h",
|
26 |
+
"dense_4h_to_h"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-580/trainer_state.json
ADDED
@@ -0,0 +1,903 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.6284925937652588,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-80",
|
4 |
+
"epoch": 7.733333333333333,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 580,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.37591353058815,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.5979,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.6375348567962646,
|
21 |
+
"eval_runtime": 43.9032,
|
22 |
+
"eval_samples_per_second": 22.777,
|
23 |
+
"eval_steps_per_second": 2.847,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.4210415482521057,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.624,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.6352741718292236,
|
36 |
+
"eval_runtime": 44.0038,
|
37 |
+
"eval_samples_per_second": 22.725,
|
38 |
+
"eval_steps_per_second": 2.841,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.3714869022369385,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.6205,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.633917212486267,
|
51 |
+
"eval_runtime": 43.9878,
|
52 |
+
"eval_samples_per_second": 22.734,
|
53 |
+
"eval_steps_per_second": 2.842,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.36149370670318604,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.6165,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.6323453187942505,
|
66 |
+
"eval_runtime": 43.9629,
|
67 |
+
"eval_samples_per_second": 22.746,
|
68 |
+
"eval_steps_per_second": 2.843,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.35420870780944824,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.6599,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.6314094066619873,
|
81 |
+
"eval_runtime": 43.9048,
|
82 |
+
"eval_samples_per_second": 22.777,
|
83 |
+
"eval_steps_per_second": 2.847,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.33472639322280884,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.5591,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.6304500102996826,
|
96 |
+
"eval_runtime": 44.0293,
|
97 |
+
"eval_samples_per_second": 22.712,
|
98 |
+
"eval_steps_per_second": 2.839,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.3210572898387909,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.6328,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.6291298866271973,
|
111 |
+
"eval_runtime": 43.8599,
|
112 |
+
"eval_samples_per_second": 22.8,
|
113 |
+
"eval_steps_per_second": 2.85,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.32792502641677856,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.5967,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.6284925937652588,
|
126 |
+
"eval_runtime": 43.8492,
|
127 |
+
"eval_samples_per_second": 22.805,
|
128 |
+
"eval_steps_per_second": 2.851,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.457350492477417,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.5461,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.6317176818847656,
|
141 |
+
"eval_runtime": 43.8568,
|
142 |
+
"eval_samples_per_second": 22.801,
|
143 |
+
"eval_steps_per_second": 2.85,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.6296346187591553,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.5933,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.635717511177063,
|
156 |
+
"eval_runtime": 43.8409,
|
157 |
+
"eval_samples_per_second": 22.81,
|
158 |
+
"eval_steps_per_second": 2.851,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.7165963053703308,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.5319,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.6375973224639893,
|
171 |
+
"eval_runtime": 43.8486,
|
172 |
+
"eval_samples_per_second": 22.806,
|
173 |
+
"eval_steps_per_second": 2.851,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.7370977997779846,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.5413,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.6369796991348267,
|
186 |
+
"eval_runtime": 43.9803,
|
187 |
+
"eval_samples_per_second": 22.737,
|
188 |
+
"eval_steps_per_second": 2.842,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.726448118686676,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.5226,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.6377675533294678,
|
201 |
+
"eval_runtime": 43.8627,
|
202 |
+
"eval_samples_per_second": 22.798,
|
203 |
+
"eval_steps_per_second": 2.85,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.7822732925415039,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.5477,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.6378459930419922,
|
216 |
+
"eval_runtime": 43.9081,
|
217 |
+
"eval_samples_per_second": 22.775,
|
218 |
+
"eval_steps_per_second": 2.847,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.7607081532478333,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 1.5604,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 1.637563705444336,
|
231 |
+
"eval_runtime": 43.9092,
|
232 |
+
"eval_samples_per_second": 22.774,
|
233 |
+
"eval_steps_per_second": 2.847,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 0.9361194372177124,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 1.4091,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 1.6557352542877197,
|
246 |
+
"eval_runtime": 43.9308,
|
247 |
+
"eval_samples_per_second": 22.763,
|
248 |
+
"eval_steps_per_second": 2.845,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 1.0848534107208252,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 1.4629,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 1.6792665719985962,
|
261 |
+
"eval_runtime": 43.8829,
|
262 |
+
"eval_samples_per_second": 22.788,
|
263 |
+
"eval_steps_per_second": 2.848,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 1.0759488344192505,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 1.3685,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 1.682196855545044,
|
276 |
+
"eval_runtime": 43.8735,
|
277 |
+
"eval_samples_per_second": 22.793,
|
278 |
+
"eval_steps_per_second": 2.849,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 1.2871410846710205,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 1.4443,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 1.6869845390319824,
|
291 |
+
"eval_runtime": 43.8534,
|
292 |
+
"eval_samples_per_second": 22.803,
|
293 |
+
"eval_steps_per_second": 2.85,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 1.2004164457321167,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 1.3451,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 1.6853325366973877,
|
306 |
+
"eval_runtime": 43.8718,
|
307 |
+
"eval_samples_per_second": 22.794,
|
308 |
+
"eval_steps_per_second": 2.849,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 1.2714128494262695,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 1.4547,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 1.6859557628631592,
|
321 |
+
"eval_runtime": 43.8724,
|
322 |
+
"eval_samples_per_second": 22.793,
|
323 |
+
"eval_steps_per_second": 2.849,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 1.3297241926193237,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 1.4088,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 1.6856082677841187,
|
336 |
+
"eval_runtime": 43.8409,
|
337 |
+
"eval_samples_per_second": 22.81,
|
338 |
+
"eval_steps_per_second": 2.851,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 1.1967905759811401,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 1.3735,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 1.7015950679779053,
|
351 |
+
"eval_runtime": 43.8446,
|
352 |
+
"eval_samples_per_second": 22.808,
|
353 |
+
"eval_steps_per_second": 2.851,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 1.5186768770217896,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 1.2487,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 1.7492223978042603,
|
366 |
+
"eval_runtime": 43.84,
|
367 |
+
"eval_samples_per_second": 22.81,
|
368 |
+
"eval_steps_per_second": 2.851,
|
369 |
+
"step": 240
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.3333333333333335,
|
373 |
+
"grad_norm": 1.5129271745681763,
|
374 |
+
"learning_rate": 5.037037037037037e-05,
|
375 |
+
"loss": 1.2959,
|
376 |
+
"step": 250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 3.3333333333333335,
|
380 |
+
"eval_loss": 1.7475690841674805,
|
381 |
+
"eval_runtime": 43.8475,
|
382 |
+
"eval_samples_per_second": 22.806,
|
383 |
+
"eval_steps_per_second": 2.851,
|
384 |
+
"step": 250
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 3.466666666666667,
|
388 |
+
"grad_norm": 1.5553545951843262,
|
389 |
+
"learning_rate": 4.918518518518519e-05,
|
390 |
+
"loss": 1.278,
|
391 |
+
"step": 260
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 3.466666666666667,
|
395 |
+
"eval_loss": 1.749650239944458,
|
396 |
+
"eval_runtime": 43.8575,
|
397 |
+
"eval_samples_per_second": 22.801,
|
398 |
+
"eval_steps_per_second": 2.85,
|
399 |
+
"step": 260
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 3.6,
|
403 |
+
"grad_norm": 1.6911894083023071,
|
404 |
+
"learning_rate": 4.8e-05,
|
405 |
+
"loss": 1.1815,
|
406 |
+
"step": 270
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 3.6,
|
410 |
+
"eval_loss": 1.751675009727478,
|
411 |
+
"eval_runtime": 43.8693,
|
412 |
+
"eval_samples_per_second": 22.795,
|
413 |
+
"eval_steps_per_second": 2.849,
|
414 |
+
"step": 270
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 3.7333333333333334,
|
418 |
+
"grad_norm": 1.7207773923873901,
|
419 |
+
"learning_rate": 4.681481481481481e-05,
|
420 |
+
"loss": 1.227,
|
421 |
+
"step": 280
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 3.7333333333333334,
|
425 |
+
"eval_loss": 1.7532404661178589,
|
426 |
+
"eval_runtime": 43.9788,
|
427 |
+
"eval_samples_per_second": 22.738,
|
428 |
+
"eval_steps_per_second": 2.842,
|
429 |
+
"step": 280
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 3.8666666666666667,
|
433 |
+
"grad_norm": 1.6659716367721558,
|
434 |
+
"learning_rate": 4.5629629629629636e-05,
|
435 |
+
"loss": 1.2699,
|
436 |
+
"step": 290
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 3.8666666666666667,
|
440 |
+
"eval_loss": 1.7546659708023071,
|
441 |
+
"eval_runtime": 44.0345,
|
442 |
+
"eval_samples_per_second": 22.709,
|
443 |
+
"eval_steps_per_second": 2.839,
|
444 |
+
"step": 290
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 4.0,
|
448 |
+
"grad_norm": 1.7288299798965454,
|
449 |
+
"learning_rate": 4.444444444444445e-05,
|
450 |
+
"loss": 1.2414,
|
451 |
+
"step": 300
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 4.0,
|
455 |
+
"eval_loss": 1.7534445524215698,
|
456 |
+
"eval_runtime": 43.9971,
|
457 |
+
"eval_samples_per_second": 22.729,
|
458 |
+
"eval_steps_per_second": 2.841,
|
459 |
+
"step": 300
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 4.133333333333334,
|
463 |
+
"grad_norm": 1.8176274299621582,
|
464 |
+
"learning_rate": 4.3259259259259264e-05,
|
465 |
+
"loss": 1.1231,
|
466 |
+
"step": 310
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 4.133333333333334,
|
470 |
+
"eval_loss": 1.8118728399276733,
|
471 |
+
"eval_runtime": 44.0255,
|
472 |
+
"eval_samples_per_second": 22.714,
|
473 |
+
"eval_steps_per_second": 2.839,
|
474 |
+
"step": 310
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 4.266666666666667,
|
478 |
+
"grad_norm": 1.881231427192688,
|
479 |
+
"learning_rate": 4.2074074074074075e-05,
|
480 |
+
"loss": 1.1311,
|
481 |
+
"step": 320
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 4.266666666666667,
|
485 |
+
"eval_loss": 1.824351191520691,
|
486 |
+
"eval_runtime": 43.871,
|
487 |
+
"eval_samples_per_second": 22.794,
|
488 |
+
"eval_steps_per_second": 2.849,
|
489 |
+
"step": 320
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 4.4,
|
493 |
+
"grad_norm": 1.8982057571411133,
|
494 |
+
"learning_rate": 4.088888888888889e-05,
|
495 |
+
"loss": 1.1046,
|
496 |
+
"step": 330
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 4.4,
|
500 |
+
"eval_loss": 1.813114881515503,
|
501 |
+
"eval_runtime": 43.8506,
|
502 |
+
"eval_samples_per_second": 22.805,
|
503 |
+
"eval_steps_per_second": 2.851,
|
504 |
+
"step": 330
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 4.533333333333333,
|
508 |
+
"grad_norm": 1.9931222200393677,
|
509 |
+
"learning_rate": 3.970370370370371e-05,
|
510 |
+
"loss": 1.0596,
|
511 |
+
"step": 340
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"epoch": 4.533333333333333,
|
515 |
+
"eval_loss": 1.8187421560287476,
|
516 |
+
"eval_runtime": 43.8637,
|
517 |
+
"eval_samples_per_second": 22.798,
|
518 |
+
"eval_steps_per_second": 2.85,
|
519 |
+
"step": 340
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 4.666666666666667,
|
523 |
+
"grad_norm": 2.02201247215271,
|
524 |
+
"learning_rate": 3.851851851851852e-05,
|
525 |
+
"loss": 1.1469,
|
526 |
+
"step": 350
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 4.666666666666667,
|
530 |
+
"eval_loss": 1.8229775428771973,
|
531 |
+
"eval_runtime": 43.9111,
|
532 |
+
"eval_samples_per_second": 22.773,
|
533 |
+
"eval_steps_per_second": 2.847,
|
534 |
+
"step": 350
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 4.8,
|
538 |
+
"grad_norm": 2.220625638961792,
|
539 |
+
"learning_rate": 3.733333333333334e-05,
|
540 |
+
"loss": 1.1344,
|
541 |
+
"step": 360
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 4.8,
|
545 |
+
"eval_loss": 1.817935585975647,
|
546 |
+
"eval_runtime": 43.9794,
|
547 |
+
"eval_samples_per_second": 22.738,
|
548 |
+
"eval_steps_per_second": 2.842,
|
549 |
+
"step": 360
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 4.933333333333334,
|
553 |
+
"grad_norm": 2.0401487350463867,
|
554 |
+
"learning_rate": 3.614814814814815e-05,
|
555 |
+
"loss": 1.1922,
|
556 |
+
"step": 370
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 4.933333333333334,
|
560 |
+
"eval_loss": 1.8182997703552246,
|
561 |
+
"eval_runtime": 43.8807,
|
562 |
+
"eval_samples_per_second": 22.789,
|
563 |
+
"eval_steps_per_second": 2.849,
|
564 |
+
"step": 370
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 5.066666666666666,
|
568 |
+
"grad_norm": 1.8822356462478638,
|
569 |
+
"learning_rate": 3.4962962962962965e-05,
|
570 |
+
"loss": 1.0486,
|
571 |
+
"step": 380
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 5.066666666666666,
|
575 |
+
"eval_loss": 1.8343256711959839,
|
576 |
+
"eval_runtime": 43.9715,
|
577 |
+
"eval_samples_per_second": 22.742,
|
578 |
+
"eval_steps_per_second": 2.843,
|
579 |
+
"step": 380
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 5.2,
|
583 |
+
"grad_norm": 2.383836030960083,
|
584 |
+
"learning_rate": 3.377777777777778e-05,
|
585 |
+
"loss": 1.0039,
|
586 |
+
"step": 390
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"epoch": 5.2,
|
590 |
+
"eval_loss": 1.8889024257659912,
|
591 |
+
"eval_runtime": 43.906,
|
592 |
+
"eval_samples_per_second": 22.776,
|
593 |
+
"eval_steps_per_second": 2.847,
|
594 |
+
"step": 390
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 5.333333333333333,
|
598 |
+
"grad_norm": 2.403280019760132,
|
599 |
+
"learning_rate": 3.259259259259259e-05,
|
600 |
+
"loss": 0.9946,
|
601 |
+
"step": 400
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 5.333333333333333,
|
605 |
+
"eval_loss": 1.8832476139068604,
|
606 |
+
"eval_runtime": 43.8654,
|
607 |
+
"eval_samples_per_second": 22.797,
|
608 |
+
"eval_steps_per_second": 2.85,
|
609 |
+
"step": 400
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 5.466666666666667,
|
613 |
+
"grad_norm": 2.34110164642334,
|
614 |
+
"learning_rate": 3.140740740740741e-05,
|
615 |
+
"loss": 1.0302,
|
616 |
+
"step": 410
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"epoch": 5.466666666666667,
|
620 |
+
"eval_loss": 1.8810956478118896,
|
621 |
+
"eval_runtime": 43.8937,
|
622 |
+
"eval_samples_per_second": 22.782,
|
623 |
+
"eval_steps_per_second": 2.848,
|
624 |
+
"step": 410
|
625 |
+
},
|
626 |
+
{
|
627 |
+
"epoch": 5.6,
|
628 |
+
"grad_norm": 2.32973575592041,
|
629 |
+
"learning_rate": 3.0222222222222225e-05,
|
630 |
+
"loss": 1.0062,
|
631 |
+
"step": 420
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"epoch": 5.6,
|
635 |
+
"eval_loss": 1.8806273937225342,
|
636 |
+
"eval_runtime": 43.9433,
|
637 |
+
"eval_samples_per_second": 22.757,
|
638 |
+
"eval_steps_per_second": 2.845,
|
639 |
+
"step": 420
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 5.733333333333333,
|
643 |
+
"grad_norm": 2.426825523376465,
|
644 |
+
"learning_rate": 2.9037037037037042e-05,
|
645 |
+
"loss": 1.0493,
|
646 |
+
"step": 430
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 5.733333333333333,
|
650 |
+
"eval_loss": 1.8787455558776855,
|
651 |
+
"eval_runtime": 43.9876,
|
652 |
+
"eval_samples_per_second": 22.734,
|
653 |
+
"eval_steps_per_second": 2.842,
|
654 |
+
"step": 430
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 5.866666666666667,
|
658 |
+
"grad_norm": 2.2383341789245605,
|
659 |
+
"learning_rate": 2.7851851851851856e-05,
|
660 |
+
"loss": 1.0728,
|
661 |
+
"step": 440
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 5.866666666666667,
|
665 |
+
"eval_loss": 1.8792084455490112,
|
666 |
+
"eval_runtime": 43.9918,
|
667 |
+
"eval_samples_per_second": 22.732,
|
668 |
+
"eval_steps_per_second": 2.841,
|
669 |
+
"step": 440
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 6.0,
|
673 |
+
"grad_norm": 2.4239635467529297,
|
674 |
+
"learning_rate": 2.6666666666666667e-05,
|
675 |
+
"loss": 1.0199,
|
676 |
+
"step": 450
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 6.0,
|
680 |
+
"eval_loss": 1.8804157972335815,
|
681 |
+
"eval_runtime": 43.9689,
|
682 |
+
"eval_samples_per_second": 22.743,
|
683 |
+
"eval_steps_per_second": 2.843,
|
684 |
+
"step": 450
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"epoch": 6.133333333333334,
|
688 |
+
"grad_norm": 3.0071866512298584,
|
689 |
+
"learning_rate": 2.5481481481481484e-05,
|
690 |
+
"loss": 0.9486,
|
691 |
+
"step": 460
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"epoch": 6.133333333333334,
|
695 |
+
"eval_loss": 1.930755376815796,
|
696 |
+
"eval_runtime": 43.9812,
|
697 |
+
"eval_samples_per_second": 22.737,
|
698 |
+
"eval_steps_per_second": 2.842,
|
699 |
+
"step": 460
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 6.266666666666667,
|
703 |
+
"grad_norm": 2.432983875274658,
|
704 |
+
"learning_rate": 2.4296296296296298e-05,
|
705 |
+
"loss": 0.8858,
|
706 |
+
"step": 470
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 6.266666666666667,
|
710 |
+
"eval_loss": 1.9468986988067627,
|
711 |
+
"eval_runtime": 43.9889,
|
712 |
+
"eval_samples_per_second": 22.733,
|
713 |
+
"eval_steps_per_second": 2.842,
|
714 |
+
"step": 470
|
715 |
+
},
|
716 |
+
{
|
717 |
+
"epoch": 6.4,
|
718 |
+
"grad_norm": 2.591848850250244,
|
719 |
+
"learning_rate": 2.3111111111111112e-05,
|
720 |
+
"loss": 0.9818,
|
721 |
+
"step": 480
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"epoch": 6.4,
|
725 |
+
"eval_loss": 1.9322350025177002,
|
726 |
+
"eval_runtime": 44.0412,
|
727 |
+
"eval_samples_per_second": 22.706,
|
728 |
+
"eval_steps_per_second": 2.838,
|
729 |
+
"step": 480
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 6.533333333333333,
|
733 |
+
"grad_norm": 2.5453197956085205,
|
734 |
+
"learning_rate": 2.192592592592593e-05,
|
735 |
+
"loss": 0.84,
|
736 |
+
"step": 490
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"epoch": 6.533333333333333,
|
740 |
+
"eval_loss": 1.9371347427368164,
|
741 |
+
"eval_runtime": 44.0174,
|
742 |
+
"eval_samples_per_second": 22.718,
|
743 |
+
"eval_steps_per_second": 2.84,
|
744 |
+
"step": 490
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 6.666666666666667,
|
748 |
+
"grad_norm": 2.4433412551879883,
|
749 |
+
"learning_rate": 2.074074074074074e-05,
|
750 |
+
"loss": 0.9686,
|
751 |
+
"step": 500
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 6.666666666666667,
|
755 |
+
"eval_loss": 1.9340929985046387,
|
756 |
+
"eval_runtime": 43.9473,
|
757 |
+
"eval_samples_per_second": 22.755,
|
758 |
+
"eval_steps_per_second": 2.844,
|
759 |
+
"step": 500
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 6.8,
|
763 |
+
"grad_norm": 2.7762234210968018,
|
764 |
+
"learning_rate": 1.9555555555555557e-05,
|
765 |
+
"loss": 0.974,
|
766 |
+
"step": 510
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 6.8,
|
770 |
+
"eval_loss": 1.936902642250061,
|
771 |
+
"eval_runtime": 43.9918,
|
772 |
+
"eval_samples_per_second": 22.732,
|
773 |
+
"eval_steps_per_second": 2.841,
|
774 |
+
"step": 510
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 6.933333333333334,
|
778 |
+
"grad_norm": 2.706693410873413,
|
779 |
+
"learning_rate": 1.837037037037037e-05,
|
780 |
+
"loss": 0.9366,
|
781 |
+
"step": 520
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"epoch": 6.933333333333334,
|
785 |
+
"eval_loss": 1.9351890087127686,
|
786 |
+
"eval_runtime": 43.9647,
|
787 |
+
"eval_samples_per_second": 22.746,
|
788 |
+
"eval_steps_per_second": 2.843,
|
789 |
+
"step": 520
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 7.066666666666666,
|
793 |
+
"grad_norm": 2.338547706604004,
|
794 |
+
"learning_rate": 1.7185185185185185e-05,
|
795 |
+
"loss": 0.9285,
|
796 |
+
"step": 530
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"epoch": 7.066666666666666,
|
800 |
+
"eval_loss": 1.9464186429977417,
|
801 |
+
"eval_runtime": 43.9646,
|
802 |
+
"eval_samples_per_second": 22.746,
|
803 |
+
"eval_steps_per_second": 2.843,
|
804 |
+
"step": 530
|
805 |
+
},
|
806 |
+
{
|
807 |
+
"epoch": 7.2,
|
808 |
+
"grad_norm": 2.846348285675049,
|
809 |
+
"learning_rate": 1.6000000000000003e-05,
|
810 |
+
"loss": 0.8663,
|
811 |
+
"step": 540
|
812 |
+
},
|
813 |
+
{
|
814 |
+
"epoch": 7.2,
|
815 |
+
"eval_loss": 1.9812690019607544,
|
816 |
+
"eval_runtime": 43.966,
|
817 |
+
"eval_samples_per_second": 22.745,
|
818 |
+
"eval_steps_per_second": 2.843,
|
819 |
+
"step": 540
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 7.333333333333333,
|
823 |
+
"grad_norm": 2.754952907562256,
|
824 |
+
"learning_rate": 1.4814814814814815e-05,
|
825 |
+
"loss": 0.8033,
|
826 |
+
"step": 550
|
827 |
+
},
|
828 |
+
{
|
829 |
+
"epoch": 7.333333333333333,
|
830 |
+
"eval_loss": 1.9769660234451294,
|
831 |
+
"eval_runtime": 43.9067,
|
832 |
+
"eval_samples_per_second": 22.776,
|
833 |
+
"eval_steps_per_second": 2.847,
|
834 |
+
"step": 550
|
835 |
+
},
|
836 |
+
{
|
837 |
+
"epoch": 7.466666666666667,
|
838 |
+
"grad_norm": 2.7049484252929688,
|
839 |
+
"learning_rate": 1.362962962962963e-05,
|
840 |
+
"loss": 0.8823,
|
841 |
+
"step": 560
|
842 |
+
},
|
843 |
+
{
|
844 |
+
"epoch": 7.466666666666667,
|
845 |
+
"eval_loss": 1.9782260656356812,
|
846 |
+
"eval_runtime": 43.8715,
|
847 |
+
"eval_samples_per_second": 22.794,
|
848 |
+
"eval_steps_per_second": 2.849,
|
849 |
+
"step": 560
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 7.6,
|
853 |
+
"grad_norm": 2.9233956336975098,
|
854 |
+
"learning_rate": 1.2444444444444446e-05,
|
855 |
+
"loss": 0.8841,
|
856 |
+
"step": 570
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 7.6,
|
860 |
+
"eval_loss": 1.975508451461792,
|
861 |
+
"eval_runtime": 43.8529,
|
862 |
+
"eval_samples_per_second": 22.804,
|
863 |
+
"eval_steps_per_second": 2.85,
|
864 |
+
"step": 570
|
865 |
+
},
|
866 |
+
{
|
867 |
+
"epoch": 7.733333333333333,
|
868 |
+
"grad_norm": 3.2836148738861084,
|
869 |
+
"learning_rate": 1.125925925925926e-05,
|
870 |
+
"loss": 0.8404,
|
871 |
+
"step": 580
|
872 |
+
},
|
873 |
+
{
|
874 |
+
"epoch": 7.733333333333333,
|
875 |
+
"eval_loss": 1.9755034446716309,
|
876 |
+
"eval_runtime": 43.8744,
|
877 |
+
"eval_samples_per_second": 22.792,
|
878 |
+
"eval_steps_per_second": 2.849,
|
879 |
+
"step": 580
|
880 |
+
}
|
881 |
+
],
|
882 |
+
"logging_steps": 10,
|
883 |
+
"max_steps": 675,
|
884 |
+
"num_input_tokens_seen": 0,
|
885 |
+
"num_train_epochs": 9,
|
886 |
+
"save_steps": 10,
|
887 |
+
"stateful_callbacks": {
|
888 |
+
"TrainerControl": {
|
889 |
+
"args": {
|
890 |
+
"should_epoch_stop": false,
|
891 |
+
"should_evaluate": false,
|
892 |
+
"should_log": false,
|
893 |
+
"should_save": true,
|
894 |
+
"should_training_stop": false
|
895 |
+
},
|
896 |
+
"attributes": {}
|
897 |
+
}
|
898 |
+
},
|
899 |
+
"total_flos": 9.50392175198208e+16,
|
900 |
+
"train_batch_size": 8,
|
901 |
+
"trial_name": null,
|
902 |
+
"trial_params": null
|
903 |
+
}
|
output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-590/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-590/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"dense",
|
24 |
+
"query_key_value",
|
25 |
+
"dense_h_to_4h",
|
26 |
+
"dense_4h_to_h"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-590/trainer_state.json
ADDED
@@ -0,0 +1,918 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.6284925937652588,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-80",
|
4 |
+
"epoch": 7.866666666666667,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 590,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.37591353058815,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.5979,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.6375348567962646,
|
21 |
+
"eval_runtime": 43.9032,
|
22 |
+
"eval_samples_per_second": 22.777,
|
23 |
+
"eval_steps_per_second": 2.847,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.4210415482521057,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.624,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.6352741718292236,
|
36 |
+
"eval_runtime": 44.0038,
|
37 |
+
"eval_samples_per_second": 22.725,
|
38 |
+
"eval_steps_per_second": 2.841,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.3714869022369385,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.6205,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.633917212486267,
|
51 |
+
"eval_runtime": 43.9878,
|
52 |
+
"eval_samples_per_second": 22.734,
|
53 |
+
"eval_steps_per_second": 2.842,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.36149370670318604,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.6165,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.6323453187942505,
|
66 |
+
"eval_runtime": 43.9629,
|
67 |
+
"eval_samples_per_second": 22.746,
|
68 |
+
"eval_steps_per_second": 2.843,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.35420870780944824,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.6599,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.6314094066619873,
|
81 |
+
"eval_runtime": 43.9048,
|
82 |
+
"eval_samples_per_second": 22.777,
|
83 |
+
"eval_steps_per_second": 2.847,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.33472639322280884,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.5591,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.6304500102996826,
|
96 |
+
"eval_runtime": 44.0293,
|
97 |
+
"eval_samples_per_second": 22.712,
|
98 |
+
"eval_steps_per_second": 2.839,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.3210572898387909,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.6328,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.6291298866271973,
|
111 |
+
"eval_runtime": 43.8599,
|
112 |
+
"eval_samples_per_second": 22.8,
|
113 |
+
"eval_steps_per_second": 2.85,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.32792502641677856,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.5967,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.6284925937652588,
|
126 |
+
"eval_runtime": 43.8492,
|
127 |
+
"eval_samples_per_second": 22.805,
|
128 |
+
"eval_steps_per_second": 2.851,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.457350492477417,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.5461,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.6317176818847656,
|
141 |
+
"eval_runtime": 43.8568,
|
142 |
+
"eval_samples_per_second": 22.801,
|
143 |
+
"eval_steps_per_second": 2.85,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.6296346187591553,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.5933,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.635717511177063,
|
156 |
+
"eval_runtime": 43.8409,
|
157 |
+
"eval_samples_per_second": 22.81,
|
158 |
+
"eval_steps_per_second": 2.851,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.7165963053703308,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.5319,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.6375973224639893,
|
171 |
+
"eval_runtime": 43.8486,
|
172 |
+
"eval_samples_per_second": 22.806,
|
173 |
+
"eval_steps_per_second": 2.851,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.7370977997779846,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.5413,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.6369796991348267,
|
186 |
+
"eval_runtime": 43.9803,
|
187 |
+
"eval_samples_per_second": 22.737,
|
188 |
+
"eval_steps_per_second": 2.842,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.726448118686676,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.5226,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.6377675533294678,
|
201 |
+
"eval_runtime": 43.8627,
|
202 |
+
"eval_samples_per_second": 22.798,
|
203 |
+
"eval_steps_per_second": 2.85,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.7822732925415039,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.5477,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.6378459930419922,
|
216 |
+
"eval_runtime": 43.9081,
|
217 |
+
"eval_samples_per_second": 22.775,
|
218 |
+
"eval_steps_per_second": 2.847,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.7607081532478333,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 1.5604,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 1.637563705444336,
|
231 |
+
"eval_runtime": 43.9092,
|
232 |
+
"eval_samples_per_second": 22.774,
|
233 |
+
"eval_steps_per_second": 2.847,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 0.9361194372177124,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 1.4091,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 1.6557352542877197,
|
246 |
+
"eval_runtime": 43.9308,
|
247 |
+
"eval_samples_per_second": 22.763,
|
248 |
+
"eval_steps_per_second": 2.845,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 1.0848534107208252,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 1.4629,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 1.6792665719985962,
|
261 |
+
"eval_runtime": 43.8829,
|
262 |
+
"eval_samples_per_second": 22.788,
|
263 |
+
"eval_steps_per_second": 2.848,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 1.0759488344192505,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 1.3685,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 1.682196855545044,
|
276 |
+
"eval_runtime": 43.8735,
|
277 |
+
"eval_samples_per_second": 22.793,
|
278 |
+
"eval_steps_per_second": 2.849,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 1.2871410846710205,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 1.4443,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 1.6869845390319824,
|
291 |
+
"eval_runtime": 43.8534,
|
292 |
+
"eval_samples_per_second": 22.803,
|
293 |
+
"eval_steps_per_second": 2.85,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 1.2004164457321167,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 1.3451,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 1.6853325366973877,
|
306 |
+
"eval_runtime": 43.8718,
|
307 |
+
"eval_samples_per_second": 22.794,
|
308 |
+
"eval_steps_per_second": 2.849,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 1.2714128494262695,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 1.4547,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 1.6859557628631592,
|
321 |
+
"eval_runtime": 43.8724,
|
322 |
+
"eval_samples_per_second": 22.793,
|
323 |
+
"eval_steps_per_second": 2.849,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 1.3297241926193237,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 1.4088,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 1.6856082677841187,
|
336 |
+
"eval_runtime": 43.8409,
|
337 |
+
"eval_samples_per_second": 22.81,
|
338 |
+
"eval_steps_per_second": 2.851,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 1.1967905759811401,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 1.3735,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 1.7015950679779053,
|
351 |
+
"eval_runtime": 43.8446,
|
352 |
+
"eval_samples_per_second": 22.808,
|
353 |
+
"eval_steps_per_second": 2.851,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 1.5186768770217896,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 1.2487,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 1.7492223978042603,
|
366 |
+
"eval_runtime": 43.84,
|
367 |
+
"eval_samples_per_second": 22.81,
|
368 |
+
"eval_steps_per_second": 2.851,
|
369 |
+
"step": 240
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.3333333333333335,
|
373 |
+
"grad_norm": 1.5129271745681763,
|
374 |
+
"learning_rate": 5.037037037037037e-05,
|
375 |
+
"loss": 1.2959,
|
376 |
+
"step": 250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 3.3333333333333335,
|
380 |
+
"eval_loss": 1.7475690841674805,
|
381 |
+
"eval_runtime": 43.8475,
|
382 |
+
"eval_samples_per_second": 22.806,
|
383 |
+
"eval_steps_per_second": 2.851,
|
384 |
+
"step": 250
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 3.466666666666667,
|
388 |
+
"grad_norm": 1.5553545951843262,
|
389 |
+
"learning_rate": 4.918518518518519e-05,
|
390 |
+
"loss": 1.278,
|
391 |
+
"step": 260
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 3.466666666666667,
|
395 |
+
"eval_loss": 1.749650239944458,
|
396 |
+
"eval_runtime": 43.8575,
|
397 |
+
"eval_samples_per_second": 22.801,
|
398 |
+
"eval_steps_per_second": 2.85,
|
399 |
+
"step": 260
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 3.6,
|
403 |
+
"grad_norm": 1.6911894083023071,
|
404 |
+
"learning_rate": 4.8e-05,
|
405 |
+
"loss": 1.1815,
|
406 |
+
"step": 270
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 3.6,
|
410 |
+
"eval_loss": 1.751675009727478,
|
411 |
+
"eval_runtime": 43.8693,
|
412 |
+
"eval_samples_per_second": 22.795,
|
413 |
+
"eval_steps_per_second": 2.849,
|
414 |
+
"step": 270
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 3.7333333333333334,
|
418 |
+
"grad_norm": 1.7207773923873901,
|
419 |
+
"learning_rate": 4.681481481481481e-05,
|
420 |
+
"loss": 1.227,
|
421 |
+
"step": 280
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 3.7333333333333334,
|
425 |
+
"eval_loss": 1.7532404661178589,
|
426 |
+
"eval_runtime": 43.9788,
|
427 |
+
"eval_samples_per_second": 22.738,
|
428 |
+
"eval_steps_per_second": 2.842,
|
429 |
+
"step": 280
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 3.8666666666666667,
|
433 |
+
"grad_norm": 1.6659716367721558,
|
434 |
+
"learning_rate": 4.5629629629629636e-05,
|
435 |
+
"loss": 1.2699,
|
436 |
+
"step": 290
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 3.8666666666666667,
|
440 |
+
"eval_loss": 1.7546659708023071,
|
441 |
+
"eval_runtime": 44.0345,
|
442 |
+
"eval_samples_per_second": 22.709,
|
443 |
+
"eval_steps_per_second": 2.839,
|
444 |
+
"step": 290
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 4.0,
|
448 |
+
"grad_norm": 1.7288299798965454,
|
449 |
+
"learning_rate": 4.444444444444445e-05,
|
450 |
+
"loss": 1.2414,
|
451 |
+
"step": 300
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 4.0,
|
455 |
+
"eval_loss": 1.7534445524215698,
|
456 |
+
"eval_runtime": 43.9971,
|
457 |
+
"eval_samples_per_second": 22.729,
|
458 |
+
"eval_steps_per_second": 2.841,
|
459 |
+
"step": 300
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 4.133333333333334,
|
463 |
+
"grad_norm": 1.8176274299621582,
|
464 |
+
"learning_rate": 4.3259259259259264e-05,
|
465 |
+
"loss": 1.1231,
|
466 |
+
"step": 310
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 4.133333333333334,
|
470 |
+
"eval_loss": 1.8118728399276733,
|
471 |
+
"eval_runtime": 44.0255,
|
472 |
+
"eval_samples_per_second": 22.714,
|
473 |
+
"eval_steps_per_second": 2.839,
|
474 |
+
"step": 310
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 4.266666666666667,
|
478 |
+
"grad_norm": 1.881231427192688,
|
479 |
+
"learning_rate": 4.2074074074074075e-05,
|
480 |
+
"loss": 1.1311,
|
481 |
+
"step": 320
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 4.266666666666667,
|
485 |
+
"eval_loss": 1.824351191520691,
|
486 |
+
"eval_runtime": 43.871,
|
487 |
+
"eval_samples_per_second": 22.794,
|
488 |
+
"eval_steps_per_second": 2.849,
|
489 |
+
"step": 320
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 4.4,
|
493 |
+
"grad_norm": 1.8982057571411133,
|
494 |
+
"learning_rate": 4.088888888888889e-05,
|
495 |
+
"loss": 1.1046,
|
496 |
+
"step": 330
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 4.4,
|
500 |
+
"eval_loss": 1.813114881515503,
|
501 |
+
"eval_runtime": 43.8506,
|
502 |
+
"eval_samples_per_second": 22.805,
|
503 |
+
"eval_steps_per_second": 2.851,
|
504 |
+
"step": 330
