bxiong commited on
Commit
e35e8af
·
verified ·
1 Parent(s): 7ba56d9

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. output_ft_more_layers_books3_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-books3-8e-05/checkpoint-180/rng_state.pth +3 -0
  2. output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-675/trainer_state.json +1038 -0
  3. output_ft_more_layers_github_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-github-8e-05/checkpoint-140/adapter_model.safetensors +3 -0
  4. output_ft_more_layers_github_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-github-8e-05/checkpoint-140/scheduler.pt +3 -0
  5. output_ft_more_layers_gutenberg_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-gutenberg-8e-05/checkpoint-60/scheduler.pt +3 -0
  6. output_ft_more_layers_gutenberg_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-gutenberg-8e-05/checkpoint-220/rng_state.pth +3 -0
  7. output_ft_more_layers_hackernews_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-hackernews-8e-05/checkpoint-100/rng_state.pth +3 -0
  8. output_ft_more_layers_hackernews_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-hackernews-8e-05/checkpoint-340/adapter_model.safetensors +3 -0
  9. output_ft_more_layers_hackernews_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-hackernews-8e-05/checkpoint-350/scheduler.pt +3 -0
  10. output_ft_more_layers_hackernews_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-hackernews-8e-05/checkpoint-670/adapter_model.safetensors +3 -0
  11. output_ft_more_layers_hackernews_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-hackernews-8e-05/checkpoint-530/adapter_model.safetensors +3 -0
  12. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-10/README.md +202 -0
  13. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-10/adapter_config.json +31 -0
  14. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-10/trainer_state.json +48 -0
  15. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-100/README.md +202 -0
  16. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-100/adapter_config.json +31 -0
  17. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-100/trainer_state.json +183 -0
  18. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-110/README.md +202 -0
  19. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-110/adapter_config.json +31 -0
  20. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-110/trainer_state.json +198 -0
  21. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-120/README.md +202 -0
  22. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-120/adapter_config.json +31 -0
  23. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-120/trainer_state.json +213 -0
  24. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-130/README.md +202 -0
  25. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-130/adapter_config.json +31 -0
  26. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-130/trainer_state.json +228 -0
  27. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-140/README.md +202 -0
  28. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-140/adapter_config.json +31 -0
  29. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-140/trainer_state.json +243 -0
  30. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-150/README.md +202 -0
  31. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-150/adapter_config.json +31 -0
  32. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-150/trainer_state.json +258 -0
  33. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-160/README.md +202 -0
  34. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-160/adapter_config.json +31 -0
  35. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-160/trainer_state.json +273 -0
  36. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-170/README.md +202 -0
  37. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-170/adapter_config.json +31 -0
  38. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-170/trainer_state.json +288 -0
  39. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-180/README.md +202 -0
  40. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-180/adapter_config.json +31 -0
  41. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-180/trainer_state.json +303 -0
  42. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-190/README.md +202 -0
  43. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-190/adapter_config.json +31 -0
  44. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-190/trainer_state.json +318 -0
  45. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-20/README.md +202 -0
  46. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-20/adapter_config.json +31 -0
  47. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-20/trainer_state.json +63 -0
  48. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-200/README.md +202 -0
  49. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-200/adapter_config.json +31 -0
  50. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-200/trainer_state.json +333 -0
output_ft_more_layers_books3_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-books3-8e-05/checkpoint-180/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b79baa0842c2916b082cba36f9f2b958210e6d7c1813742841fb908cae57fbd
3
+ size 14575
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-675/trainer_state.json ADDED
@@ -0,0 +1,1038 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.756260633468628,
3
+ "best_model_checkpoint": "./output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-80",
4
+ "epoch": 9.0,
5
+ "eval_steps": 10,
6
+ "global_step": 675,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.42052844166755676,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 1.7467,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 1.7734601497650146,
21
+ "eval_runtime": 43.8138,
22
+ "eval_samples_per_second": 22.824,
23
+ "eval_steps_per_second": 2.853,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.37809130549430847,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 1.7395,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 1.769258975982666,
36
+ "eval_runtime": 43.8201,
37
+ "eval_samples_per_second": 22.821,
38
+ "eval_steps_per_second": 2.853,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.3573046624660492,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 1.7631,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 1.7663551568984985,
51
+ "eval_runtime": 43.8223,
52
+ "eval_samples_per_second": 22.819,
53
+ "eval_steps_per_second": 2.852,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.362831711769104,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 1.7315,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 1.7627724409103394,
66
+ "eval_runtime": 43.8359,
67
+ "eval_samples_per_second": 22.812,
68
+ "eval_steps_per_second": 2.852,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.3436615467071533,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 1.7643,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 1.759765863418579,
81
+ "eval_runtime": 43.9684,
82
+ "eval_samples_per_second": 22.744,
83
+ "eval_steps_per_second": 2.843,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.3397642970085144,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 1.779,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 1.757882833480835,
96
+ "eval_runtime": 43.842,
97
+ "eval_samples_per_second": 22.809,
98
+ "eval_steps_per_second": 2.851,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.3337671458721161,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 1.8132,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 1.7570159435272217,
111
+ "eval_runtime": 43.8608,
112
+ "eval_samples_per_second": 22.799,
113
+ "eval_steps_per_second": 2.85,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.330272912979126,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 1.7171,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 1.756260633468628,
126
+ "eval_runtime": 43.8455,
127
+ "eval_samples_per_second": 22.807,
128
+ "eval_steps_per_second": 2.851,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 1.2,
133
+ "grad_norm": 0.41235682368278503,
134
+ "learning_rate": 6.933333333333334e-05,
135
+ "loss": 1.7416,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 1.2,
140
+ "eval_loss": 1.7591694593429565,
141
+ "eval_runtime": 43.9235,
142
+ "eval_samples_per_second": 22.767,
143
+ "eval_steps_per_second": 2.846,
144
+ "step": 90
145
+ },
146
+ {
147
+ "epoch": 1.3333333333333333,
148
+ "grad_norm": 0.5422492027282715,
149
+ "learning_rate": 6.814814814814815e-05,
150
+ "loss": 1.7139,
151
+ "step": 100
152
+ },
153
+ {
154
+ "epoch": 1.3333333333333333,
155
+ "eval_loss": 1.7640165090560913,
156
+ "eval_runtime": 43.8344,
157
+ "eval_samples_per_second": 22.813,
158
+ "eval_steps_per_second": 2.852,
159
+ "step": 100
160
+ },
161
+ {
162
+ "epoch": 1.4666666666666668,
163
+ "grad_norm": 0.6477387547492981,
164
+ "learning_rate": 6.696296296296296e-05,
165
+ "loss": 1.6539,
166
+ "step": 110
167
+ },
168
+ {
169
+ "epoch": 1.4666666666666668,
170
+ "eval_loss": 1.7652504444122314,
171
+ "eval_runtime": 43.8392,
172
+ "eval_samples_per_second": 22.811,
173
+ "eval_steps_per_second": 2.851,
174
+ "step": 110
175
+ },
176
+ {
177
+ "epoch": 1.6,
178
+ "grad_norm": 0.6118409037590027,
179
+ "learning_rate": 6.577777777777777e-05,
180
+ "loss": 1.6159,
181
+ "step": 120
182
+ },
183
+ {
184
+ "epoch": 1.6,
185
+ "eval_loss": 1.764657735824585,
186
+ "eval_runtime": 43.8454,
187
+ "eval_samples_per_second": 22.807,
188
+ "eval_steps_per_second": 2.851,
189
+ "step": 120
190
+ },
191
+ {
192
+ "epoch": 1.7333333333333334,
193
+ "grad_norm": 0.6918817162513733,
194
+ "learning_rate": 6.45925925925926e-05,
195
+ "loss": 1.7172,
196
+ "step": 130
197
+ },
198
+ {
199
+ "epoch": 1.7333333333333334,
200
+ "eval_loss": 1.7642107009887695,
201
+ "eval_runtime": 43.8336,
202
+ "eval_samples_per_second": 22.814,
203
+ "eval_steps_per_second": 2.852,
204
+ "step": 130
205
+ },
206
+ {
207
+ "epoch": 1.8666666666666667,
208
+ "grad_norm": 0.7557538747787476,
209
+ "learning_rate": 6.340740740740741e-05,
210
+ "loss": 1.6427,
211
+ "step": 140
212
+ },
213
+ {
214
+ "epoch": 1.8666666666666667,
215
+ "eval_loss": 1.7659236192703247,
216
+ "eval_runtime": 43.9711,
217
+ "eval_samples_per_second": 22.742,
218
+ "eval_steps_per_second": 2.843,
219
+ "step": 140
220
+ },
221
+ {
222
+ "epoch": 2.0,
223
+ "grad_norm": 0.7488186955451965,
224
+ "learning_rate": 6.222222222222223e-05,
225
+ "loss": 1.6787,
226
+ "step": 150
227
+ },
228
+ {
229
+ "epoch": 2.0,
230
+ "eval_loss": 1.7671101093292236,
231
+ "eval_runtime": 43.8752,
232
+ "eval_samples_per_second": 22.792,
233
+ "eval_steps_per_second": 2.849,
234
+ "step": 150
235
+ },
236
+ {
237
+ "epoch": 2.1333333333333333,
238
+ "grad_norm": 0.8250883221626282,
239
+ "learning_rate": 6.103703703703704e-05,
240
+ "loss": 1.5311,
241
+ "step": 160
242
+ },
243
+ {
244
+ "epoch": 2.1333333333333333,
245
+ "eval_loss": 1.7898952960968018,
246
+ "eval_runtime": 43.8563,
247
+ "eval_samples_per_second": 22.802,
248
+ "eval_steps_per_second": 2.85,
249
+ "step": 160
250
+ },
251
+ {
252
+ "epoch": 2.2666666666666666,
253
+ "grad_norm": 1.030646562576294,
254
+ "learning_rate": 5.9851851851851855e-05,
255
+ "loss": 1.6057,
256
+ "step": 170
257
+ },
258
+ {
259
+ "epoch": 2.2666666666666666,
260
+ "eval_loss": 1.8094940185546875,
261
+ "eval_runtime": 43.983,
262
+ "eval_samples_per_second": 22.736,
263
+ "eval_steps_per_second": 2.842,
264
+ "step": 170
265
+ },
266
+ {
267
+ "epoch": 2.4,
268
+ "grad_norm": 1.1088566780090332,
269
+ "learning_rate": 5.8666666666666665e-05,
270
+ "loss": 1.5728,
271
+ "step": 180
272
+ },
273
+ {
274
+ "epoch": 2.4,
275
+ "eval_loss": 1.8133563995361328,
276
+ "eval_runtime": 43.824,
277
+ "eval_samples_per_second": 22.819,
278
+ "eval_steps_per_second": 2.852,
279
+ "step": 180
280
+ },
281
+ {
282
+ "epoch": 2.533333333333333,
283
+ "grad_norm": 1.021531343460083,
284
+ "learning_rate": 5.748148148148149e-05,
285
+ "loss": 1.527,
286
+ "step": 190
287
+ },
288
+ {
289
+ "epoch": 2.533333333333333,
290
+ "eval_loss": 1.8125377893447876,
291
+ "eval_runtime": 43.8295,
292
+ "eval_samples_per_second": 22.816,
293
+ "eval_steps_per_second": 2.852,
294
+ "step": 190
295
+ },
296
+ {
297
+ "epoch": 2.6666666666666665,
298
+ "grad_norm": 1.2650625705718994,
299
+ "learning_rate": 5.62962962962963e-05,
300
+ "loss": 1.5812,
301
+ "step": 200
302
+ },
303
+ {
304
+ "epoch": 2.6666666666666665,
305
+ "eval_loss": 1.8146140575408936,
306
+ "eval_runtime": 43.836,
307
+ "eval_samples_per_second": 22.812,
308
+ "eval_steps_per_second": 2.852,
309
+ "step": 200
310
+ },
311
+ {
312
+ "epoch": 2.8,
313
+ "grad_norm": 1.2198336124420166,
314
+ "learning_rate": 5.511111111111112e-05,
315
+ "loss": 1.5373,
316
+ "step": 210
317
+ },
318
+ {
319