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 4.533333333333333,
|
508 |
+
"grad_norm": 1.9931222200393677,
|
509 |
+
"learning_rate": 3.970370370370371e-05,
|
510 |
+
"loss": 1.0596,
|
511 |
+
"step": 340
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"epoch": 4.533333333333333,
|
515 |
+
"eval_loss": 1.8187421560287476,
|
516 |
+
"eval_runtime": 43.8637,
|
517 |
+
"eval_samples_per_second": 22.798,
|
518 |
+
"eval_steps_per_second": 2.85,
|
519 |
+
"step": 340
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 4.666666666666667,
|
523 |
+
"grad_norm": 2.02201247215271,
|
524 |
+
"learning_rate": 3.851851851851852e-05,
|
525 |
+
"loss": 1.1469,
|
526 |
+
"step": 350
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 4.666666666666667,
|
530 |
+
"eval_loss": 1.8229775428771973,
|
531 |
+
"eval_runtime": 43.9111,
|
532 |
+
"eval_samples_per_second": 22.773,
|
533 |
+
"eval_steps_per_second": 2.847,
|
534 |
+
"step": 350
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 4.8,
|
538 |
+
"grad_norm": 2.220625638961792,
|
539 |
+
"learning_rate": 3.733333333333334e-05,
|
540 |
+
"loss": 1.1344,
|
541 |
+
"step": 360
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 4.8,
|
545 |
+
"eval_loss": 1.817935585975647,
|
546 |
+
"eval_runtime": 43.9794,
|
547 |
+
"eval_samples_per_second": 22.738,
|
548 |
+
"eval_steps_per_second": 2.842,
|
549 |
+
"step": 360
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 4.933333333333334,
|
553 |
+
"grad_norm": 2.0401487350463867,
|
554 |
+
"learning_rate": 3.614814814814815e-05,
|
555 |
+
"loss": 1.1922,
|
556 |
+
"step": 370
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 4.933333333333334,
|
560 |
+
"eval_loss": 1.8182997703552246,
|
561 |
+
"eval_runtime": 43.8807,
|
562 |
+
"eval_samples_per_second": 22.789,
|
563 |
+
"eval_steps_per_second": 2.849,
|
564 |
+
"step": 370
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 5.066666666666666,
|
568 |
+
"grad_norm": 1.8822356462478638,
|
569 |
+
"learning_rate": 3.4962962962962965e-05,
|
570 |
+
"loss": 1.0486,
|
571 |
+
"step": 380
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 5.066666666666666,
|
575 |
+
"eval_loss": 1.8343256711959839,
|
576 |
+
"eval_runtime": 43.9715,
|
577 |
+
"eval_samples_per_second": 22.742,
|
578 |
+
"eval_steps_per_second": 2.843,
|
579 |
+
"step": 380
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 5.2,
|
583 |
+
"grad_norm": 2.383836030960083,
|
584 |
+
"learning_rate": 3.377777777777778e-05,
|
585 |
+
"loss": 1.0039,
|
586 |
+
"step": 390
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"epoch": 5.2,
|
590 |
+
"eval_loss": 1.8889024257659912,
|
591 |
+
"eval_runtime": 43.906,
|
592 |
+
"eval_samples_per_second": 22.776,
|
593 |
+
"eval_steps_per_second": 2.847,
|
594 |
+
"step": 390
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 5.333333333333333,
|
598 |
+
"grad_norm": 2.403280019760132,
|
599 |
+
"learning_rate": 3.259259259259259e-05,
|
600 |
+
"loss": 0.9946,
|
601 |
+
"step": 400
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 5.333333333333333,
|
605 |
+
"eval_loss": 1.8832476139068604,
|
606 |
+
"eval_runtime": 43.8654,
|
607 |
+
"eval_samples_per_second": 22.797,
|
608 |
+
"eval_steps_per_second": 2.85,
|
609 |
+
"step": 400
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 5.466666666666667,
|
613 |
+
"grad_norm": 2.34110164642334,
|
614 |
+
"learning_rate": 3.140740740740741e-05,
|
615 |
+
"loss": 1.0302,
|
616 |
+
"step": 410
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"epoch": 5.466666666666667,
|
620 |
+
"eval_loss": 1.8810956478118896,
|
621 |
+
"eval_runtime": 43.8937,
|
622 |
+
"eval_samples_per_second": 22.782,
|
623 |
+
"eval_steps_per_second": 2.848,
|
624 |
+
"step": 410
|
625 |
+
},
|
626 |
+
{
|
627 |
+
"epoch": 5.6,
|
628 |
+
"grad_norm": 2.32973575592041,
|
629 |
+
"learning_rate": 3.0222222222222225e-05,
|
630 |
+
"loss": 1.0062,
|
631 |
+
"step": 420
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"epoch": 5.6,
|
635 |
+
"eval_loss": 1.8806273937225342,
|
636 |
+
"eval_runtime": 43.9433,
|
637 |
+
"eval_samples_per_second": 22.757,
|
638 |
+
"eval_steps_per_second": 2.845,
|
639 |
+
"step": 420
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 5.733333333333333,
|
643 |
+
"grad_norm": 2.426825523376465,
|
644 |
+
"learning_rate": 2.9037037037037042e-05,
|
645 |
+
"loss": 1.0493,
|
646 |
+
"step": 430
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 5.733333333333333,
|
650 |
+
"eval_loss": 1.8787455558776855,
|
651 |
+
"eval_runtime": 43.9876,
|
652 |
+
"eval_samples_per_second": 22.734,
|
653 |
+
"eval_steps_per_second": 2.842,
|
654 |
+
"step": 430
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 5.866666666666667,
|
658 |
+
"grad_norm": 2.2383341789245605,
|
659 |
+
"learning_rate": 2.7851851851851856e-05,
|
660 |
+
"loss": 1.0728,
|
661 |
+
"step": 440
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 5.866666666666667,
|
665 |
+
"eval_loss": 1.8792084455490112,
|
666 |
+
"eval_runtime": 43.9918,
|
667 |
+
"eval_samples_per_second": 22.732,
|
668 |
+
"eval_steps_per_second": 2.841,
|
669 |
+
"step": 440
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 6.0,
|
673 |
+
"grad_norm": 2.4239635467529297,
|
674 |
+
"learning_rate": 2.6666666666666667e-05,
|
675 |
+
"loss": 1.0199,
|
676 |
+
"step": 450
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 6.0,
|
680 |
+
"eval_loss": 1.8804157972335815,
|
681 |
+
"eval_runtime": 43.9689,
|
682 |
+
"eval_samples_per_second": 22.743,
|
683 |
+
"eval_steps_per_second": 2.843,
|
684 |
+
"step": 450
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"epoch": 6.133333333333334,
|
688 |
+
"grad_norm": 3.0071866512298584,
|
689 |
+
"learning_rate": 2.5481481481481484e-05,
|
690 |
+
"loss": 0.9486,
|
691 |
+
"step": 460
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"epoch": 6.133333333333334,
|
695 |
+
"eval_loss": 1.930755376815796,
|
696 |
+
"eval_runtime": 43.9812,
|
697 |
+
"eval_samples_per_second": 22.737,
|
698 |
+
"eval_steps_per_second": 2.842,
|
699 |
+
"step": 460
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 6.266666666666667,
|
703 |
+
"grad_norm": 2.432983875274658,
|
704 |
+
"learning_rate": 2.4296296296296298e-05,
|
705 |
+
"loss": 0.8858,
|
706 |
+
"step": 470
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 6.266666666666667,
|
710 |
+
"eval_loss": 1.9468986988067627,
|
711 |
+
"eval_runtime": 43.9889,
|
712 |
+
"eval_samples_per_second": 22.733,
|
713 |
+
"eval_steps_per_second": 2.842,
|
714 |
+
"step": 470
|
715 |
+
},
|
716 |
+
{
|
717 |
+
"epoch": 6.4,
|
718 |
+
"grad_norm": 2.591848850250244,
|
719 |
+
"learning_rate": 2.3111111111111112e-05,
|
720 |
+
"loss": 0.9818,
|
721 |
+
"step": 480
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"epoch": 6.4,
|
725 |
+
"eval_loss": 1.9322350025177002,
|
726 |
+
"eval_runtime": 44.0412,
|
727 |
+
"eval_samples_per_second": 22.706,
|
728 |
+
"eval_steps_per_second": 2.838,
|
729 |
+
"step": 480
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 6.533333333333333,
|
733 |
+
"grad_norm": 2.5453197956085205,
|
734 |
+
"learning_rate": 2.192592592592593e-05,
|
735 |
+
"loss": 0.84,
|
736 |
+
"step": 490
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"epoch": 6.533333333333333,
|
740 |
+
"eval_loss": 1.9371347427368164,
|
741 |
+
"eval_runtime": 44.0174,
|
742 |
+
"eval_samples_per_second": 22.718,
|
743 |
+
"eval_steps_per_second": 2.84,
|
744 |
+
"step": 490
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 6.666666666666667,
|
748 |
+
"grad_norm": 2.4433412551879883,
|
749 |
+
"learning_rate": 2.074074074074074e-05,
|
750 |
+
"loss": 0.9686,
|
751 |
+
"step": 500
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 6.666666666666667,
|
755 |
+
"eval_loss": 1.9340929985046387,
|
756 |
+
"eval_runtime": 43.9473,
|
757 |
+
"eval_samples_per_second": 22.755,
|
758 |
+
"eval_steps_per_second": 2.844,
|
759 |
+
"step": 500
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 6.8,
|
763 |
+
"grad_norm": 2.7762234210968018,
|
764 |
+
"learning_rate": 1.9555555555555557e-05,
|
765 |
+
"loss": 0.974,
|
766 |
+
"step": 510
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 6.8,
|
770 |
+
"eval_loss": 1.936902642250061,
|
771 |
+
"eval_runtime": 43.9918,
|
772 |
+
"eval_samples_per_second": 22.732,
|
773 |
+
"eval_steps_per_second": 2.841,
|
774 |
+
"step": 510
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 6.933333333333334,
|
778 |
+
"grad_norm": 2.706693410873413,
|
779 |
+
"learning_rate": 1.837037037037037e-05,
|
780 |
+
"loss": 0.9366,
|
781 |
+
"step": 520
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"epoch": 6.933333333333334,
|
785 |
+
"eval_loss": 1.9351890087127686,
|
786 |
+
"eval_runtime": 43.9647,
|
787 |
+
"eval_samples_per_second": 22.746,
|
788 |
+
"eval_steps_per_second": 2.843,
|
789 |
+
"step": 520
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 7.066666666666666,
|
793 |
+
"grad_norm": 2.338547706604004,
|
794 |
+
"learning_rate": 1.7185185185185185e-05,
|
795 |
+
"loss": 0.9285,
|
796 |
+
"step": 530
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"epoch": 7.066666666666666,
|
800 |
+
"eval_loss": 1.9464186429977417,
|
801 |
+
"eval_runtime": 43.9646,
|
802 |
+
"eval_samples_per_second": 22.746,
|
803 |
+
"eval_steps_per_second": 2.843,
|
804 |
+
"step": 530
|
805 |
+
},
|
806 |
+
{
|
807 |
+
"epoch": 7.2,
|
808 |
+
"grad_norm": 2.846348285675049,
|
809 |
+
"learning_rate": 1.6000000000000003e-05,
|
810 |
+
"loss": 0.8663,
|
811 |
+
"step": 540
|
812 |
+
},
|
813 |
+
{
|
814 |
+
"epoch": 7.2,
|
815 |
+
"eval_loss": 1.9812690019607544,
|
816 |
+
"eval_runtime": 43.966,
|
817 |
+
"eval_samples_per_second": 22.745,
|
818 |
+
"eval_steps_per_second": 2.843,
|
819 |
+
"step": 540
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 7.333333333333333,
|
823 |
+
"grad_norm": 2.754952907562256,
|
824 |
+
"learning_rate": 1.4814814814814815e-05,
|
825 |
+
"loss": 0.8033,
|
826 |
+
"step": 550
|
827 |
+
},
|
828 |
+
{
|
829 |
+
"epoch": 7.333333333333333,
|
830 |
+
"eval_loss": 1.9769660234451294,
|
831 |
+
"eval_runtime": 43.9067,
|
832 |
+
"eval_samples_per_second": 22.776,
|
833 |
+
"eval_steps_per_second": 2.847,
|
834 |
+
"step": 550
|
835 |
+
},
|
836 |
+
{
|
837 |
+
"epoch": 7.466666666666667,
|
838 |
+
"grad_norm": 2.7049484252929688,
|
839 |
+
"learning_rate": 1.362962962962963e-05,
|
840 |
+
"loss": 0.8823,
|
841 |
+
"step": 560
|
842 |
+
},
|
843 |
+
{
|
844 |
+
"epoch": 7.466666666666667,
|
845 |
+
"eval_loss": 1.9782260656356812,
|
846 |
+
"eval_runtime": 43.8715,
|
847 |
+
"eval_samples_per_second": 22.794,
|
848 |
+
"eval_steps_per_second": 2.849,
|
849 |
+
"step": 560
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 7.6,
|
853 |
+
"grad_norm": 2.9233956336975098,
|
854 |
+
"learning_rate": 1.2444444444444446e-05,
|
855 |
+
"loss": 0.8841,
|
856 |
+
"step": 570
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 7.6,
|
860 |
+
"eval_loss": 1.975508451461792,
|
861 |
+
"eval_runtime": 43.8529,
|
862 |
+
"eval_samples_per_second": 22.804,
|
863 |
+
"eval_steps_per_second": 2.85,
|
864 |
+
"step": 570
|
865 |
+
},
|
866 |
+
{
|
867 |
+
"epoch": 7.733333333333333,
|
868 |
+
"grad_norm": 3.2836148738861084,
|
869 |
+
"learning_rate": 1.125925925925926e-05,
|
870 |
+
"loss": 0.8404,
|
871 |
+
"step": 580
|
872 |
+
},
|
873 |
+
{
|
874 |
+
"epoch": 7.733333333333333,
|
875 |
+
"eval_loss": 1.9755034446716309,
|
876 |
+
"eval_runtime": 43.8744,
|
877 |
+
"eval_samples_per_second": 22.792,
|
878 |
+
"eval_steps_per_second": 2.849,
|
879 |
+
"step": 580
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 7.866666666666667,
|
883 |
+
"grad_norm": 2.717045783996582,
|
884 |
+
"learning_rate": 1.0074074074074074e-05,
|
885 |
+
"loss": 0.9189,
|
886 |
+
"step": 590
|
887 |
+
},
|
888 |
+
{
|
889 |
+
"epoch": 7.866666666666667,
|
890 |
+
"eval_loss": 1.981050729751587,
|
891 |
+
"eval_runtime": 43.8841,
|
892 |
+
"eval_samples_per_second": 22.787,
|
893 |
+
"eval_steps_per_second": 2.848,
|
894 |
+
"step": 590
|
895 |
+
}
|
896 |
+
],
|
897 |
+
"logging_steps": 10,
|
898 |
+
"max_steps": 675,
|
899 |
+
"num_input_tokens_seen": 0,
|
900 |
+
"num_train_epochs": 9,
|
901 |
+
"save_steps": 10,
|
902 |
+
"stateful_callbacks": {
|
903 |
+
"TrainerControl": {
|
904 |
+
"args": {
|
905 |
+
"should_epoch_stop": false,
|
906 |
+
"should_evaluate": false,
|
907 |
+
"should_log": false,
|
908 |
+
"should_save": true,
|
909 |
+
"should_training_stop": false
|
910 |
+
},
|
911 |
+
"attributes": {}
|
912 |
+
}
|
913 |
+
},
|
914 |
+
"total_flos": 9.66778247184384e+16,
|
915 |
+
"train_batch_size": 8,
|
916 |
+
"trial_name": null,
|
917 |
+
"trial_params": null
|
918 |
+
}
|
output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-600/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-600/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"dense",
|
24 |
+
"query_key_value",
|
25 |
+
"dense_h_to_4h",
|
26 |
+
"dense_4h_to_h"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-600/trainer_state.json
ADDED
@@ -0,0 +1,933 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.6284925937652588,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-80",
|
4 |
+
"epoch": 8.0,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 600,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.37591353058815,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.5979,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.6375348567962646,
|
21 |
+
"eval_runtime": 43.9032,
|
22 |
+
"eval_samples_per_second": 22.777,
|
23 |
+
"eval_steps_per_second": 2.847,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.4210415482521057,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.624,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.6352741718292236,
|
36 |
+
"eval_runtime": 44.0038,
|
37 |
+
"eval_samples_per_second": 22.725,
|
38 |
+
"eval_steps_per_second": 2.841,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.3714869022369385,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.6205,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.633917212486267,
|
51 |
+
"eval_runtime": 43.9878,
|
52 |
+
"eval_samples_per_second": 22.734,
|
53 |
+
"eval_steps_per_second": 2.842,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.36149370670318604,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.6165,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.6323453187942505,
|
66 |
+
"eval_runtime": 43.9629,
|
67 |
+
"eval_samples_per_second": 22.746,
|
68 |
+
"eval_steps_per_second": 2.843,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.35420870780944824,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.6599,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.6314094066619873,
|
81 |
+
"eval_runtime": 43.9048,
|
82 |
+
"eval_samples_per_second": 22.777,
|
83 |
+
"eval_steps_per_second": 2.847,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.33472639322280884,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.5591,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.6304500102996826,
|
96 |
+
"eval_runtime": 44.0293,
|
97 |
+
"eval_samples_per_second": 22.712,
|
98 |
+
"eval_steps_per_second": 2.839,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.3210572898387909,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.6328,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.6291298866271973,
|
111 |
+
"eval_runtime": 43.8599,
|
112 |
+
"eval_samples_per_second": 22.8,
|
113 |
+
"eval_steps_per_second": 2.85,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.32792502641677856,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.5967,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.6284925937652588,
|
126 |
+
"eval_runtime": 43.8492,
|
127 |
+
"eval_samples_per_second": 22.805,
|
128 |
+
"eval_steps_per_second": 2.851,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.457350492477417,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.5461,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.6317176818847656,
|
141 |
+
"eval_runtime": 43.8568,
|
142 |
+
"eval_samples_per_second": 22.801,
|
143 |
+
"eval_steps_per_second": 2.85,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.6296346187591553,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.5933,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.635717511177063,
|
156 |
+
"eval_runtime": 43.8409,
|
157 |
+
"eval_samples_per_second": 22.81,
|
158 |
+
"eval_steps_per_second": 2.851,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.7165963053703308,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.5319,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.6375973224639893,
|
171 |
+
"eval_runtime": 43.8486,
|
172 |
+
"eval_samples_per_second": 22.806,
|
173 |
+
"eval_steps_per_second": 2.851,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.7370977997779846,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.5413,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.6369796991348267,
|
186 |
+
"eval_runtime": 43.9803,
|
187 |
+
"eval_samples_per_second": 22.737,
|
188 |
+
"eval_steps_per_second": 2.842,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.726448118686676,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.5226,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.6377675533294678,
|
201 |
+
"eval_runtime": 43.8627,
|
202 |
+
"eval_samples_per_second": 22.798,
|
203 |
+
"eval_steps_per_second": 2.85,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.7822732925415039,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.5477,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.6378459930419922,
|
216 |
+
"eval_runtime": 43.9081,
|
217 |
+
"eval_samples_per_second": 22.775,
|
218 |
+
"eval_steps_per_second": 2.847,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.7607081532478333,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 1.5604,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 1.637563705444336,
|
231 |
+
"eval_runtime": 43.9092,
|
232 |
+
"eval_samples_per_second": 22.774,
|
233 |
+
"eval_steps_per_second": 2.847,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 0.9361194372177124,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 1.4091,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 1.6557352542877197,
|
246 |
+
"eval_runtime": 43.9308,
|
247 |
+
"eval_samples_per_second": 22.763,
|
248 |
+
"eval_steps_per_second": 2.845,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 1.0848534107208252,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 1.4629,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 1.6792665719985962,
|
261 |
+
"eval_runtime": 43.8829,
|
262 |
+
"eval_samples_per_second": 22.788,
|
263 |
+
"eval_steps_per_second": 2.848,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 1.0759488344192505,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 1.3685,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 1.682196855545044,
|
276 |
+
"eval_runtime": 43.8735,
|
277 |
+
"eval_samples_per_second": 22.793,
|
278 |
+
"eval_steps_per_second": 2.849,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 1.2871410846710205,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 1.4443,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 1.6869845390319824,
|
291 |
+
"eval_runtime": 43.8534,
|
292 |
+
"eval_samples_per_second": 22.803,
|
293 |
+
"eval_steps_per_second": 2.85,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 1.2004164457321167,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 1.3451,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 1.6853325366973877,
|
306 |
+
"eval_runtime": 43.8718,
|
307 |
+
"eval_samples_per_second": 22.794,
|
308 |
+
"eval_steps_per_second": 2.849,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 1.2714128494262695,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 1.4547,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 1.6859557628631592,
|
321 |
+
"eval_runtime": 43.8724,
|
322 |
+
"eval_samples_per_second": 22.793,
|
323 |
+
"eval_steps_per_second": 2.849,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 1.3297241926193237,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 1.4088,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 1.6856082677841187,
|
336 |
+
"eval_runtime": 43.8409,
|
337 |
+
"eval_samples_per_second": 22.81,
|
338 |
+
"eval_steps_per_second": 2.851,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 1.1967905759811401,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 1.3735,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 1.7015950679779053,
|
351 |
+
"eval_runtime": 43.8446,
|
352 |
+
"eval_samples_per_second": 22.808,
|
353 |
+
"eval_steps_per_second": 2.851,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 1.5186768770217896,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 1.2487,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 1.7492223978042603,
|
366 |
+
"eval_runtime": 43.84,
|
367 |
+
"eval_samples_per_second": 22.81,
|
368 |
+
"eval_steps_per_second": 2.851,
|
369 |
+
"step": 240
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.3333333333333335,
|
373 |
+
"grad_norm": 1.5129271745681763,
|
374 |
+
"learning_rate": 5.037037037037037e-05,
|
375 |
+
"loss": 1.2959,
|
376 |
+
"step": 250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 3.3333333333333335,
|
380 |
+
"eval_loss": 1.7475690841674805,
|
381 |
+
"eval_runtime": 43.8475,
|
382 |
+
"eval_samples_per_second": 22.806,
|
383 |
+
"eval_steps_per_second": 2.851,
|
384 |
+
"step": 250
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 3.466666666666667,
|
388 |
+
"grad_norm": 1.5553545951843262,
|
389 |
+
"learning_rate": 4.918518518518519e-05,
|
390 |
+
"loss": 1.278,
|
391 |
+
"step": 260
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 3.466666666666667,
|
395 |
+
"eval_loss": 1.749650239944458,
|
396 |
+
"eval_runtime": 43.8575,
|
397 |
+
"eval_samples_per_second": 22.801,
|
398 |
+
"eval_steps_per_second": 2.85,
|
399 |
+
"step": 260
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 3.6,
|
403 |
+
"grad_norm": 1.6911894083023071,
|
404 |
+
"learning_rate": 4.8e-05,
|
405 |
+
"loss": 1.1815,
|
406 |
+
"step": 270
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 3.6,
|
410 |
+
"eval_loss": 1.751675009727478,
|
411 |
+
"eval_runtime": 43.8693,
|
412 |
+
"eval_samples_per_second": 22.795,
|
413 |
+
"eval_steps_per_second": 2.849,
|
414 |
+
"step": 270
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 3.7333333333333334,
|
418 |
+
"grad_norm": 1.7207773923873901,
|
419 |
+
"learning_rate": 4.681481481481481e-05,
|
420 |
+
"loss": 1.227,
|
421 |
+
"step": 280
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 3.7333333333333334,
|
425 |
+
"eval_loss": 1.7532404661178589,
|
426 |
+
"eval_runtime": 43.9788,
|
427 |
+
"eval_samples_per_second": 22.738,
|
428 |
+
"eval_steps_per_second": 2.842,
|
429 |
+
"step": 280
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 3.8666666666666667,
|
433 |
+
"grad_norm": 1.6659716367721558,
|
434 |
+
"learning_rate": 4.5629629629629636e-05,
|
435 |
+
"loss": 1.2699,
|
436 |
+
"step": 290
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 3.8666666666666667,
|
440 |
+
"eval_loss": 1.7546659708023071,
|
441 |
+
"eval_runtime": 44.0345,
|
442 |
+
"eval_samples_per_second": 22.709,
|
443 |
+
"eval_steps_per_second": 2.839,
|
444 |
+
"step": 290
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 4.0,
|
448 |
+
"grad_norm": 1.7288299798965454,
|
449 |
+
"learning_rate": 4.444444444444445e-05,
|
450 |
+
"loss": 1.2414,
|
451 |
+
"step": 300
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 4.0,
|
455 |
+
"eval_loss": 1.7534445524215698,
|
456 |
+
"eval_runtime": 43.9971,
|
457 |
+
"eval_samples_per_second": 22.729,
|
458 |
+
"eval_steps_per_second": 2.841,
|
459 |
+
"step": 300
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 4.133333333333334,
|
463 |
+
"grad_norm": 1.8176274299621582,
|
464 |
+
"learning_rate": 4.3259259259259264e-05,
|
465 |
+
"loss": 1.1231,
|
466 |
+
"step": 310
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 4.133333333333334,
|
470 |
+
"eval_loss": 1.8118728399276733,
|
471 |
+
"eval_runtime": 44.0255,
|
472 |
+
"eval_samples_per_second": 22.714,
|
473 |
+
"eval_steps_per_second": 2.839,
|
474 |
+
"step": 310
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 4.266666666666667,
|
478 |
+
"grad_norm": 1.881231427192688,
|
479 |
+
"learning_rate": 4.2074074074074075e-05,
|
480 |
+
"loss": 1.1311,
|
481 |
+
"step": 320
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 4.266666666666667,
|
485 |
+
"eval_loss": 1.824351191520691,
|
486 |
+
"eval_runtime": 43.871,
|
487 |
+
"eval_samples_per_second": 22.794,
|
488 |
+
"eval_steps_per_second": 2.849,
|
489 |
+
"step": 320
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 4.4,
|
493 |
+
"grad_norm": 1.8982057571411133,
|
494 |
+
"learning_rate": 4.088888888888889e-05,
|
495 |
+
"loss": 1.1046,
|
496 |
+
"step": 330
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 4.4,
|
500 |
+
"eval_loss": 1.813114881515503,
|
501 |
+
"eval_runtime": 43.8506,
|
502 |
+
"eval_samples_per_second": 22.805,
|
503 |
+
"eval_steps_per_second": 2.851,
|
504 |
+
"step": 330
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 4.533333333333333,
|
508 |
+
"grad_norm": 1.9931222200393677,
|
509 |
+
"learning_rate": 3.970370370370371e-05,
|
510 |
+
"loss": 1.0596,
|
511 |
+
"step": 340
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"epoch": 4.533333333333333,
|
515 |
+
"eval_loss": 1.8187421560287476,
|
516 |
+
"eval_runtime": 43.8637,
|
517 |
+
"eval_samples_per_second": 22.798,
|
518 |
+
"eval_steps_per_second": 2.85,
|
519 |
+
"step": 340
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 4.666666666666667,
|
523 |
+
"grad_norm": 2.02201247215271,
|
524 |
+
"learning_rate": 3.851851851851852e-05,
|
525 |
+
"loss": 1.1469,
|
526 |
+
"step": 350
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 4.666666666666667,
|
530 |
+
"eval_loss": 1.8229775428771973,
|
531 |
+
"eval_runtime": 43.9111,
|
532 |
+
"eval_samples_per_second": 22.773,
|
533 |
+
"eval_steps_per_second": 2.847,
|
534 |
+
"step": 350
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 4.8,
|
538 |
+
"grad_norm": 2.220625638961792,
|
539 |
+
"learning_rate": 3.733333333333334e-05,
|
540 |
+
"loss": 1.1344,
|
541 |
+
"step": 360
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 4.8,
|
545 |
+
"eval_loss": 1.817935585975647,
|
546 |
+
"eval_runtime": 43.9794,
|
547 |
+
"eval_samples_per_second": 22.738,
|
548 |
+
"eval_steps_per_second": 2.842,
|
549 |
+
"step": 360
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 4.933333333333334,
|
553 |
+
"grad_norm": 2.0401487350463867,
|
554 |
+
"learning_rate": 3.614814814814815e-05,
|
555 |
+
"loss": 1.1922,
|
556 |
+
"step": 370
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 4.933333333333334,
|
560 |
+
"eval_loss": 1.8182997703552246,
|
561 |
+
"eval_runtime": 43.8807,
|
562 |
+
"eval_samples_per_second": 22.789,
|
563 |
+
"eval_steps_per_second": 2.849,
|
564 |
+
"step": 370
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 5.066666666666666,
|
568 |
+
"grad_norm": 1.8822356462478638,
|
569 |
+
"learning_rate": 3.4962962962962965e-05,
|
570 |
+
"loss": 1.0486,
|
571 |
+
"step": 380
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 5.066666666666666,
|
575 |
+
"eval_loss": 1.8343256711959839,
|
576 |
+
"eval_runtime": 43.9715,
|
577 |
+
"eval_samples_per_second": 22.742,
|
578 |
+
"eval_steps_per_second": 2.843,
|
579 |
+
"step": 380
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 5.2,
|
583 |
+
"grad_norm": 2.383836030960083,
|
584 |
+
"learning_rate": 3.377777777777778e-05,
|
585 |
+
"loss": 1.0039,
|
586 |
+
"step": 390
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"epoch": 5.2,
|
590 |
+
"eval_loss": 1.8889024257659912,
|
591 |
+
"eval_runtime": 43.906,
|
592 |
+
"eval_samples_per_second": 22.776,
|
593 |
+
"eval_steps_per_second": 2.847,
|
594 |
+
"step": 390
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 5.333333333333333,
|
598 |
+
"grad_norm": 2.403280019760132,
|
599 |
+
"learning_rate": 3.259259259259259e-05,
|
600 |
+
"loss": 0.9946,
|
601 |
+
"step": 400
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 5.333333333333333,
|
605 |
+
"eval_loss": 1.8832476139068604,
|
606 |
+
"eval_runtime": 43.8654,
|
607 |
+
"eval_samples_per_second": 22.797,
|
608 |
+
"eval_steps_per_second": 2.85,
|
609 |
+
"step": 400
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 5.466666666666667,
|
613 |
+
"grad_norm": 2.34110164642334,
|
614 |
+
"learning_rate": 3.140740740740741e-05,
|
615 |
+
"loss": 1.0302,
|
616 |
+
"step": 410
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"epoch": 5.466666666666667,
|
620 |
+
"eval_loss": 1.8810956478118896,
|
621 |
+
"eval_runtime": 43.8937,
|
622 |
+
"eval_samples_per_second": 22.782,
|
623 |
+
"eval_steps_per_second": 2.848,
|
624 |
+
"step": 410
|
625 |
+
},
|
626 |
+
{
|
627 |
+
"epoch": 5.6,
|
628 |
+
"grad_norm": 2.32973575592041,
|
629 |
+
"learning_rate": 3.0222222222222225e-05,
|
630 |
+
"loss": 1.0062,
|
631 |
+
"step": 420
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"epoch": 5.6,
|
635 |
+
"eval_loss": 1.8806273937225342,
|
636 |
+
"eval_runtime": 43.9433,
|
637 |
+
"eval_samples_per_second": 22.757,
|
638 |
+
"eval_steps_per_second": 2.845,
|
639 |
+
"step": 420
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 5.733333333333333,
|
643 |
+
"grad_norm": 2.426825523376465,
|
644 |
+
"learning_rate": 2.9037037037037042e-05,
|
645 |
+
"loss": 1.0493,
|
646 |
+
"step": 430
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 5.733333333333333,
|
650 |
+
"eval_loss": 1.8787455558776855,
|
651 |
+
"eval_runtime": 43.9876,
|
652 |
+
"eval_samples_per_second": 22.734,
|
653 |
+
"eval_steps_per_second": 2.842,
|
654 |
+
"step": 430
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 5.866666666666667,
|
658 |
+
"grad_norm": 2.2383341789245605,
|
659 |
+
"learning_rate": 2.7851851851851856e-05,
|
660 |
+
"loss": 1.0728,
|
661 |
+
"step": 440
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 5.866666666666667,
|
665 |
+
"eval_loss": 1.8792084455490112,
|
666 |
+
"eval_runtime": 43.9918,
|
667 |
+
"eval_samples_per_second": 22.732,
|
668 |
+
"eval_steps_per_second": 2.841,
|
669 |
+
"step": 440
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 6.0,
|
673 |
+
"grad_norm": 2.4239635467529297,
|
674 |
+
"learning_rate": 2.6666666666666667e-05,
|
675 |
+
"loss": 1.0199,
|
676 |
+
"step": 450
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 6.0,
|
680 |
+
"eval_loss": 1.8804157972335815,
|
681 |
+
"eval_runtime": 43.9689,
|
682 |
+
"eval_samples_per_second": 22.743,
|
683 |
+
"eval_steps_per_second": 2.843,
|
684 |
+
"step": 450
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"epoch": 6.133333333333334,
|
688 |
+
"grad_norm": 3.0071866512298584,
|
689 |
+
"learning_rate": 2.5481481481481484e-05,
|
690 |
+
"loss": 0.9486,
|
691 |
+
"step": 460
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"epoch": 6.133333333333334,
|
695 |
+
"eval_loss": 1.930755376815796,
|
696 |
+
"eval_runtime": 43.9812,
|
697 |
+
"eval_samples_per_second": 22.737,
|
698 |
+
"eval_steps_per_second": 2.842,
|
699 |
+
"step": 460
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 6.266666666666667,
|
703 |
+
"grad_norm": 2.432983875274658,
|
704 |
+
"learning_rate": 2.4296296296296298e-05,
|
705 |
+
"loss": 0.8858,
|
706 |
+
"step": 470
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 6.266666666666667,
|
710 |
+
"eval_loss": 1.9468986988067627,
|
711 |
+
"eval_runtime": 43.9889,
|
712 |
+
"eval_samples_per_second": 22.733,
|
713 |
+
"eval_steps_per_second": 2.842,
|
714 |
+
"step": 470
|
715 |
+
},
|
716 |
+
{
|
717 |
+
"epoch": 6.4,
|
718 |
+
"grad_norm": 2.591848850250244,
|
719 |
+
"learning_rate": 2.3111111111111112e-05,
|
720 |
+
"loss": 0.9818,
|
721 |
+
"step": 480
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"epoch": 6.4,
|
725 |
+
"eval_loss": 1.9322350025177002,
|
726 |
+
"eval_runtime": 44.0412,
|
727 |
+
"eval_samples_per_second": 22.706,
|
728 |
+
"eval_steps_per_second": 2.838,
|
729 |
+
"step": 480
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 6.533333333333333,
|
733 |
+
"grad_norm": 2.5453197956085205,
|
734 |
+
"learning_rate": 2.192592592592593e-05,
|
735 |
+
"loss": 0.84,
|
736 |
+
"step": 490
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"epoch": 6.533333333333333,
|
740 |
+
"eval_loss": 1.9371347427368164,
|
741 |
+
"eval_runtime": 44.0174,
|
742 |
+
"eval_samples_per_second": 22.718,
|
743 |
+
"eval_steps_per_second": 2.84,
|
744 |
+
"step": 490
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 6.666666666666667,
|
748 |
+
"grad_norm": 2.4433412551879883,
|
749 |
+
"learning_rate": 2.074074074074074e-05,
|
750 |
+
"loss": 0.9686,
|
751 |
+
"step": 500
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 6.666666666666667,
|
755 |
+
"eval_loss": 1.9340929985046387,
|
756 |
+
"eval_runtime": 43.9473,
|
757 |
+
"eval_samples_per_second": 22.755,
|
758 |
+
"eval_steps_per_second": 2.844,
|
759 |
+
"step": 500
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 6.8,
|
763 |
+
"grad_norm": 2.7762234210968018,
|
764 |
+
"learning_rate": 1.9555555555555557e-05,
|
765 |
+
"loss": 0.974,
|
766 |
+
"step": 510
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 6.8,
|
770 |
+
"eval_loss": 1.936902642250061,
|
771 |
+
"eval_runtime": 43.9918,
|
772 |
+
"eval_samples_per_second": 22.732,
|
773 |
+
"eval_steps_per_second": 2.841,
|
774 |
+
"step": 510
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 6.933333333333334,
|
778 |
+
"grad_norm": 2.706693410873413,
|
779 |
+
"learning_rate": 1.837037037037037e-05,
|
780 |
+
"loss": 0.9366,
|
781 |
+
"step": 520
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"epoch": 6.933333333333334,
|
785 |
+
"eval_loss": 1.9351890087127686,
|
786 |
+
"eval_runtime": 43.9647,
|
787 |
+
"eval_samples_per_second": 22.746,
|
788 |
+
"eval_steps_per_second": 2.843,
|
789 |
+
"step": 520
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 7.066666666666666,
|
793 |
+
"grad_norm": 2.338547706604004,
|
794 |
+
"learning_rate": 1.7185185185185185e-05,
|
795 |
+
"loss": 0.9285,
|
796 |
+
"step": 530
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"epoch": 7.066666666666666,
|
800 |
+
"eval_loss": 1.9464186429977417,
|
801 |
+
"eval_runtime": 43.9646,
|
802 |
+
"eval_samples_per_second": 22.746,
|
803 |
+
"eval_steps_per_second": 2.843,
|
804 |
+
"step": 530
|
805 |
+
},
|
806 |
+
{
|
807 |
+
"epoch": 7.2,
|
808 |
+
"grad_norm": 2.846348285675049,
|
809 |
+
"learning_rate": 1.6000000000000003e-05,
|
810 |
+
"loss": 0.8663,
|
811 |
+
"step": 540
|
812 |
+
},
|
813 |
+
{
|
814 |
+
"epoch": 7.2,
|
815 |
+
"eval_loss": 1.9812690019607544,
|
816 |
+
"eval_runtime": 43.966,
|
817 |
+
"eval_samples_per_second": 22.745,
|
818 |
+
"eval_steps_per_second": 2.843,
|
819 |
+
"step": 540
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 7.333333333333333,
|
823 |
+
"grad_norm": 2.754952907562256,
|
824 |
+
"learning_rate": 1.4814814814814815e-05,
|
825 |
+
"loss": 0.8033,
|
826 |
+
"step": 550
|
827 |
+
},
|
828 |
+
{
|
829 |
+
"epoch": 7.333333333333333,
|
830 |
+
"eval_loss": 1.9769660234451294,
|
831 |
+
"eval_runtime": 43.9067,
|
832 |
+
"eval_samples_per_second": 22.776,
|
833 |
+
"eval_steps_per_second": 2.847,
|
834 |
+
"step": 550
|
835 |
+
},
|
836 |
+
{
|
837 |
+
"epoch": 7.466666666666667,
|
838 |
+
"grad_norm": 2.7049484252929688,
|
839 |
+
"learning_rate": 1.362962962962963e-05,
|
840 |
+
"loss": 0.8823,
|
841 |
+
"step": 560
|
842 |
+
},
|
843 |
+
{
|
844 |
+
"epoch": 7.466666666666667,
|
845 |
+
"eval_loss": 1.9782260656356812,
|
846 |
+
"eval_runtime": 43.8715,
|
847 |
+
"eval_samples_per_second": 22.794,
|
848 |
+
"eval_steps_per_second": 2.849,
|
849 |
+
"step": 560
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 7.6,
|
853 |
+
"grad_norm": 2.9233956336975098,
|
854 |
+
"learning_rate": 1.2444444444444446e-05,
|
855 |
+
"loss": 0.8841,
|
856 |
+
"step": 570
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 7.6,
|
860 |
+
"eval_loss": 1.975508451461792,
|
861 |
+
"eval_runtime": 43.8529,
|
862 |
+
"eval_samples_per_second": 22.804,
|
863 |
+
"eval_steps_per_second": 2.85,
|
864 |
+
"step": 570
|
865 |
+
},
|
866 |
+
{
|
867 |
+
"epoch": 7.733333333333333,
|
868 |
+
"grad_norm": 3.2836148738861084,
|
869 |
+
"learning_rate": 1.125925925925926e-05,
|
870 |
+
"loss": 0.8404,
|
871 |
+
"step": 580
|
872 |
+
},
|
873 |
+
{
|
874 |
+
"epoch": 7.733333333333333,
|
875 |
+
"eval_loss": 1.9755034446716309,
|
876 |
+
"eval_runtime": 43.8744,
|
877 |
+
"eval_samples_per_second": 22.792,
|
878 |
+
"eval_steps_per_second": 2.849,
|
879 |
+
"step": 580
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 7.866666666666667,
|
883 |
+
"grad_norm": 2.717045783996582,
|
884 |
+
"learning_rate": 1.0074074074074074e-05,
|
885 |
+
"loss": 0.9189,
|
886 |
+
"step": 590
|
887 |
+
},
|
888 |
+
{
|
889 |
+
"epoch": 7.866666666666667,
|
890 |
+