+ "epoch": 2.8,
320
+ "eval_loss": 1.8189282417297363,
321
+ "eval_runtime": 43.8436,
322
+ "eval_samples_per_second": 22.808,
323
+ "eval_steps_per_second": 2.851,
324
+ "step": 210
325
+ },
326
+ {
327
+ "epoch": 2.9333333333333336,
328
+ "grad_norm": 1.240370512008667,
329
+ "learning_rate": 5.392592592592593e-05,
330
+ "loss": 1.5636,
331
+ "step": 220
332
+ },
333
+ {
334
+ "epoch": 2.9333333333333336,
335
+ "eval_loss": 1.819279670715332,
336
+ "eval_runtime": 43.8449,
337
+ "eval_samples_per_second": 22.808,
338
+ "eval_steps_per_second": 2.851,
339
+ "step": 220
340
+ },
341
+ {
342
+ "epoch": 3.066666666666667,
343
+ "grad_norm": 1.2288763523101807,
344
+ "learning_rate": 5.274074074074074e-05,
345
+ "loss": 1.4396,
346
+ "step": 230
347
+ },
348
+ {
349
+ "epoch": 3.066666666666667,
350
+ "eval_loss": 1.8351694345474243,
351
+ "eval_runtime": 43.8476,
352
+ "eval_samples_per_second": 22.806,
353
+ "eval_steps_per_second": 2.851,
354
+ "step": 230
355
+ },
356
+ {
357
+ "epoch": 3.2,
358
+ "grad_norm": 1.4340574741363525,
359
+ "learning_rate": 5.155555555555556e-05,
360
+ "loss": 1.4344,
361
+ "step": 240
362
+ },
363
+ {
364
+ "epoch": 3.2,
365
+ "eval_loss": 1.8951430320739746,
366
+ "eval_runtime": 43.8769,
367
+ "eval_samples_per_second": 22.791,
368
+ "eval_steps_per_second": 2.849,
369
+ "step": 240
370
+ },
371
+ {
372
+ "epoch": 3.3333333333333335,
373
+ "grad_norm": 1.5724129676818848,
374
+ "learning_rate": 5.037037037037037e-05,
375
+ "loss": 1.3869,
376
+ "step": 250
377
+ },
378
+ {
379
+ "epoch": 3.3333333333333335,
380
+ "eval_loss": 1.9017800092697144,
381
+ "eval_runtime": 43.8303,
382
+ "eval_samples_per_second": 22.815,
383
+ "eval_steps_per_second": 2.852,
384
+ "step": 250
385
+ },
386
+ {
387
+ "epoch": 3.466666666666667,
388
+ "grad_norm": 1.5297696590423584,
389
+ "learning_rate": 4.918518518518519e-05,
390
+ "loss": 1.4073,
391
+ "step": 260
392
+ },
393
+ {
394
+ "epoch": 3.466666666666667,
395
+ "eval_loss": 1.8953845500946045,
396
+ "eval_runtime": 43.849,
397
+ "eval_samples_per_second": 22.806,
398
+ "eval_steps_per_second": 2.851,
399
+ "step": 260
400
+ },
401
+ {
402
+ "epoch": 3.6,
403
+ "grad_norm": 1.6185989379882812,
404
+ "learning_rate": 4.8e-05,
405
+ "loss": 1.3639,
406
+ "step": 270
407
+ },
408
+ {
409
+ "epoch": 3.6,
410
+ "eval_loss": 1.899160385131836,
411
+ "eval_runtime": 44.3355,
412
+ "eval_samples_per_second": 22.555,
413
+ "eval_steps_per_second": 2.819,
414
+ "step": 270
415
+ },
416
+ {
417
+ "epoch": 3.7333333333333334,
418
+ "grad_norm": 1.5792930126190186,
419
+ "learning_rate": 4.681481481481481e-05,
420
+ "loss": 1.4427,
421
+ "step": 280
422
+ },
423
+ {
424
+ "epoch": 3.7333333333333334,
425
+ "eval_loss": 1.8958873748779297,
426
+ "eval_runtime": 43.8434,
427
+ "eval_samples_per_second": 22.808,
428
+ "eval_steps_per_second": 2.851,
429
+ "step": 280
430
+ },
431
+ {
432
+ "epoch": 3.8666666666666667,
433
+ "grad_norm": 1.5876963138580322,
434
+ "learning_rate": 4.5629629629629636e-05,
435
+ "loss": 1.453,
436
+ "step": 290
437
+ },
438
+ {
439
+ "epoch": 3.8666666666666667,
440
+ "eval_loss": 1.8990998268127441,
441
+ "eval_runtime": 43.8551,
442
+ "eval_samples_per_second": 22.802,
443
+ "eval_steps_per_second": 2.85,
444
+ "step": 290
445
+ },
446
+ {
447
+ "epoch": 4.0,
448
+ "grad_norm": 1.786375880241394,
449
+ "learning_rate": 4.444444444444445e-05,
450
+ "loss": 1.4225,
451
+ "step": 300
452
+ },
453
+ {
454
+ "epoch": 4.0,
455
+ "eval_loss": 1.8985201120376587,
456
+ "eval_runtime": 43.8683,
457
+ "eval_samples_per_second": 22.795,
458
+ "eval_steps_per_second": 2.849,
459
+ "step": 300
460
+ },
461
+ {
462
+ "epoch": 4.133333333333334,
463
+ "grad_norm": 2.1489617824554443,
464
+ "learning_rate": 4.3259259259259264e-05,
465
+ "loss": 1.3847,
466
+ "step": 310
467
+ },
468
+ {
469
+ "epoch": 4.133333333333334,
470
+ "eval_loss": 1.9717309474945068,
471
+ "eval_runtime": 44.0693,
472
+ "eval_samples_per_second": 22.692,
473
+ "eval_steps_per_second": 2.836,
474
+ "step": 310
475
+ },
476
+ {
477
+ "epoch": 4.266666666666667,
478
+ "grad_norm": 2.2349112033843994,
479
+ "learning_rate": 4.2074074074074075e-05,
480
+ "loss": 1.2945,
481
+ "step": 320
482
+ },
483
+ {
484
+ "epoch": 4.266666666666667,
485
+ "eval_loss": 1.998693585395813,
486
+ "eval_runtime": 43.8345,
487
+ "eval_samples_per_second": 22.813,
488
+ "eval_steps_per_second": 2.852,
489
+ "step": 320
490
+ },
491
+ {
492
+ "epoch": 4.4,
493
+ "grad_norm": 1.8916155099868774,
494
+ "learning_rate": 4.088888888888889e-05,
495
+ "loss": 1.2914,
496
+ "step": 330
497
+ },
498
+ {
499
+ "epoch": 4.4,
500
+ "eval_loss": 1.9831459522247314,
501
+ "eval_runtime": 43.9158,
502
+ "eval_samples_per_second": 22.771,
503
+ "eval_steps_per_second": 2.846,
504
+ "step": 330
505
+ },
506
+ {
507
+ "epoch": 4.533333333333333,
508
+ "grad_norm": 2.040637731552124,
509
+ "learning_rate": 3.970370370370371e-05,
510
+ "loss": 1.2625,
511
+ "step": 340
512
+ },
513
+ {
514
+ "epoch": 4.533333333333333,
515
+ "eval_loss": 1.989234209060669,
516
+ "eval_runtime": 43.9006,
517
+ "eval_samples_per_second": 22.779,
518
+ "eval_steps_per_second": 2.847,
519
+ "step": 340
520
+ },
521
+ {
522
+ "epoch": 4.666666666666667,
523
+ "grad_norm": 2.0551321506500244,
524
+ "learning_rate": 3.851851851851852e-05,
525
+ "loss": 1.3326,
526
+ "step": 350
527
+ },
528
+ {
529
+ "epoch": 4.666666666666667,
530
+ "eval_loss": 1.9832589626312256,
531
+ "eval_runtime": 43.871,
532
+ "eval_samples_per_second": 22.794,
533
+ "eval_steps_per_second": 2.849,
534
+ "step": 350
535
+ },
536
+ {
537
+ "epoch": 4.8,
538
+ "grad_norm": 2.0094845294952393,
539
+ "learning_rate": 3.733333333333334e-05,
540
+ "loss": 1.1616,
541
+ "step": 360
542
+ },
543
+ {
544
+ "epoch": 4.8,
545
+ "eval_loss": 1.982403039932251,
546
+ "eval_runtime": 43.8576,
547
+ "eval_samples_per_second": 22.801,
548
+ "eval_steps_per_second": 2.85,
549
+ "step": 360
550
+ },
551
+ {
552
+ "epoch": 4.933333333333334,
553
+ "grad_norm": 2.060596227645874,
554
+ "learning_rate": 3.614814814814815e-05,
555
+ "loss": 1.2835,
556
+ "step": 370
557
+ },
558
+ {
559
+ "epoch": 4.933333333333334,
560
+ "eval_loss": 1.9794756174087524,
561
+ "eval_runtime": 43.8534,
562
+ "eval_samples_per_second": 22.803,
563
+ "eval_steps_per_second": 2.85,
564
+ "step": 370
565
+ },
566
+ {
567
+ "epoch": 5.066666666666666,
568
+ "grad_norm": 1.7903876304626465,
569
+ "learning_rate": 3.4962962962962965e-05,
570
+ "loss": 1.1494,
571
+ "step": 380
572
+ },
573
+ {
574
+ "epoch": 5.066666666666666,
575
+ "eval_loss": 2.014777421951294,
576
+ "eval_runtime": 43.8576,
577
+ "eval_samples_per_second": 22.801,
578
+ "eval_steps_per_second": 2.85,
579
+ "step": 380
580
+ },
581
+ {
582
+ "epoch": 5.2,
583
+ "grad_norm": 2.5401782989501953,
584
+ "learning_rate": 3.377777777777778e-05,
585
+ "loss": 1.216,
586
+ "step": 390
587
+ },
588
+ {
589
+ "epoch": 5.2,
590
+ "eval_loss": 2.08598256111145,
591
+ "eval_runtime": 43.9811,
592
+ "eval_samples_per_second": 22.737,
593
+ "eval_steps_per_second": 2.842,
594
+ "step": 390
595
+ },
596
+ {
597
+ "epoch": 5.333333333333333,
598
+ "grad_norm": 2.357168197631836,
599
+ "learning_rate": 3.259259259259259e-05,
600
+ "loss": 1.1258,
601
+ "step": 400
602
+ },
603
+ {
604
+ "epoch": 5.333333333333333,
605
+ "eval_loss": 2.0609829425811768,
606
+ "eval_runtime": 43.8422,
607
+ "eval_samples_per_second": 22.809,
608
+ "eval_steps_per_second": 2.851,
609
+ "step": 400
610
+ },
611
+ {
612
+ "epoch": 5.466666666666667,
613
+ "grad_norm": 2.38639235496521,
614
+ "learning_rate": 3.140740740740741e-05,
615
+ "loss": 1.2113,
616
+ "step": 410
617
+ },
618
+ {
619
+ "epoch": 5.466666666666667,
620
+ "eval_loss": 2.071895122528076,
621
+ "eval_runtime": 43.834,
622
+ "eval_samples_per_second": 22.813,
623
+ "eval_steps_per_second": 2.852,
624
+ "step": 410
625
+ },
626
+ {
627
+ "epoch": 5.6,
628
+ "grad_norm": 2.465963125228882,
629
+ "learning_rate": 3.0222222222222225e-05,
630
+ "loss": 1.2223,
631
+ "step": 420
632
+ },
633
+ {
634
+ "epoch": 5.6,
635
+ "eval_loss": 2.062394618988037,
636
+ "eval_runtime": 43.8694,
637
+ "eval_samples_per_second": 22.795,
638
+ "eval_steps_per_second": 2.849,
639
+ "step": 420
640
+ },
641
+ {
642
+ "epoch": 5.733333333333333,
643
+ "grad_norm": 2.452862024307251,
644
+ "learning_rate": 2.9037037037037042e-05,
645
+ "loss": 1.2178,
646
+ "step": 430
647
+ },
648
+ {
649
+ "epoch": 5.733333333333333,
650
+ "eval_loss": 2.0729126930236816,
651
+ "eval_runtime": 44.0267,
652
+ "eval_samples_per_second": 22.713,
653
+ "eval_steps_per_second": 2.839,
654
+ "step": 430
655
+ },
656
+ {
657
+ "epoch": 5.866666666666667,
658
+ "grad_norm": 2.317140817642212,
659
+ "learning_rate": 2.7851851851851856e-05,
660
+ "loss": 1.1608,
661
+ "step": 440
662
+ },
663
+ {
664
+ "epoch": 5.866666666666667,
665
+ "eval_loss": 2.066200017929077,
666
+ "eval_runtime": 43.852,
667
+ "eval_samples_per_second": 22.804,
668
+ "eval_steps_per_second": 2.85,
669
+ "step": 440
670
+ },
671
+ {
672
+ "epoch": 6.0,
673
+ "grad_norm": 2.5810694694519043,
674
+ "learning_rate": 2.6666666666666667e-05,
675
+ "loss": 1.1306,
676
+ "step": 450
677
+ },
678
+ {
679
+ "epoch": 6.0,
680
+ "eval_loss": 2.0632646083831787,
681
+ "eval_runtime": 43.8995,
682
+ "eval_samples_per_second": 22.779,
683
+ "eval_steps_per_second": 2.847,
684
+ "step": 450
685
+ },
686
+ {
687
+ "epoch": 6.133333333333334,
688
+ "grad_norm": 2.8042051792144775,
689
+ "learning_rate": 2.5481481481481484e-05,
690
+ "loss": 1.078,
691
+ "step": 460
692
+ },
693
+ {
694
+ "epoch": 6.133333333333334,
695
+ "eval_loss": 2.132199764251709,
696
+ "eval_runtime": 43.8898,
697
+ "eval_samples_per_second": 22.784,
698
+ "eval_steps_per_second": 2.848,
699
+ "step": 460
700
+ },
701
+ {
702
+ "epoch": 6.266666666666667,
703
+ "grad_norm": 2.717993974685669,
704
+ "learning_rate": 2.4296296296296298e-05,
705
+ "loss": 1.0141,
706
+ "step": 470
707
+ },
708
+ {
709
+ "epoch": 6.266666666666667,
710
+ "eval_loss": 2.160412311553955,
711
+ "eval_runtime": 43.9078,
712
+ "eval_samples_per_second": 22.775,
713
+ "eval_steps_per_second": 2.847,
714
+ "step": 470
715
+ },
716
+ {
717
+ "epoch": 6.4,
718
+ "grad_norm": 2.783339262008667,
719
+ "learning_rate": 2.3111111111111112e-05,
720
+ "loss": 1.1532,
721
+ "step": 480
722
+ },
723
+ {
724
+ "epoch": 6.4,
725
+ "eval_loss": 2.1363871097564697,
726
+ "eval_runtime": 43.8676,
727
+ "eval_samples_per_second": 22.796,
728
+ "eval_steps_per_second": 2.849,
729
+ "step": 480
730
+ },
731
+ {
732
+ "epoch": 6.533333333333333,
733
+ "grad_norm": 2.8690574169158936,
734
+ "learning_rate": 2.192592592592593e-05,
735
+ "loss": 1.0803,
736
+ "step": 490
737
+ },
738
+ {
739
+ "epoch": 6.533333333333333,
740
+ "eval_loss": 2.1391971111297607,
741
+ "eval_runtime": 44.0076,
742
+ "eval_samples_per_second": 22.723,
743
+ "eval_steps_per_second": 2.84,
744
+ "step": 490
745
+ },
746
+ {
747
+ "epoch": 6.666666666666667,
748
+ "grad_norm": 2.6717352867126465,
749
+ "learning_rate": 2.074074074074074e-05,
750
+ "loss": 1.0504,
751
+ "step": 500
752
+ },
753
+ {
754
+ "epoch": 6.666666666666667,
755
+ "eval_loss": 2.1415843963623047,
756
+ "eval_runtime": 44.1677,
757
+ "eval_samples_per_second": 22.641,
758
+ "eval_steps_per_second": 2.83,
759
+ "step": 500
760
+ },
761
+ {
762
+ "epoch": 6.8,
763
+ "grad_norm": 2.8218679428100586,
764
+ "learning_rate": 1.9555555555555557e-05,
765
+ "loss": 1.1414,
766
+ "step": 510
767
+ },
768
+ {
769
+ "epoch": 6.8,
770
+ "eval_loss": 2.1416261196136475,
771
+ "eval_runtime": 43.8666,
772
+ "eval_samples_per_second": 22.796,
773
+ "eval_steps_per_second": 2.85,
774
+ "step": 510
775
+ },
776
+ {
777
+ "epoch": 6.933333333333334,
778
+ "grad_norm": 2.856998920440674,
779
+ "learning_rate": 1.837037037037037e-05,
780
+ "loss": 1.0956,
781
+ "step": 520
782
+ },
783
+ {
784
+ "epoch": 6.933333333333334,
785
+ "eval_loss": 2.127903699874878,
786
+ "eval_runtime": 43.8324,
787
+ "eval_samples_per_second": 22.814,
788
+ "eval_steps_per_second": 2.852,
789
+ "step": 520
790
+ },
791
+ {
792
+ "epoch": 7.066666666666666,
793
+ "grad_norm": 2.6875741481781006,
794
+ "learning_rate": 1.7185185185185185e-05,
795
+ "loss": 1.0464,
796
+ "step": 530
797
+ },
798
+ {
799
+ "epoch": 7.066666666666666,
800
+ "eval_loss": 2.153618335723877,
801
+ "eval_runtime": 43.882,
802
+ "eval_samples_per_second": 22.788,
803
+ "eval_steps_per_second": 2.849,
804
+ "step": 530
805
+ },
806
+ {
807
+ "epoch": 7.2,
808
+ "grad_norm": 2.948133707046509,
809
+ "learning_rate": 1.6000000000000003e-05,
810
+ "loss": 1.0979,
811
+ "step": 540
812
+ },
813
+ {
814
+ "epoch": 7.2,
815
+ "eval_loss": 2.2071073055267334,
816
+ "eval_runtime": 43.8831,
817
+ "eval_samples_per_second": 22.788,
818
+ "eval_steps_per_second": 2.848,
819
+ "step": 540
820
+ },
821
+ {
822
+ "epoch": 7.333333333333333,
823
+ "grad_norm": 2.9918789863586426,
824
+ "learning_rate": 1.4814814814814815e-05,