"eval_loss": 1.981050729751587,
|
891 |
+
"eval_runtime": 43.8841,
|
892 |
+
"eval_samples_per_second": 22.787,
|
893 |
+
"eval_steps_per_second": 2.848,
|
894 |
+
"step": 590
|
895 |
+
},
|
896 |
+
{
|
897 |
+
"epoch": 8.0,
|
898 |
+
"grad_norm": 2.6528029441833496,
|
899 |
+
"learning_rate": 8.888888888888888e-06,
|
900 |
+
"loss": 0.8777,
|
901 |
+
"step": 600
|
902 |
+
},
|
903 |
+
{
|
904 |
+
"epoch": 8.0,
|
905 |
+
"eval_loss": 1.9789155721664429,
|
906 |
+
"eval_runtime": 44.2778,
|
907 |
+
"eval_samples_per_second": 22.585,
|
908 |
+
"eval_steps_per_second": 2.823,
|
909 |
+
"step": 600
|
910 |
+
}
|
911 |
+
],
|
912 |
+
"logging_steps": 10,
|
913 |
+
"max_steps": 675,
|
914 |
+
"num_input_tokens_seen": 0,
|
915 |
+
"num_train_epochs": 9,
|
916 |
+
"save_steps": 10,
|
917 |
+
"stateful_callbacks": {
|
918 |
+
"TrainerControl": {
|
919 |
+
"args": {
|
920 |
+
"should_epoch_stop": false,
|
921 |
+
"should_evaluate": false,
|
922 |
+
"should_log": false,
|
923 |
+
"should_save": true,
|
924 |
+
"should_training_stop": false
|
925 |
+
},
|
926 |
+
"attributes": {}
|
927 |
+
}
|
928 |
+
},
|
929 |
+
"total_flos": 9.8316431917056e+16,
|
930 |
+
"train_batch_size": 8,
|
931 |
+
"trial_name": null,
|
932 |
+
"trial_params": null
|
933 |
+
}
|
output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-610/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-610/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"dense",
|
24 |
+
"query_key_value",
|
25 |
+
"dense_h_to_4h",
|
26 |
+
"dense_4h_to_h"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-610/trainer_state.json
ADDED
@@ -0,0 +1,948 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.6284925937652588,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-80",
|
4 |
+
"epoch": 8.133333333333333,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 610,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.37591353058815,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.5979,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.6375348567962646,
|
21 |
+
"eval_runtime": 43.9032,
|
22 |
+
"eval_samples_per_second": 22.777,
|
23 |
+
"eval_steps_per_second": 2.847,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.4210415482521057,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.624,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.6352741718292236,
|
36 |
+
"eval_runtime": 44.0038,
|
37 |
+
"eval_samples_per_second": 22.725,
|
38 |
+
"eval_steps_per_second": 2.841,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.3714869022369385,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.6205,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.633917212486267,
|
51 |
+
"eval_runtime": 43.9878,
|
52 |
+
"eval_samples_per_second": 22.734,
|
53 |
+
"eval_steps_per_second": 2.842,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.36149370670318604,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.6165,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.6323453187942505,
|
66 |
+
"eval_runtime": 43.9629,
|
67 |
+
"eval_samples_per_second": 22.746,
|
68 |
+
"eval_steps_per_second": 2.843,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.35420870780944824,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.6599,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.6314094066619873,
|
81 |
+
"eval_runtime": 43.9048,
|
82 |
+
"eval_samples_per_second": 22.777,
|
83 |
+
"eval_steps_per_second": 2.847,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.33472639322280884,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.5591,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.6304500102996826,
|
96 |
+
"eval_runtime": 44.0293,
|
97 |
+
"eval_samples_per_second": 22.712,
|
98 |
+
"eval_steps_per_second": 2.839,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.3210572898387909,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.6328,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.6291298866271973,
|
111 |
+
"eval_runtime": 43.8599,
|
112 |
+
"eval_samples_per_second": 22.8,
|
113 |
+
"eval_steps_per_second": 2.85,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.32792502641677856,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.5967,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.6284925937652588,
|
126 |
+
"eval_runtime": 43.8492,
|
127 |
+
"eval_samples_per_second": 22.805,
|
128 |
+
"eval_steps_per_second": 2.851,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.457350492477417,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.5461,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.6317176818847656,
|
141 |
+
"eval_runtime": 43.8568,
|
142 |
+
"eval_samples_per_second": 22.801,
|
143 |
+
"eval_steps_per_second": 2.85,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.6296346187591553,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.5933,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.635717511177063,
|
156 |
+
"eval_runtime": 43.8409,
|
157 |
+
"eval_samples_per_second": 22.81,
|
158 |
+
"eval_steps_per_second": 2.851,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.7165963053703308,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.5319,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.6375973224639893,
|
171 |
+
"eval_runtime": 43.8486,
|
172 |
+
"eval_samples_per_second": 22.806,
|
173 |
+
"eval_steps_per_second": 2.851,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.7370977997779846,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.5413,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.6369796991348267,
|
186 |
+
"eval_runtime": 43.9803,
|
187 |
+
"eval_samples_per_second": 22.737,
|
188 |
+
"eval_steps_per_second": 2.842,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.726448118686676,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.5226,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.6377675533294678,
|
201 |
+
"eval_runtime": 43.8627,
|
202 |
+
"eval_samples_per_second": 22.798,
|
203 |
+
"eval_steps_per_second": 2.85,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.7822732925415039,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.5477,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.6378459930419922,
|
216 |
+
"eval_runtime": 43.9081,
|
217 |
+
"eval_samples_per_second": 22.775,
|
218 |
+
"eval_steps_per_second": 2.847,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.7607081532478333,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 1.5604,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 1.637563705444336,
|
231 |
+
"eval_runtime": 43.9092,
|
232 |
+
"eval_samples_per_second": 22.774,
|
233 |
+
"eval_steps_per_second": 2.847,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 0.9361194372177124,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 1.4091,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 1.6557352542877197,
|
246 |
+
"eval_runtime": 43.9308,
|
247 |
+
"eval_samples_per_second": 22.763,
|
248 |
+
"eval_steps_per_second": 2.845,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 1.0848534107208252,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 1.4629,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 1.6792665719985962,
|
261 |
+
"eval_runtime": 43.8829,
|
262 |
+
"eval_samples_per_second": 22.788,
|
263 |
+
"eval_steps_per_second": 2.848,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 1.0759488344192505,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 1.3685,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 1.682196855545044,
|
276 |
+
"eval_runtime": 43.8735,
|
277 |
+
"eval_samples_per_second": 22.793,
|
278 |
+
"eval_steps_per_second": 2.849,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 1.2871410846710205,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 1.4443,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 1.6869845390319824,
|
291 |
+
"eval_runtime": 43.8534,
|
292 |
+
"eval_samples_per_second": 22.803,
|
293 |
+
"eval_steps_per_second": 2.85,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 1.2004164457321167,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 1.3451,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 1.6853325366973877,
|
306 |
+
"eval_runtime": 43.8718,
|
307 |
+
"eval_samples_per_second": 22.794,
|
308 |
+
"eval_steps_per_second": 2.849,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 1.2714128494262695,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 1.4547,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 1.6859557628631592,
|
321 |
+
"eval_runtime": 43.8724,
|
322 |
+
"eval_samples_per_second": 22.793,
|
323 |
+
"eval_steps_per_second": 2.849,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 1.3297241926193237,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 1.4088,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 1.6856082677841187,
|
336 |
+
"eval_runtime": 43.8409,
|
337 |
+
"eval_samples_per_second": 22.81,
|
338 |
+
"eval_steps_per_second": 2.851,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 1.1967905759811401,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 1.3735,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 1.7015950679779053,
|
351 |
+
"eval_runtime": 43.8446,
|
352 |
+
"eval_samples_per_second": 22.808,
|
353 |
+
"eval_steps_per_second": 2.851,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 1.5186768770217896,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 1.2487,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 1.7492223978042603,
|
366 |
+
"eval_runtime": 43.84,
|
367 |
+
"eval_samples_per_second": 22.81,
|
368 |
+
"eval_steps_per_second": 2.851,
|
369 |
+
"step": 240
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.3333333333333335,
|
373 |
+
"grad_norm": 1.5129271745681763,
|
374 |
+
"learning_rate": 5.037037037037037e-05,
|
375 |
+
"loss": 1.2959,
|
376 |
+
"step": 250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 3.3333333333333335,
|
380 |
+
"eval_loss": 1.7475690841674805,
|
381 |
+
"eval_runtime": 43.8475,
|
382 |
+
"eval_samples_per_second": 22.806,
|
383 |
+
"eval_steps_per_second": 2.851,
|
384 |
+
"step": 250
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 3.466666666666667,
|
388 |
+
"grad_norm": 1.5553545951843262,
|
389 |
+
"learning_rate": 4.918518518518519e-05,
|
390 |
+
"loss": 1.278,
|
391 |
+
"step": 260
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 3.466666666666667,
|
395 |
+
"eval_loss": 1.749650239944458,
|
396 |
+
"eval_runtime": 43.8575,
|
397 |
+
"eval_samples_per_second": 22.801,
|
398 |
+
"eval_steps_per_second": 2.85,
|
399 |
+
"step": 260
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 3.6,
|
403 |
+
"grad_norm": 1.6911894083023071,
|
404 |
+
"learning_rate": 4.8e-05,
|
405 |
+
"loss": 1.1815,
|
406 |
+
"step": 270
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 3.6,
|
410 |
+
"eval_loss": 1.751675009727478,
|
411 |
+
"eval_runtime": 43.8693,
|
412 |
+
"eval_samples_per_second": 22.795,
|
413 |
+
"eval_steps_per_second": 2.849,
|
414 |
+
"step": 270
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 3.7333333333333334,
|
418 |
+
"grad_norm": 1.7207773923873901,
|
419 |
+
"learning_rate": 4.681481481481481e-05,
|
420 |
+
"loss": 1.227,
|
421 |
+
"step": 280
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 3.7333333333333334,
|
425 |
+
"eval_loss": 1.7532404661178589,
|
426 |
+
"eval_runtime": 43.9788,
|
427 |
+
"eval_samples_per_second": 22.738,
|
428 |
+
"eval_steps_per_second": 2.842,
|
429 |
+
"step": 280
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 3.8666666666666667,
|
433 |
+
"grad_norm": 1.6659716367721558,
|
434 |
+
"learning_rate": 4.5629629629629636e-05,
|
435 |
+
"loss": 1.2699,
|
436 |
+
"step": 290
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 3.8666666666666667,
|
440 |
+
"eval_loss": 1.7546659708023071,
|
441 |
+
"eval_runtime": 44.0345,
|
442 |
+
"eval_samples_per_second": 22.709,
|
443 |
+
"eval_steps_per_second": 2.839,
|
444 |
+
"step": 290
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 4.0,
|
448 |
+
"grad_norm": 1.7288299798965454,
|
449 |
+
"learning_rate": 4.444444444444445e-05,
|
450 |
+
"loss": 1.2414,
|
451 |
+
"step": 300
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 4.0,
|
455 |
+
"eval_loss": 1.7534445524215698,
|
456 |
+
"eval_runtime": 43.9971,
|
457 |
+
"eval_samples_per_second": 22.729,
|
458 |
+
"eval_steps_per_second": 2.841,
|
459 |
+
"step": 300
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 4.133333333333334,
|
463 |
+
"grad_norm": 1.8176274299621582,
|
464 |
+
"learning_rate": 4.3259259259259264e-05,
|
465 |
+
"loss": 1.1231,
|
466 |
+
"step": 310
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 4.133333333333334,
|
470 |
+
"eval_loss": 1.8118728399276733,
|
471 |
+
"eval_runtime": 44.0255,
|
472 |
+
"eval_samples_per_second": 22.714,
|
473 |
+
"eval_steps_per_second": 2.839,
|
474 |
+
"step": 310
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 4.266666666666667,
|
478 |
+
"grad_norm": 1.881231427192688,
|
479 |
+
"learning_rate": 4.2074074074074075e-05,
|
480 |
+
"loss": 1.1311,
|
481 |
+
"step": 320
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 4.266666666666667,
|
485 |
+
"eval_loss": 1.824351191520691,
|
486 |
+
"eval_runtime": 43.871,
|
487 |
+
"eval_samples_per_second": 22.794,
|
488 |
+
"eval_steps_per_second": 2.849,
|
489 |
+
"step": 320
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 4.4,
|
493 |
+
"grad_norm": 1.8982057571411133,
|
494 |
+
"learning_rate": 4.088888888888889e-05,
|
495 |
+
"loss": 1.1046,
|
496 |
+
"step": 330
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 4.4,
|
500 |
+
"eval_loss": 1.813114881515503,
|
501 |
+
"eval_runtime": 43.8506,
|
502 |
+
"eval_samples_per_second": 22.805,
|
503 |
+
"eval_steps_per_second": 2.851,
|
504 |
+
"step": 330
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 4.533333333333333,
|
508 |
+
"grad_norm": 1.9931222200393677,
|
509 |
+
"learning_rate": 3.970370370370371e-05,
|
510 |
+
"loss": 1.0596,
|
511 |
+
"step": 340
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"epoch": 4.533333333333333,
|
515 |
+
"eval_loss": 1.8187421560287476,
|
516 |
+
"eval_runtime": 43.8637,
|
517 |
+
"eval_samples_per_second": 22.798,
|
518 |
+
"eval_steps_per_second": 2.85,
|
519 |
+
"step": 340
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 4.666666666666667,
|
523 |
+
"grad_norm": 2.02201247215271,
|
524 |
+
"learning_rate": 3.851851851851852e-05,
|
525 |
+
"loss": 1.1469,
|
526 |
+
"step": 350
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 4.666666666666667,
|
530 |
+
"eval_loss": 1.8229775428771973,
|
531 |
+
"eval_runtime": 43.9111,
|
532 |
+
"eval_samples_per_second": 22.773,
|
533 |
+
"eval_steps_per_second": 2.847,
|
534 |
+
"step": 350
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 4.8,
|
538 |
+
"grad_norm": 2.220625638961792,
|
539 |
+
"learning_rate": 3.733333333333334e-05,
|
540 |
+
"loss": 1.1344,
|
541 |
+
"step": 360
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 4.8,
|
545 |
+
"eval_loss": 1.817935585975647,
|
546 |
+
"eval_runtime": 43.9794,
|
547 |
+
"eval_samples_per_second": 22.738,
|
548 |
+
"eval_steps_per_second": 2.842,
|
549 |
+
"step": 360
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 4.933333333333334,
|
553 |
+
"grad_norm": 2.0401487350463867,
|
554 |
+
"learning_rate": 3.614814814814815e-05,
|
555 |
+
"loss": 1.1922,
|
556 |
+
"step": 370
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 4.933333333333334,
|
560 |
+
"eval_loss": 1.8182997703552246,
|
561 |
+
"eval_runtime": 43.8807,
|
562 |
+
"eval_samples_per_second": 22.789,
|
563 |
+
"eval_steps_per_second": 2.849,
|
564 |
+
"step": 370
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 5.066666666666666,
|
568 |
+
"grad_norm": 1.8822356462478638,
|
569 |
+
"learning_rate": 3.4962962962962965e-05,
|
570 |
+
"loss": 1.0486,
|
571 |
+
"step": 380
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 5.066666666666666,
|
575 |
+
"eval_loss": 1.8343256711959839,
|
576 |
+
"eval_runtime": 43.9715,
|
577 |
+
"eval_samples_per_second": 22.742,
|
578 |
+
"eval_steps_per_second": 2.843,
|
579 |
+
"step": 380
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 5.2,
|
583 |
+
"grad_norm": 2.383836030960083,
|
584 |
+
"learning_rate": 3.377777777777778e-05,
|
585 |
+
"loss": 1.0039,
|
586 |
+
"step": 390
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"epoch": 5.2,
|
590 |
+
"eval_loss": 1.8889024257659912,
|
591 |
+
"eval_runtime": 43.906,
|
592 |
+
"eval_samples_per_second": 22.776,
|
593 |
+
"eval_steps_per_second": 2.847,
|
594 |
+
"step": 390
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 5.333333333333333,
|
598 |
+
"grad_norm": 2.403280019760132,
|
599 |
+
"learning_rate": 3.259259259259259e-05,
|
600 |
+
"loss": 0.9946,
|
601 |
+
"step": 400
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 5.333333333333333,
|
605 |
+
"eval_loss": 1.8832476139068604,
|
606 |
+
"eval_runtime": 43.8654,
|
607 |
+
"eval_samples_per_second": 22.797,
|
608 |
+
"eval_steps_per_second": 2.85,
|
609 |
+
"step": 400
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 5.466666666666667,
|
613 |
+
"grad_norm": 2.34110164642334,
|
614 |
+
"learning_rate": 3.140740740740741e-05,
|
615 |
+
"loss": 1.0302,
|
616 |
+
"step": 410
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"epoch": 5.466666666666667,
|
620 |
+
"eval_loss": 1.8810956478118896,
|
621 |
+
"eval_runtime": 43.8937,
|
622 |
+
"eval_samples_per_second": 22.782,
|
623 |
+
"eval_steps_per_second": 2.848,
|
624 |
+
"step": 410
|
625 |
+
},
|
626 |
+
{
|
627 |
+
"epoch": 5.6,
|
628 |
+
"grad_norm": 2.32973575592041,
|
629 |
+
"learning_rate": 3.0222222222222225e-05,
|
630 |
+
"loss": 1.0062,
|
631 |
+
"step": 420
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"epoch": 5.6,
|
635 |
+
"eval_loss": 1.8806273937225342,
|
636 |
+
"eval_runtime": 43.9433,
|
637 |
+
"eval_samples_per_second": 22.757,
|
638 |
+
"eval_steps_per_second": 2.845,
|
639 |
+
"step": 420
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 5.733333333333333,
|
643 |
+
"grad_norm": 2.426825523376465,
|
644 |
+
"learning_rate": 2.9037037037037042e-05,
|
645 |
+
"loss": 1.0493,
|
646 |
+
"step": 430
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 5.733333333333333,
|
650 |
+
"eval_loss": 1.8787455558776855,
|
651 |
+
"eval_runtime": 43.9876,
|
652 |
+
"eval_samples_per_second": 22.734,
|
653 |
+
"eval_steps_per_second": 2.842,
|
654 |
+
"step": 430
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 5.866666666666667,
|
658 |
+
"grad_norm": 2.2383341789245605,
|
659 |
+
"learning_rate": 2.7851851851851856e-05,
|
660 |
+
"loss": 1.0728,
|
661 |
+
"step": 440
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 5.866666666666667,
|
665 |
+
"eval_loss": 1.8792084455490112,
|
666 |
+
"eval_runtime": 43.9918,
|
667 |
+
"eval_samples_per_second": 22.732,
|
668 |
+
"eval_steps_per_second": 2.841,
|
669 |
+
"step": 440
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 6.0,
|
673 |
+
"grad_norm": 2.4239635467529297,
|
674 |
+
"learning_rate": 2.6666666666666667e-05,
|
675 |
+
"loss": 1.0199,
|
676 |
+
"step": 450
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 6.0,
|
680 |
+
"eval_loss": 1.8804157972335815,
|
681 |
+
"eval_runtime": 43.9689,
|
682 |
+
"eval_samples_per_second": 22.743,
|
683 |
+
"eval_steps_per_second": 2.843,
|
684 |
+
"step": 450
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"epoch": 6.133333333333334,
|
688 |
+
"grad_norm": 3.0071866512298584,
|
689 |
+
"learning_rate": 2.5481481481481484e-05,
|
690 |
+
"loss": 0.9486,
|
691 |
+
"step": 460
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"epoch": 6.133333333333334,
|
695 |
+
"eval_loss": 1.930755376815796,
|
696 |
+
"eval_runtime": 43.9812,
|
697 |
+
"eval_samples_per_second": 22.737,
|
698 |
+
"eval_steps_per_second": 2.842,
|
699 |
+
"step": 460
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 6.266666666666667,
|
703 |
+
"grad_norm": 2.432983875274658,
|
704 |
+
"learning_rate": 2.4296296296296298e-05,
|
705 |
+
"loss": 0.8858,
|
706 |
+
"step": 470
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 6.266666666666667,
|
710 |
+
"eval_loss": 1.9468986988067627,
|
711 |
+
"eval_runtime": 43.9889,
|
712 |
+
"eval_samples_per_second": 22.733,
|
713 |
+
"eval_steps_per_second": 2.842,
|
714 |
+
"step": 470
|
715 |
+
},
|
716 |
+
{
|
717 |
+
"epoch": 6.4,
|
718 |
+
"grad_norm": 2.591848850250244,
|
719 |
+
"learning_rate": 2.3111111111111112e-05,
|
720 |
+
"loss": 0.9818,
|
721 |
+
"step": 480
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"epoch": 6.4,
|
725 |
+
"eval_loss": 1.9322350025177002,
|
726 |
+
"eval_runtime": 44.0412,
|
727 |
+
"eval_samples_per_second": 22.706,
|
728 |
+
"eval_steps_per_second": 2.838,
|
729 |
+
"step": 480
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 6.533333333333333,
|
733 |
+
"grad_norm": 2.5453197956085205,
|
734 |
+
"learning_rate": 2.192592592592593e-05,
|
735 |
+
"loss": 0.84,
|
736 |
+
"step": 490
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"epoch": 6.533333333333333,
|
740 |
+
"eval_loss": 1.9371347427368164,
|
741 |
+
"eval_runtime": 44.0174,
|
742 |
+
"eval_samples_per_second": 22.718,
|
743 |
+
"eval_steps_per_second": 2.84,
|
744 |
+
"step": 490
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 6.666666666666667,
|
748 |
+
"grad_norm": 2.4433412551879883,
|
749 |
+
"learning_rate": 2.074074074074074e-05,
|
750 |
+
"loss": 0.9686,
|
751 |
+
"step": 500
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 6.666666666666667,
|
755 |
+
"eval_loss": 1.9340929985046387,
|
756 |
+
"eval_runtime": 43.9473,
|
757 |
+
"eval_samples_per_second": 22.755,
|
758 |
+
"eval_steps_per_second": 2.844,
|
759 |
+
"step": 500
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 6.8,
|
763 |
+
"grad_norm": 2.7762234210968018,
|
764 |
+
"learning_rate": 1.9555555555555557e-05,
|
765 |
+
"loss": 0.974,
|
766 |
+
"step": 510
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 6.8,
|
770 |
+
"eval_loss": 1.936902642250061,
|
771 |
+
"eval_runtime": 43.9918,
|
772 |
+
"eval_samples_per_second": 22.732,
|
773 |
+
"eval_steps_per_second": 2.841,
|
774 |
+
"step": 510
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 6.933333333333334,
|
778 |
+
"grad_norm": 2.706693410873413,
|
779 |
+
"learning_rate": 1.837037037037037e-05,
|
780 |
+
"loss": 0.9366,
|
781 |
+
"step": 520
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"epoch": 6.933333333333334,
|
785 |
+
"eval_loss": 1.9351890087127686,
|
786 |
+
"eval_runtime": 43.9647,
|
787 |
+
"eval_samples_per_second": 22.746,
|
788 |
+
"eval_steps_per_second": 2.843,
|
789 |
+
"step": 520
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 7.066666666666666,
|
793 |
+
"grad_norm": 2.338547706604004,
|
794 |
+
"learning_rate": 1.7185185185185185e-05,
|
795 |
+
"loss": 0.9285,
|
796 |
+
"step": 530
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"epoch": 7.066666666666666,
|
800 |
+
"eval_loss": 1.9464186429977417,
|
801 |
+
"eval_runtime": 43.9646,
|
802 |
+
"eval_samples_per_second": 22.746,
|
803 |
+
"eval_steps_per_second": 2.843,
|
804 |
+
"step": 530
|
805 |
+
},
|
806 |
+
{
|
807 |
+
"epoch": 7.2,
|
808 |
+
"grad_norm": 2.846348285675049,
|
809 |
+
"learning_rate": 1.6000000000000003e-05,
|
810 |
+
"loss": 0.8663,
|
811 |
+
"step": 540
|
812 |
+
},
|
813 |
+
{
|
814 |
+
"epoch": 7.2,
|
815 |
+
"eval_loss": 1.9812690019607544,
|
816 |
+
"eval_runtime": 43.966,
|
817 |
+
"eval_samples_per_second": 22.745,
|
818 |
+
"eval_steps_per_second": 2.843,
|
819 |
+
"step": 540
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 7.333333333333333,
|
823 |
+
"grad_norm": 2.754952907562256,
|
824 |
+
"learning_rate": 1.4814814814814815e-05,
|
825 |
+
"loss": 0.8033,
|
826 |
+
"step": 550
|
827 |
+
},
|
828 |
+
{
|
829 |
+
"epoch": 7.333333333333333,
|
830 |
+
"eval_loss": 1.9769660234451294,
|
831 |
+
"eval_runtime": 43.9067,
|
832 |
+
"eval_samples_per_second": 22.776,
|
833 |
+
"eval_steps_per_second": 2.847,
|
834 |
+
"step": 550
|
835 |
+
},
|
836 |
+
{
|
837 |
+
"epoch": 7.466666666666667,
|
838 |
+
"grad_norm": 2.7049484252929688,
|
839 |
+
"learning_rate": 1.362962962962963e-05,
|
840 |
+
"loss": 0.8823,
|
841 |
+
"step": 560
|
842 |
+
},
|
843 |
+
{
|
844 |
+
"epoch": 7.466666666666667,
|
845 |
+
"eval_loss": 1.9782260656356812,
|
846 |
+
"eval_runtime": 43.8715,
|
847 |
+
"eval_samples_per_second": 22.794,
|
848 |
+
"eval_steps_per_second": 2.849,
|
849 |
+
"step": 560
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 7.6,
|
853 |
+
"grad_norm": 2.9233956336975098,
|
854 |
+
"learning_rate": 1.2444444444444446e-05,
|
855 |
+
"loss": 0.8841,
|
856 |
+
"step": 570
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 7.6,
|
860 |
+
"eval_loss": 1.975508451461792,
|
861 |
+
"eval_runtime": 43.8529,
|
862 |
+
"eval_samples_per_second": 22.804,
|
863 |
+
"eval_steps_per_second": 2.85,
|
864 |
+
"step": 570
|
865 |
+
},
|
866 |
+
{
|
867 |
+
"epoch": 7.733333333333333,
|
868 |
+
"grad_norm": 3.2836148738861084,
|
869 |
+
"learning_rate": 1.125925925925926e-05,
|
870 |
+
"loss": 0.8404,
|
871 |
+
"step": 580
|
872 |
+
},
|
873 |
+
{
|
874 |
+
"epoch": 7.733333333333333,
|
875 |
+
"eval_loss": 1.9755034446716309,
|
876 |
+
"eval_runtime": 43.8744,
|
877 |
+
"eval_samples_per_second": 22.792,
|
878 |
+
"eval_steps_per_second": 2.849,
|
879 |
+
"step": 580
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 7.866666666666667,
|
883 |
+
"grad_norm": 2.717045783996582,
|
884 |
+
"learning_rate": 1.0074074074074074e-05,
|
885 |
+
"loss": 0.9189,
|
886 |
+
"step": 590
|
887 |
+
},
|
888 |
+
{
|
889 |
+
"epoch": 7.866666666666667,
|
890 |
+
"eval_loss": 1.981050729751587,
|
891 |
+
"eval_runtime": 43.8841,
|
892 |
+
"eval_samples_per_second": 22.787,
|
893 |
+
"eval_steps_per_second": 2.848,
|
894 |
+
"step": 590
|
895 |
+
},
|
896 |
+
{
|
897 |
+
"epoch": 8.0,
|
898 |
+
"grad_norm": 2.6528029441833496,
|
899 |
+
"learning_rate": 8.888888888888888e-06,
|
900 |
+
"loss": 0.8777,
|
901 |
+
"step": 600
|
902 |
+
},
|
903 |
+
{
|
904 |
+
"epoch": 8.0,
|
905 |
+
"eval_loss": 1.9789155721664429,
|
906 |
+
"eval_runtime": 44.2778,
|
907 |
+
"eval_samples_per_second": 22.585,
|
908 |
+
"eval_steps_per_second": 2.823,
|
909 |
+
"step": 600
|
910 |
+
},
|
911 |
+
{
|
912 |
+
"epoch": 8.133333333333333,
|
913 |
+
"grad_norm": 2.8376739025115967,
|
914 |
+
"learning_rate": 7.703703703703704e-06,
|
915 |
+
"loss": 0.8247,
|
916 |
+
"step": 610
|
917 |
+
},
|
918 |
+
{
|
919 |
+
"epoch": 8.133333333333333,
|
920 |
+
"eval_loss": 1.9906001091003418,
|
921 |
+
"eval_runtime": 44.0221,
|
922 |
+
"eval_samples_per_second": 22.716,
|
923 |
+
"eval_steps_per_second": 2.839,
|
924 |
+
"step": 610
|
925 |
+
}
|
926 |
+
],
|
927 |
+
"logging_steps": 10,
|
928 |
+
"max_steps": 675,
|
929 |
+
"num_input_tokens_seen": 0,
|
930 |
+
"num_train_epochs": 9,
|
931 |
+
"save_steps": 10,
|
932 |
+
"stateful_callbacks": {
|
933 |
+
"TrainerControl": {
|
934 |
+
"args": {
|
935 |
+
"should_epoch_stop": false,
|
936 |
+
"should_evaluate": false,
|
937 |
+
"should_log": false,
|
938 |
+
"should_save": true,
|
939 |
+
"should_training_stop": false
|
940 |
+
},
|
941 |
+
"attributes": {}
|
942 |
+
}
|
943 |
+
},
|
944 |
+
"total_flos": 9.99550391156736e+16,
|
945 |
+
"train_batch_size": 8,
|
946 |
+
"trial_name": null,
|
947 |
+
"trial_params": null
|
948 |
+
}
|
output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-620/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-620/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"dense",
|
24 |
+
"query_key_value",
|
25 |
+
"dense_h_to_4h",
|
26 |
+
"dense_4h_to_h"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-620/trainer_state.json
ADDED
@@ -0,0 +1,963 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.6284925937652588,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-80",
|
4 |
+
"epoch": 8.266666666666667,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 620,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.37591353058815,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.5979,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.6375348567962646,
|
21 |
+
"eval_runtime": 43.9032,
|
22 |
+
"eval_samples_per_second": 22.777,
|
23 |
+
"eval_steps_per_second": 2.847,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.4210415482521057,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.624,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.6352741718292236,
|
36 |
+
"eval_runtime": 44.0038,
|
37 |
+
"eval_samples_per_second": 22.725,
|
38 |
+
"eval_steps_per_second": 2.841,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.3714869022369385,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.6205,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.633917212486267,
|
51 |
+
"eval_runtime": 43.9878,
|
52 |
+
"eval_samples_per_second": 22.734,
|
53 |
+
"eval_steps_per_second": 2.842,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.36149370670318604,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.6165,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.6323453187942505,
|
66 |
+
"eval_runtime": 43.9629,
|
67 |
+
"eval_samples_per_second": 22.746,
|
68 |
+
"eval_steps_per_second": 2.843,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.35420870780944824,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.6599,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.6314094066619873,
|
81 |
+
"eval_runtime": 43.9048,
|
82 |
+
"eval_samples_per_second": 22.777,
|
83 |
+
"eval_steps_per_second": 2.847,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.33472639322280884,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.5591,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.6304500102996826,
|
96 |
+
"eval_runtime": 44.0293,
|
97 |
+
"eval_samples_per_second": 22.712,
|
98 |
+
"eval_steps_per_second": 2.839,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.3210572898387909,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.6328,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.6291298866271973,
|
111 |
+
"eval_runtime": 43.8599,
|
112 |
+
"eval_samples_per_second": 22.8,
|
113 |
+
"eval_steps_per_second": 2.85,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.32792502641677856,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.5967,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.6284925937652588,
|
126 |
+
"eval_runtime": 43.8492,
|
127 |
+
"eval_samples_per_second": 22.805,
|
128 |
+
"eval_steps_per_second": 2.851,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.457350492477417,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.5461,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.6317176818847656,
|
141 |
+
"eval_runtime": 43.8568,
|
142 |
+
"eval_samples_per_second": 22.801,
|
143 |
+
"eval_steps_per_second": 2.85,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.6296346187591553,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.5933,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.635717511177063,
|
156 |
+
"eval_runtime": 43.8409,
|
157 |
+
"eval_samples_per_second": 22.81,
|
158 |
+
"eval_steps_per_second": 2.851,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.7165963053703308,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.5319,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.6375973224639893,
|
171 |
+
"eval_runtime": 43.8486,
|
172 |
+
"eval_samples_per_second": 22.806,
|
173 |
+
"eval_steps_per_second": 2.851,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.7370977997779846,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.5413,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.6369796991348267,
|
186 |
+
"eval_runtime": 43.9803,
|
187 |
+
"eval_samples_per_second": 22.737,
|
188 |
+
"eval_steps_per_second": 2.842,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.726448118686676,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.5226,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.6377675533294678,
|
201 |
+
"eval_runtime": 43.8627,
|
202 |
+
"eval_samples_per_second": 22.798,
|
203 |
+
"eval_steps_per_second": 2.85,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.7822732925415039,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.5477,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.6378459930419922,
|
216 |
+
"eval_runtime": 43.9081,
|
217 |
+
"eval_samples_per_second": 22.775,
|
218 |
+
"eval_steps_per_second": 2.847,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.7607081532478333,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 1.5604,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 1.637563705444336,
|
231 |
+
"eval_runtime": 43.9092,
|
232 |
+
"eval_samples_per_second": 22.774,
|
233 |
+
"eval_steps_per_second": 2.847,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 0.9361194372177124,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 1.4091,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 1.6557352542877197,
|
246 |
+
"eval_runtime": 43.9308,
|
247 |
+
"eval_samples_per_second": 22.763,
|
248 |
+
"eval_steps_per_second": 2.845,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 1.0848534107208252,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 1.4629,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 1.6792665719985962,
|
261 |
+
"eval_runtime": 43.8829,
|
262 |
+
"eval_samples_per_second": 22.788,
|
263 |
+
"eval_steps_per_second": 2.848,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 1.0759488344192505,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 1.3685,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 1.682196855545044,
|
276 |
+
"eval_runtime": 43.8735,
|
277 |
+
"eval_samples_per_second": 22.793,
|
278 |
+
"eval_steps_per_second": 2.849,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 1.2871410846710205,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 1.4443,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 1.6869845390319824,
|
291 |
+
"eval_runtime": 43.8534,
|
292 |
+
"eval_samples_per_second": 22.803,
|
293 |
+
"eval_steps_per_second": 2.85,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 1.2004164457321167,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 1.3451,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 1.6853325366973877,
|
306 |
+
"eval_runtime": 43.8718,
|
307 |
+
"eval_samples_per_second": 22.794,
|
308 |
+
"eval_steps_per_second": 2.849,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 1.2714128494262695,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 1.4547,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 1.6859557628631592,
|
321 |
+
"eval_runtime": 43.8724,
|
322 |
+
"eval_samples_per_second": 22.793,
|
323 |
+
"eval_steps_per_second": 2.849,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 1.3297241926193237,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 1.4088,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 1.6856082677841187,
|
336 |
+
"eval_runtime": 43.8409,
|
337 |
+
"eval_samples_per_second": 22.81,
|
338 |
+
"eval_steps_per_second": 2.851,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 1.1967905759811401,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 1.3735,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 1.7015950679779053,
|
351 |
+
"eval_runtime": 43.8446,
|
352 |
+
"eval_samples_per_second": 22.808,
|
353 |
+
"eval_steps_per_second": 2.851,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 1.5186768770217896,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 1.2487,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 1.7492223978042603,
|
366 |
+
"eval_runtime": 43.84,
|
367 |
+
"eval_samples_per_second": 22.81,
|
368 |
+
"eval_steps_per_second": 2.851,
|
369 |
+
"step": 240
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.3333333333333335,
|
373 |
+
"grad_norm": 1.5129271745681763,
|
374 |
+
"learning_rate": 5.037037037037037e-05,
|
375 |
+
"loss": 1.2959,
|
376 |
+
"step": 250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 3.3333333333333335,
|
380 |
+
"eval_loss": 1.7475690841674805,
|
381 |
+
"eval_runtime": 43.8475,
|
382 |
+
"eval_samples_per_second": 22.806,
|
383 |
+
"eval_steps_per_second": 2.851,
|
384 |
+
"step": 250
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 3.466666666666667,
|
388 |
+
"grad_norm": 1.5553545951843262,
|
389 |
+
"learning_rate": 4.918518518518519e-05,
|
390 |
+
"loss": 1.278,
|
391 |
+
"step": 260
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 3.466666666666667,
|
395 |
+
"eval_loss": 1.749650239944458,
|
396 |
+
"eval_runtime": 43.8575,
|
397 |
+
"eval_samples_per_second": 22.801,
|
398 |
+
"eval_steps_per_second": 2.85,
|
399 |
+
"step": 260
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 3.6,
|
403 |
+
"grad_norm": 1.6911894083023071,
|
404 |
+
"learning_rate": 4.8e-05,
|
405 |
+
"loss": 1.1815,
|
406 |
+
"step": 270
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 3.6,
|
410 |
+
"eval_loss": 1.751675009727478,
|
411 |
+
"eval_runtime": 43.8693,
|
412 |
+
"eval_samples_per_second": 22.795,
|
413 |
+
"eval_steps_per_second": 2.849,
|
414 |
+
"step": 270
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 3.7333333333333334,
|
418 |
+
"grad_norm": 1.7207773923873901,
|
419 |
+
"learning_rate": 4.681481481481481e-05,
|
420 |
+
"loss": 1.227,
|
421 |
+
"step": 280
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 3.7333333333333334,
|
425 |
+
"eval_loss": 1.7532404661178589,
|
426 |
+
"eval_runtime": 43.9788,
|
427 |
+
"eval_samples_per_second": 22.738,
|
428 |
+
"eval_steps_per_second": 2.842,
|
429 |
+
"step": 280
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 3.8666666666666667,
|
433 |
+
"grad_norm": 1.6659716367721558,
|
434 |
+
"learning_rate": 4.5629629629629636e-05,
|
435 |
+
"loss": 1.2699,
|
436 |
+
"step": 290
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 3.8666666666666667,
|
440 |
+
"eval_loss": 1.7546659708023071,
|
441 |
+
"eval_runtime": 44.0345,
|
442 |
+
"eval_samples_per_second": 22.709,
|
443 |
+
"eval_steps_per_second": 2.839,
|
444 |
+
"step": 290
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 4.0,
|
448 |
+
"grad_norm": 1.7288299798965454,
|
449 |
+
"learning_rate": 4.444444444444445e-05,
|
450 |
+
"loss": 1.2414,
|
451 |
+
"step": 300
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 4.0,
|
455 |
+
"eval_loss": 1.7534445524215698,
|
456 |
+
"eval_runtime": 43.9971,
|
457 |
+
"eval_samples_per_second": 22.729,
|
458 |
+
"eval_steps_per_second": 2.841,
|
459 |
+
"step": 300
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 4.133333333333334,
|
463 |
+
"grad_norm": 1.8176274299621582,
|
464 |
+
"learning_rate": 4.3259259259259264e-05,
|
465 |
+
"loss": 1.1231,
|
466 |
+
"step": 310
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 4.133333333333334,
|
470 |
+
"eval_loss": 1.8118728399276733,
|
471 |
+
"eval_runtime": 44.0255,
|
472 |
+
"eval_samples_per_second": 22.714,
|
473 |
+
"eval_steps_per_second": 2.839,
|
474 |
+
"step": 310
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 4.266666666666667,
|
478 |
+
"grad_norm": 1.881231427192688,
|
479 |
+
"learning_rate": 4.2074074074074075e-05,
|
480 |
+
"loss": 1.1311,
|
481 |
+
"step": 320
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 4.266666666666667,
|
485 |
+
"eval_loss": 1.824351191520691,
|
486 |
+
"eval_runtime": 43.871,
|
487 |
+
"eval_samples_per_second": 22.794,
|
488 |
+
"eval_steps_per_second": 2.849,
|
489 |
+
"step": 320
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 4.4,
|
493 |
+
"grad_norm": 1.8982057571411133,
|
494 |
+
"learning_rate": 4.088888888888889e-05,
|
495 |
+
"loss": 1.1046,
|
496 |
+
"step": 330
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 4.4,
|
500 |
+
"eval_loss": 1.813114881515503,
|
501 |
+
"eval_runtime": 43.8506,
|
502 |
+
"eval_samples_per_second": 22.805,
|
503 |
+
"eval_steps_per_second": 2.851,
|
504 |
+
"step": 330
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 4.533333333333333,
|
508 |
+
"grad_norm": 1.9931222200393677,
|
509 |
+
"learning_rate": 3.970370370370371e-05,
|
510 |
+
"loss": 1.0596,
|
511 |
+
"step": 340
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"epoch": 4.533333333333333,
|
515 |
+
"eval_loss": 1.8187421560287476,
|
516 |
+
"eval_runtime": 43.8637,
|
517 |
+
"eval_samples_per_second": 22.798,
|
518 |
+
"eval_steps_per_second": 2.85,
|
519 |
+
"step": 340
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 4.666666666666667,
|
523 |
+
"grad_norm": 2.02201247215271,
|
524 |
+
"learning_rate": 3.851851851851852e-05,
|
525 |
+
"loss": 1.1469,
|
526 |
+
"step": 350
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 4.666666666666667,
|
530 |
+
"eval_loss": 1.8229775428771973,
|
531 |
+
"eval_runtime": 43.9111,
|
532 |
+
"eval_samples_per_second": 22.773,
|
533 |
+
"eval_steps_per_second": 2.847,
|
534 |
+
"step": 350
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 4.8,
|
538 |
+
"grad_norm": 2.220625638961792,
|
539 |
+
"learning_rate": 3.733333333333334e-05,
|
540 |
+
"loss": 1.1344,
|
541 |
+
"step": 360
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 4.8,
|
545 |
+
"eval_loss": 1.817935585975647,
|
546 |
+
"eval_runtime": 43.9794,
|
547 |
+
"eval_samples_per_second": 22.738,
|
548 |
+
"eval_steps_per_second": 2.842,
|
549 |
+
"step": 360
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 4.933333333333334,
|
553 |
+
"grad_norm": 2.0401487350463867,
|
554 |
+
"learning_rate": 3.614814814814815e-05,
|
555 |
+
"loss": 1.1922,
|
556 |
+
"step": 370
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 4.933333333333334,
|
560 |
+
"eval_loss": 1.8182997703552246,
|
561 |
+
"eval_runtime": 43.8807,
|
562 |
+
"eval_samples_per_second": 22.789,
|
563 |
+
"eval_steps_per_second": 2.849,
|
564 |
+
"step": 370
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 5.066666666666666,
|
568 |
+
"grad_norm": 1.8822356462478638,
|
569 |
+
"learning_rate": 3.4962962962962965e-05,
|
570 |
+
"loss": 1.0486,
|
571 |
+
"step": 380
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 5.066666666666666,
|
575 |
+
"eval_loss": 1.8343256711959839,
|
576 |
+
"eval_runtime": 43.9715,
|
577 |
+
"eval_samples_per_second": 22.742,
|
578 |
+
"eval_steps_per_second": 2.843,
|
579 |
+
"step": 380
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 5.2,
|
583 |
+
"grad_norm": 2.383836030960083,
|
584 |
+
"learning_rate": 3.377777777777778e-05,
|
585 |
+
"loss": 1.0039,
|
586 |
+
"step": 390
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"epoch": 5.2,
|
590 |
+
"eval_loss": 1.8889024257659912,
|
591 |
+
"eval_runtime": 43.906,
|
592 |
+
"eval_samples_per_second": 22.776,
|
593 |
+
"eval_steps_per_second": 2.847,
|
594 |
+
"step": 390
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 5.333333333333333,
|
598 |
+
"grad_norm": 2.403280019760132,
|
599 |
+
"learning_rate": 3.259259259259259e-05,
|
600 |
+
"loss": 0.9946,
|
601 |
+
"step": 400
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 5.333333333333333,
|
605 |
+
"eval_loss": 1.8832476139068604,
|
606 |
+
"eval_runtime": 43.8654,
|
607 |
+
"eval_samples_per_second": 22.797,
|
608 |
+
"eval_steps_per_second": 2.85,
|
609 |
+
"step": 400
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 5.466666666666667,
|
613 |
+
"grad_norm": 2.34110164642334,
|
614 |
+
"learning_rate": 3.140740740740741e-05,
|
615 |
+
"loss": 1.0302,
|
616 |
+
"step": 410
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"epoch": 5.466666666666667,
|
620 |
+
"eval_loss": 1.8810956478118896,
|
621 |
+
"eval_runtime": 43.8937,
|
622 |
+
"eval_samples_per_second": 22.782,
|
623 |
+
"eval_steps_per_second": 2.848,
|
624 |
+
"step": 410
|
625 |
+
},
|
626 |
+
{
|
627 |
+
"epoch": 5.6,
|
628 |
+
"grad_norm": 2.32973575592041,
|
629 |
+
"learning_rate": 3.0222222222222225e-05,
|
630 |
+
"loss": 1.0062,
|
631 |
+
"step": 420
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"epoch": 5.6,
|
635 |
+
"eval_loss": 1.8806273937225342,
|
636 |
+
"eval_runtime": 43.9433,
|
637 |
+
"eval_samples_per_second": 22.757,
|
638 |
+
"eval_steps_per_second": 2.845,
|
639 |
+
"step": 420
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 5.733333333333333,
|
643 |
+
"grad_norm": 2.426825523376465,
|
644 |
+
"learning_rate": 2.9037037037037042e-05,
|
645 |
+
"loss": 1.0493,
|
646 |
+
"step": 430
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 5.733333333333333,
|
650 |
+
"eval_loss": 1.8787455558776855,
|
651 |
+
"eval_runtime": 43.9876,
|
652 |
+
"eval_samples_per_second": 22.734,
|
653 |
+
"eval_steps_per_second": 2.842,
|
654 |
+
"step": 430
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 5.866666666666667,
|
658 |
+
"grad_norm": 2.2383341789245605,
|
659 |
+
"learning_rate": 2.7851851851851856e-05,
|
660 |
+
"loss": 1.0728,
|
661 |
+
"step": 440
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 5.866666666666667,
|
665 |
+
"eval_loss": 1.8792084455490112,
|
666 |
+
"eval_runtime": 43.9918,
|
667 |
+
"eval_samples_per_second": 22.732,
|
668 |
+
"eval_steps_per_second": 2.841,
|
669 |
+
"step": 440
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 6.0,
|
673 |
+
"grad_norm": 2.4239635467529297,
|
674 |
+
"learning_rate": 2.6666666666666667e-05,
|
675 |
+
"loss": 1.0199,
|
676 |
+
"step": 450
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 6.0,
|
680 |
+
"eval_loss": 1.8804157972335815,
|
681 |
+
"eval_runtime": 43.9689,
|
682 |
+
"eval_samples_per_second": 22.743,
|
683 |
+
"eval_steps_per_second": 2.843,
|
684 |
+
"step": 450
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"epoch": 6.133333333333334,
|
688 |
+
"grad_norm": 3.0071866512298584,
|
689 |
+
"learning_rate": 2.5481481481481484e-05,
|
690 |
+
"loss": 0.9486,
|
691 |
+
"step": 460
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"epoch": 6.133333333333334,
|
695 |
+
"eval_loss": 1.930755376815796,
|
696 |
+
"eval_runtime": 43.9812,
|
697 |
+
"eval_samples_per_second": 22.737,
|
698 |
+
"eval_steps_per_second": 2.842,
|
699 |
+
"step": 460
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 6.266666666666667,
|
703 |
+
"grad_norm": 2.432983875274658,
|
704 |
+
"learning_rate": 2.4296296296296298e-05,
|
705 |
+
"loss": 0.8858,
|
706 |
+
"step": 470
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 6.266666666666667,
|
710 |
+
"eval_loss": 1.9468986988067627,
|
711 |
+
"eval_runtime": 43.9889,
|
712 |
+
"eval_samples_per_second": 22.733,
|
713 |
+
"eval_steps_per_second": 2.842,
|
714 |
+
"step": 470
|
715 |
+
},
|
716 |
+
{
|
717 |
+
"epoch": 6.4,
|
718 |
+
"grad_norm": 2.591848850250244,
|
719 |
+
"learning_rate": 2.3111111111111112e-05,
|
720 |
+
"loss": 0.9818,
|
721 |
+
"step": 480
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"epoch": 6.4,
|
725 |
+
"eval_loss": 1.9322350025177002,
|
726 |
+
"eval_runtime": 44.0412,
|
727 |
+
"eval_samples_per_second": 22.706,
|
728 |
+
"eval_steps_per_second": 2.838,
|
729 |
+
"step": 480
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 6.533333333333333,
|
733 |
+
"grad_norm": 2.5453197956085205,
|
734 |
+
"learning_rate": 2.192592592592593e-05,
|
735 |
+
"loss": 0.84,
|
736 |
+
"step": 490
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"epoch": 6.533333333333333,
|
740 |
+
"eval_loss": 1.9371347427368164,
|
741 |
+
"eval_runtime": 44.0174,
|
742 |
+
"eval_samples_per_second": 22.718,
|
743 |
+
"eval_steps_per_second": 2.84,
|
744 |
+
"step": 490
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 6.666666666666667,
|
748 |
+
"grad_norm": 2.4433412551879883,
|
749 |
+
"learning_rate": 2.074074074074074e-05,
|
750 |
+
"loss": 0.9686,
|
751 |
+
"step": 500
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 6.666666666666667,
|
755 |
+
"eval_loss": 1.9340929985046387,
|
756 |
+
"eval_runtime": 43.9473,
|
757 |
+
"eval_samples_per_second": 22.755,
|
758 |
+
"eval_steps_per_second": 2.844,
|
759 |
+
"step": 500
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 6.8,
|
763 |
+
"grad_norm": 2.7762234210968018,
|
764 |
+
"learning_rate": 1.9555555555555557e-05,
|
765 |
+
"loss": 0.974,
|
766 |
+
"step": 510
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 6.8,
|
770 |
+
"eval_loss": 1.936902642250061,
|
771 |
+
"eval_runtime": 43.9918,
|
772 |
+
"eval_samples_per_second": 22.732,
|
773 |
+
"eval_steps_per_second": 2.841,
|
774 |
+
"step": 510
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 6.933333333333334,
|
778 |
+
"grad_norm": 2.706693410873413,
|
779 |
+
"learning_rate": 1.837037037037037e-05,
|
780 |
+
"loss": 0.9366,
|
781 |
+
"step": 520
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"epoch": 6.933333333333334,
|
785 |
+
"eval_loss": 1.9351890087127686,
|
786 |
+
"eval_runtime": 43.9647,
|
787 |
+
"eval_samples_per_second": 22.746,
|
788 |
+
"eval_steps_per_second": 2.843,
|
789 |
+
"step": 520
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 7.066666666666666,
|
793 |
+
"grad_norm": 2.338547706604004,
|
794 |
+
"learning_rate": 1.7185185185185185e-05,
|
795 |
+
"loss": 0.9285,
|
796 |
+
"step": 530
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"epoch": 7.066666666666666,
|
800 |
+
"eval_loss": 1.9464186429977417,
|
801 |
+
"eval_runtime": 43.9646,
|
802 |
+
"eval_samples_per_second": 22.746,
|
803 |
+
"eval_steps_per_second": 2.843,
|
804 |
+
"step": 530
|
805 |
+
},
|
806 |
+
{
|
807 |
+
"epoch": 7.2,
|
808 |
+
"grad_norm": 2.846348285675049,
|
809 |
+
"learning_rate": 1.6000000000000003e-05,
|
810 |
+
"loss": 0.8663,
|
811 |
+
"step": 540
|
812 |
+
},
|
813 |
+
{
|
814 |
+
"epoch": 7.2,
|
815 |
+
"eval_loss": 1.9812690019607544,
|
816 |
+
"eval_runtime": 43.966,
|
817 |
+
"eval_samples_per_second": 22.745,
|
818 |
+
"eval_steps_per_second": 2.843,
|
819 |
+
"step": 540
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 7.333333333333333,
|
823 |
+
"grad_norm": 2.754952907562256,
|
824 |
+
"learning_rate": 1.4814814814814815e-05,
|
825 |
+
"loss": 0.8033,
|
826 |
+
"step": 550
|
827 |
+
},
|
828 |
+
{
|
829 |
+
"epoch": 7.333333333333333,
|
830 |
+
"eval_loss": 1.9769660234451294,
|
831 |
+
"eval_runtime": 43.9067,
|
832 |
+
"eval_samples_per_second": 22.776,
|
833 |
+
"eval_steps_per_second": 2.847,
|
834 |
+
"step": 550
|
835 |
+
},
|
836 |
+
{
|
837 |
+
"epoch": 7.466666666666667,
|
838 |
+
"grad_norm": 2.7049484252929688,
|
839 |
+
"learning_rate": 1.362962962962963e-05,
|
840 |
+
"loss": 0.8823,
|
841 |
+
"step": 560
|
842 |
+
},
|
843 |
+
{
|
844 |
+
"epoch": 7.466666666666667,
|
845 |
+
"eval_loss": 1.9782260656356812,
|
846 |
+
"eval_runtime": 43.8715,
|
847 |
+
"eval_samples_per_second": 22.794,
|
848 |
+
"eval_steps_per_second": 2.849,
|
849 |
+
"step": 560
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 7.6,
|
853 |
+
"grad_norm": 2.9233956336975098,
|
854 |
+
"learning_rate": 1.2444444444444446e-05,
|
855 |
+
"loss": 0.8841,
|
856 |
+
"step": 570
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 7.6,
|
860 |
+
"eval_loss": 1.975508451461792,
|
861 |
+
"eval_runtime": 43.8529,
|
862 |
+
"eval_samples_per_second": 22.804,
|
863 |
+
"eval_steps_per_second": 2.85,
|
864 |
+
"step": 570
|
865 |
+
},
|
866 |
+
{
|
867 |
+
"epoch": 7.733333333333333,
|
868 |
+
"grad_norm": 3.2836148738861084,
|
869 |
+
"learning_rate": 1.125925925925926e-05,
|
870 |
+
"loss": 0.8404,
|
871 |
+
"step": 580
|
872 |
+
},
|
873 |
+
{
|
874 |
+
"epoch": 7.733333333333333,
|
875 |
+
"eval_loss": 1.9755034446716309,
|
876 |
+
"eval_runtime": 43.8744,
|
877 |
+
"eval_samples_per_second": 22.792,
|
878 |
+
"eval_steps_per_second": 2.849,
|
879 |
+
"step": 580
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 7.866666666666667,
|
883 |
+
"grad_norm": 2.717045783996582,
|
884 |
+
"learning_rate": 1.0074074074074074e-05,
|
885 |
+
"loss": 0.9189,
|
886 |
+
"step": 590
|
887 |
+
},
|
888 |
+
{
|
889 |
+
"epoch": 7.866666666666667,
|
890 |
+
"eval_loss": 1.981050729751587,
|
891 |
+
"eval_runtime": 43.8841,
|
892 |
+
"eval_samples_per_second": 22.787,
|
893 |
+
"eval_steps_per_second": 2.848,
|
894 |
+
"step": 590
|
895 |
+
},
|
896 |
+
{
|
897 |
+
"epoch": 8.0,
|
898 |
+
"grad_norm": 2.6528029441833496,
|
899 |
+
"learning_rate": 8.888888888888888e-06,
|
900 |
+
"loss": 0.8777,
|
901 |
+
"step": 600
|
902 |
+
},
|
903 |
+
{
|
904 |
+
"epoch": 8.0,
|
905 |
+
"eval_loss": 1.9789155721664429,
|
906 |
+
"eval_runtime": 44.2778,
|
907 |
+
"eval_samples_per_second": 22.585,
|
908 |
+
"eval_steps_per_second": 2.823,
|
909 |
+
"step": 600
|
910 |
+
},
|
911 |
+
{
|
912 |
+
"epoch": 8.133333333333333,
|
913 |
+
"grad_norm": 2.8376739025115967,
|
914 |
+
"learning_rate": 7.703703703703704e-06,
|
915 |
+
"loss": 0.8247,
|
916 |
+
"step": 610
|
917 |
+
},
|
918 |
+
{
|
919 |
+
"epoch": 8.133333333333333,
|
920 |
+
"eval_loss": 1.9906001091003418,
|
921 |
+
"eval_runtime": 44.0221,
|
922 |
+
"eval_samples_per_second": 22.716,
|
923 |
+
"eval_steps_per_second": 2.839,
|
924 |
+
"step": 610
|
925 |
+
},
|
926 |
+
{
|
927 |
+
"epoch": 8.266666666666667,
|
928 |
+
"grad_norm": 2.8162360191345215,
|
929 |
+
"learning_rate": 6.51851851851852e-06,
|
930 |
+
"loss": 0.8104,
|
931 |
+
"step": 620
|
932 |
+
},
|
933 |
+
{
|
934 |
+
"epoch": 8.266666666666667,
|
935 |
+
"eval_loss": 2.0043418407440186,
|
936 |
+
"eval_runtime": 43.8598,
|
937 |
+
"eval_samples_per_second": 22.8,
|
938 |
+
"eval_steps_per_second": 2.85,
|
939 |
+
"step": 620
|
940 |
+
}
|
941 |
+
],
|
942 |
+
"logging_steps": 10,
|
943 |
+
"max_steps": 675,
|
944 |
+
"num_input_tokens_seen": 0,
|
945 |
+
"num_train_epochs": 9,
|
946 |
+
"save_steps": 10,
|
947 |
+
"stateful_callbacks": {
|
948 |
+
"TrainerControl": {
|
949 |
+
"args": {
|
950 |
+
"should_epoch_stop": false,
|
951 |
+
"should_evaluate": false,
|
952 |
+
"should_log": false,
|
953 |
+
"should_save": true,
|
954 |
+
"should_training_stop": false
|
955 |
+
},
|
956 |
+
"attributes": {}
|
957 |
+
}
|
958 |
+
},
|
959 |
+
"total_flos": 1.015936463142912e+17,
|
960 |
+
"train_batch_size": 8,
|
961 |
+
"trial_name": null,
|
962 |
+
"trial_params": null
|
963 |
+
}
|
output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-630/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-630/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"dense",
|
24 |
+
"query_key_value",
|
25 |
+
"dense_h_to_4h",
|
26 |
+
"dense_4h_to_h"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-630/trainer_state.json
ADDED
@@ -0,0 +1,978 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.6284925937652588,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-80",
|
4 |
+
"epoch": 8.4,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 630,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.37591353058815,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.5979,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.6375348567962646,
|
21 |
+
"eval_runtime": 43.9032,
|
22 |
+
"eval_samples_per_second": 22.777,
|
23 |
+
"eval_steps_per_second": 2.847,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.4210415482521057,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.624,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.6352741718292236,
|
36 |
+
"eval_runtime": 44.0038,
|
37 |
+
"eval_samples_per_second": 22.725,
|
38 |
+
"eval_steps_per_second": 2.841,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.3714869022369385,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.6205,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.633917212486267,
|
51 |
+
"eval_runtime": 43.9878,
|
52 |
+
"eval_samples_per_second": 22.734,
|
53 |
+
"eval_steps_per_second": 2.842,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.36149370670318604,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.6165,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.6323453187942505,
|
66 |
+
"eval_runtime": 43.9629,
|
67 |
+
"eval_samples_per_second": 22.746,
|
68 |
+
"eval_steps_per_second": 2.843,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.35420870780944824,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.6599,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.6314094066619873,
|
81 |
+
"eval_runtime": 43.9048,
|
82 |
+
"eval_samples_per_second": 22.777,
|
83 |
+
"eval_steps_per_second": 2.847,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.33472639322280884,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.5591,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.6304500102996826,
|
96 |
+
"eval_runtime": 44.0293,
|
97 |
+
"eval_samples_per_second": 22.712,
|
98 |
+
"eval_steps_per_second": 2.839,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.3210572898387909,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.6328,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.6291298866271973,
|
111 |
+
"eval_runtime": 43.8599,
|
112 |
+
"eval_samples_per_second": 22.8,
|
113 |
+
"eval_steps_per_second": 2.85,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.32792502641677856,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.5967,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.6284925937652588,
|
126 |
+
"eval_runtime": 43.8492,
|
127 |
+
"eval_samples_per_second": 22.805,
|
128 |
+
"eval_steps_per_second": 2.851,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.457350492477417,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.5461,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.6317176818847656,
|
141 |
+
"eval_runtime": 43.8568,
|
142 |
+
"eval_samples_per_second": 22.801,
|
143 |
+
"eval_steps_per_second": 2.85,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.6296346187591553,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.5933,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.635717511177063,
|
156 |
+
"eval_runtime": 43.8409,
|
157 |
+
"eval_samples_per_second": 22.81,
|
158 |
+
"eval_steps_per_second": 2.851,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.7165963053703308,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.5319,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.6375973224639893,
|
171 |
+
"eval_runtime": 43.8486,
|
172 |
+
"eval_samples_per_second": 22.806,
|
173 |
+
"eval_steps_per_second": 2.851,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.7370977997779846,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.5413,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.6369796991348267,
|
186 |
+
"eval_runtime": 43.9803,
|
187 |
+
"eval_samples_per_second": 22.737,
|
188 |
+
"eval_steps_per_second": 2.842,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.726448118686676,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.5226,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.6377675533294678,
|
201 |
+
"eval_runtime": 43.8627,
|
202 |
+
"eval_samples_per_second": 22.798,
|
203 |
+
"eval_steps_per_second": 2.85,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.7822732925415039,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.5477,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.6378459930419922,
|
216 |
+
"eval_runtime": 43.9081,
|
217 |
+
"eval_samples_per_second": 22.775,
|
218 |
+
"eval_steps_per_second": 2.847,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.7607081532478333,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 1.5604,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 1.637563705444336,
|
231 |
+
"eval_runtime": 43.9092,
|
232 |
+
"eval_samples_per_second": 22.774,
|
233 |
+
"eval_steps_per_second": 2.847,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 0.9361194372177124,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 1.4091,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 1.6557352542877197,
|
246 |
+
"eval_runtime": 43.9308,
|
247 |
+
"eval_samples_per_second": 22.763,
|
248 |
+
"eval_steps_per_second": 2.845,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 1.0848534107208252,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 1.4629,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 1.6792665719985962,
|
261 |
+
"eval_runtime": 43.8829,
|
262 |
+
"eval_samples_per_second": 22.788,
|
263 |
+
"eval_steps_per_second": 2.848,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 1.0759488344192505,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 1.3685,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 1.682196855545044,
|
276 |
+
"eval_runtime": 43.8735,
|
277 |
+
"eval_samples_per_second": 22.793,
|
278 |
+
"eval_steps_per_second": 2.849,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 1.2871410846710205,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 1.4443,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 1.6869845390319824,
|
291 |
+
"eval_runtime": 43.8534,
|
292 |
+
"eval_samples_per_second": 22.803,
|
293 |
+
"eval_steps_per_second": 2.85,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 1.2004164457321167,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 1.3451,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 1.6853325366973877,
|
306 |
+
"eval_runtime": 43.8718,
|
307 |
+
"eval_samples_per_second": 22.794,
|
308 |
+
"eval_steps_per_second": 2.849,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 1.2714128494262695,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 1.4547,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 1.6859557628631592,
|
321 |
+
"eval_runtime": 43.8724,
|
322 |
+
"eval_samples_per_second": 22.793,
|
323 |
+
"eval_steps_per_second": 2.849,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 1.3297241926193237,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 1.4088,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 1.6856082677841187,
|
336 |
+
"eval_runtime": 43.8409,
|
337 |
+
"eval_samples_per_second": 22.81,
|
338 |
+
"eval_steps_per_second": 2.851,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 1.1967905759811401,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 1.3735,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 1.7015950679779053,
|
351 |
+
"eval_runtime": 43.8446,
|
352 |
+
"eval_samples_per_second": 22.808,
|
353 |
+
"eval_steps_per_second": 2.851,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 1.5186768770217896,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 1.2487,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 1.7492223978042603,
|
366 |
+
"eval_runtime": 43.84,
|
367 |
+
"eval_samples_per_second": 22.81,
|
368 |
+
"eval_steps_per_second": 2.851,
|
369 |
+
"step": 240
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.3333333333333335,
|
373 |
+
"grad_norm": 1.5129271745681763,
|
374 |
+
"learning_rate": 5.037037037037037e-05,
|
375 |
+
"loss": 1.2959,
|
376 |
+
"step": 250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 3.3333333333333335,
|
380 |
+
"eval_loss": 1.7475690841674805,
|
381 |
+
"eval_runtime": 43.8475,
|
382 |
+
"eval_samples_per_second": 22.806,
|
383 |
+
"eval_steps_per_second": 2.851,
|
384 |
+
"step": 250
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 3.466666666666667,
|
388 |
+
"grad_norm": 1.5553545951843262,
|
389 |
+
"learning_rate": 4.918518518518519e-05,
|
390 |
+
"loss": 1.278,
|
391 |
+
"step": 260
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 3.466666666666667,
|
395 |
+
"eval_loss": 1.749650239944458,
|
396 |
+
"eval_runtime": 43.8575,
|
397 |
+
"eval_samples_per_second": 22.801,
|
398 |
+
"eval_steps_per_second": 2.85,
|
399 |
+
"step": 260
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 3.6,
|
403 |
+
"grad_norm": 1.6911894083023071,
|
404 |
+
"learning_rate": 4.8e-05,
|
405 |
+
"loss": 1.1815,
|
406 |
+
"step": 270
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 3.6,
|
410 |
+
"eval_loss": 1.751675009727478,
|
411 |
+
"eval_runtime": 43.8693,
|
412 |
+
"eval_samples_per_second": 22.795,
|
413 |
+
"eval_steps_per_second": 2.849,
|
414 |
+
"step": 270
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 3.7333333333333334,
|
418 |
+
"grad_norm": 1.7207773923873901,
|
419 |
+
"learning_rate": 4.681481481481481e-05,
|
420 |
+
"loss": 1.227,
|
421 |
+
"step": 280
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 3.7333333333333334,
|
425 |
+
"eval_loss": 1.7532404661178589,
|
426 |
+
"eval_runtime": 43.9788,
|
427 |
+
"eval_samples_per_second": 22.738,
|
428 |
+
"eval_steps_per_second": 2.842,
|
429 |
+
"step": 280
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 3.8666666666666667,
|
433 |
+
"grad_norm": 1.6659716367721558,
|
434 |
+
"learning_rate": 4.5629629629629636e-05,
|
435 |
+
"loss": 1.2699,
|
436 |
+
"step": 290
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 3.8666666666666667,
|
440 |
+
"eval_loss": 1.7546659708023071,
|
441 |
+
"eval_runtime": 44.0345,
|
442 |
+
"eval_samples_per_second": 22.709,
|
443 |
+
"eval_steps_per_second": 2.839,
|
444 |
+
"step": 290
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 4.0,
|
448 |
+
"grad_norm": 1.7288299798965454,
|
449 |
+
"learning_rate": 4.444444444444445e-05,
|
450 |
+
"loss": 1.2414,
|
451 |
+
"step": 300
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 4.0,
|
455 |
+
"eval_loss": 1.7534445524215698,
|
456 |
+
"eval_runtime": 43.9971,
|
457 |
+
"eval_samples_per_second": 22.729,
|
458 |
+
"eval_steps_per_second": 2.841,
|
459 |
+
"step": 300
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 4.133333333333334,
|
463 |
+
"grad_norm": 1.8176274299621582,
|
464 |
+
"learning_rate": 4.3259259259259264e-05,
|
465 |
+
"loss": 1.1231,
|
466 |
+
"step": 310
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 4.133333333333334,
|
470 |
+
"eval_loss": 1.8118728399276733,
|
471 |
+
"eval_runtime": 44.0255,
|
472 |
+
"eval_samples_per_second": 22.714,
|
473 |
+
"eval_steps_per_second": 2.839,
|
474 |
+
"step": 310
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 4.266666666666667,
|
478 |
+
"grad_norm": 1.881231427192688,
|
479 |
+
"learning_rate": 4.2074074074074075e-05,
|
480 |
+
"loss": 1.1311,
|
481 |
+
"step": 320
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 4.266666666666667,
|
485 |
+
"eval_loss": 1.824351191520691,
|
486 |
+
"eval_runtime": 43.871,
|
487 |
+
"eval_samples_per_second": 22.794,
|
488 |
+
"eval_steps_per_second": 2.849,
|
489 |
+
"step": 320
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 4.4,
|
493 |
+
"grad_norm": 1.8982057571411133,
|
494 |
+
"learning_rate": 4.088888888888889e-05,
|
495 |
+
"loss": 1.1046,
|
496 |
+
"step": 330
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 4.4,
|
500 |
+
"eval_loss": 1.813114881515503,
|
501 |
+
"eval_runtime": 43.8506,
|
502 |
+
"eval_samples_per_second": 22.805,
|
503 |
+
"eval_steps_per_second": 2.851,
|
504 |
+
"step": 330
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 4.533333333333333,
|
508 |
+
"grad_norm": 1.9931222200393677,
|
509 |
+
"learning_rate": 3.970370370370371e-05,
|
510 |
+
"loss": 1.0596,
|
511 |
+
"step": 340
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"epoch": 4.533333333333333,
|
515 |
+
"eval_loss": 1.8187421560287476,
|
516 |
+
"eval_runtime": 43.8637,
|
517 |
+
"eval_samples_per_second": 22.798,
|
518 |
+
"eval_steps_per_second": 2.85,
|
519 |
+
"step": 340
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 4.666666666666667,
|
523 |
+
"grad_norm": 2.02201247215271,
|
524 |
+
"learning_rate": 3.851851851851852e-05,
|
525 |
+
"loss": 1.1469,
|
526 |
+
"step": 350
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 4.666666666666667,
|
530 |
+
"eval_loss": 1.8229775428771973,
|
531 |
+
"eval_runtime": 43.9111,
|
532 |
+
"eval_samples_per_second": 22.773,
|
533 |
+
"eval_steps_per_second": 2.847,
|
534 |
+
"step": 350
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 4.8,
|
538 |
+
"grad_norm": 2.220625638961792,
|
539 |
+
"learning_rate": 3.733333333333334e-05,
|
540 |
+
"loss": 1.1344,
|
541 |
+
"step": 360
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 4.8,
|
545 |
+
"eval_loss": 1.817935585975647,
|
546 |
+
"eval_runtime": 43.9794,
|
547 |
+
"eval_samples_per_second": 22.738,
|
548 |
+
"eval_steps_per_second": 2.842,
|
549 |
+
"step": 360
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 4.933333333333334,
|
553 |
+
"grad_norm": 2.0401487350463867,
|
554 |
+
"learning_rate": 3.614814814814815e-05,
|
555 |
+
"loss": 1.1922,
|
556 |
+
"step": 370
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 4.933333333333334,
|
560 |
+
"eval_loss": 1.8182997703552246,
|
561 |
+
"eval_runtime": 43.8807,
|
562 |
+
"eval_samples_per_second": 22.789,
|
563 |
+
"eval_steps_per_second": 2.849,
|
564 |
+
"step": 370
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 5.066666666666666,
|
568 |
+
"grad_norm": 1.8822356462478638,
|
569 |
+
"learning_rate": 3.4962962962962965e-05,
|
570 |
+
"loss": 1.0486,
|
571 |
+
"step": 380
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 5.066666666666666,
|
575 |
+
"eval_loss": 1.8343256711959839,
|
576 |
+
"eval_runtime": 43.9715,
|
577 |
+
"eval_samples_per_second": 22.742,
|
578 |
+
"eval_steps_per_second": 2.843,
|
579 |
+
"step": 380
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 5.2,
|
583 |
+
"grad_norm": 2.383836030960083,
|
584 |
+
"learning_rate": 3.377777777777778e-05,
|
585 |
+
"loss": 1.0039,
|
586 |
+
"step": 390
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"epoch": 5.2,
|
590 |
+
"eval_loss": 1.8889024257659912,
|
591 |
+
"eval_runtime": 43.906,
|
592 |
+
"eval_samples_per_second": 22.776,
|
593 |
+
"eval_steps_per_second": 2.847,
|
594 |
+
"step": 390
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 5.333333333333333,
|
598 |
+
"grad_norm": 2.403280019760132,
|
599 |
+
"learning_rate": 3.259259259259259e-05,
|
600 |
+
"loss": 0.9946,
|
601 |
+
"step": 400
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 5.333333333333333,
|
605 |
+
"eval_loss": 1.8832476139068604,
|
606 |
+
"eval_runtime": 43.8654,
|
607 |
+
"eval_samples_per_second": 22.797,
|
608 |
+
"eval_steps_per_second": 2.85,
|
609 |
+
"step": 400
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 5.466666666666667,
|
613 |
+
"grad_norm": 2.34110164642334,
|
614 |
+
"learning_rate": 3.140740740740741e-05,
|
615 |
+
"loss": 1.0302,
|
616 |
+
"step": 410
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"epoch": 5.466666666666667,
|
620 |
+
"eval_loss": 1.8810956478118896,
|
621 |
+
"eval_runtime": 43.8937,
|
622 |
+
"eval_samples_per_second": 22.782,
|
623 |
+
"eval_steps_per_second": 2.848,
|
624 |
+
"step": 410
|
625 |
+
},
|
626 |
+
{
|
627 |
+
"epoch": 5.6,
|
628 |
+
"grad_norm": 2.32973575592041,
|
629 |
+
"learning_rate": 3.0222222222222225e-05,
|
630 |
+
"loss": 1.0062,
|
631 |
+
"step": 420
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"epoch": 5.6,
|
635 |
+
"eval_loss": 1.8806273937225342,
|
636 |
+
"eval_runtime": 43.9433,
|
637 |
+
"eval_samples_per_second": 22.757,
|
638 |
+
"eval_steps_per_second": 2.845,
|
639 |
+
"step": 420
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 5.733333333333333,
|
643 |
+
"grad_norm": 2.426825523376465,
|
644 |
+
"learning_rate": 2.9037037037037042e-05,
|
645 |
+
"loss": 1.0493,
|
646 |
+
"step": 430
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 5.733333333333333,
|
650 |
+
"eval_loss": 1.8787455558776855,
|
651 |
+
"eval_runtime": 43.9876,
|
652 |
+
"eval_samples_per_second": 22.734,
|
653 |
+
"eval_steps_per_second": 2.842,
|
654 |
+
"step": 430
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 5.866666666666667,
|
658 |
+
"grad_norm": 2.2383341789245605,
|
659 |
+
"learning_rate": 2.7851851851851856e-05,
|
660 |
+
"loss": 1.0728,
|
661 |
+
"step": 440
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 5.866666666666667,
|
665 |
+
"eval_loss": 1.8792084455490112,
|
666 |
+
"eval_runtime": 43.9918,
|
667 |
+
"eval_samples_per_second": 22.732,
|
668 |
+
"eval_steps_per_second": 2.841,
|
669 |
+
"step": 440
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 6.0,
|
673 |
+
"grad_norm": 2.4239635467529297,
|
674 |
+
"learning_rate": 2.6666666666666667e-05,
|
675 |
+
"loss": 1.0199,
|
676 |
+
"step": 450
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 6.0,
|
680 |
+
"eval_loss": 1.8804157972335815,
|
681 |
+
"eval_runtime": 43.9689,
|
682 |
+
"eval_samples_per_second": 22.743,
|
683 |
+
"eval_steps_per_second": 2.843,
|
684 |
+
"step": 450
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"epoch": 6.133333333333334,
|
688 |
+
"grad_norm": 3.0071866512298584,
|
689 |
+
"learning_rate": 2.5481481481481484e-05,
|
690 |
+
"loss": 0.9486,
|
691 |
+
"step": 460
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"epoch": 6.133333333333334,
|
695 |
+
"eval_loss": 1.930755376815796,
|
696 |
+
"eval_runtime": 43.9812,
|
697 |
+
"eval_samples_per_second": 22.737,
|
698 |
+
"eval_steps_per_second": 2.842,
|
699 |
+
"step": 460
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 6.266666666666667,
|
703 |
+
"grad_norm": 2.432983875274658,
|
704 |
+
"learning_rate": 2.4296296296296298e-05,
|
705 |
+
"loss": 0.8858,
|
706 |
+
"step": 470
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 6.266666666666667,
|
710 |
+
"eval_loss": 1.9468986988067627,
|
711 |
+
"eval_runtime": 43.9889,
|
712 |
+
"eval_samples_per_second": 22.733,
|
713 |
+
"eval_steps_per_second": 2.842,
|
714 |
+
"step": 470
|
715 |
+
},
|
716 |
+
{
|
717 |
+
"epoch": 6.4,
|
718 |
+
"grad_norm": 2.591848850250244,
|
719 |
+
"learning_rate": 2.3111111111111112e-05,
|
720 |
+
"loss": 0.9818,
|
721 |
+
"step": 480
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"epoch": 6.4,
|
725 |
+
"eval_loss": 1.9322350025177002,
|
726 |
+
"eval_runtime": 44.0412,
|
727 |
+
"eval_samples_per_second": 22.706,
|
728 |
+
"eval_steps_per_second": 2.838,
|
729 |
+
"step": 480
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 6.533333333333333,
|
733 |
+
"grad_norm": 2.5453197956085205,
|
734 |
+
"learning_rate": 2.192592592592593e-05,
|
735 |
+
"loss": 0.84,
|
736 |
+
"step": 490
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"epoch": 6.533333333333333,
|
740 |
+
"eval_loss": 1.9371347427368164,
|
741 |
+
"eval_runtime": 44.0174,
|
742 |
+
"eval_samples_per_second": 22.718,
|
743 |
+
"eval_steps_per_second": 2.84,
|
744 |
+
"step": 490
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 6.666666666666667,
|
748 |
+
"grad_norm": 2.4433412551879883,
|
749 |
+
"learning_rate": 2.074074074074074e-05,
|
750 |
+
"loss": 0.9686,
|
751 |
+
"step": 500
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 6.666666666666667,