825
+ "loss": 0.9723,
826
+ "step": 550
827
+ },
828
+ {
829
+ "epoch": 7.333333333333333,
830
+ "eval_loss": 2.205716609954834,
831
+ "eval_runtime": 44.1096,
832
+ "eval_samples_per_second": 22.671,
833
+ "eval_steps_per_second": 2.834,
834
+ "step": 550
835
+ },
836
+ {
837
+ "epoch": 7.466666666666667,
838
+ "grad_norm": 2.925421953201294,
839
+ "learning_rate": 1.362962962962963e-05,
840
+ "loss": 1.0114,
841
+ "step": 560
842
+ },
843
+ {
844
+ "epoch": 7.466666666666667,
845
+ "eval_loss": 2.196255922317505,
846
+ "eval_runtime": 43.8605,
847
+ "eval_samples_per_second": 22.8,
848
+ "eval_steps_per_second": 2.85,
849
+ "step": 560
850
+ },
851
+ {
852
+ "epoch": 7.6,
853
+ "grad_norm": 2.798750400543213,
854
+ "learning_rate": 1.2444444444444446e-05,
855
+ "loss": 1.0025,
856
+ "step": 570
857
+ },
858
+ {
859
+ "epoch": 7.6,
860
+ "eval_loss": 2.188586950302124,
861
+ "eval_runtime": 43.8806,
862
+ "eval_samples_per_second": 22.789,
863
+ "eval_steps_per_second": 2.849,
864
+ "step": 570
865
+ },
866
+ {
867
+ "epoch": 7.733333333333333,
868
+ "grad_norm": 3.0446763038635254,
869
+ "learning_rate": 1.125925925925926e-05,
870
+ "loss": 0.9964,
871
+ "step": 580
872
+ },
873
+ {
874
+ "epoch": 7.733333333333333,
875
+ "eval_loss": 2.202547788619995,
876
+ "eval_runtime": 43.8579,
877
+ "eval_samples_per_second": 22.801,
878
+ "eval_steps_per_second": 2.85,
879
+ "step": 580
880
+ },
881
+ {
882
+ "epoch": 7.866666666666667,
883
+ "grad_norm": 3.105485200881958,
884
+ "learning_rate": 1.0074074074074074e-05,
885
+ "loss": 1.0796,
886
+ "step": 590
887
+ },
888
+ {
889
+ "epoch": 7.866666666666667,
890
+ "eval_loss": 2.1981332302093506,
891
+ "eval_runtime": 43.8502,
892
+ "eval_samples_per_second": 22.805,
893
+ "eval_steps_per_second": 2.851,
894
+ "step": 590
895
+ },
896
+ {
897
+ "epoch": 8.0,
898
+ "grad_norm": 3.4474782943725586,
899
+ "learning_rate": 8.888888888888888e-06,
900
+ "loss": 1.0261,
901
+ "step": 600
902
+ },
903
+ {
904
+ "epoch": 8.0,
905
+ "eval_loss": 2.192448139190674,
906
+ "eval_runtime": 43.9245,
907
+ "eval_samples_per_second": 22.766,
908
+ "eval_steps_per_second": 2.846,
909
+ "step": 600
910
+ },
911
+ {
912
+ "epoch": 8.133333333333333,
913
+ "grad_norm": 2.7830891609191895,
914
+ "learning_rate": 7.703703703703704e-06,
915
+ "loss": 0.9023,
916
+ "step": 610
917
+ },
918
+ {
919
+ "epoch": 8.133333333333333,
920
+ "eval_loss": 2.2176005840301514,
921
+ "eval_runtime": 43.9557,
922
+ "eval_samples_per_second": 22.75,
923
+ "eval_steps_per_second": 2.844,
924
+ "step": 610
925
+ },
926
+ {
927
+ "epoch": 8.266666666666667,
928
+ "grad_norm": 3.22506046295166,
929
+ "learning_rate": 6.51851851851852e-06,
930
+ "loss": 1.0544,
931
+ "step": 620
932
+ },
933
+ {
934
+ "epoch": 8.266666666666667,
935
+ "eval_loss": 2.2382705211639404,
936
+ "eval_runtime": 43.8417,
937
+ "eval_samples_per_second": 22.809,
938
+ "eval_steps_per_second": 2.851,
939
+ "step": 620
940
+ },
941
+ {
942
+ "epoch": 8.4,
943
+ "grad_norm": 3.2194337844848633,
944
+ "learning_rate": 5.333333333333334e-06,
945
+ "loss": 0.9563,
946
+ "step": 630
947
+ },
948
+ {
949
+ "epoch": 8.4,
950
+ "eval_loss": 2.2369072437286377,
951
+ "eval_runtime": 43.8392,
952
+ "eval_samples_per_second": 22.811,
953
+ "eval_steps_per_second": 2.851,
954
+ "step": 630
955
+ },
956
+ {
957
+ "epoch": 8.533333333333333,
958
+ "grad_norm": 2.7670300006866455,
959
+ "learning_rate": 4.1481481481481485e-06,
960
+ "loss": 1.0363,
961
+ "step": 640
962
+ },
963
+ {
964
+ "epoch": 8.533333333333333,
965
+ "eval_loss": 2.2355964183807373,
966
+ "eval_runtime": 44.1991,
967
+ "eval_samples_per_second": 22.625,
968
+ "eval_steps_per_second": 2.828,
969
+ "step": 640
970
+ },
971
+ {
972
+ "epoch": 8.666666666666666,
973
+ "grad_norm": 3.586761951446533,
974
+ "learning_rate": 2.962962962962963e-06,
975
+ "loss": 0.9733,
976
+ "step": 650
977
+ },
978
+ {
979
+ "epoch": 8.666666666666666,
980
+ "eval_loss": 2.2372989654541016,
981
+ "eval_runtime": 43.973,
982
+ "eval_samples_per_second": 22.741,
983
+ "eval_steps_per_second": 2.843,
984
+ "step": 650
985
+ },
986
+ {
987
+ "epoch": 8.8,
988
+ "grad_norm": 3.1485610008239746,
989
+ "learning_rate": 1.777777777777778e-06,
990
+ "loss": 0.9575,
991
+ "step": 660
992
+ },
993
+ {
994
+ "epoch": 8.8,
995
+ "eval_loss": 2.237969160079956,
996
+ "eval_runtime": 43.9045,
997
+ "eval_samples_per_second": 22.777,
998
+ "eval_steps_per_second": 2.847,
999
+ "step": 660
1000
+ },
1001
+ {
1002
+ "epoch": 8.933333333333334,
1003
+ "grad_norm": 3.1032752990722656,
1004
+ "learning_rate": 5.925925925925927e-07,
1005
+ "loss": 0.9726,
1006
+ "step": 670
1007
+ },
1008
+ {
1009
+ "epoch": 8.933333333333334,
1010
+ "eval_loss": 2.2377612590789795,
1011
+ "eval_runtime": 43.8847,
1012
+ "eval_samples_per_second": 22.787,
1013
+ "eval_steps_per_second": 2.848,
1014
+ "step": 670
1015
+ }
1016
+ ],
1017
+ "logging_steps": 10,
1018
+ "max_steps": 675,
1019
+ "num_input_tokens_seen": 0,
1020
+ "num_train_epochs": 9,
1021
+ "save_steps": 10,
1022
+ "stateful_callbacks": {
1023
+ "TrainerControl": {
1024
+ "args": {
1025
+ "should_epoch_stop": false,
1026
+ "should_evaluate": false,
1027
+ "should_log": false,
1028
+ "should_save": true,
1029
+ "should_training_stop": true
1030
+ },
1031
+ "attributes": {}
1032
+ }
1033
+ },
1034
+ "total_flos": 1.10605985906688e+17,
1035
+ "train_batch_size": 8,
1036
+ "trial_name": null,
1037
+ "trial_params": null
1038
+ }
output_ft_more_layers_github_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-github-8e-05/checkpoint-140/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88f28088cf7aebbf7c80fb198317b1cc676e73a580da7d92fdf01175ad8d16c9
3
+ size 67144544
output_ft_more_layers_github_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-github-8e-05/checkpoint-140/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21a6935970b037ba9fc4b9dc75dbda421fb162f0fa5b7d5502a5e9660c005897
3
+ size 627
output_ft_more_layers_gutenberg_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-gutenberg-8e-05/checkpoint-60/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db64dfcaaa6d2770fdeb8c6c250f6efda7e6b2cbc236d50bf153703fcb63ac50
3
+ size 627
output_ft_more_layers_gutenberg_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-gutenberg-8e-05/checkpoint-220/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5e4256f7b7ace2dd6194570c191ab9026456dc0db24025edac4a5bd9e379dab
3
+ size 14575
output_ft_more_layers_hackernews_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-hackernews-8e-05/checkpoint-100/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46513e9b1de488f3d70a4461303e6b827989f588807354e14d010b7ee4f4679f
3
+ size 14575
output_ft_more_layers_hackernews_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-hackernews-8e-05/checkpoint-340/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d89e5f1ae766102e6363957af7f2e9c0faed77c98ee8ef3db0dd4a011ccf735a
3
+ size 67144544
output_ft_more_layers_hackernews_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-hackernews-8e-05/checkpoint-350/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b8cfefd46d2412b7b17da7d799f9e9021312d0b294976f3e87f7063aa01557b
3
+ size 627
output_ft_more_layers_hackernews_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-hackernews-8e-05/checkpoint-670/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a770578b0048f28c9f46f5bce9f41da6239078ad0b9972309451f4ce78ae791
3
+ size 67144544
output_ft_more_layers_hackernews_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-hackernews-8e-05/checkpoint-530/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0cf1d8e7fefbdf01228d12655cdfffad6af74bf8645f992a47cf88f5ce98045a
3
+ size 67144544
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-10/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-10/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "query_key_value",
24
+ "dense_4h_to_h",
25
+ "dense_h_to_4h",
26
+ "dense"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-10/trainer_state.json ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.2328641414642334,
3
+ "best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-10",
4
+ "epoch": 0.13333333333333333,
5
+ "eval_steps": 10,
6
+ "global_step": 10,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.30893075466156006,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 1.1733,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 1.2328641414642334,
21
+ "eval_runtime": 44.0263,
22
+ "eval_samples_per_second": 22.714,
23
+ "eval_steps_per_second": 2.839,
24
+ "step": 10
25
+ }
26
+ ],
27
+ "logging_steps": 10,
28
+ "max_steps": 675,
29
+ "num_input_tokens_seen": 0,
30
+ "num_train_epochs": 9,
31
+ "save_steps": 10,
32
+ "stateful_callbacks": {
33
+ "TrainerControl": {
34
+ "args": {
35
+ "should_epoch_stop": false,
36
+ "should_evaluate": false,
37
+ "should_log": false,
38
+ "should_save": true,
39
+ "should_training_stop": false
40
+ },
41
+ "attributes": {}
42
+ }
43
+ },
44
+ "total_flos": 1638607198617600.0,
45
+ "train_batch_size": 8,
46
+ "trial_name": null,
47
+ "trial_params": null
48
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-100/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-100/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "query_key_value",
24
+ "dense_4h_to_h",
25
+ "dense_h_to_4h",
26
+ "dense"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-100/trainer_state.json ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.2202378511428833,
3
+ "best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
4
+ "epoch": 1.3333333333333333,
5
+ "eval_steps": 10,
6
+ "global_step": 100,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.30893075466156006,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 1.1733,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 1.2328641414642334,
21
+ "eval_runtime": 44.0263,
22
+ "eval_samples_per_second": 22.714,
23
+ "eval_steps_per_second": 2.839,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.17991244792938232,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 1.2254,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 1.228402853012085,
36
+ "eval_runtime": 43.8933,
37
+ "eval_samples_per_second": 22.783,
38
+ "eval_steps_per_second": 2.848,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.1784493625164032,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 1.2043,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 1.2251635789871216,
51
+ "eval_runtime": 44.0062,
52
+ "eval_samples_per_second": 22.724,
53
+ "eval_steps_per_second": 2.841,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.21547502279281616,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 1.1879,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 1.2234975099563599,
66
+ "eval_runtime": 44.0274,
67
+ "eval_samples_per_second": 22.713,
68
+ "eval_steps_per_second": 2.839,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.22946320474147797,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 1.2158,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 1.2221243381500244,
81
+ "eval_runtime": 44.1867,
82
+ "eval_samples_per_second": 22.631,
83
+ "eval_steps_per_second": 2.829,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.23243005573749542,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 1.1901,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 1.220987319946289,
96
+ "eval_runtime": 44.0985,
97
+ "eval_samples_per_second": 22.677,
98
+ "eval_steps_per_second": 2.835,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.19336333870887756,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 1.2074,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 1.2202378511428833,
111
+ "eval_runtime": 43.9577,
112
+ "eval_samples_per_second": 22.749,
113
+ "eval_steps_per_second": 2.844,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.1610746681690216,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 1.1434,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 1.22028386592865,
126
+ "eval_runtime": 43.903,
127
+ "eval_samples_per_second": 22.777,
128
+ "eval_steps_per_second": 2.847,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 1.2,
133
+ "grad_norm": 0.18507854640483856,
134
+ "learning_rate": 6.933333333333334e-05,
135
+ "loss": 1.1506,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 1.2,
140
+ "eval_loss": 1.221218466758728,
141
+ "eval_runtime": 43.981,
142
+ "eval_samples_per_second": 22.737,
143
+ "eval_steps_per_second": 2.842,
144
+ "step": 90
145
+ },
146
+ {
147
+ "epoch": 1.3333333333333333,
148
+ "grad_norm": 0.17022280395030975,
149
+ "learning_rate": 6.814814814814815e-05,
150
+ "loss": 1.1761,
151
+ "step": 100
152
+ },
153
+ {
154
+ "epoch": 1.3333333333333333,
155
+ "eval_loss": 1.2210596799850464,
156
+ "eval_runtime": 43.9473,
157
+ "eval_samples_per_second": 22.755,
158
+ "eval_steps_per_second": 2.844,
159
+ "step": 100
160
+ }
161
+ ],
162
+ "logging_steps": 10,
163
+ "max_steps": 675,
164
+ "num_input_tokens_seen": 0,
165
+ "num_train_epochs": 9,
166
+ "save_steps": 10,
167
+ "stateful_callbacks": {
168
+ "TrainerControl": {
169
+ "args": {
170
+ "should_epoch_stop": false,
171
+ "should_evaluate": false,
172
+ "should_log": false,
173
+ "should_save": true,
174
+ "should_training_stop": false
175
+ },
176
+ "attributes": {}
177
+ }
178
+ },
179
+ "total_flos": 1.6386071986176e+16,
180
+ "train_batch_size": 8,
181
+ "trial_name": null,
182
+ "trial_params": null
183
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-110/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-110/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "query_key_value",
24
+ "dense_4h_to_h",
25
+ "dense_h_to_4h",
26
+ "dense"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-110/trainer_state.json ADDED
@@ -0,0 +1,198 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.2202378511428833,
3
+ "best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
4
+ "epoch": 1.4666666666666668,
5
+ "eval_steps": 10,
6
+ "global_step": 110,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.30893075466156006,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 1.1733,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 1.2328641414642334,
21
+ "eval_runtime": 44.0263,
22
+ "eval_samples_per_second": 22.714,
23
+ "eval_steps_per_second": 2.839,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.17991244792938232,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 1.2254,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 1.228402853012085,
36
+ "eval_runtime": 43.8933,
37
+ "eval_samples_per_second": 22.783,
38
+ "eval_steps_per_second": 2.848,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.1784493625164032,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 1.2043,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 1.2251635789871216,
51
+ "eval_runtime": 44.0062,
52
+ "eval_samples_per_second": 22.724,
53
+ "eval_steps_per_second": 2.841,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.21547502279281616,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 1.1879,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 1.2234975099563599,
66
+ "eval_runtime": 44.0274,
67
+ "eval_samples_per_second": 22.713,
68
+ "eval_steps_per_second": 2.839,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.22946320474147797,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 1.2158,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 1.2221243381500244,
81
+ "eval_runtime": 44.1867,
82
+ "eval_samples_per_second": 22.631,
83
+ "eval_steps_per_second": 2.829,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.23243005573749542,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 1.1901,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 1.220987319946289,
96
+ "eval_runtime": 44.0985,
97
+ "eval_samples_per_second": 22.677,
98
+ "eval_steps_per_second": 2.835,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.19336333870887756,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 1.2074,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 1.2202378511428833,
111
+ "eval_runtime": 43.9577,
112
+ "eval_samples_per_second": 22.749,
113
+ "eval_steps_per_second": 2.844,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.1610746681690216,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 1.1434,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 1.22028386592865,
126
+ "eval_runtime": 43.903,
127
+ "eval_samples_per_second": 22.777,
128
+ "eval_steps_per_second": 2.847,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 1.2,
133
+ "grad_norm": 0.18507854640483856,
134
+ "learning_rate": 6.933333333333334e-05,
135
+ "loss": 1.1506,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 1.2,
140
+ "eval_loss": 1.221218466758728,
141
+ "eval_runtime": 43.981,
142
+ "eval_samples_per_second": 22.737,
143
+ "eval_steps_per_second": 2.842,
144
+ "step": 90
145
+ },
146
+ {
147
+ "epoch": 1.3333333333333333,
148
+ "grad_norm": 0.17022280395030975,
149
+ "learning_rate": 6.814814814814815e-05,
150
+ "loss": 1.1761,
151
+ "step": 100
152
+ },
153
+ {
154
+ "epoch": 1.3333333333333333,
155
+ "eval_loss": 1.2210596799850464,
156
+ "eval_runtime": 43.9473,
157
+ "eval_samples_per_second": 22.755,
158
+ "eval_steps_per_second": 2.844,
159
+ "step": 100
160
+ },
161
+ {
162
+ "epoch": 1.4666666666666668,
163
+ "grad_norm": 0.27772682905197144,
164
+ "learning_rate": 6.696296296296296e-05,
165
+ "loss": 1.2465,
166
+ "step": 110
167
+ },
168
+ {
169
+ "epoch": 1.4666666666666668,
170
+ "eval_loss": 1.2218444347381592,
171
+ "eval_runtime": 43.8733,
172
+ "eval_samples_per_second": 22.793,
173
+ "eval_steps_per_second": 2.849,
174
+ "step": 110
175
+ }
176
+ ],
177
+ "logging_steps": 10,
178
+ "max_steps": 675,
179
+ "num_input_tokens_seen": 0,
180
+ "num_train_epochs": 9,
181
+ "save_steps": 10,
182
+ "stateful_callbacks": {
183
+ "TrainerControl": {
184
+ "args": {
185
+ "should_epoch_stop": false,
186
+ "should_evaluate": false,
187
+ "should_log": false,
188
+ "should_save": true,
189
+ "should_training_stop": false
190
+ },
191
+ "attributes": {}
192
+ }
193
+ },
194
+ "total_flos": 1.80246791847936e+16,
195
+ "train_batch_size": 8,
196
+ "trial_name": null,
197
+ "trial_params": null
198
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-120/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-120/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "query_key_value",
24
+ "dense_4h_to_h",
25
+ "dense_h_to_4h",
26
+ "dense"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-120/trainer_state.json ADDED
@@ -0,0 +1,213 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.2202378511428833,
3
+ "best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
4
+ "epoch": 1.6,
5
+ "eval_steps": 10,
6
+ "global_step": 120,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.30893075466156006,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 1.1733,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 1.2328641414642334,
21
+ "eval_runtime": 44.0263,
22
+ "eval_samples_per_second": 22.714,
23
+ "eval_steps_per_second": 2.839,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.17991244792938232,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 1.2254,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 1.228402853012085,
36
+ "eval_runtime": 43.8933,
37
+ "eval_samples_per_second": 22.783,
38
+ "eval_steps_per_second": 2.848,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.1784493625164032,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 1.2043,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 1.2251635789871216,
51
+ "eval_runtime": 44.0062,
52
+ "eval_samples_per_second": 22.724,
53
+ "eval_steps_per_second": 2.841,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.21547502279281616,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 1.1879,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 1.2234975099563599,
66
+ "eval_runtime": 44.0274,
67
+ "eval_samples_per_second": 22.713,
68
+ "eval_steps_per_second": 2.839,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.22946320474147797,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 1.2158,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 1.2221243381500244,
81
+ "eval_runtime": 44.1867,
82
+ "eval_samples_per_second": 22.631,
83
+ "eval_steps_per_second": 2.829,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.23243005573749542,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 1.1901,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 1.220987319946289,
96
+ "eval_runtime": 44.0985,
97
+ "eval_samples_per_second": 22.677,
98
+ "eval_steps_per_second": 2.835,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.19336333870887756,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 1.2074,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 1.2202378511428833,
111
+ "eval_runtime": 43.9577,
112
+ "eval_samples_per_second": 22.749,
113
+ "eval_steps_per_second": 2.844,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.1610746681690216,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 1.1434,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 1.22028386592865,
126
+ "eval_runtime": 43.903,
127
+ "eval_samples_per_second": 22.777,
128
+ "eval_steps_per_second": 2.847,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 1.2,
133
+ "grad_norm": 0.18507854640483856,
134
+ "learning_rate": 6.933333333333334e-05,
135
+ "loss": 1.1506,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 1.2,
140
+ "eval_loss": 1.221218466758728,
141
+ "eval_runtime": 43.981,
142
+ "eval_samples_per_second": 22.737,
143
+ "eval_steps_per_second": 2.842,
144
+ "step": 90
145
+ },
146
+ {
147
+ "epoch": 1.3333333333333333,
148
+ "grad_norm": 0.17022280395030975,
149
+ "learning_rate": 6.814814814814815e-05,
150
+ "loss": 1.1761,
151
+ "step": 100
152
+ },
153
+ {
154
+ "epoch": 1.3333333333333333,
155
+ "eval_loss": 1.2210596799850464,
156
+ "eval_runtime": 43.9473,
157
+ "eval_samples_per_second": 22.755,
158
+ "eval_steps_per_second": 2.844,
159
+ "step": 100
160
+ },
161
+ {
162
+ "epoch": 1.4666666666666668,
163
+ "grad_norm": 0.27772682905197144,
164
+ "learning_rate": 6.696296296296296e-05,
165
+ "loss": 1.2465,
166
+ "step": 110
167
+ },
168
+ {
169
+ "epoch": 1.4666666666666668,
170
+ "eval_loss": 1.2218444347381592,
171
+ "eval_runtime": 43.8733,
172
+ "eval_samples_per_second": 22.793,
173
+ "eval_steps_per_second": 2.849,
174
+ "step": 110
175
+ },
176
+ {
177
+ "epoch": 1.6,
178
+ "grad_norm": 0.2792418599128723,
179
+ "learning_rate": 6.577777777777777e-05,
180
+ "loss": 1.1664,
181
+ "step": 120
182
+ },
183
+ {
184
+ "epoch": 1.6,
185
+ "eval_loss": 1.2227915525436401,
186
+ "eval_runtime": 43.869,
187
+ "eval_samples_per_second": 22.795,
188
+ "eval_steps_per_second": 2.849,
189
+ "step": 120
190
+ }
191
+ ],
192
+ "logging_steps": 10,
193
+ "max_steps": 675,
194
+ "num_input_tokens_seen": 0,
195
+ "num_train_epochs": 9,
196
+ "save_steps": 10,
197
+ "stateful_callbacks": {
198
+ "TrainerControl": {
199
+ "args": {
200
+ "should_epoch_stop": false,
201
+ "should_evaluate": false,
202
+ "should_log": false,
203
+ "should_save": true,
204
+ "should_training_stop": false
205
+ },
206
+ "attributes": {}
207
+ }
208
+ },
209
+ "total_flos": 1.96632863834112e+16,
210
+ "train_batch_size": 8,
211
+ "trial_name": null,
212
+ "trial_params": null
213
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-130/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-130/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "query_key_value",
24
+ "dense_4h_to_h",
25
+ "dense_h_to_4h",
26
+ "dense"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-130/trainer_state.json ADDED
@@ -0,0 +1,228 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.2202378511428833,
3
+ "best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
4
+ "epoch": 1.7333333333333334,
5
+ "eval_steps": 10,
6
+ "global_step": 130,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.30893075466156006,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 1.1733,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 1.2328641414642334,
21
+ "eval_runtime": 44.0263,
22
+ "eval_samples_per_second": 22.714,
23
+ "eval_steps_per_second": 2.839,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.17991244792938232,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 1.2254,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 1.228402853012085,
36
+ "eval_runtime": 43.8933,
37
+ "eval_samples_per_second": 22.783,
38
+ "eval_steps_per_second": 2.848,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.1784493625164032,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 1.2043,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 1.2251635789871216,
51
+ "eval_runtime": 44.0062,
52
+ "eval_samples_per_second": 22.724,
53
+ "eval_steps_per_second": 2.841,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.21547502279281616,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 1.1879,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 1.2234975099563599,
66
+ "eval_runtime": 44.0274,
67
+ "eval_samples_per_second": 22.713,
68
+ "eval_steps_per_second": 2.839,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.22946320474147797,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 1.2158,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 1.2221243381500244,
81
+ "eval_runtime": 44.1867,
82
+ "eval_samples_per_second": 22.631,
83
+ "eval_steps_per_second": 2.829,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.23243005573749542,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 1.1901,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 1.220987319946289,
96
+ "eval_runtime": 44.0985,
97
+ "eval_samples_per_second": 22.677,
98