|
755 |
+
"eval_loss": 1.9340929985046387,
|
756 |
+
"eval_runtime": 43.9473,
|
757 |
+
"eval_samples_per_second": 22.755,
|
758 |
+
"eval_steps_per_second": 2.844,
|
759 |
+
"step": 500
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 6.8,
|
763 |
+
"grad_norm": 2.7762234210968018,
|
764 |
+
"learning_rate": 1.9555555555555557e-05,
|
765 |
+
"loss": 0.974,
|
766 |
+
"step": 510
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 6.8,
|
770 |
+
"eval_loss": 1.936902642250061,
|
771 |
+
"eval_runtime": 43.9918,
|
772 |
+
"eval_samples_per_second": 22.732,
|
773 |
+
"eval_steps_per_second": 2.841,
|
774 |
+
"step": 510
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 6.933333333333334,
|
778 |
+
"grad_norm": 2.706693410873413,
|
779 |
+
"learning_rate": 1.837037037037037e-05,
|
780 |
+
"loss": 0.9366,
|
781 |
+
"step": 520
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"epoch": 6.933333333333334,
|
785 |
+
"eval_loss": 1.9351890087127686,
|
786 |
+
"eval_runtime": 43.9647,
|
787 |
+
"eval_samples_per_second": 22.746,
|
788 |
+
"eval_steps_per_second": 2.843,
|
789 |
+
"step": 520
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 7.066666666666666,
|
793 |
+
"grad_norm": 2.338547706604004,
|
794 |
+
"learning_rate": 1.7185185185185185e-05,
|
795 |
+
"loss": 0.9285,
|
796 |
+
"step": 530
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"epoch": 7.066666666666666,
|
800 |
+
"eval_loss": 1.9464186429977417,
|
801 |
+
"eval_runtime": 43.9646,
|
802 |
+
"eval_samples_per_second": 22.746,
|
803 |
+
"eval_steps_per_second": 2.843,
|
804 |
+
"step": 530
|
805 |
+
},
|
806 |
+
{
|
807 |
+
"epoch": 7.2,
|
808 |
+
"grad_norm": 2.846348285675049,
|
809 |
+
"learning_rate": 1.6000000000000003e-05,
|
810 |
+
"loss": 0.8663,
|
811 |
+
"step": 540
|
812 |
+
},
|
813 |
+
{
|
814 |
+
"epoch": 7.2,
|
815 |
+
"eval_loss": 1.9812690019607544,
|
816 |
+
"eval_runtime": 43.966,
|
817 |
+
"eval_samples_per_second": 22.745,
|
818 |
+
"eval_steps_per_second": 2.843,
|
819 |
+
"step": 540
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 7.333333333333333,
|
823 |
+
"grad_norm": 2.754952907562256,
|
824 |
+
"learning_rate": 1.4814814814814815e-05,
|
825 |
+
"loss": 0.8033,
|
826 |
+
"step": 550
|
827 |
+
},
|
828 |
+
{
|
829 |
+
"epoch": 7.333333333333333,
|
830 |
+
"eval_loss": 1.9769660234451294,
|
831 |
+
"eval_runtime": 43.9067,
|
832 |
+
"eval_samples_per_second": 22.776,
|
833 |
+
"eval_steps_per_second": 2.847,
|
834 |
+
"step": 550
|
835 |
+
},
|
836 |
+
{
|
837 |
+
"epoch": 7.466666666666667,
|
838 |
+
"grad_norm": 2.7049484252929688,
|
839 |
+
"learning_rate": 1.362962962962963e-05,
|
840 |
+
"loss": 0.8823,
|
841 |
+
"step": 560
|
842 |
+
},
|
843 |
+
{
|
844 |
+
"epoch": 7.466666666666667,
|
845 |
+
"eval_loss": 1.9782260656356812,
|
846 |
+
"eval_runtime": 43.8715,
|
847 |
+
"eval_samples_per_second": 22.794,
|
848 |
+
"eval_steps_per_second": 2.849,
|
849 |
+
"step": 560
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 7.6,
|
853 |
+
"grad_norm": 2.9233956336975098,
|
854 |
+
"learning_rate": 1.2444444444444446e-05,
|
855 |
+
"loss": 0.8841,
|
856 |
+
"step": 570
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 7.6,
|
860 |
+
"eval_loss": 1.975508451461792,
|
861 |
+
"eval_runtime": 43.8529,
|
862 |
+
"eval_samples_per_second": 22.804,
|
863 |
+
"eval_steps_per_second": 2.85,
|
864 |
+
"step": 570
|
865 |
+
},
|
866 |
+
{
|
867 |
+
"epoch": 7.733333333333333,
|
868 |
+
"grad_norm": 3.2836148738861084,
|
869 |
+
"learning_rate": 1.125925925925926e-05,
|
870 |
+
"loss": 0.8404,
|
871 |
+
"step": 580
|
872 |
+
},
|
873 |
+
{
|
874 |
+
"epoch": 7.733333333333333,
|
875 |
+
"eval_loss": 1.9755034446716309,
|
876 |
+
"eval_runtime": 43.8744,
|
877 |
+
"eval_samples_per_second": 22.792,
|
878 |
+
"eval_steps_per_second": 2.849,
|
879 |
+
"step": 580
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 7.866666666666667,
|
883 |
+
"grad_norm": 2.717045783996582,
|
884 |
+
"learning_rate": 1.0074074074074074e-05,
|
885 |
+
"loss": 0.9189,
|
886 |
+
"step": 590
|
887 |
+
},
|
888 |
+
{
|
889 |
+
"epoch": 7.866666666666667,
|
890 |
+
"eval_loss": 1.981050729751587,
|
891 |
+
"eval_runtime": 43.8841,
|
892 |
+
"eval_samples_per_second": 22.787,
|
893 |
+
"eval_steps_per_second": 2.848,
|
894 |
+
"step": 590
|
895 |
+
},
|
896 |
+
{
|
897 |
+
"epoch": 8.0,
|
898 |
+
"grad_norm": 2.6528029441833496,
|
899 |
+
"learning_rate": 8.888888888888888e-06,
|
900 |
+
"loss": 0.8777,
|
901 |
+
"step": 600
|
902 |
+
},
|
903 |
+
{
|
904 |
+
"epoch": 8.0,
|
905 |
+
"eval_loss": 1.9789155721664429,
|
906 |
+
"eval_runtime": 44.2778,
|
907 |
+
"eval_samples_per_second": 22.585,
|
908 |
+
"eval_steps_per_second": 2.823,
|
909 |
+
"step": 600
|
910 |
+
},
|
911 |
+
{
|
912 |
+
"epoch": 8.133333333333333,
|
913 |
+
"grad_norm": 2.8376739025115967,
|
914 |
+
"learning_rate": 7.703703703703704e-06,
|
915 |
+
"loss": 0.8247,
|
916 |
+
"step": 610
|
917 |
+
},
|
918 |
+
{
|
919 |
+
"epoch": 8.133333333333333,
|
920 |
+
"eval_loss": 1.9906001091003418,
|
921 |
+
"eval_runtime": 44.0221,
|
922 |
+
"eval_samples_per_second": 22.716,
|
923 |
+
"eval_steps_per_second": 2.839,
|
924 |
+
"step": 610
|
925 |
+
},
|
926 |
+
{
|
927 |
+
"epoch": 8.266666666666667,
|
928 |
+
"grad_norm": 2.8162360191345215,
|
929 |
+
"learning_rate": 6.51851851851852e-06,
|
930 |
+
"loss": 0.8104,
|
931 |
+
"step": 620
|
932 |
+
},
|
933 |
+
{
|
934 |
+
"epoch": 8.266666666666667,
|
935 |
+
"eval_loss": 2.0043418407440186,
|
936 |
+
"eval_runtime": 43.8598,
|
937 |
+
"eval_samples_per_second": 22.8,
|
938 |
+
"eval_steps_per_second": 2.85,
|
939 |
+
"step": 620
|
940 |
+
},
|
941 |
+
{
|
942 |
+
"epoch": 8.4,
|
943 |
+
"grad_norm": 2.89953351020813,
|
944 |
+
"learning_rate": 5.333333333333334e-06,
|
945 |
+
"loss": 0.8197,
|
946 |
+
"step": 630
|
947 |
+
},
|
948 |
+
{
|
949 |
+
"epoch": 8.4,
|
950 |
+
"eval_loss": 2.006070137023926,
|
951 |
+
"eval_runtime": 43.8589,
|
952 |
+
"eval_samples_per_second": 22.8,
|
953 |
+
"eval_steps_per_second": 2.85,
|
954 |
+
"step": 630
|
955 |
+
}
|
956 |
+
],
|
957 |
+
"logging_steps": 10,
|
958 |
+
"max_steps": 675,
|
959 |
+
"num_input_tokens_seen": 0,
|
960 |
+
"num_train_epochs": 9,
|
961 |
+
"save_steps": 10,
|
962 |
+
"stateful_callbacks": {
|
963 |
+
"TrainerControl": {
|
964 |
+
"args": {
|
965 |
+
"should_epoch_stop": false,
|
966 |
+
"should_evaluate": false,
|
967 |
+
"should_log": false,
|
968 |
+
"should_save": true,
|
969 |
+
"should_training_stop": false
|
970 |
+
},
|
971 |
+
"attributes": {}
|
972 |
+
}
|
973 |
+
},
|
974 |
+
"total_flos": 1.032322535129088e+17,
|
975 |
+
"train_batch_size": 8,
|
976 |
+
"trial_name": null,
|
977 |
+
"trial_params": null
|
978 |
+
}
|
output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-640/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-640/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"dense",
|
24 |
+
"query_key_value",
|
25 |
+
"dense_h_to_4h",
|
26 |
+
"dense_4h_to_h"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-640/trainer_state.json
ADDED
@@ -0,0 +1,993 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.6284925937652588,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-80",
|
4 |
+
"epoch": 8.533333333333333,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 640,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.37591353058815,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.5979,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.6375348567962646,
|
21 |
+
"eval_runtime": 43.9032,
|
22 |
+
"eval_samples_per_second": 22.777,
|
23 |
+
"eval_steps_per_second": 2.847,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.4210415482521057,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.624,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.6352741718292236,
|
36 |
+
"eval_runtime": 44.0038,
|
37 |
+
"eval_samples_per_second": 22.725,
|
38 |
+
"eval_steps_per_second": 2.841,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.3714869022369385,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.6205,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.633917212486267,
|
51 |
+
"eval_runtime": 43.9878,
|
52 |
+
"eval_samples_per_second": 22.734,
|
53 |
+
"eval_steps_per_second": 2.842,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.36149370670318604,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.6165,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.6323453187942505,
|
66 |
+
"eval_runtime": 43.9629,
|
67 |
+
"eval_samples_per_second": 22.746,
|
68 |
+
"eval_steps_per_second": 2.843,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.35420870780944824,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.6599,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.6314094066619873,
|
81 |
+
"eval_runtime": 43.9048,
|
82 |
+
"eval_samples_per_second": 22.777,
|
83 |
+
"eval_steps_per_second": 2.847,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.33472639322280884,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.5591,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.6304500102996826,
|
96 |
+
"eval_runtime": 44.0293,
|
97 |
+
"eval_samples_per_second": 22.712,
|
98 |
+
"eval_steps_per_second": 2.839,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.3210572898387909,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.6328,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.6291298866271973,
|
111 |
+
"eval_runtime": 43.8599,
|
112 |
+
"eval_samples_per_second": 22.8,
|
113 |
+
"eval_steps_per_second": 2.85,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.32792502641677856,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.5967,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.6284925937652588,
|
126 |
+
"eval_runtime": 43.8492,
|
127 |
+
"eval_samples_per_second": 22.805,
|
128 |
+
"eval_steps_per_second": 2.851,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.457350492477417,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.5461,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.6317176818847656,
|
141 |
+
"eval_runtime": 43.8568,
|
142 |
+
"eval_samples_per_second": 22.801,
|
143 |
+
"eval_steps_per_second": 2.85,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.6296346187591553,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.5933,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.635717511177063,
|
156 |
+
"eval_runtime": 43.8409,
|
157 |
+
"eval_samples_per_second": 22.81,
|
158 |
+
"eval_steps_per_second": 2.851,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.7165963053703308,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.5319,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.6375973224639893,
|
171 |
+
"eval_runtime": 43.8486,
|
172 |
+
"eval_samples_per_second": 22.806,
|
173 |
+
"eval_steps_per_second": 2.851,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.7370977997779846,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.5413,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.6369796991348267,
|
186 |
+
"eval_runtime": 43.9803,
|
187 |
+
"eval_samples_per_second": 22.737,
|
188 |
+
"eval_steps_per_second": 2.842,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.726448118686676,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.5226,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.6377675533294678,
|
201 |
+
"eval_runtime": 43.8627,
|
202 |
+
"eval_samples_per_second": 22.798,
|
203 |
+
"eval_steps_per_second": 2.85,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.7822732925415039,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.5477,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.6378459930419922,
|
216 |
+
"eval_runtime": 43.9081,
|
217 |
+
"eval_samples_per_second": 22.775,
|
218 |
+
"eval_steps_per_second": 2.847,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.7607081532478333,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 1.5604,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 1.637563705444336,
|
231 |
+
"eval_runtime": 43.9092,
|
232 |
+
"eval_samples_per_second": 22.774,
|
233 |
+
"eval_steps_per_second": 2.847,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 0.9361194372177124,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 1.4091,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 1.6557352542877197,
|
246 |
+
"eval_runtime": 43.9308,
|
247 |
+
"eval_samples_per_second": 22.763,
|
248 |
+
"eval_steps_per_second": 2.845,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 1.0848534107208252,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 1.4629,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 1.6792665719985962,
|
261 |
+
"eval_runtime": 43.8829,
|
262 |
+
"eval_samples_per_second": 22.788,
|
263 |
+
"eval_steps_per_second": 2.848,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 1.0759488344192505,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 1.3685,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 1.682196855545044,
|
276 |
+
"eval_runtime": 43.8735,
|
277 |
+
"eval_samples_per_second": 22.793,
|
278 |
+
"eval_steps_per_second": 2.849,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 1.2871410846710205,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 1.4443,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 1.6869845390319824,
|
291 |
+
"eval_runtime": 43.8534,
|
292 |
+
"eval_samples_per_second": 22.803,
|
293 |
+
"eval_steps_per_second": 2.85,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 1.2004164457321167,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 1.3451,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 1.6853325366973877,
|
306 |
+
"eval_runtime": 43.8718,
|
307 |
+
"eval_samples_per_second": 22.794,
|
308 |
+
"eval_steps_per_second": 2.849,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 1.2714128494262695,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 1.4547,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 1.6859557628631592,
|
321 |
+
"eval_runtime": 43.8724,
|
322 |
+
"eval_samples_per_second": 22.793,
|
323 |
+
"eval_steps_per_second": 2.849,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 1.3297241926193237,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 1.4088,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 1.6856082677841187,
|
336 |
+
"eval_runtime": 43.8409,
|
337 |
+
"eval_samples_per_second": 22.81,
|
338 |
+
"eval_steps_per_second": 2.851,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 1.1967905759811401,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 1.3735,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 1.7015950679779053,
|
351 |
+
"eval_runtime": 43.8446,
|
352 |
+
"eval_samples_per_second": 22.808,
|
353 |
+
"eval_steps_per_second": 2.851,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 1.5186768770217896,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 1.2487,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 1.7492223978042603,
|
366 |
+
"eval_runtime": 43.84,
|
367 |
+
"eval_samples_per_second": 22.81,
|
368 |
+
"eval_steps_per_second": 2.851,
|
369 |
+
"step": 240
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.3333333333333335,
|
373 |
+
"grad_norm": 1.5129271745681763,
|
374 |
+
"learning_rate": 5.037037037037037e-05,
|
375 |
+
"loss": 1.2959,
|
376 |
+
"step": 250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 3.3333333333333335,
|
380 |
+
"eval_loss": 1.7475690841674805,
|
381 |
+
"eval_runtime": 43.8475,
|
382 |
+
"eval_samples_per_second": 22.806,
|
383 |
+
"eval_steps_per_second": 2.851,
|
384 |
+
"step": 250
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 3.466666666666667,
|
388 |
+
"grad_norm": 1.5553545951843262,
|
389 |
+
"learning_rate": 4.918518518518519e-05,
|
390 |
+
"loss": 1.278,
|
391 |
+
"step": 260
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 3.466666666666667,
|
395 |
+
"eval_loss": 1.749650239944458,
|
396 |
+
"eval_runtime": 43.8575,
|
397 |
+
"eval_samples_per_second": 22.801,
|
398 |
+
"eval_steps_per_second": 2.85,
|
399 |
+
"step": 260
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 3.6,
|
403 |
+
"grad_norm": 1.6911894083023071,
|
404 |
+
"learning_rate": 4.8e-05,
|
405 |
+
"loss": 1.1815,
|
406 |
+
"step": 270
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 3.6,
|
410 |
+
"eval_loss": 1.751675009727478,
|
411 |
+
"eval_runtime": 43.8693,
|
412 |
+
"eval_samples_per_second": 22.795,
|
413 |
+
"eval_steps_per_second": 2.849,
|
414 |
+
"step": 270
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 3.7333333333333334,
|
418 |
+
"grad_norm": 1.7207773923873901,
|
419 |
+
"learning_rate": 4.681481481481481e-05,
|
420 |
+
"loss": 1.227,
|
421 |
+
"step": 280
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 3.7333333333333334,
|
425 |
+
"eval_loss": 1.7532404661178589,
|
426 |
+
"eval_runtime": 43.9788,
|
427 |
+
"eval_samples_per_second": 22.738,
|
428 |
+
"eval_steps_per_second": 2.842,
|
429 |
+
"step": 280
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 3.8666666666666667,
|
433 |
+
"grad_norm": 1.6659716367721558,
|
434 |
+
"learning_rate": 4.5629629629629636e-05,
|
435 |
+
"loss": 1.2699,
|
436 |
+
"step": 290
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 3.8666666666666667,
|
440 |
+
"eval_loss": 1.7546659708023071,
|
441 |
+
"eval_runtime": 44.0345,
|
442 |
+
"eval_samples_per_second": 22.709,
|
443 |
+
"eval_steps_per_second": 2.839,
|
444 |
+
"step": 290
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 4.0,
|
448 |
+
"grad_norm": 1.7288299798965454,
|
449 |
+
"learning_rate": 4.444444444444445e-05,
|
450 |
+
"loss": 1.2414,
|
451 |
+
"step": 300
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 4.0,
|
455 |
+
"eval_loss": 1.7534445524215698,
|
456 |
+
"eval_runtime": 43.9971,
|
457 |
+
"eval_samples_per_second": 22.729,
|
458 |
+
"eval_steps_per_second": 2.841,
|
459 |
+
"step": 300
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 4.133333333333334,
|
463 |
+
"grad_norm": 1.8176274299621582,
|
464 |
+
"learning_rate": 4.3259259259259264e-05,
|
465 |
+
"loss": 1.1231,
|
466 |
+
"step": 310
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 4.133333333333334,
|
470 |
+
"eval_loss": 1.8118728399276733,
|
471 |
+
"eval_runtime": 44.0255,
|
472 |
+
"eval_samples_per_second": 22.714,
|
473 |
+
"eval_steps_per_second": 2.839,
|
474 |
+
"step": 310
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 4.266666666666667,
|
478 |
+
"grad_norm": 1.881231427192688,
|
479 |
+
"learning_rate": 4.2074074074074075e-05,
|
480 |
+
"loss": 1.1311,
|
481 |
+
"step": 320
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 4.266666666666667,
|
485 |
+
"eval_loss": 1.824351191520691,
|
486 |
+
"eval_runtime": 43.871,
|
487 |
+
"eval_samples_per_second": 22.794,
|
488 |
+
"eval_steps_per_second": 2.849,
|
489 |
+
"step": 320
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 4.4,
|
493 |
+
"grad_norm": 1.8982057571411133,
|
494 |
+
"learning_rate": 4.088888888888889e-05,
|
495 |
+
"loss": 1.1046,
|
496 |
+
"step": 330
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 4.4,
|
500 |
+
"eval_loss": 1.813114881515503,
|
501 |
+
"eval_runtime": 43.8506,
|
502 |
+
"eval_samples_per_second": 22.805,
|
503 |
+
"eval_steps_per_second": 2.851,
|
504 |
+
"step": 330
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 4.533333333333333,
|
508 |
+
"grad_norm": 1.9931222200393677,
|
509 |
+
"learning_rate": 3.970370370370371e-05,
|
510 |
+
"loss": 1.0596,
|
511 |
+
"step": 340
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"epoch": 4.533333333333333,
|
515 |
+
"eval_loss": 1.8187421560287476,
|
516 |
+
"eval_runtime": 43.8637,
|
517 |
+
"eval_samples_per_second": 22.798,
|
518 |
+
"eval_steps_per_second": 2.85,
|
519 |
+
"step": 340
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 4.666666666666667,
|
523 |
+
"grad_norm": 2.02201247215271,
|
524 |
+
"learning_rate": 3.851851851851852e-05,
|
525 |
+
"loss": 1.1469,
|
526 |
+
"step": 350
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 4.666666666666667,
|
530 |
+
"eval_loss": 1.8229775428771973,
|
531 |
+
"eval_runtime": 43.9111,
|
532 |
+
"eval_samples_per_second": 22.773,
|
533 |
+
"eval_steps_per_second": 2.847,
|
534 |
+
"step": 350
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 4.8,
|
538 |
+
"grad_norm": 2.220625638961792,
|
539 |
+
"learning_rate": 3.733333333333334e-05,
|
540 |
+
"loss": 1.1344,
|
541 |
+
"step": 360
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 4.8,
|
545 |
+
"eval_loss": 1.817935585975647,
|
546 |
+
"eval_runtime": 43.9794,
|
547 |
+
"eval_samples_per_second": 22.738,
|
548 |
+
"eval_steps_per_second": 2.842,
|
549 |
+
"step": 360
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 4.933333333333334,
|
553 |
+
"grad_norm": 2.0401487350463867,
|
554 |
+
"learning_rate": 3.614814814814815e-05,
|
555 |
+
"loss": 1.1922,
|
556 |
+
"step": 370
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 4.933333333333334,
|
560 |
+
"eval_loss": 1.8182997703552246,
|
561 |
+
"eval_runtime": 43.8807,
|
562 |
+
"eval_samples_per_second": 22.789,
|
563 |
+
"eval_steps_per_second": 2.849,
|
564 |
+
"step": 370
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 5.066666666666666,
|
568 |
+
"grad_norm": 1.8822356462478638,
|
569 |
+
"learning_rate": 3.4962962962962965e-05,
|
570 |
+
"loss": 1.0486,
|
571 |
+
"step": 380
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 5.066666666666666,
|
575 |
+
"eval_loss": 1.8343256711959839,
|
576 |
+
"eval_runtime": 43.9715,
|
577 |
+
"eval_samples_per_second": 22.742,
|
578 |
+
"eval_steps_per_second": 2.843,
|
579 |
+
"step": 380
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 5.2,
|
583 |
+
"grad_norm": 2.383836030960083,
|
584 |
+
"learning_rate": 3.377777777777778e-05,
|
585 |
+
"loss": 1.0039,
|
586 |
+
"step": 390
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"epoch": 5.2,
|
590 |
+
"eval_loss": 1.8889024257659912,
|
591 |
+
"eval_runtime": 43.906,
|
592 |
+
"eval_samples_per_second": 22.776,
|
593 |
+
"eval_steps_per_second": 2.847,
|
594 |
+
"step": 390
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 5.333333333333333,
|
598 |
+
"grad_norm": 2.403280019760132,
|
599 |
+
"learning_rate": 3.259259259259259e-05,
|
600 |
+
"loss": 0.9946,
|
601 |
+
"step": 400
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 5.333333333333333,
|
605 |
+
"eval_loss": 1.8832476139068604,
|
606 |
+
"eval_runtime": 43.8654,
|
607 |
+
"eval_samples_per_second": 22.797,
|
608 |
+
"eval_steps_per_second": 2.85,
|
609 |
+
"step": 400
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 5.466666666666667,
|
613 |
+
"grad_norm": 2.34110164642334,
|
614 |
+
"learning_rate": 3.140740740740741e-05,
|
615 |
+
"loss": 1.0302,
|
616 |
+
"step": 410
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"epoch": 5.466666666666667,
|
620 |
+
"eval_loss": 1.8810956478118896,
|
621 |
+
"eval_runtime": 43.8937,
|
622 |
+
"eval_samples_per_second": 22.782,
|
623 |
+
"eval_steps_per_second": 2.848,
|
624 |
+
"step": 410
|
625 |
+
},
|
626 |
+
{
|
627 |
+
"epoch": 5.6,
|
628 |
+
"grad_norm": 2.32973575592041,
|
629 |
+
"learning_rate": 3.0222222222222225e-05,
|
630 |
+
"loss": 1.0062,
|
631 |
+
"step": 420
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"epoch": 5.6,
|
635 |
+
"eval_loss": 1.8806273937225342,
|
636 |
+
"eval_runtime": 43.9433,
|
637 |
+
"eval_samples_per_second": 22.757,
|
638 |
+
"eval_steps_per_second": 2.845,
|
639 |
+
"step": 420
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 5.733333333333333,
|
643 |
+
"grad_norm": 2.426825523376465,
|
644 |
+
"learning_rate": 2.9037037037037042e-05,
|
645 |
+
"loss": 1.0493,
|
646 |
+
"step": 430
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 5.733333333333333,
|
650 |
+
"eval_loss": 1.8787455558776855,
|
651 |
+
"eval_runtime": 43.9876,
|
652 |
+
"eval_samples_per_second": 22.734,
|
653 |
+
"eval_steps_per_second": 2.842,
|
654 |
+
"step": 430
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 5.866666666666667,
|
658 |
+
"grad_norm": 2.2383341789245605,
|
659 |
+
"learning_rate": 2.7851851851851856e-05,
|
660 |
+
"loss": 1.0728,
|
661 |
+
"step": 440
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 5.866666666666667,
|
665 |
+
"eval_loss": 1.8792084455490112,
|
666 |
+
"eval_runtime": 43.9918,
|
667 |
+
"eval_samples_per_second": 22.732,
|
668 |
+
"eval_steps_per_second": 2.841,
|
669 |
+
"step": 440
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 6.0,
|
673 |
+
"grad_norm": 2.4239635467529297,
|
674 |
+
"learning_rate": 2.6666666666666667e-05,
|
675 |
+
"loss": 1.0199,
|
676 |
+
"step": 450
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 6.0,
|
680 |
+
"eval_loss": 1.8804157972335815,
|
681 |
+
"eval_runtime": 43.9689,
|
682 |
+
"eval_samples_per_second": 22.743,
|
683 |
+
"eval_steps_per_second": 2.843,
|
684 |
+
"step": 450
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"epoch": 6.133333333333334,
|
688 |
+
"grad_norm": 3.0071866512298584,
|
689 |
+
"learning_rate": 2.5481481481481484e-05,
|
690 |
+
"loss": 0.9486,
|
691 |
+
"step": 460
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"epoch": 6.133333333333334,
|
695 |
+
"eval_loss": 1.930755376815796,
|
696 |
+
"eval_runtime": 43.9812,
|
697 |
+
"eval_samples_per_second": 22.737,
|
698 |
+
"eval_steps_per_second": 2.842,
|
699 |
+
"step": 460
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 6.266666666666667,
|
703 |
+
"grad_norm": 2.432983875274658,
|
704 |
+
"learning_rate": 2.4296296296296298e-05,
|
705 |
+
"loss": 0.8858,
|
706 |
+
"step": 470
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 6.266666666666667,
|
710 |
+
"eval_loss": 1.9468986988067627,
|
711 |
+
"eval_runtime": 43.9889,
|
712 |
+
"eval_samples_per_second": 22.733,
|
713 |
+
"eval_steps_per_second": 2.842,
|
714 |
+
"step": 470
|
715 |
+
},
|
716 |
+
{
|
717 |
+
"epoch": 6.4,
|
718 |
+
"grad_norm": 2.591848850250244,
|
719 |
+
"learning_rate": 2.3111111111111112e-05,
|
720 |
+
"loss": 0.9818,
|
721 |
+
"step": 480
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"epoch": 6.4,
|
725 |
+
"eval_loss": 1.9322350025177002,
|
726 |
+
"eval_runtime": 44.0412,
|
727 |
+
"eval_samples_per_second": 22.706,
|
728 |
+
"eval_steps_per_second": 2.838,
|
729 |
+
"step": 480
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 6.533333333333333,
|
733 |
+
"grad_norm": 2.5453197956085205,
|
734 |
+
"learning_rate": 2.192592592592593e-05,
|
735 |
+
"loss": 0.84,
|
736 |
+
"step": 490
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"epoch": 6.533333333333333,
|
740 |
+
"eval_loss": 1.9371347427368164,
|
741 |
+
"eval_runtime": 44.0174,
|
742 |
+
"eval_samples_per_second": 22.718,
|
743 |
+
"eval_steps_per_second": 2.84,
|
744 |
+
"step": 490
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 6.666666666666667,
|
748 |
+
"grad_norm": 2.4433412551879883,
|
749 |
+
"learning_rate": 2.074074074074074e-05,
|
750 |
+
"loss": 0.9686,
|
751 |
+
"step": 500
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 6.666666666666667,
|
755 |
+
"eval_loss": 1.9340929985046387,
|
756 |
+
"eval_runtime": 43.9473,
|
757 |
+
"eval_samples_per_second": 22.755,
|
758 |
+
"eval_steps_per_second": 2.844,
|
759 |
+
"step": 500
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 6.8,
|
763 |
+
"grad_norm": 2.7762234210968018,
|
764 |
+
"learning_rate": 1.9555555555555557e-05,
|
765 |
+
"loss": 0.974,
|
766 |
+
"step": 510
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 6.8,
|
770 |
+
"eval_loss": 1.936902642250061,
|
771 |
+
"eval_runtime": 43.9918,
|
772 |
+
"eval_samples_per_second": 22.732,
|
773 |
+
"eval_steps_per_second": 2.841,
|
774 |
+
"step": 510
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 6.933333333333334,
|
778 |
+
"grad_norm": 2.706693410873413,
|
779 |
+
"learning_rate": 1.837037037037037e-05,
|
780 |
+
"loss": 0.9366,
|
781 |
+
"step": 520
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"epoch": 6.933333333333334,
|
785 |
+
"eval_loss": 1.9351890087127686,
|
786 |
+
"eval_runtime": 43.9647,
|
787 |
+
"eval_samples_per_second": 22.746,
|
788 |
+
"eval_steps_per_second": 2.843,
|
789 |
+
"step": 520
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 7.066666666666666,
|
793 |
+
"grad_norm": 2.338547706604004,
|
794 |
+
"learning_rate": 1.7185185185185185e-05,
|
795 |
+
"loss": 0.9285,
|
796 |
+
"step": 530
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"epoch": 7.066666666666666,
|
800 |
+
"eval_loss": 1.9464186429977417,
|
801 |
+
"eval_runtime": 43.9646,
|
802 |
+
"eval_samples_per_second": 22.746,
|
803 |
+
"eval_steps_per_second": 2.843,
|
804 |
+
"step": 530
|
805 |
+
},
|
806 |
+
{
|
807 |
+
"epoch": 7.2,
|
808 |
+
"grad_norm": 2.846348285675049,
|
809 |
+
"learning_rate": 1.6000000000000003e-05,
|
810 |
+
"loss": 0.8663,
|
811 |
+
"step": 540
|
812 |
+
},
|
813 |
+
{
|
814 |
+
"epoch": 7.2,
|
815 |
+
"eval_loss": 1.9812690019607544,
|
816 |
+
"eval_runtime": 43.966,
|
817 |
+
"eval_samples_per_second": 22.745,
|
818 |
+
"eval_steps_per_second": 2.843,
|
819 |
+
"step": 540
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 7.333333333333333,
|
823 |
+
"grad_norm": 2.754952907562256,
|
824 |
+
"learning_rate": 1.4814814814814815e-05,
|
825 |
+
"loss": 0.8033,
|
826 |
+
"step": 550
|
827 |
+
},
|
828 |
+
{
|
829 |
+
"epoch": 7.333333333333333,
|
830 |
+
"eval_loss": 1.9769660234451294,
|
831 |
+
"eval_runtime": 43.9067,
|
832 |
+
"eval_samples_per_second": 22.776,
|
833 |
+
"eval_steps_per_second": 2.847,
|
834 |
+
"step": 550
|
835 |
+
},
|
836 |
+
{
|
837 |
+
"epoch": 7.466666666666667,
|
838 |
+
"grad_norm": 2.7049484252929688,
|
839 |
+
"learning_rate": 1.362962962962963e-05,
|
840 |
+
"loss": 0.8823,
|
841 |
+
"step": 560
|
842 |
+
},
|
843 |
+
{
|
844 |
+
"epoch": 7.466666666666667,
|
845 |
+
"eval_loss": 1.9782260656356812,
|
846 |
+
"eval_runtime": 43.8715,
|
847 |
+
"eval_samples_per_second": 22.794,
|
848 |
+
"eval_steps_per_second": 2.849,
|
849 |
+
"step": 560
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 7.6,
|
853 |
+
"grad_norm": 2.9233956336975098,
|
854 |
+
"learning_rate": 1.2444444444444446e-05,
|
855 |
+
"loss": 0.8841,
|
856 |
+
"step": 570
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 7.6,
|
860 |
+
"eval_loss": 1.975508451461792,
|
861 |
+
"eval_runtime": 43.8529,
|
862 |
+
"eval_samples_per_second": 22.804,
|
863 |
+
"eval_steps_per_second": 2.85,
|
864 |
+
"step": 570
|
865 |
+
},
|
866 |
+
{
|
867 |
+
"epoch": 7.733333333333333,
|
868 |
+
"grad_norm": 3.2836148738861084,
|
869 |
+
"learning_rate": 1.125925925925926e-05,
|
870 |
+
"loss": 0.8404,
|
871 |
+
"step": 580
|
872 |
+
},
|
873 |
+
{
|
874 |
+
"epoch": 7.733333333333333,
|
875 |
+
"eval_loss": 1.9755034446716309,
|
876 |
+
"eval_runtime": 43.8744,
|
877 |
+
"eval_samples_per_second": 22.792,
|
878 |
+
"eval_steps_per_second": 2.849,
|
879 |
+
"step": 580
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 7.866666666666667,
|
883 |
+
"grad_norm": 2.717045783996582,
|
884 |
+
"learning_rate": 1.0074074074074074e-05,
|
885 |
+
"loss": 0.9189,
|
886 |
+
"step": 590
|
887 |
+
},
|
888 |
+
{
|
889 |
+
"epoch": 7.866666666666667,
|
890 |
+
"eval_loss": 1.981050729751587,
|
891 |
+
"eval_runtime": 43.8841,
|
892 |
+
"eval_samples_per_second": 22.787,
|
893 |
+
"eval_steps_per_second": 2.848,
|
894 |
+
"step": 590
|
895 |
+
},
|
896 |
+
{
|
897 |
+
"epoch": 8.0,
|
898 |
+
"grad_norm": 2.6528029441833496,
|
899 |
+
"learning_rate": 8.888888888888888e-06,
|
900 |
+
"loss": 0.8777,
|
901 |
+
"step": 600
|
902 |
+
},
|
903 |
+
{
|
904 |
+
"epoch": 8.0,
|
905 |
+
"eval_loss": 1.9789155721664429,
|
906 |
+
"eval_runtime": 44.2778,
|
907 |
+
"eval_samples_per_second": 22.585,
|
908 |
+
"eval_steps_per_second": 2.823,
|
909 |
+
"step": 600
|
910 |
+
},
|
911 |
+
{
|
912 |
+
"epoch": 8.133333333333333,
|
913 |
+
"grad_norm": 2.8376739025115967,
|
914 |
+
"learning_rate": 7.703703703703704e-06,
|
915 |
+
"loss": 0.8247,
|
916 |
+
"step": 610
|
917 |
+
},
|
918 |
+
{
|
919 |
+
"epoch": 8.133333333333333,
|
920 |
+
"eval_loss": 1.9906001091003418,
|
921 |
+
"eval_runtime": 44.0221,
|
922 |
+
"eval_samples_per_second": 22.716,
|
923 |
+
"eval_steps_per_second": 2.839,
|
924 |
+
"step": 610
|
925 |
+
},
|
926 |
+
{
|
927 |
+
"epoch": 8.266666666666667,
|
928 |
+
"grad_norm": 2.8162360191345215,
|
929 |
+
"learning_rate": 6.51851851851852e-06,
|
930 |
+
"loss": 0.8104,
|
931 |
+
"step": 620
|
932 |
+
},
|
933 |
+
{
|
934 |
+
"epoch": 8.266666666666667,
|
935 |
+
"eval_loss": 2.0043418407440186,
|
936 |
+
"eval_runtime": 43.8598,
|
937 |
+
"eval_samples_per_second": 22.8,
|
938 |
+
"eval_steps_per_second": 2.85,
|
939 |
+
"step": 620
|
940 |
+
},
|
941 |
+
{
|
942 |
+
"epoch": 8.4,
|
943 |
+
"grad_norm": 2.89953351020813,
|
944 |
+
"learning_rate": 5.333333333333334e-06,
|
945 |
+
"loss": 0.8197,
|
946 |
+
"step": 630
|
947 |
+
},
|
948 |
+
{
|
949 |
+
"epoch": 8.4,
|
950 |
+
"eval_loss": 2.006070137023926,
|
951 |
+
"eval_runtime": 43.8589,
|
952 |
+
"eval_samples_per_second": 22.8,
|
953 |
+
"eval_steps_per_second": 2.85,
|
954 |
+
"step": 630
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 8.533333333333333,
|
958 |
+
"grad_norm": 2.9382617473602295,
|
959 |
+
"learning_rate": 4.1481481481481485e-06,
|
960 |
+
"loss": 0.8295,
|
961 |
+
"step": 640
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 8.533333333333333,
|
965 |
+
"eval_loss": 2.0065603256225586,
|
966 |
+
"eval_runtime": 44.006,
|
967 |
+
"eval_samples_per_second": 22.724,
|
968 |
+
"eval_steps_per_second": 2.841,
|
969 |
+
"step": 640
|
970 |
+
}
|
971 |
+
],
|
972 |
+
"logging_steps": 10,
|
973 |
+
"max_steps": 675,
|
974 |
+
"num_input_tokens_seen": 0,
|
975 |
+
"num_train_epochs": 9,
|
976 |
+
"save_steps": 10,
|
977 |
+
"stateful_callbacks": {
|
978 |
+
"TrainerControl": {
|
979 |
+
"args": {
|
980 |
+
"should_epoch_stop": false,
|
981 |
+
"should_evaluate": false,
|
982 |
+
"should_log": false,
|
983 |
+
"should_save": true,
|
984 |
+
"should_training_stop": false
|
985 |
+
},
|
986 |
+
"attributes": {}
|
987 |
+
}
|
988 |
+
},
|
989 |
+
"total_flos": 1.048708607115264e+17,
|
990 |
+
"train_batch_size": 8,
|
991 |
+
"trial_name": null,
|
992 |
+
"trial_params": null
|
993 |
+
}
|
output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-650/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-650/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"dense",
|
24 |
+
"query_key_value",
|
25 |
+
"dense_h_to_4h",
|
26 |
+
"dense_4h_to_h"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-650/trainer_state.json
ADDED
@@ -0,0 +1,1008 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.6284925937652588,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-80",
|
4 |
+
"epoch": 8.666666666666666,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 650,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.37591353058815,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.5979,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.6375348567962646,
|
21 |
+
"eval_runtime": 43.9032,
|
22 |
+
"eval_samples_per_second": 22.777,
|
23 |
+
"eval_steps_per_second": 2.847,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.4210415482521057,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.624,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.6352741718292236,
|
36 |
+
"eval_runtime": 44.0038,
|
37 |
+
"eval_samples_per_second": 22.725,
|
38 |
+
"eval_steps_per_second": 2.841,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.3714869022369385,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.6205,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.633917212486267,
|
51 |
+
"eval_runtime": 43.9878,
|
52 |
+
"eval_samples_per_second": 22.734,
|
53 |
+
"eval_steps_per_second": 2.842,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.36149370670318604,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.6165,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.6323453187942505,
|
66 |
+
"eval_runtime": 43.9629,
|
67 |
+
"eval_samples_per_second": 22.746,
|
68 |
+
"eval_steps_per_second": 2.843,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.35420870780944824,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.6599,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.6314094066619873,
|
81 |
+
"eval_runtime": 43.9048,
|
82 |
+
"eval_samples_per_second": 22.777,
|
83 |
+
"eval_steps_per_second": 2.847,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.33472639322280884,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.5591,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.6304500102996826,
|
96 |
+
"eval_runtime": 44.0293,
|
97 |
+
"eval_samples_per_second": 22.712,
|
98 |
+
"eval_steps_per_second": 2.839,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.3210572898387909,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.6328,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.6291298866271973,
|
111 |
+
"eval_runtime": 43.8599,
|
112 |
+
"eval_samples_per_second": 22.8,
|
113 |
+