+ "eval_steps_per_second": 2.835,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.19336333870887756,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 1.2074,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 1.2202378511428833,
111
+ "eval_runtime": 43.9577,
112
+ "eval_samples_per_second": 22.749,
113
+ "eval_steps_per_second": 2.844,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.1610746681690216,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 1.1434,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 1.22028386592865,
126
+ "eval_runtime": 43.903,
127
+ "eval_samples_per_second": 22.777,
128
+ "eval_steps_per_second": 2.847,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 1.2,
133
+ "grad_norm": 0.18507854640483856,
134
+ "learning_rate": 6.933333333333334e-05,
135
+ "loss": 1.1506,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 1.2,
140
+ "eval_loss": 1.221218466758728,
141
+ "eval_runtime": 43.981,
142
+ "eval_samples_per_second": 22.737,
143
+ "eval_steps_per_second": 2.842,
144
+ "step": 90
145
+ },
146
+ {
147
+ "epoch": 1.3333333333333333,
148
+ "grad_norm": 0.17022280395030975,
149
+ "learning_rate": 6.814814814814815e-05,
150
+ "loss": 1.1761,
151
+ "step": 100
152
+ },
153
+ {
154
+ "epoch": 1.3333333333333333,
155
+ "eval_loss": 1.2210596799850464,
156
+ "eval_runtime": 43.9473,
157
+ "eval_samples_per_second": 22.755,
158
+ "eval_steps_per_second": 2.844,
159
+ "step": 100
160
+ },
161
+ {
162
+ "epoch": 1.4666666666666668,
163
+ "grad_norm": 0.27772682905197144,
164
+ "learning_rate": 6.696296296296296e-05,
165
+ "loss": 1.2465,
166
+ "step": 110
167
+ },
168
+ {
169
+ "epoch": 1.4666666666666668,
170
+ "eval_loss": 1.2218444347381592,
171
+ "eval_runtime": 43.8733,
172
+ "eval_samples_per_second": 22.793,
173
+ "eval_steps_per_second": 2.849,
174
+ "step": 110
175
+ },
176
+ {
177
+ "epoch": 1.6,
178
+ "grad_norm": 0.2792418599128723,
179
+ "learning_rate": 6.577777777777777e-05,
180
+ "loss": 1.1664,
181
+ "step": 120
182
+ },
183
+ {
184
+ "epoch": 1.6,
185
+ "eval_loss": 1.2227915525436401,
186
+ "eval_runtime": 43.869,
187
+ "eval_samples_per_second": 22.795,
188
+ "eval_steps_per_second": 2.849,
189
+ "step": 120
190
+ },
191
+ {
192
+ "epoch": 1.7333333333333334,
193
+ "grad_norm": 0.32393139600753784,
194
+ "learning_rate": 6.45925925925926e-05,
195
+ "loss": 1.1835,
196
+ "step": 130
197
+ },
198
+ {
199
+ "epoch": 1.7333333333333334,
200
+ "eval_loss": 1.2218685150146484,
201
+ "eval_runtime": 43.878,
202
+ "eval_samples_per_second": 22.79,
203
+ "eval_steps_per_second": 2.849,
204
+ "step": 130
205
+ }
206
+ ],
207
+ "logging_steps": 10,
208
+ "max_steps": 675,
209
+ "num_input_tokens_seen": 0,
210
+ "num_train_epochs": 9,
211
+ "save_steps": 10,
212
+ "stateful_callbacks": {
213
+ "TrainerControl": {
214
+ "args": {
215
+ "should_epoch_stop": false,
216
+ "should_evaluate": false,
217
+ "should_log": false,
218
+ "should_save": true,
219
+ "should_training_stop": false
220
+ },
221
+ "attributes": {}
222
+ }
223
+ },
224
+ "total_flos": 2.13018935820288e+16,
225
+ "train_batch_size": 8,
226
+ "trial_name": null,
227
+ "trial_params": null
228
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-140/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-140/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "query_key_value",
24
+ "dense_4h_to_h",
25
+ "dense_h_to_4h",
26
+ "dense"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-140/trainer_state.json ADDED
@@ -0,0 +1,243 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.2202378511428833,
3
+ "best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
4
+ "epoch": 1.8666666666666667,
5
+ "eval_steps": 10,
6
+ "global_step": 140,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.30893075466156006,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 1.1733,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 1.2328641414642334,
21
+ "eval_runtime": 44.0263,
22
+ "eval_samples_per_second": 22.714,
23
+ "eval_steps_per_second": 2.839,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.17991244792938232,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 1.2254,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 1.228402853012085,
36
+ "eval_runtime": 43.8933,
37
+ "eval_samples_per_second": 22.783,
38
+ "eval_steps_per_second": 2.848,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.1784493625164032,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 1.2043,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 1.2251635789871216,
51
+ "eval_runtime": 44.0062,
52
+ "eval_samples_per_second": 22.724,
53
+ "eval_steps_per_second": 2.841,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.21547502279281616,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 1.1879,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 1.2234975099563599,
66
+ "eval_runtime": 44.0274,
67
+ "eval_samples_per_second": 22.713,
68
+ "eval_steps_per_second": 2.839,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.22946320474147797,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 1.2158,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 1.2221243381500244,
81
+ "eval_runtime": 44.1867,
82
+ "eval_samples_per_second": 22.631,
83
+ "eval_steps_per_second": 2.829,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.23243005573749542,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 1.1901,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 1.220987319946289,
96
+ "eval_runtime": 44.0985,
97
+ "eval_samples_per_second": 22.677,
98
+ "eval_steps_per_second": 2.835,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.19336333870887756,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 1.2074,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 1.2202378511428833,
111
+ "eval_runtime": 43.9577,
112
+ "eval_samples_per_second": 22.749,
113
+ "eval_steps_per_second": 2.844,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.1610746681690216,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 1.1434,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 1.22028386592865,
126
+ "eval_runtime": 43.903,
127
+ "eval_samples_per_second": 22.777,
128
+ "eval_steps_per_second": 2.847,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 1.2,
133
+ "grad_norm": 0.18507854640483856,
134
+ "learning_rate": 6.933333333333334e-05,
135
+ "loss": 1.1506,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 1.2,
140
+ "eval_loss": 1.221218466758728,
141
+ "eval_runtime": 43.981,
142
+ "eval_samples_per_second": 22.737,
143
+ "eval_steps_per_second": 2.842,
144
+ "step": 90
145
+ },
146
+ {
147
+ "epoch": 1.3333333333333333,
148
+ "grad_norm": 0.17022280395030975,
149
+ "learning_rate": 6.814814814814815e-05,
150
+ "loss": 1.1761,
151
+ "step": 100
152
+ },
153
+ {
154
+ "epoch": 1.3333333333333333,
155
+ "eval_loss": 1.2210596799850464,
156
+ "eval_runtime": 43.9473,
157
+ "eval_samples_per_second": 22.755,
158
+ "eval_steps_per_second": 2.844,
159
+ "step": 100
160
+ },
161
+ {
162
+ "epoch": 1.4666666666666668,
163
+ "grad_norm": 0.27772682905197144,
164
+ "learning_rate": 6.696296296296296e-05,
165
+ "loss": 1.2465,
166
+ "step": 110
167
+ },
168
+ {
169
+ "epoch": 1.4666666666666668,
170
+ "eval_loss": 1.2218444347381592,
171
+ "eval_runtime": 43.8733,
172
+ "eval_samples_per_second": 22.793,
173
+ "eval_steps_per_second": 2.849,
174
+ "step": 110
175
+ },
176
+ {
177
+ "epoch": 1.6,
178
+ "grad_norm": 0.2792418599128723,
179
+ "learning_rate": 6.577777777777777e-05,
180
+ "loss": 1.1664,
181
+ "step": 120
182
+ },
183
+ {
184
+ "epoch": 1.6,
185
+ "eval_loss": 1.2227915525436401,
186
+ "eval_runtime": 43.869,
187
+ "eval_samples_per_second": 22.795,
188
+ "eval_steps_per_second": 2.849,
189
+ "step": 120
190
+ },
191
+ {
192
+ "epoch": 1.7333333333333334,
193
+ "grad_norm": 0.32393139600753784,
194
+ "learning_rate": 6.45925925925926e-05,
195
+ "loss": 1.1835,
196
+ "step": 130
197
+ },
198
+ {
199
+ "epoch": 1.7333333333333334,
200
+ "eval_loss": 1.2218685150146484,
201
+ "eval_runtime": 43.878,
202
+ "eval_samples_per_second": 22.79,
203
+ "eval_steps_per_second": 2.849,
204
+ "step": 130
205
+ },
206
+ {
207
+ "epoch": 1.8666666666666667,
208
+ "grad_norm": 0.3198949694633484,
209
+ "learning_rate": 6.340740740740741e-05,
210
+ "loss": 1.1687,
211
+ "step": 140
212
+ },
213
+ {
214
+ "epoch": 1.8666666666666667,
215
+ "eval_loss": 1.2223820686340332,
216
+ "eval_runtime": 43.9319,
217
+ "eval_samples_per_second": 22.763,
218
+ "eval_steps_per_second": 2.845,
219
+ "step": 140
220
+ }
221
+ ],
222
+ "logging_steps": 10,
223
+ "max_steps": 675,
224
+ "num_input_tokens_seen": 0,
225
+ "num_train_epochs": 9,
226
+ "save_steps": 10,
227
+ "stateful_callbacks": {
228
+ "TrainerControl": {
229
+ "args": {
230
+ "should_epoch_stop": false,
231
+ "should_evaluate": false,
232
+ "should_log": false,
233
+ "should_save": true,
234
+ "should_training_stop": false
235
+ },
236
+ "attributes": {}
237
+ }
238
+ },
239
+ "total_flos": 2.29405007806464e+16,
240
+ "train_batch_size": 8,
241
+ "trial_name": null,
242
+ "trial_params": null
243
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-150/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-150/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "query_key_value",
24
+ "dense_4h_to_h",
25
+ "dense_h_to_4h",
26
+ "dense"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-150/trainer_state.json ADDED
@@ -0,0 +1,258 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.2202378511428833,
3
+ "best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
4
+ "epoch": 2.0,
5
+ "eval_steps": 10,
6
+ "global_step": 150,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.30893075466156006,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 1.1733,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 1.2328641414642334,
21
+ "eval_runtime": 44.0263,
22
+ "eval_samples_per_second": 22.714,
23
+ "eval_steps_per_second": 2.839,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.17991244792938232,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 1.2254,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 1.228402853012085,
36
+ "eval_runtime": 43.8933,
37
+ "eval_samples_per_second": 22.783,
38
+ "eval_steps_per_second": 2.848,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.1784493625164032,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 1.2043,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 1.2251635789871216,
51
+ "eval_runtime": 44.0062,
52
+ "eval_samples_per_second": 22.724,
53
+ "eval_steps_per_second": 2.841,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.21547502279281616,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 1.1879,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 1.2234975099563599,
66
+ "eval_runtime": 44.0274,
67
+ "eval_samples_per_second": 22.713,
68
+ "eval_steps_per_second": 2.839,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.22946320474147797,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 1.2158,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 1.2221243381500244,
81
+ "eval_runtime": 44.1867,
82
+ "eval_samples_per_second": 22.631,
83
+ "eval_steps_per_second": 2.829,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.23243005573749542,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 1.1901,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 1.220987319946289,
96
+ "eval_runtime": 44.0985,
97
+ "eval_samples_per_second": 22.677,
98
+ "eval_steps_per_second": 2.835,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.19336333870887756,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 1.2074,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 1.2202378511428833,
111
+ "eval_runtime": 43.9577,
112
+ "eval_samples_per_second": 22.749,
113
+ "eval_steps_per_second": 2.844,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.1610746681690216,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 1.1434,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 1.22028386592865,
126
+ "eval_runtime": 43.903,
127
+ "eval_samples_per_second": 22.777,
128
+ "eval_steps_per_second": 2.847,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 1.2,
133
+ "grad_norm": 0.18507854640483856,
134
+ "learning_rate": 6.933333333333334e-05,
135
+ "loss": 1.1506,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 1.2,
140
+ "eval_loss": 1.221218466758728,
141
+ "eval_runtime": 43.981,
142
+ "eval_samples_per_second": 22.737,
143
+ "eval_steps_per_second": 2.842,
144
+ "step": 90
145
+ },
146
+ {
147
+ "epoch": 1.3333333333333333,
148
+ "grad_norm": 0.17022280395030975,
149
+ "learning_rate": 6.814814814814815e-05,
150
+ "loss": 1.1761,
151
+ "step": 100
152
+ },
153
+ {
154
+ "epoch": 1.3333333333333333,
155
+ "eval_loss": 1.2210596799850464,
156
+ "eval_runtime": 43.9473,
157
+ "eval_samples_per_second": 22.755,
158
+ "eval_steps_per_second": 2.844,
159
+ "step": 100
160
+ },
161
+ {
162
+ "epoch": 1.4666666666666668,
163