"eval_steps_per_second": 2.85,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.32792502641677856,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.5967,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.6284925937652588,
|
126 |
+
"eval_runtime": 43.8492,
|
127 |
+
"eval_samples_per_second": 22.805,
|
128 |
+
"eval_steps_per_second": 2.851,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.457350492477417,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.5461,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.6317176818847656,
|
141 |
+
"eval_runtime": 43.8568,
|
142 |
+
"eval_samples_per_second": 22.801,
|
143 |
+
"eval_steps_per_second": 2.85,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.6296346187591553,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.5933,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.635717511177063,
|
156 |
+
"eval_runtime": 43.8409,
|
157 |
+
"eval_samples_per_second": 22.81,
|
158 |
+
"eval_steps_per_second": 2.851,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.7165963053703308,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.5319,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.6375973224639893,
|
171 |
+
"eval_runtime": 43.8486,
|
172 |
+
"eval_samples_per_second": 22.806,
|
173 |
+
"eval_steps_per_second": 2.851,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.7370977997779846,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.5413,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.6369796991348267,
|
186 |
+
"eval_runtime": 43.9803,
|
187 |
+
"eval_samples_per_second": 22.737,
|
188 |
+
"eval_steps_per_second": 2.842,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.726448118686676,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.5226,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.6377675533294678,
|
201 |
+
"eval_runtime": 43.8627,
|
202 |
+
"eval_samples_per_second": 22.798,
|
203 |
+
"eval_steps_per_second": 2.85,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.7822732925415039,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.5477,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.6378459930419922,
|
216 |
+
"eval_runtime": 43.9081,
|
217 |
+
"eval_samples_per_second": 22.775,
|
218 |
+
"eval_steps_per_second": 2.847,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.7607081532478333,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 1.5604,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 1.637563705444336,
|
231 |
+
"eval_runtime": 43.9092,
|
232 |
+
"eval_samples_per_second": 22.774,
|
233 |
+
"eval_steps_per_second": 2.847,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 0.9361194372177124,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 1.4091,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 1.6557352542877197,
|
246 |
+
"eval_runtime": 43.9308,
|
247 |
+
"eval_samples_per_second": 22.763,
|
248 |
+
"eval_steps_per_second": 2.845,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 1.0848534107208252,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 1.4629,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 1.6792665719985962,
|
261 |
+
"eval_runtime": 43.8829,
|
262 |
+
"eval_samples_per_second": 22.788,
|
263 |
+
"eval_steps_per_second": 2.848,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 1.0759488344192505,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 1.3685,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 1.682196855545044,
|
276 |
+
"eval_runtime": 43.8735,
|
277 |
+
"eval_samples_per_second": 22.793,
|
278 |
+
"eval_steps_per_second": 2.849,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 1.2871410846710205,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 1.4443,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 1.6869845390319824,
|
291 |
+
"eval_runtime": 43.8534,
|
292 |
+
"eval_samples_per_second": 22.803,
|
293 |
+
"eval_steps_per_second": 2.85,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 1.2004164457321167,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 1.3451,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 1.6853325366973877,
|
306 |
+
"eval_runtime": 43.8718,
|
307 |
+
"eval_samples_per_second": 22.794,
|
308 |
+
"eval_steps_per_second": 2.849,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 1.2714128494262695,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 1.4547,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 1.6859557628631592,
|
321 |
+
"eval_runtime": 43.8724,
|
322 |
+
"eval_samples_per_second": 22.793,
|
323 |
+
"eval_steps_per_second": 2.849,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 1.3297241926193237,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 1.4088,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 1.6856082677841187,
|
336 |
+
"eval_runtime": 43.8409,
|
337 |
+
"eval_samples_per_second": 22.81,
|
338 |
+
"eval_steps_per_second": 2.851,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 1.1967905759811401,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 1.3735,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 1.7015950679779053,
|
351 |
+
"eval_runtime": 43.8446,
|
352 |
+
"eval_samples_per_second": 22.808,
|
353 |
+
"eval_steps_per_second": 2.851,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 1.5186768770217896,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 1.2487,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 1.7492223978042603,
|
366 |
+
"eval_runtime": 43.84,
|
367 |
+
"eval_samples_per_second": 22.81,
|
368 |
+
"eval_steps_per_second": 2.851,
|
369 |
+
"step": 240
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.3333333333333335,
|
373 |
+
"grad_norm": 1.5129271745681763,
|
374 |
+
"learning_rate": 5.037037037037037e-05,
|
375 |
+
"loss": 1.2959,
|
376 |
+
"step": 250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 3.3333333333333335,
|
380 |
+
"eval_loss": 1.7475690841674805,
|
381 |
+
"eval_runtime": 43.8475,
|
382 |
+
"eval_samples_per_second": 22.806,
|
383 |
+
"eval_steps_per_second": 2.851,
|
384 |
+
"step": 250
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 3.466666666666667,
|
388 |
+
"grad_norm": 1.5553545951843262,
|
389 |
+
"learning_rate": 4.918518518518519e-05,
|
390 |
+
"loss": 1.278,
|
391 |
+
"step": 260
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 3.466666666666667,
|
395 |
+
"eval_loss": 1.749650239944458,
|
396 |
+
"eval_runtime": 43.8575,
|
397 |
+
"eval_samples_per_second": 22.801,
|
398 |
+
"eval_steps_per_second": 2.85,
|
399 |
+
"step": 260
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 3.6,
|
403 |
+
"grad_norm": 1.6911894083023071,
|
404 |
+
"learning_rate": 4.8e-05,
|
405 |
+
"loss": 1.1815,
|
406 |
+
"step": 270
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 3.6,
|
410 |
+
"eval_loss": 1.751675009727478,
|
411 |
+
"eval_runtime": 43.8693,
|
412 |
+
"eval_samples_per_second": 22.795,
|
413 |
+
"eval_steps_per_second": 2.849,
|
414 |
+
"step": 270
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 3.7333333333333334,
|
418 |
+
"grad_norm": 1.7207773923873901,
|
419 |
+
"learning_rate": 4.681481481481481e-05,
|
420 |
+
"loss": 1.227,
|
421 |
+
"step": 280
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 3.7333333333333334,
|
425 |
+
"eval_loss": 1.7532404661178589,
|
426 |
+
"eval_runtime": 43.9788,
|
427 |
+
"eval_samples_per_second": 22.738,
|
428 |
+
"eval_steps_per_second": 2.842,
|
429 |
+
"step": 280
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 3.8666666666666667,
|
433 |
+
"grad_norm": 1.6659716367721558,
|
434 |
+
"learning_rate": 4.5629629629629636e-05,
|
435 |
+
"loss": 1.2699,
|
436 |
+
"step": 290
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 3.8666666666666667,
|
440 |
+
"eval_loss": 1.7546659708023071,
|
441 |
+
"eval_runtime": 44.0345,
|
442 |
+
"eval_samples_per_second": 22.709,
|
443 |
+
"eval_steps_per_second": 2.839,
|
444 |
+
"step": 290
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 4.0,
|
448 |
+
"grad_norm": 1.7288299798965454,
|
449 |
+
"learning_rate": 4.444444444444445e-05,
|
450 |
+
"loss": 1.2414,
|
451 |
+
"step": 300
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 4.0,
|
455 |
+
"eval_loss": 1.7534445524215698,
|
456 |
+
"eval_runtime": 43.9971,
|
457 |
+
"eval_samples_per_second": 22.729,
|
458 |
+
"eval_steps_per_second": 2.841,
|
459 |
+
"step": 300
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 4.133333333333334,
|
463 |
+
"grad_norm": 1.8176274299621582,
|
464 |
+
"learning_rate": 4.3259259259259264e-05,
|
465 |
+
"loss": 1.1231,
|
466 |
+
"step": 310
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 4.133333333333334,
|
470 |
+
"eval_loss": 1.8118728399276733,
|
471 |
+
"eval_runtime": 44.0255,
|
472 |
+
"eval_samples_per_second": 22.714,
|
473 |
+
"eval_steps_per_second": 2.839,
|
474 |
+
"step": 310
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 4.266666666666667,
|
478 |
+
"grad_norm": 1.881231427192688,
|
479 |
+
"learning_rate": 4.2074074074074075e-05,
|
480 |
+
"loss": 1.1311,
|
481 |
+
"step": 320
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 4.266666666666667,
|
485 |
+
"eval_loss": 1.824351191520691,
|
486 |
+
"eval_runtime": 43.871,
|
487 |
+
"eval_samples_per_second": 22.794,
|
488 |
+
"eval_steps_per_second": 2.849,
|
489 |
+
"step": 320
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 4.4,
|
493 |
+
"grad_norm": 1.8982057571411133,
|
494 |
+
"learning_rate": 4.088888888888889e-05,
|
495 |
+
"loss": 1.1046,
|
496 |
+
"step": 330
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 4.4,
|
500 |
+
"eval_loss": 1.813114881515503,
|
501 |
+
"eval_runtime": 43.8506,
|
502 |
+
"eval_samples_per_second": 22.805,
|
503 |
+
"eval_steps_per_second": 2.851,
|
504 |
+
"step": 330
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 4.533333333333333,
|
508 |
+
"grad_norm": 1.9931222200393677,
|
509 |
+
"learning_rate": 3.970370370370371e-05,
|
510 |
+
"loss": 1.0596,
|
511 |
+
"step": 340
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"epoch": 4.533333333333333,
|
515 |
+
"eval_loss": 1.8187421560287476,
|
516 |
+
"eval_runtime": 43.8637,
|
517 |
+
"eval_samples_per_second": 22.798,
|
518 |
+
"eval_steps_per_second": 2.85,
|
519 |
+
"step": 340
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 4.666666666666667,
|
523 |
+
"grad_norm": 2.02201247215271,
|
524 |
+
"learning_rate": 3.851851851851852e-05,
|
525 |
+
"loss": 1.1469,
|
526 |
+
"step": 350
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 4.666666666666667,
|
530 |
+
"eval_loss": 1.8229775428771973,
|
531 |
+
"eval_runtime": 43.9111,
|
532 |
+
"eval_samples_per_second": 22.773,
|
533 |
+
"eval_steps_per_second": 2.847,
|
534 |
+
"step": 350
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 4.8,
|
538 |
+
"grad_norm": 2.220625638961792,
|
539 |
+
"learning_rate": 3.733333333333334e-05,
|
540 |
+
"loss": 1.1344,
|
541 |
+
"step": 360
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 4.8,
|
545 |
+
"eval_loss": 1.817935585975647,
|
546 |
+
"eval_runtime": 43.9794,
|
547 |
+
"eval_samples_per_second": 22.738,
|
548 |
+
"eval_steps_per_second": 2.842,
|
549 |
+
"step": 360
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 4.933333333333334,
|
553 |
+
"grad_norm": 2.0401487350463867,
|
554 |
+
"learning_rate": 3.614814814814815e-05,
|
555 |
+
"loss": 1.1922,
|
556 |
+
"step": 370
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 4.933333333333334,
|
560 |
+
"eval_loss": 1.8182997703552246,
|
561 |
+
"eval_runtime": 43.8807,
|
562 |
+
"eval_samples_per_second": 22.789,
|
563 |
+
"eval_steps_per_second": 2.849,
|
564 |
+
"step": 370
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 5.066666666666666,
|
568 |
+
"grad_norm": 1.8822356462478638,
|
569 |
+
"learning_rate": 3.4962962962962965e-05,
|
570 |
+
"loss": 1.0486,
|
571 |
+
"step": 380
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 5.066666666666666,
|
575 |
+
"eval_loss": 1.8343256711959839,
|
576 |
+
"eval_runtime": 43.9715,
|
577 |
+
"eval_samples_per_second": 22.742,
|
578 |
+
"eval_steps_per_second": 2.843,
|
579 |
+
"step": 380
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 5.2,
|
583 |
+
"grad_norm": 2.383836030960083,
|
584 |
+
"learning_rate": 3.377777777777778e-05,
|
585 |
+
"loss": 1.0039,
|
586 |
+
"step": 390
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"epoch": 5.2,
|
590 |
+
"eval_loss": 1.8889024257659912,
|
591 |
+
"eval_runtime": 43.906,
|
592 |
+
"eval_samples_per_second": 22.776,
|
593 |
+
"eval_steps_per_second": 2.847,
|
594 |
+
"step": 390
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 5.333333333333333,
|
598 |
+
"grad_norm": 2.403280019760132,
|
599 |
+
"learning_rate": 3.259259259259259e-05,
|
600 |
+
"loss": 0.9946,
|
601 |
+
"step": 400
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 5.333333333333333,
|
605 |
+
"eval_loss": 1.8832476139068604,
|
606 |
+
"eval_runtime": 43.8654,
|
607 |
+
"eval_samples_per_second": 22.797,
|
608 |
+
"eval_steps_per_second": 2.85,
|
609 |
+
"step": 400
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 5.466666666666667,
|
613 |
+
"grad_norm": 2.34110164642334,
|
614 |
+
"learning_rate": 3.140740740740741e-05,
|
615 |
+
"loss": 1.0302,
|
616 |
+
"step": 410
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"epoch": 5.466666666666667,
|
620 |
+
"eval_loss": 1.8810956478118896,
|
621 |
+
"eval_runtime": 43.8937,
|
622 |
+
"eval_samples_per_second": 22.782,
|
623 |
+
"eval_steps_per_second": 2.848,
|
624 |
+
"step": 410
|
625 |
+
},
|
626 |
+
{
|
627 |
+
"epoch": 5.6,
|
628 |
+
"grad_norm": 2.32973575592041,
|
629 |
+
"learning_rate": 3.0222222222222225e-05,
|
630 |
+
"loss": 1.0062,
|
631 |
+
"step": 420
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"epoch": 5.6,
|
635 |
+
"eval_loss": 1.8806273937225342,
|
636 |
+
"eval_runtime": 43.9433,
|
637 |
+
"eval_samples_per_second": 22.757,
|
638 |
+
"eval_steps_per_second": 2.845,
|
639 |
+
"step": 420
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 5.733333333333333,
|
643 |
+
"grad_norm": 2.426825523376465,
|
644 |
+
"learning_rate": 2.9037037037037042e-05,
|
645 |
+
"loss": 1.0493,
|
646 |
+
"step": 430
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 5.733333333333333,
|
650 |
+
"eval_loss": 1.8787455558776855,
|
651 |
+
"eval_runtime": 43.9876,
|
652 |
+
"eval_samples_per_second": 22.734,
|
653 |
+
"eval_steps_per_second": 2.842,
|
654 |
+
"step": 430
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 5.866666666666667,
|
658 |
+
"grad_norm": 2.2383341789245605,
|
659 |
+
"learning_rate": 2.7851851851851856e-05,
|
660 |
+
"loss": 1.0728,
|
661 |
+
"step": 440
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 5.866666666666667,
|
665 |
+
"eval_loss": 1.8792084455490112,
|
666 |
+
"eval_runtime": 43.9918,
|
667 |
+
"eval_samples_per_second": 22.732,
|
668 |
+
"eval_steps_per_second": 2.841,
|
669 |
+
"step": 440
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 6.0,
|
673 |
+
"grad_norm": 2.4239635467529297,
|
674 |
+
"learning_rate": 2.6666666666666667e-05,
|
675 |
+
"loss": 1.0199,
|
676 |
+
"step": 450
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 6.0,
|
680 |
+
"eval_loss": 1.8804157972335815,
|
681 |
+
"eval_runtime": 43.9689,
|
682 |
+
"eval_samples_per_second": 22.743,
|
683 |
+
"eval_steps_per_second": 2.843,
|
684 |
+
"step": 450
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"epoch": 6.133333333333334,
|
688 |
+
"grad_norm": 3.0071866512298584,
|
689 |
+
"learning_rate": 2.5481481481481484e-05,
|
690 |
+
"loss": 0.9486,
|
691 |
+
"step": 460
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"epoch": 6.133333333333334,
|
695 |
+
"eval_loss": 1.930755376815796,
|
696 |
+
"eval_runtime": 43.9812,
|
697 |
+
"eval_samples_per_second": 22.737,
|
698 |
+
"eval_steps_per_second": 2.842,
|
699 |
+
"step": 460
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 6.266666666666667,
|
703 |
+
"grad_norm": 2.432983875274658,
|
704 |
+
"learning_rate": 2.4296296296296298e-05,
|
705 |
+
"loss": 0.8858,
|
706 |
+
"step": 470
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 6.266666666666667,
|
710 |
+
"eval_loss": 1.9468986988067627,
|
711 |
+
"eval_runtime": 43.9889,
|
712 |
+
"eval_samples_per_second": 22.733,
|
713 |
+
"eval_steps_per_second": 2.842,
|
714 |
+
"step": 470
|
715 |
+
},
|
716 |
+
{
|
717 |
+
"epoch": 6.4,
|
718 |
+
"grad_norm": 2.591848850250244,
|
719 |
+
"learning_rate": 2.3111111111111112e-05,
|
720 |
+
"loss": 0.9818,
|
721 |
+
"step": 480
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"epoch": 6.4,
|
725 |
+
"eval_loss": 1.9322350025177002,
|
726 |
+
"eval_runtime": 44.0412,
|
727 |
+
"eval_samples_per_second": 22.706,
|
728 |
+
"eval_steps_per_second": 2.838,
|
729 |
+
"step": 480
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 6.533333333333333,
|
733 |
+
"grad_norm": 2.5453197956085205,
|
734 |
+
"learning_rate": 2.192592592592593e-05,
|
735 |
+
"loss": 0.84,
|
736 |
+
"step": 490
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"epoch": 6.533333333333333,
|
740 |
+
"eval_loss": 1.9371347427368164,
|
741 |
+
"eval_runtime": 44.0174,
|
742 |
+
"eval_samples_per_second": 22.718,
|
743 |
+
"eval_steps_per_second": 2.84,
|
744 |
+
"step": 490
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 6.666666666666667,
|
748 |
+
"grad_norm": 2.4433412551879883,
|
749 |
+
"learning_rate": 2.074074074074074e-05,
|
750 |
+
"loss": 0.9686,
|
751 |
+
"step": 500
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 6.666666666666667,
|
755 |
+
"eval_loss": 1.9340929985046387,
|
756 |
+
"eval_runtime": 43.9473,
|
757 |
+
"eval_samples_per_second": 22.755,
|
758 |
+
"eval_steps_per_second": 2.844,
|
759 |
+
"step": 500
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 6.8,
|
763 |
+
"grad_norm": 2.7762234210968018,
|
764 |
+
"learning_rate": 1.9555555555555557e-05,
|
765 |
+
"loss": 0.974,
|
766 |
+
"step": 510
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 6.8,
|
770 |
+
"eval_loss": 1.936902642250061,
|
771 |
+
"eval_runtime": 43.9918,
|
772 |
+
"eval_samples_per_second": 22.732,
|
773 |
+
"eval_steps_per_second": 2.841,
|
774 |
+
"step": 510
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 6.933333333333334,
|
778 |
+
"grad_norm": 2.706693410873413,
|
779 |
+
"learning_rate": 1.837037037037037e-05,
|
780 |
+
"loss": 0.9366,
|
781 |
+
"step": 520
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"epoch": 6.933333333333334,
|
785 |
+
"eval_loss": 1.9351890087127686,
|
786 |
+
"eval_runtime": 43.9647,
|
787 |
+
"eval_samples_per_second": 22.746,
|
788 |
+
"eval_steps_per_second": 2.843,
|
789 |
+
"step": 520
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 7.066666666666666,
|
793 |
+
"grad_norm": 2.338547706604004,
|
794 |
+
"learning_rate": 1.7185185185185185e-05,
|
795 |
+
"loss": 0.9285,
|
796 |
+
"step": 530
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"epoch": 7.066666666666666,
|
800 |
+
"eval_loss": 1.9464186429977417,
|
801 |
+
"eval_runtime": 43.9646,
|
802 |
+
"eval_samples_per_second": 22.746,
|
803 |
+
"eval_steps_per_second": 2.843,
|
804 |
+
"step": 530
|
805 |
+
},
|
806 |
+
{
|
807 |
+
"epoch": 7.2,
|
808 |
+
"grad_norm": 2.846348285675049,
|
809 |
+
"learning_rate": 1.6000000000000003e-05,
|
810 |
+
"loss": 0.8663,
|
811 |
+
"step": 540
|
812 |
+
},
|
813 |
+
{
|
814 |
+
"epoch": 7.2,
|
815 |
+
"eval_loss": 1.9812690019607544,
|
816 |
+
"eval_runtime": 43.966,
|
817 |
+
"eval_samples_per_second": 22.745,
|
818 |
+
"eval_steps_per_second": 2.843,
|
819 |
+
"step": 540
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 7.333333333333333,
|
823 |
+
"grad_norm": 2.754952907562256,
|
824 |
+
"learning_rate": 1.4814814814814815e-05,
|
825 |
+
"loss": 0.8033,
|
826 |
+
"step": 550
|
827 |
+
},
|
828 |
+
{
|
829 |
+
"epoch": 7.333333333333333,
|
830 |
+
"eval_loss": 1.9769660234451294,
|
831 |
+
"eval_runtime": 43.9067,
|
832 |
+
"eval_samples_per_second": 22.776,
|
833 |
+
"eval_steps_per_second": 2.847,
|
834 |
+
"step": 550
|
835 |
+
},
|
836 |
+
{
|
837 |
+
"epoch": 7.466666666666667,
|
838 |
+
"grad_norm": 2.7049484252929688,
|
839 |
+
"learning_rate": 1.362962962962963e-05,
|
840 |
+
"loss": 0.8823,
|
841 |
+
"step": 560
|
842 |
+
},
|
843 |
+
{
|
844 |
+
"epoch": 7.466666666666667,
|
845 |
+
"eval_loss": 1.9782260656356812,
|
846 |
+
"eval_runtime": 43.8715,
|
847 |
+
"eval_samples_per_second": 22.794,
|
848 |
+
"eval_steps_per_second": 2.849,
|
849 |
+
"step": 560
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 7.6,
|
853 |
+
"grad_norm": 2.9233956336975098,
|
854 |
+
"learning_rate": 1.2444444444444446e-05,
|
855 |
+
"loss": 0.8841,
|
856 |
+
"step": 570
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 7.6,
|
860 |
+
"eval_loss": 1.975508451461792,
|
861 |
+
"eval_runtime": 43.8529,
|
862 |
+
"eval_samples_per_second": 22.804,
|
863 |
+
"eval_steps_per_second": 2.85,
|
864 |
+
"step": 570
|
865 |
+
},
|
866 |
+
{
|
867 |
+
"epoch": 7.733333333333333,
|
868 |
+
"grad_norm": 3.2836148738861084,
|
869 |
+
"learning_rate": 1.125925925925926e-05,
|
870 |
+
"loss": 0.8404,
|
871 |
+
"step": 580
|
872 |
+
},
|
873 |
+
{
|
874 |
+
"epoch": 7.733333333333333,
|
875 |
+
"eval_loss": 1.9755034446716309,
|
876 |
+
"eval_runtime": 43.8744,
|
877 |
+
"eval_samples_per_second": 22.792,
|
878 |
+
"eval_steps_per_second": 2.849,
|
879 |
+
"step": 580
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 7.866666666666667,
|
883 |
+
"grad_norm": 2.717045783996582,
|
884 |
+
"learning_rate": 1.0074074074074074e-05,
|
885 |
+
"loss": 0.9189,
|
886 |
+
"step": 590
|
887 |
+
},
|
888 |
+
{
|
889 |
+
"epoch": 7.866666666666667,
|
890 |
+
"eval_loss": 1.981050729751587,
|
891 |
+
"eval_runtime": 43.8841,
|
892 |
+
"eval_samples_per_second": 22.787,
|
893 |
+
"eval_steps_per_second": 2.848,
|
894 |
+
"step": 590
|
895 |
+
},
|
896 |
+
{
|
897 |
+
"epoch": 8.0,
|
898 |
+
"grad_norm": 2.6528029441833496,
|
899 |
+
"learning_rate": 8.888888888888888e-06,
|
900 |
+
"loss": 0.8777,
|
901 |
+
"step": 600
|
902 |
+
},
|
903 |
+
{
|
904 |
+
"epoch": 8.0,
|
905 |
+
"eval_loss": 1.9789155721664429,
|
906 |
+
"eval_runtime": 44.2778,
|
907 |
+
"eval_samples_per_second": 22.585,
|
908 |
+
"eval_steps_per_second": 2.823,
|
909 |
+
"step": 600
|
910 |
+
},
|
911 |
+
{
|
912 |
+
"epoch": 8.133333333333333,
|
913 |
+
"grad_norm": 2.8376739025115967,
|
914 |
+
"learning_rate": 7.703703703703704e-06,
|
915 |
+
"loss": 0.8247,
|
916 |
+
"step": 610
|
917 |
+
},
|
918 |
+
{
|
919 |
+
"epoch": 8.133333333333333,
|
920 |
+
"eval_loss": 1.9906001091003418,
|
921 |
+
"eval_runtime": 44.0221,
|
922 |
+
"eval_samples_per_second": 22.716,
|
923 |
+
"eval_steps_per_second": 2.839,
|
924 |
+
"step": 610
|
925 |
+
},
|
926 |
+
{
|
927 |
+
"epoch": 8.266666666666667,
|
928 |
+
"grad_norm": 2.8162360191345215,
|
929 |
+
"learning_rate": 6.51851851851852e-06,
|
930 |
+
"loss": 0.8104,
|
931 |
+
"step": 620
|
932 |
+
},
|
933 |
+
{
|
934 |
+
"epoch": 8.266666666666667,
|
935 |
+
"eval_loss": 2.0043418407440186,
|
936 |
+
"eval_runtime": 43.8598,
|
937 |
+
"eval_samples_per_second": 22.8,
|
938 |
+
"eval_steps_per_second": 2.85,
|
939 |
+
"step": 620
|
940 |
+
},
|
941 |
+
{
|
942 |
+
"epoch": 8.4,
|
943 |
+
"grad_norm": 2.89953351020813,
|
944 |
+
"learning_rate": 5.333333333333334e-06,
|
945 |
+
"loss": 0.8197,
|
946 |
+
"step": 630
|
947 |
+
},
|
948 |
+
{
|
949 |
+
"epoch": 8.4,
|
950 |
+
"eval_loss": 2.006070137023926,
|
951 |
+
"eval_runtime": 43.8589,
|
952 |
+
"eval_samples_per_second": 22.8,
|
953 |
+
"eval_steps_per_second": 2.85,
|
954 |
+
"step": 630
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 8.533333333333333,
|
958 |
+
"grad_norm": 2.9382617473602295,
|
959 |
+
"learning_rate": 4.1481481481481485e-06,
|
960 |
+
"loss": 0.8295,
|
961 |
+
"step": 640
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 8.533333333333333,
|
965 |
+
"eval_loss": 2.0065603256225586,
|
966 |
+
"eval_runtime": 44.006,
|
967 |
+
"eval_samples_per_second": 22.724,
|
968 |
+
"eval_steps_per_second": 2.841,
|
969 |
+
"step": 640
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 8.666666666666666,
|
973 |
+
"grad_norm": 3.2645020484924316,
|
974 |
+
"learning_rate": 2.962962962962963e-06,
|
975 |
+
"loss": 0.8202,
|
976 |
+
"step": 650
|
977 |
+
},
|
978 |
+
{
|
979 |
+
"epoch": 8.666666666666666,
|
980 |
+
"eval_loss": 2.0076513290405273,
|
981 |
+
"eval_runtime": 43.9286,
|
982 |
+
"eval_samples_per_second": 22.764,
|
983 |
+
"eval_steps_per_second": 2.846,
|
984 |
+
"step": 650
|
985 |
+
}
|
986 |
+
],
|
987 |
+
"logging_steps": 10,
|
988 |
+
"max_steps": 675,
|
989 |
+
"num_input_tokens_seen": 0,
|
990 |
+
"num_train_epochs": 9,
|
991 |
+
"save_steps": 10,
|
992 |
+
"stateful_callbacks": {
|
993 |
+
"TrainerControl": {
|
994 |
+
"args": {
|
995 |
+
"should_epoch_stop": false,
|
996 |
+
"should_evaluate": false,
|
997 |
+
"should_log": false,
|
998 |
+
"should_save": true,
|
999 |
+
"should_training_stop": false
|
1000 |
+
},
|
1001 |
+
"attributes": {}
|
1002 |
+
}
|
1003 |
+
},
|
1004 |
+
"total_flos": 1.06509467910144e+17,
|
1005 |
+
"train_batch_size": 8,
|
1006 |
+
"trial_name": null,
|
1007 |
+
"trial_params": null
|
1008 |
+
}
|
output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-660/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-660/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"dense",
|
24 |
+
"query_key_value",
|
25 |
+
"dense_h_to_4h",
|
26 |
+
"dense_4h_to_h"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-660/trainer_state.json
ADDED
@@ -0,0 +1,1023 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.6284925937652588,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-80",
|
4 |
+
"epoch": 8.8,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 660,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.37591353058815,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.5979,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.6375348567962646,
|
21 |
+
"eval_runtime": 43.9032,
|
22 |
+
"eval_samples_per_second": 22.777,
|
23 |
+
"eval_steps_per_second": 2.847,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.4210415482521057,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.624,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.6352741718292236,
|
36 |
+
"eval_runtime": 44.0038,
|
37 |
+
"eval_samples_per_second": 22.725,
|
38 |
+
"eval_steps_per_second": 2.841,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.3714869022369385,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.6205,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.633917212486267,
|
51 |
+
"eval_runtime": 43.9878,
|
52 |
+
"eval_samples_per_second": 22.734,
|
53 |
+
"eval_steps_per_second": 2.842,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.36149370670318604,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.6165,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.6323453187942505,
|
66 |
+
"eval_runtime": 43.9629,
|
67 |
+
"eval_samples_per_second": 22.746,
|
68 |
+
"eval_steps_per_second": 2.843,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.35420870780944824,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.6599,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.6314094066619873,
|
81 |
+
"eval_runtime": 43.9048,
|
82 |
+
"eval_samples_per_second": 22.777,
|
83 |
+
"eval_steps_per_second": 2.847,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.33472639322280884,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.5591,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.6304500102996826,
|
96 |
+
"eval_runtime": 44.0293,
|
97 |
+
"eval_samples_per_second": 22.712,
|
98 |
+
"eval_steps_per_second": 2.839,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.3210572898387909,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.6328,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.6291298866271973,
|
111 |
+
"eval_runtime": 43.8599,
|
112 |
+
"eval_samples_per_second": 22.8,
|
113 |
+
"eval_steps_per_second": 2.85,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.32792502641677856,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.5967,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.6284925937652588,
|
126 |
+
"eval_runtime": 43.8492,
|
127 |
+
"eval_samples_per_second": 22.805,
|
128 |
+
"eval_steps_per_second": 2.851,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.457350492477417,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.5461,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.6317176818847656,
|
141 |
+
"eval_runtime": 43.8568,
|
142 |
+
"eval_samples_per_second": 22.801,
|
143 |
+
"eval_steps_per_second": 2.85,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.6296346187591553,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.5933,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.635717511177063,
|
156 |
+
"eval_runtime": 43.8409,
|
157 |
+
"eval_samples_per_second": 22.81,
|
158 |
+
"eval_steps_per_second": 2.851,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.7165963053703308,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.5319,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.6375973224639893,
|
171 |
+
"eval_runtime": 43.8486,
|
172 |
+
"eval_samples_per_second": 22.806,
|
173 |
+
"eval_steps_per_second": 2.851,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.7370977997779846,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.5413,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.6369796991348267,
|
186 |
+
"eval_runtime": 43.9803,
|
187 |
+
"eval_samples_per_second": 22.737,
|
188 |
+
"eval_steps_per_second": 2.842,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.726448118686676,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.5226,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.6377675533294678,
|
201 |
+
"eval_runtime": 43.8627,
|
202 |
+
"eval_samples_per_second": 22.798,
|
203 |
+
"eval_steps_per_second": 2.85,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.7822732925415039,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.5477,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.6378459930419922,
|
216 |
+
"eval_runtime": 43.9081,
|
217 |
+
"eval_samples_per_second": 22.775,
|
218 |
+
"eval_steps_per_second": 2.847,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.7607081532478333,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 1.5604,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 1.637563705444336,
|
231 |
+
"eval_runtime": 43.9092,
|
232 |
+
"eval_samples_per_second": 22.774,
|
233 |
+
"eval_steps_per_second": 2.847,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 0.9361194372177124,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 1.4091,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 1.6557352542877197,
|
246 |
+
"eval_runtime": 43.9308,
|
247 |
+
"eval_samples_per_second": 22.763,
|
248 |
+
"eval_steps_per_second": 2.845,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 1.0848534107208252,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 1.4629,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 1.6792665719985962,
|
261 |
+
"eval_runtime": 43.8829,
|
262 |
+
"eval_samples_per_second": 22.788,
|
263 |
+
"eval_steps_per_second": 2.848,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 1.0759488344192505,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 1.3685,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 1.682196855545044,
|
276 |
+
"eval_runtime": 43.8735,
|
277 |
+
"eval_samples_per_second": 22.793,
|
278 |
+
"eval_steps_per_second": 2.849,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 1.2871410846710205,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 1.4443,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 1.6869845390319824,
|
291 |
+
"eval_runtime": 43.8534,
|
292 |
+
"eval_samples_per_second": 22.803,
|
293 |
+
"eval_steps_per_second": 2.85,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 1.2004164457321167,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 1.3451,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 1.6853325366973877,
|
306 |
+
"eval_runtime": 43.8718,
|
307 |
+
"eval_samples_per_second": 22.794,
|
308 |
+
"eval_steps_per_second": 2.849,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 1.2714128494262695,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 1.4547,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 1.6859557628631592,
|
321 |
+
"eval_runtime": 43.8724,
|
322 |
+
"eval_samples_per_second": 22.793,
|
323 |
+
"eval_steps_per_second": 2.849,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 1.3297241926193237,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 1.4088,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 1.6856082677841187,
|
336 |
+
"eval_runtime": 43.8409,
|
337 |
+
"eval_samples_per_second": 22.81,
|
338 |
+
"eval_steps_per_second": 2.851,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 1.1967905759811401,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 1.3735,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 1.7015950679779053,
|
351 |
+
"eval_runtime": 43.8446,
|
352 |
+
"eval_samples_per_second": 22.808,
|
353 |
+
"eval_steps_per_second": 2.851,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 1.5186768770217896,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 1.2487,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 1.7492223978042603,
|
366 |
+
"eval_runtime": 43.84,
|
367 |
+
"eval_samples_per_second": 22.81,
|
368 |
+
"eval_steps_per_second": 2.851,
|
369 |
+
"step": 240
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.3333333333333335,
|
373 |
+
"grad_norm": 1.5129271745681763,
|
374 |
+
"learning_rate": 5.037037037037037e-05,
|
375 |
+
"loss": 1.2959,
|
376 |
+
"step": 250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 3.3333333333333335,
|
380 |
+
"eval_loss": 1.7475690841674805,
|
381 |
+
"eval_runtime": 43.8475,
|
382 |
+
"eval_samples_per_second": 22.806,
|
383 |
+
"eval_steps_per_second": 2.851,
|
384 |
+
"step": 250
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 3.466666666666667,
|
388 |
+
"grad_norm": 1.5553545951843262,
|
389 |
+
"learning_rate": 4.918518518518519e-05,
|
390 |
+
"loss": 1.278,
|
391 |
+
"step": 260
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 3.466666666666667,
|
395 |
+
"eval_loss": 1.749650239944458,
|
396 |
+
"eval_runtime": 43.8575,
|
397 |
+
"eval_samples_per_second": 22.801,
|
398 |
+
"eval_steps_per_second": 2.85,
|
399 |
+
"step": 260
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 3.6,
|
403 |
+
"grad_norm": 1.6911894083023071,
|
404 |
+
"learning_rate": 4.8e-05,
|
405 |
+
"loss": 1.1815,
|
406 |
+
"step": 270
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 3.6,
|
410 |
+
"eval_loss": 1.751675009727478,
|
411 |
+
"eval_runtime": 43.8693,
|
412 |
+
"eval_samples_per_second": 22.795,
|
413 |
+
"eval_steps_per_second": 2.849,
|
414 |
+
"step": 270
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 3.7333333333333334,
|
418 |
+
"grad_norm": 1.7207773923873901,
|
419 |
+
"learning_rate": 4.681481481481481e-05,
|
420 |
+
"loss": 1.227,
|
421 |
+
"step": 280
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 3.7333333333333334,
|
425 |
+
"eval_loss": 1.7532404661178589,
|
426 |
+
"eval_runtime": 43.9788,
|
427 |
+
"eval_samples_per_second": 22.738,
|
428 |
+
"eval_steps_per_second": 2.842,
|
429 |
+
"step": 280
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 3.8666666666666667,
|
433 |
+
"grad_norm": 1.6659716367721558,
|
434 |
+
"learning_rate": 4.5629629629629636e-05,
|
435 |
+
"loss": 1.2699,
|
436 |
+
"step": 290
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 3.8666666666666667,
|
440 |
+
"eval_loss": 1.7546659708023071,
|
441 |
+
"eval_runtime": 44.0345,
|
442 |
+
"eval_samples_per_second": 22.709,
|
443 |
+
"eval_steps_per_second": 2.839,
|
444 |
+
"step": 290
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 4.0,
|
448 |
+
"grad_norm": 1.7288299798965454,
|
449 |
+
"learning_rate": 4.444444444444445e-05,
|
450 |
+
"loss": 1.2414,
|
451 |
+
"step": 300
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 4.0,
|
455 |
+
"eval_loss": 1.7534445524215698,
|
456 |
+
"eval_runtime": 43.9971,
|
457 |
+
"eval_samples_per_second": 22.729,
|
458 |
+
"eval_steps_per_second": 2.841,
|
459 |
+
"step": 300
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 4.133333333333334,
|
463 |
+
"grad_norm": 1.8176274299621582,
|
464 |
+
"learning_rate": 4.3259259259259264e-05,
|
465 |
+
"loss": 1.1231,
|
466 |
+
"step": 310
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 4.133333333333334,
|
470 |
+
"eval_loss": 1.8118728399276733,
|
471 |
+
"eval_runtime": 44.0255,
|
472 |
+
"eval_samples_per_second": 22.714,
|
473 |
+
"eval_steps_per_second": 2.839,
|
474 |
+
"step": 310
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 4.266666666666667,
|
478 |
+
"grad_norm": 1.881231427192688,
|
479 |
+
"learning_rate": 4.2074074074074075e-05,
|
480 |
+
"loss": 1.1311,
|
481 |
+
"step": 320
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 4.266666666666667,
|
485 |
+
"eval_loss": 1.824351191520691,
|
486 |
+
"eval_runtime": 43.871,
|
487 |
+
"eval_samples_per_second": 22.794,
|
488 |
+
"eval_steps_per_second": 2.849,