+ "grad_norm": 0.27772682905197144,
164
+ "learning_rate": 6.696296296296296e-05,
165
+ "loss": 1.2465,
166
+ "step": 110
167
+ },
168
+ {
169
+ "epoch": 1.4666666666666668,
170
+ "eval_loss": 1.2218444347381592,
171
+ "eval_runtime": 43.8733,
172
+ "eval_samples_per_second": 22.793,
173
+ "eval_steps_per_second": 2.849,
174
+ "step": 110
175
+ },
176
+ {
177
+ "epoch": 1.6,
178
+ "grad_norm": 0.2792418599128723,
179
+ "learning_rate": 6.577777777777777e-05,
180
+ "loss": 1.1664,
181
+ "step": 120
182
+ },
183
+ {
184
+ "epoch": 1.6,
185
+ "eval_loss": 1.2227915525436401,
186
+ "eval_runtime": 43.869,
187
+ "eval_samples_per_second": 22.795,
188
+ "eval_steps_per_second": 2.849,
189
+ "step": 120
190
+ },
191
+ {
192
+ "epoch": 1.7333333333333334,
193
+ "grad_norm": 0.32393139600753784,
194
+ "learning_rate": 6.45925925925926e-05,
195
+ "loss": 1.1835,
196
+ "step": 130
197
+ },
198
+ {
199
+ "epoch": 1.7333333333333334,
200
+ "eval_loss": 1.2218685150146484,
201
+ "eval_runtime": 43.878,
202
+ "eval_samples_per_second": 22.79,
203
+ "eval_steps_per_second": 2.849,
204
+ "step": 130
205
+ },
206
+ {
207
+ "epoch": 1.8666666666666667,
208
+ "grad_norm": 0.3198949694633484,
209
+ "learning_rate": 6.340740740740741e-05,
210
+ "loss": 1.1687,
211
+ "step": 140
212
+ },
213
+ {
214
+ "epoch": 1.8666666666666667,
215
+ "eval_loss": 1.2223820686340332,
216
+ "eval_runtime": 43.9319,
217
+ "eval_samples_per_second": 22.763,
218
+ "eval_steps_per_second": 2.845,
219
+ "step": 140
220
+ },
221
+ {
222
+ "epoch": 2.0,
223
+ "grad_norm": 0.2342524528503418,
224
+ "learning_rate": 6.222222222222223e-05,
225
+ "loss": 1.1516,
226
+ "step": 150
227
+ },
228
+ {
229
+ "epoch": 2.0,
230
+ "eval_loss": 1.2233225107192993,
231
+ "eval_runtime": 43.9266,
232
+ "eval_samples_per_second": 22.765,
233
+ "eval_steps_per_second": 2.846,
234
+ "step": 150
235
+ }
236
+ ],
237
+ "logging_steps": 10,
238
+ "max_steps": 675,
239
+ "num_input_tokens_seen": 0,
240
+ "num_train_epochs": 9,
241
+ "save_steps": 10,
242
+ "stateful_callbacks": {
243
+ "TrainerControl": {
244
+ "args": {
245
+ "should_epoch_stop": false,
246
+ "should_evaluate": false,
247
+ "should_log": false,
248
+ "should_save": true,
249
+ "should_training_stop": false
250
+ },
251
+ "attributes": {}
252
+ }
253
+ },
254
+ "total_flos": 2.4579107979264e+16,
255
+ "train_batch_size": 8,
256
+ "trial_name": null,
257
+ "trial_params": null
258
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-160/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-160/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "query_key_value",
24
+ "dense_4h_to_h",
25
+ "dense_h_to_4h",
26
+ "dense"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-160/trainer_state.json ADDED
@@ -0,0 +1,273 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.2202378511428833,
3
+ "best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
4
+ "epoch": 2.1333333333333333,
5
+ "eval_steps": 10,
6
+ "global_step": 160,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.30893075466156006,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 1.1733,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 1.2328641414642334,
21
+ "eval_runtime": 44.0263,
22
+ "eval_samples_per_second": 22.714,
23
+ "eval_steps_per_second": 2.839,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.17991244792938232,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 1.2254,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 1.228402853012085,
36
+ "eval_runtime": 43.8933,
37
+ "eval_samples_per_second": 22.783,
38
+ "eval_steps_per_second": 2.848,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.1784493625164032,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 1.2043,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 1.2251635789871216,
51
+ "eval_runtime": 44.0062,
52
+ "eval_samples_per_second": 22.724,
53
+ "eval_steps_per_second": 2.841,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.21547502279281616,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 1.1879,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 1.2234975099563599,
66
+ "eval_runtime": 44.0274,
67
+ "eval_samples_per_second": 22.713,
68
+ "eval_steps_per_second": 2.839,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.22946320474147797,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 1.2158,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 1.2221243381500244,
81
+ "eval_runtime": 44.1867,
82
+ "eval_samples_per_second": 22.631,
83
+ "eval_steps_per_second": 2.829,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.23243005573749542,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 1.1901,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 1.220987319946289,
96
+ "eval_runtime": 44.0985,
97
+ "eval_samples_per_second": 22.677,
98
+ "eval_steps_per_second": 2.835,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.19336333870887756,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 1.2074,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 1.2202378511428833,
111
+ "eval_runtime": 43.9577,
112
+ "eval_samples_per_second": 22.749,
113
+ "eval_steps_per_second": 2.844,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.1610746681690216,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 1.1434,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 1.22028386592865,
126
+ "eval_runtime": 43.903,
127
+ "eval_samples_per_second": 22.777,
128
+ "eval_steps_per_second": 2.847,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 1.2,
133
+ "grad_norm": 0.18507854640483856,
134
+ "learning_rate": 6.933333333333334e-05,
135
+ "loss": 1.1506,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 1.2,
140
+ "eval_loss": 1.221218466758728,
141
+ "eval_runtime": 43.981,
142
+ "eval_samples_per_second": 22.737,
143
+ "eval_steps_per_second": 2.842,
144
+ "step": 90
145
+ },
146
+ {
147
+ "epoch": 1.3333333333333333,
148
+ "grad_norm": 0.17022280395030975,
149
+ "learning_rate": 6.814814814814815e-05,
150
+ "loss": 1.1761,
151
+ "step": 100
152
+ },
153
+ {
154
+ "epoch": 1.3333333333333333,
155
+ "eval_loss": 1.2210596799850464,
156
+ "eval_runtime": 43.9473,
157
+ "eval_samples_per_second": 22.755,
158
+ "eval_steps_per_second": 2.844,
159
+ "step": 100
160
+ },
161
+ {
162
+ "epoch": 1.4666666666666668,
163
+ "grad_norm": 0.27772682905197144,
164
+ "learning_rate": 6.696296296296296e-05,
165
+ "loss": 1.2465,
166
+ "step": 110
167
+ },
168
+ {
169
+ "epoch": 1.4666666666666668,
170
+ "eval_loss": 1.2218444347381592,
171
+ "eval_runtime": 43.8733,
172
+ "eval_samples_per_second": 22.793,
173
+ "eval_steps_per_second": 2.849,
174
+ "step": 110
175
+ },
176
+ {
177
+ "epoch": 1.6,
178
+ "grad_norm": 0.2792418599128723,
179
+ "learning_rate": 6.577777777777777e-05,
180
+ "loss": 1.1664,
181
+ "step": 120
182
+ },
183
+ {
184
+ "epoch": 1.6,
185
+ "eval_loss": 1.2227915525436401,
186
+ "eval_runtime": 43.869,
187
+ "eval_samples_per_second": 22.795,
188
+ "eval_steps_per_second": 2.849,
189
+ "step": 120
190
+ },
191
+ {
192
+ "epoch": 1.7333333333333334,
193
+ "grad_norm": 0.32393139600753784,
194
+ "learning_rate": 6.45925925925926e-05,
195
+ "loss": 1.1835,
196
+ "step": 130
197
+ },
198
+ {
199
+ "epoch": 1.7333333333333334,
200
+ "eval_loss": 1.2218685150146484,
201
+ "eval_runtime": 43.878,
202
+ "eval_samples_per_second": 22.79,
203
+ "eval_steps_per_second": 2.849,
204
+ "step": 130
205
+ },
206
+ {
207
+ "epoch": 1.8666666666666667,
208
+ "grad_norm": 0.3198949694633484,
209
+ "learning_rate": 6.340740740740741e-05,
210
+ "loss": 1.1687,
211
+ "step": 140
212
+ },
213
+ {
214
+ "epoch": 1.8666666666666667,
215
+ "eval_loss": 1.2223820686340332,
216
+ "eval_runtime": 43.9319,
217
+ "eval_samples_per_second": 22.763,
218
+ "eval_steps_per_second": 2.845,
219
+ "step": 140
220
+ },
221
+ {
222
+ "epoch": 2.0,
223
+ "grad_norm": 0.2342524528503418,
224
+ "learning_rate": 6.222222222222223e-05,
225
+ "loss": 1.1516,
226
+ "step": 150
227
+ },
228
+ {
229
+ "epoch": 2.0,
230
+ "eval_loss": 1.2233225107192993,
231
+ "eval_runtime": 43.9266,
232
+ "eval_samples_per_second": 22.765,
233
+ "eval_steps_per_second": 2.846,
234
+ "step": 150
235
+ },
236
+ {
237
+ "epoch": 2.1333333333333333,
238
+ "grad_norm": 0.26675984263420105,
239
+ "learning_rate": 6.103703703703704e-05,
240
+ "loss": 1.1673,
241
+ "step": 160
242
+ },
243
+ {
244
+ "epoch": 2.1333333333333333,
245
+ "eval_loss": 1.2325456142425537,
246
+ "eval_runtime": 43.9006,
247
+ "eval_samples_per_second": 22.779,
248
+ "eval_steps_per_second": 2.847,
249
+ "step": 160
250
+ }
251
+ ],
252
+ "logging_steps": 10,
253
+ "max_steps": 675,
254
+ "num_input_tokens_seen": 0,
255
+ "num_train_epochs": 9,
256
+ "save_steps": 10,
257
+ "stateful_callbacks": {
258
+ "TrainerControl": {
259
+ "args": {
260
+ "should_epoch_stop": false,
261
+ "should_evaluate": false,
262
+ "should_log": false,
263
+ "should_save": true,
264
+ "should_training_stop": false
265
+ },
266
+ "attributes": {}
267
+ }
268
+ },
269
+ "total_flos": 2.62177151778816e+16,
270
+ "train_batch_size": 8,
271
+ "trial_name": null,
272
+ "trial_params": null
273
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-170/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-170/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "query_key_value",
24
+ "dense_4h_to_h",
25
+ "dense_h_to_4h",
26
+ "dense"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-170/trainer_state.json ADDED
@@ -0,0 +1,288 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.2202378511428833,
3
+ "best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
4
+ "epoch": 2.2666666666666666,
5
+ "eval_steps": 10,
6
+ "global_step": 170,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.30893075466156006,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 1.1733,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 1.2328641414642334,
21
+ "eval_runtime": 44.0263,
22
+ "eval_samples_per_second": 22.714,
23
+ "eval_steps_per_second": 2.839,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.17991244792938232,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 1.2254,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 1.228402853012085,
36
+ "eval_runtime": 43.8933,
37
+ "eval_samples_per_second": 22.783,
38
+ "eval_steps_per_second": 2.848,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.1784493625164032,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 1.2043,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 1.2251635789871216,
51
+ "eval_runtime": 44.0062,
52
+ "eval_samples_per_second": 22.724,
53
+ "eval_steps_per_second": 2.841,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.21547502279281616,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 1.1879,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 1.2234975099563599,
66
+ "eval_runtime": 44.0274,
67
+ "eval_samples_per_second": 22.713,
68
+ "eval_steps_per_second": 2.839,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.22946320474147797,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 1.2158,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 1.2221243381500244,
81
+ "eval_runtime": 44.1867,
82
+ "eval_samples_per_second": 22.631,
83
+ "eval_steps_per_second": 2.829,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.23243005573749542,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 1.1901,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 1.220987319946289,
96
+ "eval_runtime": 44.0985,
97
+ "eval_samples_per_second": 22.677,
98
+ "eval_steps_per_second": 2.835,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.19336333870887756,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 1.2074,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 1.2202378511428833,
111
+ "eval_runtime": 43.9577,
112
+ "eval_samples_per_second": 22.749,
113
+ "eval_steps_per_second": 2.844,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.1610746681690216,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 1.1434,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 1.22028386592865,
126
+ "eval_runtime": 43.903,
127
+ "eval_samples_per_second": 22.777,
128
+ "eval_steps_per_second": 2.847,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 1.2,
133
+ "grad_norm": 0.18507854640483856,
134
+ "learning_rate": 6.933333333333334e-05,
135
+ "loss": 1.1506,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 1.2,
140
+ "eval_loss": 1.221218466758728,
141
+ "eval_runtime": 43.981,
142
+ "eval_samples_per_second": 22.737,
143
+ "eval_steps_per_second": 2.842,
144
+ "step": 90
145
+ },
146
+ {
147
+ "epoch": 1.3333333333333333,
148
+ "grad_norm": 0.17022280395030975,
149
+ "learning_rate": 6.814814814814815e-05,
150
+ "loss": 1.1761,
151
+ "step": 100
152
+ },
153
+ {
154
+ "epoch": 1.3333333333333333,
155
+ "eval_loss": 1.2210596799850464,
156
+ "eval_runtime": 43.9473,
157
+ "eval_samples_per_second": 22.755,
158
+ "eval_steps_per_second": 2.844,
159