|
489 |
+
"step": 320
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 4.4,
|
493 |
+
"grad_norm": 1.8982057571411133,
|
494 |
+
"learning_rate": 4.088888888888889e-05,
|
495 |
+
"loss": 1.1046,
|
496 |
+
"step": 330
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 4.4,
|
500 |
+
"eval_loss": 1.813114881515503,
|
501 |
+
"eval_runtime": 43.8506,
|
502 |
+
"eval_samples_per_second": 22.805,
|
503 |
+
"eval_steps_per_second": 2.851,
|
504 |
+
"step": 330
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 4.533333333333333,
|
508 |
+
"grad_norm": 1.9931222200393677,
|
509 |
+
"learning_rate": 3.970370370370371e-05,
|
510 |
+
"loss": 1.0596,
|
511 |
+
"step": 340
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"epoch": 4.533333333333333,
|
515 |
+
"eval_loss": 1.8187421560287476,
|
516 |
+
"eval_runtime": 43.8637,
|
517 |
+
"eval_samples_per_second": 22.798,
|
518 |
+
"eval_steps_per_second": 2.85,
|
519 |
+
"step": 340
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 4.666666666666667,
|
523 |
+
"grad_norm": 2.02201247215271,
|
524 |
+
"learning_rate": 3.851851851851852e-05,
|
525 |
+
"loss": 1.1469,
|
526 |
+
"step": 350
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 4.666666666666667,
|
530 |
+
"eval_loss": 1.8229775428771973,
|
531 |
+
"eval_runtime": 43.9111,
|
532 |
+
"eval_samples_per_second": 22.773,
|
533 |
+
"eval_steps_per_second": 2.847,
|
534 |
+
"step": 350
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 4.8,
|
538 |
+
"grad_norm": 2.220625638961792,
|
539 |
+
"learning_rate": 3.733333333333334e-05,
|
540 |
+
"loss": 1.1344,
|
541 |
+
"step": 360
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 4.8,
|
545 |
+
"eval_loss": 1.817935585975647,
|
546 |
+
"eval_runtime": 43.9794,
|
547 |
+
"eval_samples_per_second": 22.738,
|
548 |
+
"eval_steps_per_second": 2.842,
|
549 |
+
"step": 360
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 4.933333333333334,
|
553 |
+
"grad_norm": 2.0401487350463867,
|
554 |
+
"learning_rate": 3.614814814814815e-05,
|
555 |
+
"loss": 1.1922,
|
556 |
+
"step": 370
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 4.933333333333334,
|
560 |
+
"eval_loss": 1.8182997703552246,
|
561 |
+
"eval_runtime": 43.8807,
|
562 |
+
"eval_samples_per_second": 22.789,
|
563 |
+
"eval_steps_per_second": 2.849,
|
564 |
+
"step": 370
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 5.066666666666666,
|
568 |
+
"grad_norm": 1.8822356462478638,
|
569 |
+
"learning_rate": 3.4962962962962965e-05,
|
570 |
+
"loss": 1.0486,
|
571 |
+
"step": 380
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 5.066666666666666,
|
575 |
+
"eval_loss": 1.8343256711959839,
|
576 |
+
"eval_runtime": 43.9715,
|
577 |
+
"eval_samples_per_second": 22.742,
|
578 |
+
"eval_steps_per_second": 2.843,
|
579 |
+
"step": 380
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 5.2,
|
583 |
+
"grad_norm": 2.383836030960083,
|
584 |
+
"learning_rate": 3.377777777777778e-05,
|
585 |
+
"loss": 1.0039,
|
586 |
+
"step": 390
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"epoch": 5.2,
|
590 |
+
"eval_loss": 1.8889024257659912,
|
591 |
+
"eval_runtime": 43.906,
|
592 |
+
"eval_samples_per_second": 22.776,
|
593 |
+
"eval_steps_per_second": 2.847,
|
594 |
+
"step": 390
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 5.333333333333333,
|
598 |
+
"grad_norm": 2.403280019760132,
|
599 |
+
"learning_rate": 3.259259259259259e-05,
|
600 |
+
"loss": 0.9946,
|
601 |
+
"step": 400
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 5.333333333333333,
|
605 |
+
"eval_loss": 1.8832476139068604,
|
606 |
+
"eval_runtime": 43.8654,
|
607 |
+
"eval_samples_per_second": 22.797,
|
608 |
+
"eval_steps_per_second": 2.85,
|
609 |
+
"step": 400
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 5.466666666666667,
|
613 |
+
"grad_norm": 2.34110164642334,
|
614 |
+
"learning_rate": 3.140740740740741e-05,
|
615 |
+
"loss": 1.0302,
|
616 |
+
"step": 410
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"epoch": 5.466666666666667,
|
620 |
+
"eval_loss": 1.8810956478118896,
|
621 |
+
"eval_runtime": 43.8937,
|
622 |
+
"eval_samples_per_second": 22.782,
|
623 |
+
"eval_steps_per_second": 2.848,
|
624 |
+
"step": 410
|
625 |
+
},
|
626 |
+
{
|
627 |
+
"epoch": 5.6,
|
628 |
+
"grad_norm": 2.32973575592041,
|
629 |
+
"learning_rate": 3.0222222222222225e-05,
|
630 |
+
"loss": 1.0062,
|
631 |
+
"step": 420
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"epoch": 5.6,
|
635 |
+
"eval_loss": 1.8806273937225342,
|
636 |
+
"eval_runtime": 43.9433,
|
637 |
+
"eval_samples_per_second": 22.757,
|
638 |
+
"eval_steps_per_second": 2.845,
|
639 |
+
"step": 420
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 5.733333333333333,
|
643 |
+
"grad_norm": 2.426825523376465,
|
644 |
+
"learning_rate": 2.9037037037037042e-05,
|
645 |
+
"loss": 1.0493,
|
646 |
+
"step": 430
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 5.733333333333333,
|
650 |
+
"eval_loss": 1.8787455558776855,
|
651 |
+
"eval_runtime": 43.9876,
|
652 |
+
"eval_samples_per_second": 22.734,
|
653 |
+
"eval_steps_per_second": 2.842,
|
654 |
+
"step": 430
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 5.866666666666667,
|
658 |
+
"grad_norm": 2.2383341789245605,
|
659 |
+
"learning_rate": 2.7851851851851856e-05,
|
660 |
+
"loss": 1.0728,
|
661 |
+
"step": 440
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 5.866666666666667,
|
665 |
+
"eval_loss": 1.8792084455490112,
|
666 |
+
"eval_runtime": 43.9918,
|
667 |
+
"eval_samples_per_second": 22.732,
|
668 |
+
"eval_steps_per_second": 2.841,
|
669 |
+
"step": 440
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 6.0,
|
673 |
+
"grad_norm": 2.4239635467529297,
|
674 |
+
"learning_rate": 2.6666666666666667e-05,
|
675 |
+
"loss": 1.0199,
|
676 |
+
"step": 450
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 6.0,
|
680 |
+
"eval_loss": 1.8804157972335815,
|
681 |
+
"eval_runtime": 43.9689,
|
682 |
+
"eval_samples_per_second": 22.743,
|
683 |
+
"eval_steps_per_second": 2.843,
|
684 |
+
"step": 450
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"epoch": 6.133333333333334,
|
688 |
+
"grad_norm": 3.0071866512298584,
|
689 |
+
"learning_rate": 2.5481481481481484e-05,
|
690 |
+
"loss": 0.9486,
|
691 |
+
"step": 460
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"epoch": 6.133333333333334,
|
695 |
+
"eval_loss": 1.930755376815796,
|
696 |
+
"eval_runtime": 43.9812,
|
697 |
+
"eval_samples_per_second": 22.737,
|
698 |
+
"eval_steps_per_second": 2.842,
|
699 |
+
"step": 460
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 6.266666666666667,
|
703 |
+
"grad_norm": 2.432983875274658,
|
704 |
+
"learning_rate": 2.4296296296296298e-05,
|
705 |
+
"loss": 0.8858,
|
706 |
+
"step": 470
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 6.266666666666667,
|
710 |
+
"eval_loss": 1.9468986988067627,
|
711 |
+
"eval_runtime": 43.9889,
|
712 |
+
"eval_samples_per_second": 22.733,
|
713 |
+
"eval_steps_per_second": 2.842,
|
714 |
+
"step": 470
|
715 |
+
},
|
716 |
+
{
|
717 |
+
"epoch": 6.4,
|
718 |
+
"grad_norm": 2.591848850250244,
|
719 |
+
"learning_rate": 2.3111111111111112e-05,
|
720 |
+
"loss": 0.9818,
|
721 |
+
"step": 480
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"epoch": 6.4,
|
725 |
+
"eval_loss": 1.9322350025177002,
|
726 |
+
"eval_runtime": 44.0412,
|
727 |
+
"eval_samples_per_second": 22.706,
|
728 |
+
"eval_steps_per_second": 2.838,
|
729 |
+
"step": 480
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 6.533333333333333,
|
733 |
+
"grad_norm": 2.5453197956085205,
|
734 |
+
"learning_rate": 2.192592592592593e-05,
|
735 |
+
"loss": 0.84,
|
736 |
+
"step": 490
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"epoch": 6.533333333333333,
|
740 |
+
"eval_loss": 1.9371347427368164,
|
741 |
+
"eval_runtime": 44.0174,
|
742 |
+
"eval_samples_per_second": 22.718,
|
743 |
+
"eval_steps_per_second": 2.84,
|
744 |
+
"step": 490
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 6.666666666666667,
|
748 |
+
"grad_norm": 2.4433412551879883,
|
749 |
+
"learning_rate": 2.074074074074074e-05,
|
750 |
+
"loss": 0.9686,
|
751 |
+
"step": 500
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 6.666666666666667,
|
755 |
+
"eval_loss": 1.9340929985046387,
|
756 |
+
"eval_runtime": 43.9473,
|
757 |
+
"eval_samples_per_second": 22.755,
|
758 |
+
"eval_steps_per_second": 2.844,
|
759 |
+
"step": 500
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 6.8,
|
763 |
+
"grad_norm": 2.7762234210968018,
|
764 |
+
"learning_rate": 1.9555555555555557e-05,
|
765 |
+
"loss": 0.974,
|
766 |
+
"step": 510
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 6.8,
|
770 |
+
"eval_loss": 1.936902642250061,
|
771 |
+
"eval_runtime": 43.9918,
|
772 |
+
"eval_samples_per_second": 22.732,
|
773 |
+
"eval_steps_per_second": 2.841,
|
774 |
+
"step": 510
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 6.933333333333334,
|
778 |
+
"grad_norm": 2.706693410873413,
|
779 |
+
"learning_rate": 1.837037037037037e-05,
|
780 |
+
"loss": 0.9366,
|
781 |
+
"step": 520
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"epoch": 6.933333333333334,
|
785 |
+
"eval_loss": 1.9351890087127686,
|
786 |
+
"eval_runtime": 43.9647,
|
787 |
+
"eval_samples_per_second": 22.746,
|
788 |
+
"eval_steps_per_second": 2.843,
|
789 |
+
"step": 520
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 7.066666666666666,
|
793 |
+
"grad_norm": 2.338547706604004,
|
794 |
+
"learning_rate": 1.7185185185185185e-05,
|
795 |
+
"loss": 0.9285,
|
796 |
+
"step": 530
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"epoch": 7.066666666666666,
|
800 |
+
"eval_loss": 1.9464186429977417,
|
801 |
+
"eval_runtime": 43.9646,
|
802 |
+
"eval_samples_per_second": 22.746,
|
803 |
+
"eval_steps_per_second": 2.843,
|
804 |
+
"step": 530
|
805 |
+
},
|
806 |
+
{
|
807 |
+
"epoch": 7.2,
|
808 |
+
"grad_norm": 2.846348285675049,
|
809 |
+
"learning_rate": 1.6000000000000003e-05,
|
810 |
+
"loss": 0.8663,
|
811 |
+
"step": 540
|
812 |
+
},
|
813 |
+
{
|
814 |
+
"epoch": 7.2,
|
815 |
+
"eval_loss": 1.9812690019607544,
|
816 |
+
"eval_runtime": 43.966,
|
817 |
+
"eval_samples_per_second": 22.745,
|
818 |
+
"eval_steps_per_second": 2.843,
|
819 |
+
"step": 540
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 7.333333333333333,
|
823 |
+
"grad_norm": 2.754952907562256,
|
824 |
+
"learning_rate": 1.4814814814814815e-05,
|
825 |
+
"loss": 0.8033,
|
826 |
+
"step": 550
|
827 |
+
},
|
828 |
+
{
|
829 |
+
"epoch": 7.333333333333333,
|
830 |
+
"eval_loss": 1.9769660234451294,
|
831 |
+
"eval_runtime": 43.9067,
|
832 |
+
"eval_samples_per_second": 22.776,
|
833 |
+
"eval_steps_per_second": 2.847,
|
834 |
+
"step": 550
|
835 |
+
},
|
836 |
+
{
|
837 |
+
"epoch": 7.466666666666667,
|
838 |
+
"grad_norm": 2.7049484252929688,
|
839 |
+
"learning_rate": 1.362962962962963e-05,
|
840 |
+
"loss": 0.8823,
|
841 |
+
"step": 560
|
842 |
+
},
|
843 |
+
{
|
844 |
+
"epoch": 7.466666666666667,
|
845 |
+
"eval_loss": 1.9782260656356812,
|
846 |
+
"eval_runtime": 43.8715,
|
847 |
+
"eval_samples_per_second": 22.794,
|
848 |
+
"eval_steps_per_second": 2.849,
|
849 |
+
"step": 560
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 7.6,
|
853 |
+
"grad_norm": 2.9233956336975098,
|
854 |
+
"learning_rate": 1.2444444444444446e-05,
|
855 |
+
"loss": 0.8841,
|
856 |
+
"step": 570
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 7.6,
|
860 |
+
"eval_loss": 1.975508451461792,
|
861 |
+
"eval_runtime": 43.8529,
|
862 |
+
"eval_samples_per_second": 22.804,
|
863 |
+
"eval_steps_per_second": 2.85,
|
864 |
+
"step": 570
|
865 |
+
},
|
866 |
+
{
|
867 |
+
"epoch": 7.733333333333333,
|
868 |
+
"grad_norm": 3.2836148738861084,
|
869 |
+
"learning_rate": 1.125925925925926e-05,
|
870 |
+
"loss": 0.8404,
|
871 |
+
"step": 580
|
872 |
+
},
|
873 |
+
{
|
874 |
+
"epoch": 7.733333333333333,
|
875 |
+
"eval_loss": 1.9755034446716309,
|
876 |
+
"eval_runtime": 43.8744,
|
877 |
+
"eval_samples_per_second": 22.792,
|
878 |
+
"eval_steps_per_second": 2.849,
|
879 |
+
"step": 580
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 7.866666666666667,
|
883 |
+
"grad_norm": 2.717045783996582,
|
884 |
+
"learning_rate": 1.0074074074074074e-05,
|
885 |
+
"loss": 0.9189,
|
886 |
+
"step": 590
|
887 |
+
},
|
888 |
+
{
|
889 |
+
"epoch": 7.866666666666667,
|
890 |
+
"eval_loss": 1.981050729751587,
|
891 |
+
"eval_runtime": 43.8841,
|
892 |
+
"eval_samples_per_second": 22.787,
|
893 |
+
"eval_steps_per_second": 2.848,
|
894 |
+
"step": 590
|
895 |
+
},
|
896 |
+
{
|
897 |
+
"epoch": 8.0,
|
898 |
+
"grad_norm": 2.6528029441833496,
|
899 |
+
"learning_rate": 8.888888888888888e-06,
|
900 |
+
"loss": 0.8777,
|
901 |
+
"step": 600
|
902 |
+
},
|
903 |
+
{
|
904 |
+
"epoch": 8.0,
|
905 |
+
"eval_loss": 1.9789155721664429,
|
906 |
+
"eval_runtime": 44.2778,
|
907 |
+
"eval_samples_per_second": 22.585,
|
908 |
+
"eval_steps_per_second": 2.823,
|
909 |
+
"step": 600
|
910 |
+
},
|
911 |
+
{
|
912 |
+
"epoch": 8.133333333333333,
|
913 |
+
"grad_norm": 2.8376739025115967,
|
914 |
+
"learning_rate": 7.703703703703704e-06,
|
915 |
+
"loss": 0.8247,
|
916 |
+
"step": 610
|
917 |
+
},
|
918 |
+
{
|
919 |
+
"epoch": 8.133333333333333,
|
920 |
+
"eval_loss": 1.9906001091003418,
|
921 |
+
"eval_runtime": 44.0221,
|
922 |
+
"eval_samples_per_second": 22.716,
|
923 |
+
"eval_steps_per_second": 2.839,
|
924 |
+
"step": 610
|
925 |
+
},
|
926 |
+
{
|
927 |
+
"epoch": 8.266666666666667,
|
928 |
+
"grad_norm": 2.8162360191345215,
|
929 |
+
"learning_rate": 6.51851851851852e-06,
|
930 |
+
"loss": 0.8104,
|
931 |
+
"step": 620
|
932 |
+
},
|
933 |
+
{
|
934 |
+
"epoch": 8.266666666666667,
|
935 |
+
"eval_loss": 2.0043418407440186,
|
936 |
+
"eval_runtime": 43.8598,
|
937 |
+
"eval_samples_per_second": 22.8,
|
938 |
+
"eval_steps_per_second": 2.85,
|
939 |
+
"step": 620
|
940 |
+
},
|
941 |
+
{
|
942 |
+
"epoch": 8.4,
|
943 |
+
"grad_norm": 2.89953351020813,
|
944 |
+
"learning_rate": 5.333333333333334e-06,
|
945 |
+
"loss": 0.8197,
|
946 |
+
"step": 630
|
947 |
+
},
|
948 |
+
{
|
949 |
+
"epoch": 8.4,
|
950 |
+
"eval_loss": 2.006070137023926,
|
951 |
+
"eval_runtime": 43.8589,
|
952 |
+
"eval_samples_per_second": 22.8,
|
953 |
+
"eval_steps_per_second": 2.85,
|
954 |
+
"step": 630
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 8.533333333333333,
|
958 |
+
"grad_norm": 2.9382617473602295,
|
959 |
+
"learning_rate": 4.1481481481481485e-06,
|
960 |
+
"loss": 0.8295,
|
961 |
+
"step": 640
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 8.533333333333333,
|
965 |
+
"eval_loss": 2.0065603256225586,
|
966 |
+
"eval_runtime": 44.006,
|
967 |
+
"eval_samples_per_second": 22.724,
|
968 |
+
"eval_steps_per_second": 2.841,
|
969 |
+
"step": 640
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 8.666666666666666,
|
973 |
+
"grad_norm": 3.2645020484924316,
|
974 |
+
"learning_rate": 2.962962962962963e-06,
|
975 |
+
"loss": 0.8202,
|
976 |
+
"step": 650
|
977 |
+
},
|
978 |
+
{
|
979 |
+
"epoch": 8.666666666666666,
|
980 |
+
"eval_loss": 2.0076513290405273,
|
981 |
+
"eval_runtime": 43.9286,
|
982 |
+
"eval_samples_per_second": 22.764,
|
983 |
+
"eval_steps_per_second": 2.846,
|
984 |
+
"step": 650
|
985 |
+
},
|
986 |
+
{
|
987 |
+
"epoch": 8.8,
|
988 |
+
"grad_norm": 3.0611326694488525,
|
989 |
+
"learning_rate": 1.777777777777778e-06,
|
990 |
+
"loss": 0.8527,
|
991 |
+
"step": 660
|
992 |
+
},
|
993 |
+
{
|
994 |
+
"epoch": 8.8,
|
995 |
+
"eval_loss": 2.0074613094329834,
|
996 |
+
"eval_runtime": 44.1167,
|
997 |
+
"eval_samples_per_second": 22.667,
|
998 |
+
"eval_steps_per_second": 2.833,
|
999 |
+
"step": 660
|
1000 |
+
}
|
1001 |
+
],
|
1002 |
+
"logging_steps": 10,
|
1003 |
+
"max_steps": 675,
|
1004 |
+
"num_input_tokens_seen": 0,
|
1005 |
+
"num_train_epochs": 9,
|
1006 |
+
"save_steps": 10,
|
1007 |
+
"stateful_callbacks": {
|
1008 |
+
"TrainerControl": {
|
1009 |
+
"args": {
|
1010 |
+
"should_epoch_stop": false,
|
1011 |
+
"should_evaluate": false,
|
1012 |
+
"should_log": false,
|
1013 |
+
"should_save": true,
|
1014 |
+
"should_training_stop": false
|
1015 |
+
},
|
1016 |
+
"attributes": {}
|
1017 |
+
}
|
1018 |
+
},
|
1019 |
+
"total_flos": 1.081480751087616e+17,
|
1020 |
+
"train_batch_size": 8,
|
1021 |
+
"trial_name": null,
|
1022 |
+
"trial_params": null
|
1023 |
+
}
|
output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-670/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-670/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"dense",
|
24 |
+
"query_key_value",
|
25 |
+
"dense_h_to_4h",
|
26 |
+
"dense_4h_to_h"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-670/trainer_state.json
ADDED
@@ -0,0 +1,1038 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.6284925937652588,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-80",
|
4 |
+
"epoch": 8.933333333333334,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 670,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.37591353058815,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.5979,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.6375348567962646,
|
21 |
+
"eval_runtime": 43.9032,
|
22 |
+
"eval_samples_per_second": 22.777,
|
23 |
+
"eval_steps_per_second": 2.847,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.4210415482521057,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.624,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.6352741718292236,
|
36 |
+
"eval_runtime": 44.0038,
|
37 |
+
"eval_samples_per_second": 22.725,
|
38 |
+
"eval_steps_per_second": 2.841,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.3714869022369385,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.6205,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.633917212486267,
|
51 |
+
"eval_runtime": 43.9878,
|
52 |
+
"eval_samples_per_second": 22.734,
|
53 |
+
"eval_steps_per_second": 2.842,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.36149370670318604,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.6165,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.6323453187942505,
|
66 |
+
"eval_runtime": 43.9629,
|
67 |
+
"eval_samples_per_second": 22.746,
|
68 |
+
"eval_steps_per_second": 2.843,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.35420870780944824,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.6599,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.6314094066619873,
|
81 |
+
"eval_runtime": 43.9048,
|
82 |
+
"eval_samples_per_second": 22.777,
|
83 |
+
"eval_steps_per_second": 2.847,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.33472639322280884,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.5591,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.6304500102996826,
|
96 |
+
"eval_runtime": 44.0293,
|
97 |
+
"eval_samples_per_second": 22.712,
|
98 |
+
"eval_steps_per_second": 2.839,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.3210572898387909,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.6328,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.6291298866271973,
|
111 |
+
"eval_runtime": 43.8599,
|
112 |
+
"eval_samples_per_second": 22.8,
|
113 |
+
"eval_steps_per_second": 2.85,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.32792502641677856,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.5967,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.6284925937652588,
|
126 |
+
"eval_runtime": 43.8492,
|
127 |
+
"eval_samples_per_second": 22.805,
|
128 |
+
"eval_steps_per_second": 2.851,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.457350492477417,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.5461,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.6317176818847656,
|
141 |
+
"eval_runtime": 43.8568,
|
142 |
+
"eval_samples_per_second": 22.801,
|
143 |
+
"eval_steps_per_second": 2.85,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.6296346187591553,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.5933,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.635717511177063,
|
156 |
+
"eval_runtime": 43.8409,
|
157 |
+
"eval_samples_per_second": 22.81,
|
158 |
+
"eval_steps_per_second": 2.851,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.7165963053703308,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.5319,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.6375973224639893,
|
171 |
+
"eval_runtime": 43.8486,
|
172 |
+
"eval_samples_per_second": 22.806,
|
173 |
+
"eval_steps_per_second": 2.851,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.7370977997779846,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.5413,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.6369796991348267,
|
186 |
+
"eval_runtime": 43.9803,
|
187 |
+
"eval_samples_per_second": 22.737,
|
188 |
+
"eval_steps_per_second": 2.842,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.726448118686676,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.5226,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.6377675533294678,
|
201 |
+
"eval_runtime": 43.8627,
|
202 |
+
"eval_samples_per_second": 22.798,
|
203 |
+
"eval_steps_per_second": 2.85,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.7822732925415039,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.5477,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.6378459930419922,
|
216 |
+
"eval_runtime": 43.9081,
|
217 |
+
"eval_samples_per_second": 22.775,
|
218 |
+
"eval_steps_per_second": 2.847,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.7607081532478333,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 1.5604,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 1.637563705444336,
|
231 |
+
"eval_runtime": 43.9092,
|
232 |
+
"eval_samples_per_second": 22.774,
|
233 |
+
"eval_steps_per_second": 2.847,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 0.9361194372177124,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 1.4091,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 1.6557352542877197,
|
246 |
+
"eval_runtime": 43.9308,
|
247 |
+
"eval_samples_per_second": 22.763,
|
248 |
+
"eval_steps_per_second": 2.845,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 1.0848534107208252,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 1.4629,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 1.6792665719985962,
|
261 |
+
"eval_runtime": 43.8829,
|
262 |
+
"eval_samples_per_second": 22.788,
|
263 |
+
"eval_steps_per_second": 2.848,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 1.0759488344192505,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 1.3685,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 1.682196855545044,
|
276 |
+
"eval_runtime": 43.8735,
|
277 |
+
"eval_samples_per_second": 22.793,
|
278 |
+
"eval_steps_per_second": 2.849,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 1.2871410846710205,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 1.4443,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 1.6869845390319824,
|
291 |
+
"eval_runtime": 43.8534,
|
292 |
+
"eval_samples_per_second": 22.803,
|
293 |
+
"eval_steps_per_second": 2.85,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 1.2004164457321167,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 1.3451,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 1.6853325366973877,
|
306 |
+
"eval_runtime": 43.8718,
|
307 |
+
"eval_samples_per_second": 22.794,
|
308 |
+
"eval_steps_per_second": 2.849,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 1.2714128494262695,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 1.4547,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 1.6859557628631592,
|
321 |
+
"eval_runtime": 43.8724,
|
322 |
+
"eval_samples_per_second": 22.793,
|
323 |
+
"eval_steps_per_second": 2.849,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 1.3297241926193237,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 1.4088,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 1.6856082677841187,
|
336 |
+
"eval_runtime": 43.8409,
|
337 |
+
"eval_samples_per_second": 22.81,
|
338 |
+
"eval_steps_per_second": 2.851,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 1.1967905759811401,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 1.3735,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 1.7015950679779053,
|
351 |
+
"eval_runtime": 43.8446,
|
352 |
+
"eval_samples_per_second": 22.808,
|
353 |
+
"eval_steps_per_second": 2.851,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 1.5186768770217896,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 1.2487,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 1.7492223978042603,
|
366 |
+
"eval_runtime": 43.84,
|
367 |
+
"eval_samples_per_second": 22.81,
|
368 |
+
"eval_steps_per_second": 2.851,
|
369 |
+
"step": 240
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.3333333333333335,
|
373 |
+
"grad_norm": 1.5129271745681763,
|
374 |
+
"learning_rate": 5.037037037037037e-05,
|
375 |
+
"loss": 1.2959,
|
376 |
+
"step": 250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 3.3333333333333335,
|
380 |
+
"eval_loss": 1.7475690841674805,
|
381 |
+
"eval_runtime": 43.8475,
|
382 |
+
"eval_samples_per_second": 22.806,
|
383 |
+
"eval_steps_per_second": 2.851,
|
384 |
+
"step": 250
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 3.466666666666667,
|
388 |
+
"grad_norm": 1.5553545951843262,
|
389 |
+
"learning_rate": 4.918518518518519e-05,
|
390 |
+
"loss": 1.278,
|
391 |
+
"step": 260
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 3.466666666666667,
|
395 |
+
"eval_loss": 1.749650239944458,
|
396 |
+
"eval_runtime": 43.8575,
|
397 |
+
"eval_samples_per_second": 22.801,
|
398 |
+
"eval_steps_per_second": 2.85,
|
399 |
+
"step": 260
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 3.6,
|
403 |
+
"grad_norm": 1.6911894083023071,
|
404 |
+
"learning_rate": 4.8e-05,
|
405 |
+
"loss": 1.1815,
|
406 |
+
"step": 270
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 3.6,
|
410 |
+
"eval_loss": 1.751675009727478,
|
411 |
+
"eval_runtime": 43.8693,
|
412 |
+
"eval_samples_per_second": 22.795,
|
413 |
+
"eval_steps_per_second": 2.849,
|
414 |
+
"step": 270
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 3.7333333333333334,
|
418 |
+
"grad_norm": 1.7207773923873901,
|
419 |
+
"learning_rate": 4.681481481481481e-05,
|
420 |
+
"loss": 1.227,
|
421 |
+
"step": 280
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 3.7333333333333334,
|
425 |
+
"eval_loss": 1.7532404661178589,
|
426 |
+
"eval_runtime": 43.9788,
|
427 |
+
"eval_samples_per_second": 22.738,
|
428 |
+
"eval_steps_per_second": 2.842,
|
429 |
+
"step": 280
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 3.8666666666666667,
|
433 |
+
"grad_norm": 1.6659716367721558,
|
434 |
+
"learning_rate": 4.5629629629629636e-05,
|
435 |
+
"loss": 1.2699,
|
436 |
+
"step": 290
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 3.8666666666666667,
|
440 |
+
"eval_loss": 1.7546659708023071,
|
441 |
+
"eval_runtime": 44.0345,
|
442 |
+
"eval_samples_per_second": 22.709,
|
443 |
+
"eval_steps_per_second": 2.839,
|
444 |
+
"step": 290
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 4.0,
|
448 |
+
"grad_norm": 1.7288299798965454,
|
449 |
+
"learning_rate": 4.444444444444445e-05,
|
450 |
+
"loss": 1.2414,
|
451 |
+
"step": 300
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 4.0,
|
455 |
+
"eval_loss": 1.7534445524215698,
|
456 |
+
"eval_runtime": 43.9971,
|
457 |
+
"eval_samples_per_second": 22.729,
|
458 |
+
"eval_steps_per_second": 2.841,
|
459 |
+
"step": 300
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 4.133333333333334,
|
463 |
+
"grad_norm": 1.8176274299621582,
|
464 |
+
"learning_rate": 4.3259259259259264e-05,
|
465 |
+
"loss": 1.1231,
|
466 |
+
"step": 310
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 4.133333333333334,
|
470 |
+
"eval_loss": 1.8118728399276733,
|
471 |
+
"eval_runtime": 44.0255,
|
472 |
+
"eval_samples_per_second": 22.714,
|
473 |
+
"eval_steps_per_second": 2.839,
|
474 |
+
"step": 310
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 4.266666666666667,
|
478 |
+
"grad_norm": 1.881231427192688,
|
479 |
+
"learning_rate": 4.2074074074074075e-05,
|
480 |
+
"loss": 1.1311,
|
481 |
+
"step": 320
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 4.266666666666667,
|
485 |
+
"eval_loss": 1.824351191520691,
|
486 |
+
"eval_runtime": 43.871,
|
487 |
+
"eval_samples_per_second": 22.794,
|
488 |
+
"eval_steps_per_second": 2.849,
|
489 |
+
"step": 320
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 4.4,
|
493 |
+
"grad_norm": 1.8982057571411133,
|
494 |
+
"learning_rate": 4.088888888888889e-05,
|
495 |
+
"loss": 1.1046,
|
496 |
+
"step": 330
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 4.4,
|
500 |
+
"eval_loss": 1.813114881515503,
|
501 |
+
"eval_runtime": 43.8506,
|
502 |
+
"eval_samples_per_second": 22.805,
|
503 |
+
"eval_steps_per_second": 2.851,
|
504 |
+
"step": 330
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 4.533333333333333,
|
508 |
+
"grad_norm": 1.9931222200393677,
|
509 |
+
"learning_rate": 3.970370370370371e-05,
|
510 |
+
"loss": 1.0596,
|
511 |
+
"step": 340
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"epoch": 4.533333333333333,
|
515 |
+
"eval_loss": 1.8187421560287476,
|
516 |
+
"eval_runtime": 43.8637,
|
517 |
+
"eval_samples_per_second": 22.798,
|
518 |
+
"eval_steps_per_second": 2.85,
|
519 |
+
"step": 340
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 4.666666666666667,
|
523 |
+
"grad_norm": 2.02201247215271,
|
524 |
+
"learning_rate": 3.851851851851852e-05,
|
525 |
+
"loss": 1.1469,
|
526 |
+
"step": 350
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 4.666666666666667,
|
530 |
+
"eval_loss": 1.8229775428771973,
|
531 |
+
"eval_runtime": 43.9111,
|
532 |
+
"eval_samples_per_second": 22.773,
|
533 |
+
"eval_steps_per_second": 2.847,
|
534 |
+
"step": 350
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 4.8,
|
538 |
+
"grad_norm": 2.220625638961792,
|
539 |
+
"learning_rate": 3.733333333333334e-05,
|
540 |
+
"loss": 1.1344,
|
541 |
+
"step": 360
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 4.8,
|
545 |
+
"eval_loss": 1.817935585975647,
|
546 |
+
"eval_runtime": 43.9794,
|
547 |
+
"eval_samples_per_second": 22.738,
|
548 |
+
"eval_steps_per_second": 2.842,
|
549 |
+
"step": 360
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 4.933333333333334,
|
553 |
+
"grad_norm": 2.0401487350463867,
|
554 |
+
"learning_rate": 3.614814814814815e-05,
|
555 |
+
"loss": 1.1922,
|
556 |
+
"step": 370
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 4.933333333333334,
|
560 |
+
"eval_loss": 1.8182997703552246,
|
561 |
+
"eval_runtime": 43.8807,
|
562 |
+
"eval_samples_per_second": 22.789,
|
563 |
+
"eval_steps_per_second": 2.849,
|
564 |
+
"step": 370
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 5.066666666666666,
|
568 |
+
"grad_norm": 1.8822356462478638,
|
569 |
+
"learning_rate": 3.4962962962962965e-05,
|
570 |
+
"loss": 1.0486,
|
571 |
+
"step": 380
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 5.066666666666666,
|
575 |
+
"eval_loss": 1.8343256711959839,
|
576 |
+
"eval_runtime": 43.9715,
|
577 |
+
"eval_samples_per_second": 22.742,
|
578 |
+
"eval_steps_per_second": 2.843,
|
579 |
+
"step": 380
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 5.2,
|
583 |
+
"grad_norm": 2.383836030960083,
|
584 |
+
"learning_rate": 3.377777777777778e-05,
|
585 |
+
"loss": 1.0039,
|
586 |
+
"step": 390
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"epoch": 5.2,
|
590 |
+
"eval_loss": 1.8889024257659912,
|
591 |
+
"eval_runtime": 43.906,
|
592 |
+
"eval_samples_per_second": 22.776,
|
593 |
+
"eval_steps_per_second": 2.847,
|
594 |
+
"step": 390
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 5.333333333333333,
|
598 |
+
"grad_norm": 2.403280019760132,
|
599 |
+
"learning_rate": 3.259259259259259e-05,
|
600 |
+
"loss": 0.9946,
|
601 |
+
"step": 400
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 5.333333333333333,
|
605 |
+
"eval_loss": 1.8832476139068604,
|
606 |
+
"eval_runtime": 43.8654,
|
607 |
+
"eval_samples_per_second": 22.797,
|
608 |
+
"eval_steps_per_second": 2.85,
|
609 |
+
"step": 400
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 5.466666666666667,
|
613 |
+
"grad_norm": 2.34110164642334,
|
614 |
+
"learning_rate": 3.140740740740741e-05,
|
615 |
+
"loss": 1.0302,
|
616 |
+
"step": 410
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"epoch": 5.466666666666667,
|
620 |
+
"eval_loss": 1.8810956478118896,
|
621 |
+
"eval_runtime": 43.8937,
|
622 |
+
"eval_samples_per_second": 22.782,
|
623 |
+
"eval_steps_per_second": 2.848,
|
624 |
+
"step": 410
|
625 |
+
},
|
626 |
+
{
|
627 |
+
"epoch": 5.6,
|
628 |
+
"grad_norm": 2.32973575592041,
|
629 |
+
"learning_rate": 3.0222222222222225e-05,
|
630 |
+
"loss": 1.0062,
|
631 |
+
"step": 420
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"epoch": 5.6,
|
635 |
+
"eval_loss": 1.8806273937225342,
|
636 |
+
"eval_runtime": 43.9433,
|
637 |
+
"eval_samples_per_second": 22.757,
|
638 |
+
"eval_steps_per_second": 2.845,
|
639 |
+
"step": 420
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 5.733333333333333,
|
643 |
+
"grad_norm": 2.426825523376465,
|
644 |
+
"learning_rate": 2.9037037037037042e-05,
|
645 |
+
"loss": 1.0493,
|
646 |
+
"step": 430
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 5.733333333333333,
|
650 |
+
"eval_loss": 1.8787455558776855,
|
651 |
+
"eval_runtime": 43.9876,
|
652 |
+
"eval_samples_per_second": 22.734,
|
653 |
+
"eval_steps_per_second": 2.842,
|
654 |
+
"step": 430
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 5.866666666666667,
|
658 |
+
"grad_norm": 2.2383341789245605,
|
659 |
+
"learning_rate": 2.7851851851851856e-05,
|
660 |
+
"loss": 1.0728,
|
661 |
+
"step": 440
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 5.866666666666667,
|
665 |
+
"eval_loss": 1.8792084455490112,
|
666 |
+
"eval_runtime": 43.9918,
|
667 |
+
"eval_samples_per_second": 22.732,
|
668 |
+
"eval_steps_per_second": 2.841,
|
669 |
+
"step": 440
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 6.0,
|
673 |
+
"grad_norm": 2.4239635467529297,
|
674 |
+
"learning_rate": 2.6666666666666667e-05,
|
675 |
+
"loss": 1.0199,
|
676 |
+
"step": 450
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 6.0,
|
680 |
+
"eval_loss": 1.8804157972335815,
|
681 |
+
"eval_runtime": 43.9689,
|
682 |
+
"eval_samples_per_second": 22.743,
|
683 |
+
"eval_steps_per_second": 2.843,
|
684 |
+
"step": 450
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"epoch": 6.133333333333334,
|
688 |
+
"grad_norm": 3.0071866512298584,
|
689 |
+
"learning_rate": 2.5481481481481484e-05,
|
690 |
+
"loss": 0.9486,
|
691 |
+
"step": 460
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"epoch": 6.133333333333334,
|
695 |
+
"eval_loss": 1.930755376815796,
|
696 |
+
"eval_runtime": 43.9812,
|
697 |
+
"eval_samples_per_second": 22.737,
|
698 |
+
"eval_steps_per_second": 2.842,
|
699 |
+
"step": 460
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 6.266666666666667,
|
703 |
+
"grad_norm": 2.432983875274658,
|
704 |
+
"learning_rate": 2.4296296296296298e-05,
|
705 |
+
"loss": 0.8858,
|
706 |
+
"step": 470
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 6.266666666666667,
|
710 |
+
"eval_loss": 1.9468986988067627,
|
711 |
+
"eval_runtime": 43.9889,
|
712 |
+
"eval_samples_per_second": 22.733,
|
713 |
+
"eval_steps_per_second": 2.842,
|
714 |
+
"step": 470
|
715 |
+
},
|
716 |
+
{
|
717 |
+
"epoch": 6.4,
|
718 |
+
"grad_norm": 2.591848850250244,
|
719 |
+
"learning_rate": 2.3111111111111112e-05,
|
720 |
+
"loss": 0.9818,
|
721 |
+
"step": 480
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"epoch": 6.4,
|
725 |
+
"eval_loss": 1.9322350025177002,
|
726 |
+
"eval_runtime": 44.0412,
|
727 |
+
"eval_samples_per_second": 22.706,
|
728 |
+
"eval_steps_per_second": 2.838,
|
729 |
+
"step": 480
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 6.533333333333333,
|
733 |
+
"grad_norm": 2.5453197956085205,
|
734 |
+
"learning_rate": 2.192592592592593e-05,
|
735 |
+
"loss": 0.84,
|
736 |
+
"step": 490
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"epoch": 6.533333333333333,
|
740 |
+
"eval_loss": 1.9371347427368164,
|
741 |
+
"eval_runtime": 44.0174,
|
742 |
+
"eval_samples_per_second": 22.718,
|
743 |
+
"eval_steps_per_second": 2.84,
|
744 |
+
"step": 490
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 6.666666666666667,
|
748 |
+
"grad_norm": 2.4433412551879883,
|
749 |
+
"learning_rate": 2.074074074074074e-05,
|
750 |
+
"loss": 0.9686,
|
751 |
+
"step": 500
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 6.666666666666667,
|
755 |
+
"eval_loss": 1.9340929985046387,
|
756 |
+
"eval_runtime": 43.9473,
|
757 |
+
"eval_samples_per_second": 22.755,
|
758 |
+
"eval_steps_per_second": 2.844,
|
759 |
+
"step": 500
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 6.8,
|
763 |
+
"grad_norm": 2.7762234210968018,
|
764 |
+
"learning_rate": 1.9555555555555557e-05,
|
765 |
+
"loss": 0.974,
|
766 |
+
"step": 510
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 6.8,
|
770 |
+
"eval_loss": 1.936902642250061,
|
771 |