+ "step": 100
160
+ },
161
+ {
162
+ "epoch": 1.4666666666666668,
163
+ "grad_norm": 0.27772682905197144,
164
+ "learning_rate": 6.696296296296296e-05,
165
+ "loss": 1.2465,
166
+ "step": 110
167
+ },
168
+ {
169
+ "epoch": 1.4666666666666668,
170
+ "eval_loss": 1.2218444347381592,
171
+ "eval_runtime": 43.8733,
172
+ "eval_samples_per_second": 22.793,
173
+ "eval_steps_per_second": 2.849,
174
+ "step": 110
175
+ },
176
+ {
177
+ "epoch": 1.6,
178
+ "grad_norm": 0.2792418599128723,
179
+ "learning_rate": 6.577777777777777e-05,
180
+ "loss": 1.1664,
181
+ "step": 120
182
+ },
183
+ {
184
+ "epoch": 1.6,
185
+ "eval_loss": 1.2227915525436401,
186
+ "eval_runtime": 43.869,
187
+ "eval_samples_per_second": 22.795,
188
+ "eval_steps_per_second": 2.849,
189
+ "step": 120
190
+ },
191
+ {
192
+ "epoch": 1.7333333333333334,
193
+ "grad_norm": 0.32393139600753784,
194
+ "learning_rate": 6.45925925925926e-05,
195
+ "loss": 1.1835,
196
+ "step": 130
197
+ },
198
+ {
199
+ "epoch": 1.7333333333333334,
200
+ "eval_loss": 1.2218685150146484,
201
+ "eval_runtime": 43.878,
202
+ "eval_samples_per_second": 22.79,
203
+ "eval_steps_per_second": 2.849,
204
+ "step": 130
205
+ },
206
+ {
207
+ "epoch": 1.8666666666666667,
208
+ "grad_norm": 0.3198949694633484,
209
+ "learning_rate": 6.340740740740741e-05,
210
+ "loss": 1.1687,
211
+ "step": 140
212
+ },
213
+ {
214
+ "epoch": 1.8666666666666667,
215
+ "eval_loss": 1.2223820686340332,
216
+ "eval_runtime": 43.9319,
217
+ "eval_samples_per_second": 22.763,
218
+ "eval_steps_per_second": 2.845,
219
+ "step": 140
220
+ },
221
+ {
222
+ "epoch": 2.0,
223
+ "grad_norm": 0.2342524528503418,
224
+ "learning_rate": 6.222222222222223e-05,
225
+ "loss": 1.1516,
226
+ "step": 150
227
+ },
228
+ {
229
+ "epoch": 2.0,
230
+ "eval_loss": 1.2233225107192993,
231
+ "eval_runtime": 43.9266,
232
+ "eval_samples_per_second": 22.765,
233
+ "eval_steps_per_second": 2.846,
234
+ "step": 150
235
+ },
236
+ {
237
+ "epoch": 2.1333333333333333,
238
+ "grad_norm": 0.26675984263420105,
239
+ "learning_rate": 6.103703703703704e-05,
240
+ "loss": 1.1673,
241
+ "step": 160
242
+ },
243
+ {
244
+ "epoch": 2.1333333333333333,
245
+ "eval_loss": 1.2325456142425537,
246
+ "eval_runtime": 43.9006,
247
+ "eval_samples_per_second": 22.779,
248
+ "eval_steps_per_second": 2.847,
249
+ "step": 160
250
+ },
251
+ {
252
+ "epoch": 2.2666666666666666,
253
+ "grad_norm": 0.36160191893577576,
254
+ "learning_rate": 5.9851851851851855e-05,
255
+ "loss": 1.1959,
256
+ "step": 170
257
+ },
258
+ {
259
+ "epoch": 2.2666666666666666,
260
+ "eval_loss": 1.2345908880233765,
261
+ "eval_runtime": 44.0473,
262
+ "eval_samples_per_second": 22.703,
263
+ "eval_steps_per_second": 2.838,
264
+ "step": 170
265
+ }
266
+ ],
267
+ "logging_steps": 10,
268
+ "max_steps": 675,
269
+ "num_input_tokens_seen": 0,
270
+ "num_train_epochs": 9,
271
+ "save_steps": 10,
272
+ "stateful_callbacks": {
273
+ "TrainerControl": {
274
+ "args": {
275
+ "should_epoch_stop": false,
276
+ "should_evaluate": false,
277
+ "should_log": false,
278
+ "should_save": true,
279
+ "should_training_stop": false
280
+ },
281
+ "attributes": {}
282
+ }
283
+ },
284
+ "total_flos": 2.78563223764992e+16,
285
+ "train_batch_size": 8,
286
+ "trial_name": null,
287
+ "trial_params": null
288
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-180/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-180/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "query_key_value",
24
+ "dense_4h_to_h",
25
+ "dense_h_to_4h",
26
+ "dense"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-180/trainer_state.json ADDED
@@ -0,0 +1,303 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.2202378511428833,
3
+ "best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
4
+ "epoch": 2.4,
5
+ "eval_steps": 10,
6
+ "global_step": 180,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.30893075466156006,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 1.1733,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 1.2328641414642334,
21
+ "eval_runtime": 44.0263,
22
+ "eval_samples_per_second": 22.714,
23
+ "eval_steps_per_second": 2.839,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.17991244792938232,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 1.2254,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 1.228402853012085,
36
+ "eval_runtime": 43.8933,
37
+ "eval_samples_per_second": 22.783,
38
+ "eval_steps_per_second": 2.848,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.1784493625164032,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 1.2043,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 1.2251635789871216,
51
+ "eval_runtime": 44.0062,
52
+ "eval_samples_per_second": 22.724,
53
+ "eval_steps_per_second": 2.841,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.21547502279281616,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 1.1879,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 1.2234975099563599,
66
+ "eval_runtime": 44.0274,
67
+ "eval_samples_per_second": 22.713,
68
+ "eval_steps_per_second": 2.839,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.22946320474147797,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 1.2158,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 1.2221243381500244,
81
+ "eval_runtime": 44.1867,
82
+ "eval_samples_per_second": 22.631,
83
+ "eval_steps_per_second": 2.829,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.23243005573749542,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 1.1901,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 1.220987319946289,
96
+ "eval_runtime": 44.0985,
97
+ "eval_samples_per_second": 22.677,
98
+ "eval_steps_per_second": 2.835,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.19336333870887756,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 1.2074,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 1.2202378511428833,
111
+ "eval_runtime": 43.9577,
112
+ "eval_samples_per_second": 22.749,
113
+ "eval_steps_per_second": 2.844,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.1610746681690216,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 1.1434,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 1.22028386592865,
126
+ "eval_runtime": 43.903,
127
+ "eval_samples_per_second": 22.777,
128
+ "eval_steps_per_second": 2.847,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 1.2,
133
+ "grad_norm": 0.18507854640483856,
134
+ "learning_rate": 6.933333333333334e-05,
135
+ "loss": 1.1506,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 1.2,
140
+ "eval_loss": 1.221218466758728,
141
+ "eval_runtime": 43.981,
142
+ "eval_samples_per_second": 22.737,
143
+ "eval_steps_per_second": 2.842,
144
+ "step": 90
145
+ },
146
+ {
147
+ "epoch": 1.3333333333333333,
148
+ "grad_norm": 0.17022280395030975,
149
+ "learning_rate": 6.814814814814815e-05,
150
+ "loss": 1.1761,
151
+ "step": 100
152
+ },
153
+ {
154
+ "epoch": 1.3333333333333333,
155
+ "eval_loss": 1.2210596799850464,
156
+ "eval_runtime": 43.9473,
157
+ "eval_samples_per_second": 22.755,
158
+ "eval_steps_per_second": 2.844,
159
+ "step": 100
160
+ },
161
+ {
162
+ "epoch": 1.4666666666666668,
163
+ "grad_norm": 0.27772682905197144,
164
+ "learning_rate": 6.696296296296296e-05,
165
+ "loss": 1.2465,
166
+ "step": 110
167
+ },
168
+ {
169
+ "epoch": 1.4666666666666668,
170
+ "eval_loss": 1.2218444347381592,
171
+ "eval_runtime": 43.8733,
172
+ "eval_samples_per_second": 22.793,
173
+ "eval_steps_per_second": 2.849,
174
+ "step": 110
175
+ },
176
+ {
177
+ "epoch": 1.6,
178
+ "grad_norm": 0.2792418599128723,
179
+ "learning_rate": 6.577777777777777e-05,
180
+ "loss": 1.1664,
181
+ "step": 120
182
+ },
183
+ {
184
+ "epoch": 1.6,
185
+ "eval_loss": 1.2227915525436401,
186
+ "eval_runtime": 43.869,
187
+ "eval_samples_per_second": 22.795,
188
+ "eval_steps_per_second": 2.849,
189
+ "step": 120
190
+ },
191
+ {
192
+ "epoch": 1.7333333333333334,
193
+ "grad_norm": 0.32393139600753784,
194
+ "learning_rate": 6.45925925925926e-05,
195
+ "loss": 1.1835,
196
+ "step": 130
197
+ },
198
+ {
199
+ "epoch": 1.7333333333333334,
200
+ "eval_loss": 1.2218685150146484,
201
+ "eval_runtime": 43.878,
202
+ "eval_samples_per_second": 22.79,
203
+ "eval_steps_per_second": 2.849,
204
+ "step": 130
205
+ },
206
+ {
207
+ "epoch": 1.8666666666666667,
208
+ "grad_norm": 0.3198949694633484,
209
+ "learning_rate": 6.340740740740741e-05,
210
+ "loss": 1.1687,
211
+ "step": 140
212
+ },
213
+ {
214
+ "epoch": 1.8666666666666667,
215
+ "eval_loss": 1.2223820686340332,
216
+ "eval_runtime": 43.9319,
217
+ "eval_samples_per_second": 22.763,
218
+ "eval_steps_per_second": 2.845,
219
+ "step": 140
220
+ },
221
+ {
222
+ "epoch": 2.0,
223
+ "grad_norm": 0.2342524528503418,
224
+ "learning_rate": 6.222222222222223e-05,
225
+ "loss": 1.1516,
226
+ "step": 150
227
+ },
228
+ {
229
+ "epoch": 2.0,
230
+ "eval_loss": 1.2233225107192993,
231
+ "eval_runtime": 43.9266,
232
+ "eval_samples_per_second": 22.765,
233
+ "eval_steps_per_second": 2.846,
234
+ "step": 150
235
+ },
236
+ {
237
+ "epoch": 2.1333333333333333,
238
+ "grad_norm": 0.26675984263420105,
239
+ "learning_rate": 6.103703703703704e-05,
240
+ "loss": 1.1673,
241
+ "step": 160
242
+ },
243
+ {
244
+ "epoch": 2.1333333333333333,
245
+ "eval_loss": 1.2325456142425537,
246
+ "eval_runtime": 43.9006,
247
+ "eval_samples_per_second": 22.779,
248
+ "eval_steps_per_second": 2.847,
249
+ "step": 160
250
+ },
251
+ {
252
+ "epoch": 2.2666666666666666,
253
+ "grad_norm": 0.36160191893577576,
254
+ "learning_rate": 5.9851851851851855e-05,
255
+ "loss": 1.1959,
256
+ "step": 170
257
+ },
258
+ {
259
+ "epoch": 2.2666666666666666,
260
+ "eval_loss": 1.2345908880233765,
261
+ "eval_runtime": 44.0473,
262
+ "eval_samples_per_second": 22.703,
263
+ "eval_steps_per_second": 2.838,
264
+ "step": 170
265
+ },
266
+ {
267
+ "epoch": 2.4,
268
+ "grad_norm": 0.35918164253234863,
269
+ "learning_rate": 5.8666666666666665e-05,
270
+ "loss": 1.1213,
271
+ "step": 180
272
+ },
273
+ {
274
+ "epoch": 2.4,
275
+ "eval_loss": 1.2354995012283325,
276
+ "eval_runtime": 43.984,
277
+ "eval_samples_per_second": 22.736,
278
+ "eval_steps_per_second": 2.842,
279
+ "step": 180
280
+ }
281
+ ],
282
+ "logging_steps": 10,
283
+ "max_steps": 675,
284
+ "num_input_tokens_seen": 0,
285
+ "num_train_epochs": 9,
286
+ "save_steps": 10,
287
+ "stateful_callbacks": {
288
+ "TrainerControl": {
289
+ "args": {
290
+ "should_epoch_stop": false,
291
+ "should_evaluate": false,
292
+ "should_log": false,
293
+ "should_save": true,
294
+ "should_training_stop": false
295
+ },
296
+ "attributes": {}
297
+ }
298
+ },
299
+ "total_flos": 2.94949295751168e+16,
300
+ "train_batch_size": 8,
301
+ "trial_name": null,
302
+ "trial_params": null
303
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-190/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-190/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "query_key_value",
24
+ "dense_4h_to_h",
25
+ "dense_h_to_4h",
26
+ "dense"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-190/trainer_state.json ADDED
@@ -0,0 +1,318 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.2202378511428833,
3
+ "best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
4
+ "epoch": 2.533333333333333,
5
+ "eval_steps": 10,
6
+ "global_step": 190,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.30893075466156006,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 1.1733,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 1.2328641414642334,
21
+ "eval_runtime": 44.0263,
22
+ "eval_samples_per_second": 22.714,
23
+ "eval_steps_per_second": 2.839,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.17991244792938232,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 1.2254,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 1.228402853012085,
36
+ "eval_runtime": 43.8933,
37
+ "eval_samples_per_second": 22.783,
38
+ "eval_steps_per_second": 2.848,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.1784493625164032,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 1.2043,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 1.2251635789871216,
51
+ "eval_runtime": 44.0062,
52
+ "eval_samples_per_second": 22.724,
53
+ "eval_steps_per_second": 2.841,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.21547502279281616,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 1.1879,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 1.2234975099563599,
66
+ "eval_runtime": 44.0274,
67
+ "eval_samples_per_second": 22.713,
68
+ "eval_steps_per_second": 2.839,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.22946320474147797,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 1.2158,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 1.2221243381500244,
81
+ "eval_runtime": 44.1867,
82
+ "eval_samples_per_second": 22.631,
83
+ "eval_steps_per_second": 2.829,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.23243005573749542,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 1.1901,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 1.220987319946289,