+
"eval_runtime": 43.9918,
|
772 |
+
"eval_samples_per_second": 22.732,
|
773 |
+
"eval_steps_per_second": 2.841,
|
774 |
+
"step": 510
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 6.933333333333334,
|
778 |
+
"grad_norm": 2.706693410873413,
|
779 |
+
"learning_rate": 1.837037037037037e-05,
|
780 |
+
"loss": 0.9366,
|
781 |
+
"step": 520
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"epoch": 6.933333333333334,
|
785 |
+
"eval_loss": 1.9351890087127686,
|
786 |
+
"eval_runtime": 43.9647,
|
787 |
+
"eval_samples_per_second": 22.746,
|
788 |
+
"eval_steps_per_second": 2.843,
|
789 |
+
"step": 520
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 7.066666666666666,
|
793 |
+
"grad_norm": 2.338547706604004,
|
794 |
+
"learning_rate": 1.7185185185185185e-05,
|
795 |
+
"loss": 0.9285,
|
796 |
+
"step": 530
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"epoch": 7.066666666666666,
|
800 |
+
"eval_loss": 1.9464186429977417,
|
801 |
+
"eval_runtime": 43.9646,
|
802 |
+
"eval_samples_per_second": 22.746,
|
803 |
+
"eval_steps_per_second": 2.843,
|
804 |
+
"step": 530
|
805 |
+
},
|
806 |
+
{
|
807 |
+
"epoch": 7.2,
|
808 |
+
"grad_norm": 2.846348285675049,
|
809 |
+
"learning_rate": 1.6000000000000003e-05,
|
810 |
+
"loss": 0.8663,
|
811 |
+
"step": 540
|
812 |
+
},
|
813 |
+
{
|
814 |
+
"epoch": 7.2,
|
815 |
+
"eval_loss": 1.9812690019607544,
|
816 |
+
"eval_runtime": 43.966,
|
817 |
+
"eval_samples_per_second": 22.745,
|
818 |
+
"eval_steps_per_second": 2.843,
|
819 |
+
"step": 540
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 7.333333333333333,
|
823 |
+
"grad_norm": 2.754952907562256,
|
824 |
+
"learning_rate": 1.4814814814814815e-05,
|
825 |
+
"loss": 0.8033,
|
826 |
+
"step": 550
|
827 |
+
},
|
828 |
+
{
|
829 |
+
"epoch": 7.333333333333333,
|
830 |
+
"eval_loss": 1.9769660234451294,
|
831 |
+
"eval_runtime": 43.9067,
|
832 |
+
"eval_samples_per_second": 22.776,
|
833 |
+
"eval_steps_per_second": 2.847,
|
834 |
+
"step": 550
|
835 |
+
},
|
836 |
+
{
|
837 |
+
"epoch": 7.466666666666667,
|
838 |
+
"grad_norm": 2.7049484252929688,
|
839 |
+
"learning_rate": 1.362962962962963e-05,
|
840 |
+
"loss": 0.8823,
|
841 |
+
"step": 560
|
842 |
+
},
|
843 |
+
{
|
844 |
+
"epoch": 7.466666666666667,
|
845 |
+
"eval_loss": 1.9782260656356812,
|
846 |
+
"eval_runtime": 43.8715,
|
847 |
+
"eval_samples_per_second": 22.794,
|
848 |
+
"eval_steps_per_second": 2.849,
|
849 |
+
"step": 560
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 7.6,
|
853 |
+
"grad_norm": 2.9233956336975098,
|
854 |
+
"learning_rate": 1.2444444444444446e-05,
|
855 |
+
"loss": 0.8841,
|
856 |
+
"step": 570
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 7.6,
|
860 |
+
"eval_loss": 1.975508451461792,
|
861 |
+
"eval_runtime": 43.8529,
|
862 |
+
"eval_samples_per_second": 22.804,
|
863 |
+
"eval_steps_per_second": 2.85,
|
864 |
+
"step": 570
|
865 |
+
},
|
866 |
+
{
|
867 |
+
"epoch": 7.733333333333333,
|
868 |
+
"grad_norm": 3.2836148738861084,
|
869 |
+
"learning_rate": 1.125925925925926e-05,
|
870 |
+
"loss": 0.8404,
|
871 |
+
"step": 580
|
872 |
+
},
|
873 |
+
{
|
874 |
+
"epoch": 7.733333333333333,
|
875 |
+
"eval_loss": 1.9755034446716309,
|
876 |
+
"eval_runtime": 43.8744,
|
877 |
+
"eval_samples_per_second": 22.792,
|
878 |
+
"eval_steps_per_second": 2.849,
|
879 |
+
"step": 580
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 7.866666666666667,
|
883 |
+
"grad_norm": 2.717045783996582,
|
884 |
+
"learning_rate": 1.0074074074074074e-05,
|
885 |
+
"loss": 0.9189,
|
886 |
+
"step": 590
|
887 |
+
},
|
888 |
+
{
|
889 |
+
"epoch": 7.866666666666667,
|
890 |
+
"eval_loss": 1.981050729751587,
|
891 |
+
"eval_runtime": 43.8841,
|
892 |
+
"eval_samples_per_second": 22.787,
|
893 |
+
"eval_steps_per_second": 2.848,
|
894 |
+
"step": 590
|
895 |
+
},
|
896 |
+
{
|
897 |
+
"epoch": 8.0,
|
898 |
+
"grad_norm": 2.6528029441833496,
|
899 |
+
"learning_rate": 8.888888888888888e-06,
|
900 |
+
"loss": 0.8777,
|
901 |
+
"step": 600
|
902 |
+
},
|
903 |
+
{
|
904 |
+
"epoch": 8.0,
|
905 |
+
"eval_loss": 1.9789155721664429,
|
906 |
+
"eval_runtime": 44.2778,
|
907 |
+
"eval_samples_per_second": 22.585,
|
908 |
+
"eval_steps_per_second": 2.823,
|
909 |
+
"step": 600
|
910 |
+
},
|
911 |
+
{
|
912 |
+
"epoch": 8.133333333333333,
|
913 |
+
"grad_norm": 2.8376739025115967,
|
914 |
+
"learning_rate": 7.703703703703704e-06,
|
915 |
+
"loss": 0.8247,
|
916 |
+
"step": 610
|
917 |
+
},
|
918 |
+
{
|
919 |
+
"epoch": 8.133333333333333,
|
920 |
+
"eval_loss": 1.9906001091003418,
|
921 |
+
"eval_runtime": 44.0221,
|
922 |
+
"eval_samples_per_second": 22.716,
|
923 |
+
"eval_steps_per_second": 2.839,
|
924 |
+
"step": 610
|
925 |
+
},
|
926 |
+
{
|
927 |
+
"epoch": 8.266666666666667,
|
928 |
+
"grad_norm": 2.8162360191345215,
|
929 |
+
"learning_rate": 6.51851851851852e-06,
|
930 |
+
"loss": 0.8104,
|
931 |
+
"step": 620
|
932 |
+
},
|
933 |
+
{
|
934 |
+
"epoch": 8.266666666666667,
|
935 |
+
"eval_loss": 2.0043418407440186,
|
936 |
+
"eval_runtime": 43.8598,
|
937 |
+
"eval_samples_per_second": 22.8,
|
938 |
+
"eval_steps_per_second": 2.85,
|
939 |
+
"step": 620
|
940 |
+
},
|
941 |
+
{
|
942 |
+
"epoch": 8.4,
|
943 |
+
"grad_norm": 2.89953351020813,
|
944 |
+
"learning_rate": 5.333333333333334e-06,
|
945 |
+
"loss": 0.8197,
|
946 |
+
"step": 630
|
947 |
+
},
|
948 |
+
{
|
949 |
+
"epoch": 8.4,
|
950 |
+
"eval_loss": 2.006070137023926,
|
951 |
+
"eval_runtime": 43.8589,
|
952 |
+
"eval_samples_per_second": 22.8,
|
953 |
+
"eval_steps_per_second": 2.85,
|
954 |
+
"step": 630
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 8.533333333333333,
|
958 |
+
"grad_norm": 2.9382617473602295,
|
959 |
+
"learning_rate": 4.1481481481481485e-06,
|
960 |
+
"loss": 0.8295,
|
961 |
+
"step": 640
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 8.533333333333333,
|
965 |
+
"eval_loss": 2.0065603256225586,
|
966 |
+
"eval_runtime": 44.006,
|
967 |
+
"eval_samples_per_second": 22.724,
|
968 |
+
"eval_steps_per_second": 2.841,
|
969 |
+
"step": 640
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 8.666666666666666,
|
973 |
+
"grad_norm": 3.2645020484924316,
|
974 |
+
"learning_rate": 2.962962962962963e-06,
|
975 |
+
"loss": 0.8202,
|
976 |
+
"step": 650
|
977 |
+
},
|
978 |
+
{
|
979 |
+
"epoch": 8.666666666666666,
|
980 |
+
"eval_loss": 2.0076513290405273,
|
981 |
+
"eval_runtime": 43.9286,
|
982 |
+
"eval_samples_per_second": 22.764,
|
983 |
+
"eval_steps_per_second": 2.846,
|
984 |
+
"step": 650
|
985 |
+
},
|
986 |
+
{
|
987 |
+
"epoch": 8.8,
|
988 |
+
"grad_norm": 3.0611326694488525,
|
989 |
+
"learning_rate": 1.777777777777778e-06,
|
990 |
+
"loss": 0.8527,
|
991 |
+
"step": 660
|
992 |
+
},
|
993 |
+
{
|
994 |
+
"epoch": 8.8,
|
995 |
+
"eval_loss": 2.0074613094329834,
|
996 |
+
"eval_runtime": 44.1167,
|
997 |
+
"eval_samples_per_second": 22.667,
|
998 |
+
"eval_steps_per_second": 2.833,
|
999 |
+
"step": 660
|
1000 |
+
},
|
1001 |
+
{
|
1002 |
+
"epoch": 8.933333333333334,
|
1003 |
+
"grad_norm": 2.9361331462860107,
|
1004 |
+
"learning_rate": 5.925925925925927e-07,
|
1005 |
+
"loss": 0.8341,
|
1006 |
+
"step": 670
|
1007 |
+
},
|
1008 |
+
{
|
1009 |
+
"epoch": 8.933333333333334,
|
1010 |
+
"eval_loss": 2.0068347454071045,
|
1011 |
+
"eval_runtime": 43.8714,
|
1012 |
+
"eval_samples_per_second": 22.794,
|
1013 |
+
"eval_steps_per_second": 2.849,
|
1014 |
+
"step": 670
|
1015 |
+
}
|
1016 |
+
],
|
1017 |
+
"logging_steps": 10,
|
1018 |
+
"max_steps": 675,
|
1019 |
+
"num_input_tokens_seen": 0,
|
1020 |
+
"num_train_epochs": 9,
|
1021 |
+
"save_steps": 10,
|
1022 |
+
"stateful_callbacks": {
|
1023 |
+
"TrainerControl": {
|
1024 |
+
"args": {
|
1025 |
+
"should_epoch_stop": false,
|
1026 |
+
"should_evaluate": false,
|
1027 |
+
"should_log": false,
|
1028 |
+
"should_save": true,
|
1029 |
+
"should_training_stop": false
|
1030 |
+
},
|
1031 |
+
"attributes": {}
|
1032 |
+
}
|
1033 |
+
},
|
1034 |
+
"total_flos": 1.097866823073792e+17,
|
1035 |
+
"train_batch_size": 8,
|
1036 |
+
"trial_name": null,
|
1037 |
+
"trial_params": null
|
1038 |
+
}
|
output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-675/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-675/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"dense",
|
24 |
+
"query_key_value",
|
25 |
+
"dense_h_to_4h",
|
26 |
+
"dense_4h_to_h"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-675/trainer_state.json
ADDED
@@ -0,0 +1,1038 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.6284925937652588,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_europarl_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-europarl-8e-05/checkpoint-80",
|
4 |
+
"epoch": 9.0,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 675,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.37591353058815,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.5979,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.6375348567962646,
|
21 |
+
"eval_runtime": 43.9032,
|
22 |
+
"eval_samples_per_second": 22.777,
|
23 |
+
"eval_steps_per_second": 2.847,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.4210415482521057,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.624,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.6352741718292236,
|
36 |
+
"eval_runtime": 44.0038,
|
37 |
+
"eval_samples_per_second": 22.725,
|
38 |
+
"eval_steps_per_second": 2.841,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.3714869022369385,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.6205,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.633917212486267,
|
51 |
+
"eval_runtime": 43.9878,
|
52 |
+
"eval_samples_per_second": 22.734,
|
53 |
+
"eval_steps_per_second": 2.842,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.36149370670318604,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.6165,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.6323453187942505,
|
66 |
+
"eval_runtime": 43.9629,
|
67 |
+
"eval_samples_per_second": 22.746,
|
68 |
+
"eval_steps_per_second": 2.843,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.35420870780944824,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.6599,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.6314094066619873,
|
81 |
+
"eval_runtime": 43.9048,
|
82 |
+
"eval_samples_per_second": 22.777,
|
83 |
+
"eval_steps_per_second": 2.847,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.33472639322280884,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.5591,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.6304500102996826,
|
96 |
+
"eval_runtime": 44.0293,
|
97 |
+
"eval_samples_per_second": 22.712,
|
98 |
+
"eval_steps_per_second": 2.839,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.3210572898387909,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.6328,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.6291298866271973,
|
111 |
+
"eval_runtime": 43.8599,
|
112 |
+
"eval_samples_per_second": 22.8,
|
113 |
+
"eval_steps_per_second": 2.85,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.32792502641677856,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.5967,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.6284925937652588,
|
126 |
+
"eval_runtime": 43.8492,
|
127 |
+
"eval_samples_per_second": 22.805,
|
128 |
+
"eval_steps_per_second": 2.851,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.457350492477417,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.5461,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.6317176818847656,
|
141 |
+
"eval_runtime": 43.8568,
|
142 |
+
"eval_samples_per_second": 22.801,
|
143 |
+
"eval_steps_per_second": 2.85,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.6296346187591553,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.5933,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.635717511177063,
|
156 |
+
"eval_runtime": 43.8409,
|
157 |
+
"eval_samples_per_second": 22.81,
|
158 |
+
"eval_steps_per_second": 2.851,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.7165963053703308,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.5319,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.6375973224639893,
|
171 |
+
"eval_runtime": 43.8486,
|
172 |
+
"eval_samples_per_second": 22.806,
|
173 |
+
"eval_steps_per_second": 2.851,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.7370977997779846,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.5413,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.6369796991348267,
|
186 |
+
"eval_runtime": 43.9803,
|
187 |
+
"eval_samples_per_second": 22.737,
|
188 |
+
"eval_steps_per_second": 2.842,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.726448118686676,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.5226,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.6377675533294678,
|
201 |
+
"eval_runtime": 43.8627,
|
202 |
+
"eval_samples_per_second": 22.798,
|
203 |
+
"eval_steps_per_second": 2.85,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.7822732925415039,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.5477,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.6378459930419922,
|
216 |
+
"eval_runtime": 43.9081,
|
217 |
+
"eval_samples_per_second": 22.775,
|
218 |
+
"eval_steps_per_second": 2.847,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.7607081532478333,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 1.5604,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 1.637563705444336,
|
231 |
+
"eval_runtime": 43.9092,
|
232 |
+
"eval_samples_per_second": 22.774,
|
233 |
+
"eval_steps_per_second": 2.847,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 0.9361194372177124,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 1.4091,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 1.6557352542877197,
|
246 |
+
"eval_runtime": 43.9308,
|
247 |
+
"eval_samples_per_second": 22.763,
|
248 |
+
"eval_steps_per_second": 2.845,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 1.0848534107208252,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 1.4629,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 1.6792665719985962,
|
261 |
+
"eval_runtime": 43.8829,
|
262 |
+
"eval_samples_per_second": 22.788,
|
263 |
+
"eval_steps_per_second": 2.848,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 1.0759488344192505,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 1.3685,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 1.682196855545044,
|
276 |
+
"eval_runtime": 43.8735,
|
277 |
+
"eval_samples_per_second": 22.793,
|
278 |
+
"eval_steps_per_second": 2.849,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 1.2871410846710205,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 1.4443,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 1.6869845390319824,
|
291 |
+
"eval_runtime": 43.8534,
|
292 |
+
"eval_samples_per_second": 22.803,
|
293 |
+
"eval_steps_per_second": 2.85,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 1.2004164457321167,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 1.3451,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 1.6853325366973877,
|
306 |
+
"eval_runtime": 43.8718,
|
307 |
+
"eval_samples_per_second": 22.794,
|
308 |
+
"eval_steps_per_second": 2.849,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 1.2714128494262695,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 1.4547,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 1.6859557628631592,
|
321 |
+
"eval_runtime": 43.8724,
|
322 |
+
"eval_samples_per_second": 22.793,
|
323 |
+
"eval_steps_per_second": 2.849,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 1.3297241926193237,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 1.4088,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 1.6856082677841187,
|
336 |
+
"eval_runtime": 43.8409,
|
337 |
+
"eval_samples_per_second": 22.81,
|
338 |
+
"eval_steps_per_second": 2.851,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 1.1967905759811401,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 1.3735,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 1.7015950679779053,
|
351 |
+
"eval_runtime": 43.8446,
|
352 |
+
"eval_samples_per_second": 22.808,
|
353 |
+
"eval_steps_per_second": 2.851,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 1.5186768770217896,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 1.2487,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 1.7492223978042603,
|
366 |
+
"eval_runtime": 43.84,
|
367 |
+
"eval_samples_per_second": 22.81,
|
368 |
+
"eval_steps_per_second": 2.851,
|
369 |
+
"step": 240
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.3333333333333335,
|
373 |
+
"grad_norm": 1.5129271745681763,
|
374 |
+
"learning_rate": 5.037037037037037e-05,
|
375 |
+
"loss": 1.2959,
|
376 |
+
"step": 250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 3.3333333333333335,
|
380 |
+
"eval_loss": 1.7475690841674805,
|
381 |
+
"eval_runtime": 43.8475,
|
382 |
+
"eval_samples_per_second": 22.806,
|
383 |
+
"eval_steps_per_second": 2.851,
|
384 |
+
"step": 250
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 3.466666666666667,
|
388 |
+
"grad_norm": 1.5553545951843262,
|
389 |
+
"learning_rate": 4.918518518518519e-05,
|
390 |
+
"loss": 1.278,
|
391 |
+
"step": 260
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 3.466666666666667,
|
395 |
+
"eval_loss": 1.749650239944458,
|
396 |
+
"eval_runtime": 43.8575,
|
397 |
+
"eval_samples_per_second": 22.801,
|
398 |
+
"eval_steps_per_second": 2.85,
|
399 |
+
"step": 260
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 3.6,
|
403 |
+
"grad_norm": 1.6911894083023071,
|
404 |
+
"learning_rate": 4.8e-05,
|
405 |
+
"loss": 1.1815,
|
406 |
+
"step": 270
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 3.6,
|
410 |
+
"eval_loss": 1.751675009727478,
|
411 |
+
"eval_runtime": 43.8693,
|
412 |
+
"eval_samples_per_second": 22.795,
|
413 |
+
"eval_steps_per_second": 2.849,
|
414 |
+
"step": 270
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 3.7333333333333334,
|
418 |
+
"grad_norm": 1.7207773923873901,
|
419 |
+
"learning_rate": 4.681481481481481e-05,
|
420 |
+
"loss": 1.227,
|
421 |
+
"step": 280
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 3.7333333333333334,
|
425 |
+
"eval_loss": 1.7532404661178589,
|
426 |
+
"eval_runtime": 43.9788,
|
427 |
+
"eval_samples_per_second": 22.738,
|
428 |
+
"eval_steps_per_second": 2.842,
|
429 |
+
"step": 280
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 3.8666666666666667,
|
433 |
+
"grad_norm": 1.6659716367721558,
|
434 |
+
"learning_rate": 4.5629629629629636e-05,
|
435 |
+
"loss": 1.2699,
|
436 |
+
"step": 290
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 3.8666666666666667,
|
440 |
+
"eval_loss": 1.7546659708023071,
|
441 |
+
"eval_runtime": 44.0345,
|
442 |
+
"eval_samples_per_second": 22.709,
|
443 |
+
"eval_steps_per_second": 2.839,
|
444 |
+
"step": 290
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 4.0,
|
448 |
+
"grad_norm": 1.7288299798965454,
|
449 |
+
"learning_rate": 4.444444444444445e-05,
|
450 |
+
"loss": 1.2414,
|
451 |
+
"step": 300
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 4.0,
|
455 |
+
"eval_loss": 1.7534445524215698,
|
456 |
+
"eval_runtime": 43.9971,
|
457 |
+
"eval_samples_per_second": 22.729,
|
458 |
+
"eval_steps_per_second": 2.841,
|
459 |
+
"step": 300
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 4.133333333333334,
|
463 |
+
"grad_norm": 1.8176274299621582,
|
464 |
+
"learning_rate": 4.3259259259259264e-05,
|
465 |
+
"loss": 1.1231,
|
466 |
+
"step": 310
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 4.133333333333334,
|
470 |
+
"eval_loss": 1.8118728399276733,
|
471 |
+
"eval_runtime": 44.0255,
|
472 |
+
"eval_samples_per_second": 22.714,
|
473 |
+
"eval_steps_per_second": 2.839,
|
474 |
+
"step": 310
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 4.266666666666667,
|
478 |
+
"grad_norm": 1.881231427192688,
|
479 |
+
"learning_rate": 4.2074074074074075e-05,
|
480 |
+
"loss": 1.1311,
|
481 |
+
"step": 320
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 4.266666666666667,
|
485 |
+
"eval_loss": 1.824351191520691,
|
486 |
+
"eval_runtime": 43.871,
|
487 |
+
"eval_samples_per_second": 22.794,
|
488 |
+
"eval_steps_per_second": 2.849,
|
489 |
+
"step": 320
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 4.4,
|
493 |
+
"grad_norm": 1.8982057571411133,
|
494 |
+
"learning_rate": 4.088888888888889e-05,
|
495 |
+
"loss": 1.1046,
|
496 |
+
"step": 330
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 4.4,
|
500 |
+
"eval_loss": 1.813114881515503,
|
501 |
+
"eval_runtime": 43.8506,
|
502 |
+
"eval_samples_per_second": 22.805,
|
503 |
+
"eval_steps_per_second": 2.851,
|
504 |
+
"step": 330
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 4.533333333333333,
|
508 |
+
"grad_norm": 1.9931222200393677,
|
509 |
+
"learning_rate": 3.970370370370371e-05,
|
510 |
+
"loss": 1.0596,
|
511 |
+
"step": 340
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"epoch": 4.533333333333333,
|
515 |
+
"eval_loss": 1.8187421560287476,
|
516 |
+
"eval_runtime": 43.8637,
|
517 |
+
"eval_samples_per_second": 22.798,
|
518 |
+
"eval_steps_per_second": 2.85,
|
519 |
+
"step": 340
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 4.666666666666667,
|
523 |
+
"grad_norm": 2.02201247215271,
|
524 |
+
"learning_rate": 3.851851851851852e-05,
|
525 |
+
"loss": 1.1469,
|
526 |
+
"step": 350
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 4.666666666666667,
|
530 |
+
"eval_loss": 1.8229775428771973,
|
531 |
+
"eval_runtime": 43.9111,
|
532 |
+
"eval_samples_per_second": 22.773,
|
533 |
+
"eval_steps_per_second": 2.847,
|
534 |
+
"step": 350
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 4.8,
|
538 |
+
"grad_norm": 2.220625638961792,
|
539 |
+
"learning_rate": 3.733333333333334e-05,
|
540 |
+
"loss": 1.1344,
|
541 |
+
"step": 360
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 4.8,
|
545 |
+
"eval_loss": 1.817935585975647,
|
546 |
+
"eval_runtime": 43.9794,
|
547 |
+
"eval_samples_per_second": 22.738,
|
548 |
+
"eval_steps_per_second": 2.842,
|
549 |
+
"step": 360
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 4.933333333333334,
|
553 |
+
"grad_norm": 2.0401487350463867,
|
554 |
+
"learning_rate": 3.614814814814815e-05,
|
555 |
+
"loss": 1.1922,
|
556 |
+
"step": 370
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 4.933333333333334,
|
560 |
+
"eval_loss": 1.8182997703552246,
|
561 |
+
"eval_runtime": 43.8807,
|
562 |
+
"eval_samples_per_second": 22.789,
|
563 |
+
"eval_steps_per_second": 2.849,
|
564 |
+
"step": 370
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 5.066666666666666,
|
568 |
+
"grad_norm": 1.8822356462478638,
|
569 |
+
"learning_rate": 3.4962962962962965e-05,
|
570 |
+
"loss": 1.0486,
|
571 |
+
"step": 380
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 5.066666666666666,
|
575 |
+
"eval_loss": 1.8343256711959839,
|
576 |
+
"eval_runtime": 43.9715,
|
577 |
+
"eval_samples_per_second": 22.742,
|
578 |
+
"eval_steps_per_second": 2.843,
|
579 |
+
"step": 380
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 5.2,
|
583 |
+
"grad_norm": 2.383836030960083,
|
584 |
+
"learning_rate": 3.377777777777778e-05,
|
585 |
+
"loss": 1.0039,
|
586 |
+
"step": 390
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"epoch": 5.2,
|
590 |
+
"eval_loss": 1.8889024257659912,
|
591 |
+
"eval_runtime": 43.906,
|
592 |
+
"eval_samples_per_second": 22.776,
|
593 |
+
"eval_steps_per_second": 2.847,
|
594 |
+
"step": 390
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 5.333333333333333,
|
598 |
+
"grad_norm": 2.403280019760132,
|
599 |
+
"learning_rate": 3.259259259259259e-05,
|
600 |
+
"loss": 0.9946,
|
601 |
+
"step": 400
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 5.333333333333333,
|
605 |
+
"eval_loss": 1.8832476139068604,
|
606 |
+
"eval_runtime": 43.8654,
|
607 |
+
"eval_samples_per_second": 22.797,
|
608 |
+
"eval_steps_per_second": 2.85,
|
609 |
+
"step": 400
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 5.466666666666667,
|
613 |
+
"grad_norm": 2.34110164642334,
|
614 |
+
"learning_rate": 3.140740740740741e-05,
|
615 |
+
"loss": 1.0302,
|
616 |
+
"step": 410
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"epoch": 5.466666666666667,
|
620 |
+
"eval_loss": 1.8810956478118896,
|
621 |
+
"eval_runtime": 43.8937,
|
622 |
+
"eval_samples_per_second": 22.782,
|
623 |
+
"eval_steps_per_second": 2.848,
|
624 |
+
"step": 410
|
625 |
+
},
|
626 |
+
{
|
627 |
+
"epoch": 5.6,
|
628 |
+
"grad_norm": 2.32973575592041,
|
629 |
+
"learning_rate": 3.0222222222222225e-05,
|
630 |
+
"loss": 1.0062,
|
631 |
+
"step": 420
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"epoch": 5.6,
|
635 |
+
"eval_loss": 1.8806273937225342,
|
636 |
+
"eval_runtime": 43.9433,
|
637 |
+
"eval_samples_per_second": 22.757,
|
638 |
+
"eval_steps_per_second": 2.845,
|
639 |
+
"step": 420
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 5.733333333333333,
|
643 |
+
"grad_norm": 2.426825523376465,
|
644 |
+
"learning_rate": 2.9037037037037042e-05,
|
645 |
+
"loss": 1.0493,
|
646 |
+
"step": 430
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 5.733333333333333,
|
650 |
+
"eval_loss": 1.8787455558776855,
|
651 |
+
"eval_runtime": 43.9876,
|
652 |
+
"eval_samples_per_second": 22.734,
|
653 |
+
"eval_steps_per_second": 2.842,
|
654 |
+
"step": 430
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 5.866666666666667,
|
658 |
+
"grad_norm": 2.2383341789245605,
|
659 |
+
"learning_rate": 2.7851851851851856e-05,
|
660 |
+
"loss": 1.0728,
|
661 |
+
"step": 440
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 5.866666666666667,
|
665 |
+
"eval_loss": 1.8792084455490112,
|
666 |
+
"eval_runtime": 43.9918,
|
667 |
+
"eval_samples_per_second": 22.732,
|
668 |
+
"eval_steps_per_second": 2.841,
|
669 |
+
"step": 440
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 6.0,
|
673 |
+
"grad_norm": 2.4239635467529297,
|
674 |
+
"learning_rate": 2.6666666666666667e-05,
|
675 |
+
"loss": 1.0199,
|
676 |
+
"step": 450
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 6.0,
|
680 |
+
"eval_loss": 1.8804157972335815,
|
681 |
+
"eval_runtime": 43.9689,
|
682 |
+
"eval_samples_per_second": 22.743,
|
683 |
+
"eval_steps_per_second": 2.843,
|
684 |
+
"step": 450
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"epoch": 6.133333333333334,
|
688 |
+
"grad_norm": 3.0071866512298584,
|
689 |
+
"learning_rate": 2.5481481481481484e-05,
|
690 |
+
"loss": 0.9486,
|
691 |
+
"step": 460
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"epoch": 6.133333333333334,
|
695 |
+
"eval_loss": 1.930755376815796,
|
696 |
+
"eval_runtime": 43.9812,
|
697 |
+
"eval_samples_per_second": 22.737,
|
698 |
+
"eval_steps_per_second": 2.842,
|
699 |
+
"step": 460
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 6.266666666666667,
|
703 |
+
"grad_norm": 2.432983875274658,
|
704 |
+
"learning_rate": 2.4296296296296298e-05,
|
705 |
+
"loss": 0.8858,
|
706 |
+
"step": 470
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 6.266666666666667,
|
710 |
+
"eval_loss": 1.9468986988067627,
|
711 |
+
"eval_runtime": 43.9889,
|
712 |
+
"eval_samples_per_second": 22.733,
|
713 |
+
"eval_steps_per_second": 2.842,
|
714 |
+
"step": 470
|
715 |
+
},
|
716 |
+
{
|
717 |
+
"epoch": 6.4,
|
718 |
+
"grad_norm": 2.591848850250244,
|
719 |
+
"learning_rate": 2.3111111111111112e-05,
|
720 |
+
"loss": 0.9818,
|
721 |
+
"step": 480
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"epoch": 6.4,
|
725 |
+
"eval_loss": 1.9322350025177002,
|
726 |
+
"eval_runtime": 44.0412,
|
727 |
+
"eval_samples_per_second": 22.706,
|
728 |
+
"eval_steps_per_second": 2.838,
|
729 |
+
"step": 480
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 6.533333333333333,
|
733 |
+
"grad_norm": 2.5453197956085205,
|
734 |
+
"learning_rate": 2.192592592592593e-05,
|
735 |
+
"loss": 0.84,
|
736 |
+
"step": 490
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"epoch": 6.533333333333333,
|
740 |
+
"eval_loss": 1.9371347427368164,
|
741 |
+
"eval_runtime": 44.0174,
|
742 |
+
"eval_samples_per_second": 22.718,
|
743 |
+
"eval_steps_per_second": 2.84,
|
744 |
+
"step": 490
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 6.666666666666667,
|
748 |
+
"grad_norm": 2.4433412551879883,
|
749 |
+
"learning_rate": 2.074074074074074e-05,
|
750 |
+
"loss": 0.9686,
|
751 |
+
"step": 500
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 6.666666666666667,
|
755 |
+
"eval_loss": 1.9340929985046387,
|
756 |
+
"eval_runtime": 43.9473,
|
757 |
+
"eval_samples_per_second": 22.755,
|
758 |
+
"eval_steps_per_second": 2.844,
|
759 |
+
"step": 500
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 6.8,
|
763 |
+
"grad_norm": 2.7762234210968018,
|
764 |
+
"learning_rate": 1.9555555555555557e-05,
|
765 |
+
"loss": 0.974,
|
766 |
+
"step": 510
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 6.8,
|
770 |
+
"eval_loss": 1.936902642250061,
|
771 |
+
"eval_runtime": 43.9918,
|
772 |
+
"eval_samples_per_second": 22.732,
|
773 |
+
"eval_steps_per_second": 2.841,
|
774 |
+
"step": 510
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 6.933333333333334,
|
778 |
+
"grad_norm": 2.706693410873413,
|
779 |
+
"learning_rate": 1.837037037037037e-05,
|
780 |
+
"loss": 0.9366,
|
781 |
+
"step": 520
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"epoch": 6.933333333333334,
|
785 |
+
"eval_loss": 1.9351890087127686,
|
786 |
+
"eval_runtime": 43.9647,
|
787 |
+
"eval_samples_per_second": 22.746,
|
788 |
+
"eval_steps_per_second": 2.843,
|
789 |
+
"step": 520
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 7.066666666666666,
|
793 |
+
"grad_norm": 2.338547706604004,
|
794 |
+
"learning_rate": 1.7185185185185185e-05,
|
795 |
+
"loss": 0.9285,
|
796 |
+
"step": 530
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"epoch": 7.066666666666666,
|
800 |
+
"eval_loss": 1.9464186429977417,
|
801 |
+
"eval_runtime": 43.9646,
|
802 |
+
"eval_samples_per_second": 22.746,
|
803 |
+
"eval_steps_per_second": 2.843,
|
804 |
+
"step": 530
|
805 |
+
},
|
806 |
+
{
|
807 |
+
"epoch": 7.2,
|
808 |
+
"grad_norm": 2.846348285675049,
|
809 |
+
"learning_rate": 1.6000000000000003e-05,
|
810 |
+
"loss": 0.8663,
|
811 |
+
"step": 540
|
812 |
+
},
|
813 |
+
{
|
814 |
+
"epoch": 7.2,
|
815 |
+
"eval_loss": 1.9812690019607544,
|
816 |
+
"eval_runtime": 43.966,
|
817 |
+
"eval_samples_per_second": 22.745,
|
818 |
+
"eval_steps_per_second": 2.843,
|
819 |
+
"step": 540
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 7.333333333333333,
|
823 |
+
"grad_norm": 2.754952907562256,
|
824 |
+
"learning_rate": 1.4814814814814815e-05,
|
825 |
+
"loss": 0.8033,
|
826 |
+
"step": 550
|
827 |
+
},
|
828 |
+
{
|
829 |
+
"epoch": 7.333333333333333,
|
830 |
+
"eval_loss": 1.9769660234451294,
|
831 |
+
"eval_runtime": 43.9067,
|
832 |
+
"eval_samples_per_second": 22.776,
|
833 |
+
"eval_steps_per_second": 2.847,
|
834 |
+
"step": 550
|
835 |
+
},
|
836 |
+
{
|
837 |
+
"epoch": 7.466666666666667,
|
838 |
+
"grad_norm": 2.7049484252929688,
|
839 |
+
"learning_rate": 1.362962962962963e-05,
|
840 |
+
"loss": 0.8823,
|
841 |
+
"step": 560
|
842 |
+
},
|
843 |
+
{
|
844 |
+
"epoch": 7.466666666666667,
|
845 |
+
"eval_loss": 1.9782260656356812,
|
846 |
+
"eval_runtime": 43.8715,
|
847 |
+
"eval_samples_per_second": 22.794,
|
848 |
+
"eval_steps_per_second": 2.849,
|
849 |
+
"step": 560
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 7.6,
|
853 |
+
"grad_norm": 2.9233956336975098,
|
854 |
+
"learning_rate": 1.2444444444444446e-05,
|
855 |
+
"loss": 0.8841,
|
856 |
+
"step": 570
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 7.6,
|
860 |
+
"eval_loss": 1.975508451461792,
|
861 |
+
"eval_runtime": 43.8529,
|
862 |
+
"eval_samples_per_second": 22.804,
|
863 |
+
"eval_steps_per_second": 2.85,
|
864 |
+
"step": 570
|
865 |
+
},
|
866 |
+
{
|
867 |
+
"epoch": 7.733333333333333,
|
868 |
+
"grad_norm": 3.2836148738861084,
|
869 |
+
"learning_rate": 1.125925925925926e-05,
|
870 |
+
"loss": 0.8404,
|
871 |
+
"step": 580
|
872 |
+
},
|
873 |
+
{
|
874 |
+
"epoch": 7.733333333333333,
|
875 |
+
"eval_loss": 1.9755034446716309,
|
876 |
+
"eval_runtime": 43.8744,
|
877 |
+
"eval_samples_per_second": 22.792,
|
878 |
+
"eval_steps_per_second": 2.849,
|
879 |
+
"step": 580
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 7.866666666666667,
|
883 |
+
"grad_norm": 2.717045783996582,
|
884 |
+
"learning_rate": 1.0074074074074074e-05,
|
885 |
+
"loss": 0.9189,
|
886 |
+
"step": 590
|
887 |
+
},
|
888 |
+
{
|
889 |
+
"epoch": 7.866666666666667,
|
890 |
+
"eval_loss": 1.981050729751587,
|
891 |
+
"eval_runtime": 43.8841,
|
892 |
+
"eval_samples_per_second": 22.787,
|
893 |
+
"eval_steps_per_second": 2.848,
|
894 |
+
"step": 590
|
895 |
+
},
|
896 |
+
{
|
897 |
+
"epoch": 8.0,
|
898 |
+
"grad_norm": 2.6528029441833496,
|
899 |
+
"learning_rate": 8.888888888888888e-06,
|
900 |
+
"loss": 0.8777,
|
901 |
+
"step": 600
|
902 |
+
},
|
903 |
+
{
|
904 |
+
"epoch": 8.0,
|
905 |
+
"eval_loss": 1.9789155721664429,
|
906 |
+
"eval_runtime": 44.2778,
|
907 |
+
"eval_samples_per_second": 22.585,
|
908 |
+
"eval_steps_per_second": 2.823,
|
909 |
+
"step": 600
|
910 |
+
},
|
911 |
+
{
|
912 |
+
"epoch": 8.133333333333333,
|
913 |
+
"grad_norm": 2.8376739025115967,
|
914 |
+
"learning_rate": 7.703703703703704e-06,
|
915 |
+
"loss": 0.8247,
|
916 |
+
"step": 610
|
917 |
+
},
|
918 |
+
{
|
919 |
+
"epoch": 8.133333333333333,
|
920 |
+
"eval_loss": 1.9906001091003418,
|
921 |
+
"eval_runtime": 44.0221,
|
922 |
+
"eval_samples_per_second": 22.716,
|
923 |
+
"eval_steps_per_second": 2.839,
|
924 |
+
"step": 610
|
925 |
+
},
|
926 |
+
{
|
927 |
+
"epoch": 8.266666666666667,
|
928 |
+
"grad_norm": 2.8162360191345215,
|
929 |
+
"learning_rate": 6.51851851851852e-06,
|
930 |
+
"loss": 0.8104,
|
931 |
+
"step": 620
|
932 |
+
},
|
933 |
+
{
|
934 |
+
"epoch": 8.266666666666667,
|
935 |
+
"eval_loss": 2.0043418407440186,
|
936 |
+
"eval_runtime": 43.8598,
|
937 |
+
"eval_samples_per_second": 22.8,
|
938 |
+
"eval_steps_per_second": 2.85,
|
939 |
+
"step": 620
|
940 |
+
},
|
941 |
+
{
|
942 |
+
"epoch": 8.4,
|
943 |
+
"grad_norm": 2.89953351020813,
|
944 |
+
"learning_rate": 5.333333333333334e-06,
|
945 |
+
"loss": 0.8197,
|
946 |
+
"step": 630
|
947 |
+
},
|
948 |
+
{
|
949 |
+
"epoch": 8.4,
|
950 |
+
"eval_loss": 2.006070137023926,
|
951 |
+
"eval_runtime": 43.8589,
|
952 |
+
"eval_samples_per_second": 22.8,
|
953 |
+
"eval_steps_per_second": 2.85,
|
954 |
+
"step": 630
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 8.533333333333333,
|
958 |
+
"grad_norm": 2.9382617473602295,
|
959 |
+
"learning_rate": 4.1481481481481485e-06,
|
960 |
+
"loss": 0.8295,
|
961 |
+
"step": 640
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 8.533333333333333,
|
965 |
+
"eval_loss": 2.0065603256225586,
|
966 |
+
"eval_runtime": 44.006,
|
967 |
+
"eval_samples_per_second": 22.724,
|
968 |
+
"eval_steps_per_second": 2.841,
|
969 |
+
"step": 640
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 8.666666666666666,
|
973 |
+
"grad_norm": 3.2645020484924316,
|
974 |
+
"learning_rate": 2.962962962962963e-06,
|
975 |
+
"loss": 0.8202,
|
976 |
+
"step": 650
|
977 |
+
},
|
978 |
+
{
|
979 |
+
"epoch": 8.666666666666666,
|
980 |
+
"eval_loss": 2.0076513290405273,
|
981 |
+
"eval_runtime": 43.9286,
|
982 |
+
"eval_samples_per_second": 22.764,
|
983 |
+
"eval_steps_per_second": 2.846,
|
984 |
+
"step": 650
|
985 |
+
},
|
986 |
+
{
|
987 |
+
"epoch": 8.8,
|
988 |
+
"grad_norm": 3.0611326694488525,
|
989 |
+
"learning_rate": 1.777777777777778e-06,
|
990 |
+
"loss": 0.8527,
|
991 |
+
"step": 660
|
992 |
+
},
|
993 |
+
{
|
994 |
+
"epoch": 8.8,
|
995 |
+
"eval_loss": 2.0074613094329834,
|
996 |
+
"eval_runtime": 44.1167,
|
997 |
+
"eval_samples_per_second": 22.667,
|
998 |
+
"eval_steps_per_second": 2.833,
|
999 |
+
"step": 660
|
1000 |
+
},
|
1001 |
+
{
|
1002 |
+
"epoch": 8.933333333333334,
|
1003 |
+
"grad_norm": 2.9361331462860107,
|
1004 |
+
"learning_rate": 5.925925925925927e-07,
|
1005 |
+
"loss": 0.8341,
|
1006 |
+
"step": 670
|
1007 |
+
},
|
1008 |
+
{
|
1009 |
+
"epoch": 8.933333333333334,
|
1010 |
+
"eval_loss": 2.0068347454071045,
|
1011 |
+
"eval_runtime": 43.8714,
|
1012 |
+
"eval_samples_per_second": 22.794,
|
1013 |
+
"eval_steps_per_second": 2.849,
|
1014 |
+
"step": 670
|
1015 |
+
}
|
1016 |
+
],
|
1017 |
+
"logging_steps": 10,
|
1018 |
+
"max_steps": 675,
|
1019 |
+
"num_input_tokens_seen": 0,
|
1020 |
+
"num_train_epochs": 9,
|
1021 |
+
"save_steps": 10,
|
1022 |
+
"stateful_callbacks": {
|
1023 |
+
"TrainerControl": {
|
1024 |
+
"args": {
|
1025 |
+
"should_epoch_stop": false,
|
1026 |
+
"should_evaluate": false,
|
1027 |
+
"should_log": false,
|
1028 |
+
"should_save": true,
|
1029 |
+
"should_training_stop": true
|
1030 |
+
},
|
1031 |
+
"attributes": {}
|
1032 |
+
}
|
1033 |
+
},
|
1034 |
+
"total_flos": 1.10605985906688e+17,
|
1035 |
+
"train_batch_size": 8,
|
1036 |
+
"trial_name": null,
|
1037 |
+
"trial_params": null
|
1038 |
+
}
|
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-10/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|