96
+ "eval_runtime": 44.0985,
97
+ "eval_samples_per_second": 22.677,
98
+ "eval_steps_per_second": 2.835,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.19336333870887756,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 1.2074,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 1.2202378511428833,
111
+ "eval_runtime": 43.9577,
112
+ "eval_samples_per_second": 22.749,
113
+ "eval_steps_per_second": 2.844,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.1610746681690216,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 1.1434,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 1.22028386592865,
126
+ "eval_runtime": 43.903,
127
+ "eval_samples_per_second": 22.777,
128
+ "eval_steps_per_second": 2.847,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 1.2,
133
+ "grad_norm": 0.18507854640483856,
134
+ "learning_rate": 6.933333333333334e-05,
135
+ "loss": 1.1506,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 1.2,
140
+ "eval_loss": 1.221218466758728,
141
+ "eval_runtime": 43.981,
142
+ "eval_samples_per_second": 22.737,
143
+ "eval_steps_per_second": 2.842,
144
+ "step": 90
145
+ },
146
+ {
147
+ "epoch": 1.3333333333333333,
148
+ "grad_norm": 0.17022280395030975,
149
+ "learning_rate": 6.814814814814815e-05,
150
+ "loss": 1.1761,
151
+ "step": 100
152
+ },
153
+ {
154
+ "epoch": 1.3333333333333333,
155
+ "eval_loss": 1.2210596799850464,
156
+ "eval_runtime": 43.9473,
157
+ "eval_samples_per_second": 22.755,
158
+ "eval_steps_per_second": 2.844,
159
+ "step": 100
160
+ },
161
+ {
162
+ "epoch": 1.4666666666666668,
163
+ "grad_norm": 0.27772682905197144,
164
+ "learning_rate": 6.696296296296296e-05,
165
+ "loss": 1.2465,
166
+ "step": 110
167
+ },
168
+ {
169
+ "epoch": 1.4666666666666668,
170
+ "eval_loss": 1.2218444347381592,
171
+ "eval_runtime": 43.8733,
172
+ "eval_samples_per_second": 22.793,
173
+ "eval_steps_per_second": 2.849,
174
+ "step": 110
175
+ },
176
+ {
177
+ "epoch": 1.6,
178
+ "grad_norm": 0.2792418599128723,
179
+ "learning_rate": 6.577777777777777e-05,
180
+ "loss": 1.1664,
181
+ "step": 120
182
+ },
183
+ {
184
+ "epoch": 1.6,
185
+ "eval_loss": 1.2227915525436401,
186
+ "eval_runtime": 43.869,
187
+ "eval_samples_per_second": 22.795,
188
+ "eval_steps_per_second": 2.849,
189
+ "step": 120
190
+ },
191
+ {
192
+ "epoch": 1.7333333333333334,
193
+ "grad_norm": 0.32393139600753784,
194
+ "learning_rate": 6.45925925925926e-05,
195
+ "loss": 1.1835,
196
+ "step": 130
197
+ },
198
+ {
199
+ "epoch": 1.7333333333333334,
200
+ "eval_loss": 1.2218685150146484,
201
+ "eval_runtime": 43.878,
202
+ "eval_samples_per_second": 22.79,
203
+ "eval_steps_per_second": 2.849,
204
+ "step": 130
205
+ },
206
+ {
207
+ "epoch": 1.8666666666666667,
208
+ "grad_norm": 0.3198949694633484,
209
+ "learning_rate": 6.340740740740741e-05,
210
+ "loss": 1.1687,
211
+ "step": 140
212
+ },
213
+ {
214
+ "epoch": 1.8666666666666667,
215
+ "eval_loss": 1.2223820686340332,
216
+ "eval_runtime": 43.9319,
217
+ "eval_samples_per_second": 22.763,
218
+ "eval_steps_per_second": 2.845,
219
+ "step": 140
220
+ },
221
+ {
222
+ "epoch": 2.0,
223
+ "grad_norm": 0.2342524528503418,
224
+ "learning_rate": 6.222222222222223e-05,
225
+ "loss": 1.1516,
226
+ "step": 150
227
+ },
228
+ {
229
+ "epoch": 2.0,
230
+ "eval_loss": 1.2233225107192993,
231
+ "eval_runtime": 43.9266,
232
+ "eval_samples_per_second": 22.765,
233
+ "eval_steps_per_second": 2.846,
234
+ "step": 150
235
+ },
236
+ {
237
+ "epoch": 2.1333333333333333,
238
+ "grad_norm": 0.26675984263420105,
239
+ "learning_rate": 6.103703703703704e-05,
240
+ "loss": 1.1673,
241
+ "step": 160
242
+ },
243
+ {
244
+ "epoch": 2.1333333333333333,
245
+ "eval_loss": 1.2325456142425537,
246
+ "eval_runtime": 43.9006,
247
+ "eval_samples_per_second": 22.779,
248
+ "eval_steps_per_second": 2.847,
249
+ "step": 160
250
+ },
251
+ {
252
+ "epoch": 2.2666666666666666,
253
+ "grad_norm": 0.36160191893577576,
254
+ "learning_rate": 5.9851851851851855e-05,
255
+ "loss": 1.1959,
256
+ "step": 170
257
+ },
258
+ {
259
+ "epoch": 2.2666666666666666,
260
+ "eval_loss": 1.2345908880233765,
261
+ "eval_runtime": 44.0473,
262
+ "eval_samples_per_second": 22.703,
263
+ "eval_steps_per_second": 2.838,
264
+ "step": 170
265
+ },
266
+ {
267
+ "epoch": 2.4,
268
+ "grad_norm": 0.35918164253234863,
269
+ "learning_rate": 5.8666666666666665e-05,
270
+ "loss": 1.1213,
271
+ "step": 180
272
+ },
273
+ {
274
+ "epoch": 2.4,
275
+ "eval_loss": 1.2354995012283325,
276
+ "eval_runtime": 43.984,
277
+ "eval_samples_per_second": 22.736,
278
+ "eval_steps_per_second": 2.842,
279
+ "step": 180
280
+ },
281
+ {
282
+ "epoch": 2.533333333333333,
283
+ "grad_norm": 0.4165070652961731,
284
+ "learning_rate": 5.748148148148149e-05,
285
+ "loss": 1.1228,
286
+ "step": 190
287
+ },
288
+ {
289
+ "epoch": 2.533333333333333,
290
+ "eval_loss": 1.2382323741912842,
291
+ "eval_runtime": 44.1465,
292
+ "eval_samples_per_second": 22.652,
293
+ "eval_steps_per_second": 2.831,
294
+ "step": 190
295
+ }
296
+ ],
297
+ "logging_steps": 10,
298
+ "max_steps": 675,
299
+ "num_input_tokens_seen": 0,
300
+ "num_train_epochs": 9,
301
+ "save_steps": 10,
302
+ "stateful_callbacks": {
303
+ "TrainerControl": {
304
+ "args": {
305
+ "should_epoch_stop": false,
306
+ "should_evaluate": false,
307
+ "should_log": false,
308
+ "should_save": true,
309
+ "should_training_stop": false
310
+ },
311
+ "attributes": {}
312
+ }
313
+ },
314
+ "total_flos": 3.11335367737344e+16,
315
+ "train_batch_size": 8,
316
+ "trial_name": null,
317
+ "trial_params": null
318
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-20/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-20/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "query_key_value",
24
+ "dense_4h_to_h",
25
+ "dense_h_to_4h",
26
+ "dense"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-20/trainer_state.json ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.228402853012085,
3
+ "best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-20",
4
+ "epoch": 0.26666666666666666,
5
+ "eval_steps": 10,
6
+ "global_step": 20,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.30893075466156006,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 1.1733,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 1.2328641414642334,
21
+ "eval_runtime": 44.0263,
22
+ "eval_samples_per_second": 22.714,
23
+ "eval_steps_per_second": 2.839,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.17991244792938232,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 1.2254,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 1.228402853012085,
36
+ "eval_runtime": 43.8933,
37
+ "eval_samples_per_second": 22.783,
38
+ "eval_steps_per_second": 2.848,
39
+ "step": 20
40
+ }
41
+ ],
42
+ "logging_steps": 10,
43
+ "max_steps": 675,
44
+ "num_input_tokens_seen": 0,
45
+ "num_train_epochs": 9,
46
+ "save_steps": 10,
47
+ "stateful_callbacks": {
48
+ "TrainerControl": {
49
+ "args": {
50
+ "should_epoch_stop": false,
51
+ "should_evaluate": false,
52
+ "should_log": false,
53
+ "should_save": true,
54
+ "should_training_stop": false
55
+ },
56
+ "attributes": {}
57
+ }
58
+ },
59
+ "total_flos": 3277214397235200.0,
60
+ "train_batch_size": 8,
61
+ "trial_name": null,
62
+ "trial_params": null
63
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-200/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-200/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "query_key_value",
24
+ "dense_4h_to_h",
25
+ "dense_h_to_4h",
26
+ "dense"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-200/trainer_state.json ADDED
@@ -0,0 +1,333 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.2202378511428833,
3
+ "best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
4
+ "epoch": 2.6666666666666665,
5
+ "eval_steps": 10,
6
+ "global_step": 200,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.30893075466156006,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 1.1733,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 1.2328641414642334,
21
+ "eval_runtime": 44.0263,
22
+ "eval_samples_per_second": 22.714,
23
+ "eval_steps_per_second": 2.839,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.17991244792938232,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 1.2254,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 1.228402853012085,
36
+ "eval_runtime": 43.8933,
37
+ "eval_samples_per_second": 22.783,
38
+ "eval_steps_per_second": 2.848,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.1784493625164032,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 1.2043,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 1.2251635789871216,
51
+ "eval_runtime": 44.0062,
52
+ "eval_samples_per_second": 22.724,
53
+ "eval_steps_per_second": 2.841,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.21547502279281616,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 1.1879,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 1.2234975099563599,
66
+ "eval_runtime": 44.0274,
67
+ "eval_samples_per_second": 22.713,
68
+ "eval_steps_per_second": 2.839,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.22946320474147797,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 1.2158,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 1.2221243381500244,
81
+ "eval_runtime": 44.1867,
82
+ "eval_samples_per_second": 22.631,
83
+ "eval_steps_per_second": 2.829,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.23243005573749542,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 1.1901,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 1.220987319946289,
96
+ "eval_runtime": 44.0985,
97
+ "eval_samples_per_second": 22.677,
98
+ "eval_steps_per_second": 2.835,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.19336333870887756,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 1.2074,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 1.2202378511428833,
111
+ "eval_runtime": 43.9577,
112
+ "eval_samples_per_second": 22.749,
113
+ "eval_steps_per_second": 2.844,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.1610746681690216,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 1.1434,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 1.22028386592865,
126
+ "eval_runtime": 43.903,
127
+ "eval_samples_per_second": 22.777,
128
+ "eval_steps_per_second": 2.847,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 1.2,
133
+ "grad_norm": 0.18507854640483856,
134
+ "learning_rate": 6.933333333333334e-05,
135
+ "loss": 1.1506,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 1.2,
140
+ "eval_loss": 1.221218466758728,
141
+ "eval_runtime": 43.981,
142
+ "eval_samples_per_second": 22.737,
143
+ "eval_steps_per_second": 2.842,
144
+ "step": 90
145
+ },
146
+ {
147
+ "epoch": 1.3333333333333333,
148
+ "grad_norm": 0.17022280395030975,
149
+ "learning_rate": 6.814814814814815e-05,
150
+ "loss": 1.1761,
151
+ "step": 100
152
+ },
153
+ {
154
+ "epoch": 1.3333333333333333,
155
+ "eval_loss": 1.2210596799850464,
156
+ "eval_runtime": 43.9473,
157
+ "eval_samples_per_second": 22.755,
158
+ "eval_steps_per_second": 2.844,
159
+ "step": 100
160
+ },
161
+ {
162
+ "epoch": 1.4666666666666668,
163
+ "grad_norm": 0.27772682905197144,
164
+ "learning_rate": 6.696296296296296e-05,
165
+ "loss": 1.2465,
166
+ "step": 110
167
+ },
168
+ {
169
+ "epoch": 1.4666666666666668,
170
+ "eval_loss": 1.2218444347381592,
171
+ "eval_runtime": 43.8733,
172
+ "eval_samples_per_second": 22.793,
173
+ "eval_steps_per_second": 2.849,
174
+ "step": 110
175
+ },
176
+ {
177
+ "epoch": 1.6,
178
+ "grad_norm": 0.2792418599128723,
179
+ "learning_rate": 6.577777777777777e-05,
180
+ "loss": 1.1664,
181
+ "step": 120
182
+ },
183
+ {
184
+ "epoch": 1.6,
185
+ "eval_loss": 1.2227915525436401,
186
+ "eval_runtime": 43.869,
187
+ "eval_samples_per_second": 22.795,
188
+ "eval_steps_per_second": 2.849,
189
+ "step": 120
190
+ },
191
+ {
192
+ "epoch": 1.7333333333333334,
193
+ "grad_norm": 0.32393139600753784,
194
+ "learning_rate": 6.45925925925926e-05,
195
+ "loss": 1.1835,
196
+ "step": 130
197
+ },
198
+ {
199
+ "epoch": 1.7333333333333334,
200
+ "eval_loss": 1.2218685150146484,
201
+ "eval_runtime": 43.878,
202
+ "eval_samples_per_second": 22.79,
203
+ "eval_steps_per_second": 2.849,
204
+ "step": 130
205
+ },
206
+ {
207
+ "epoch": 1.8666666666666667,
208
+ "grad_norm": 0.3198949694633484,
209
+ "learning_rate": 6.340740740740741e-05,
210
+ "loss": 1.1687,
211
+ "step": 140
212
+ },
213
+ {
214
+ "epoch": 1.8666666666666667,
215
+ "eval_loss": 1.2223820686340332,
216
+ "eval_runtime": 43.9319,
217
+ "eval_samples_per_second": 22.763,
218
+ "eval_steps_per_second": 2.845,
219
+ "step": 140
220
+ },
221
+ {
222
+ "epoch": 2.0,
223
+ "grad_norm": 0.2342524528503418,
224
+ "learning_rate": 6.222222222222223e-05,
225
+ "loss": 1.1516,
226
+ "step": 150
227
+ },
228
+ {
229
+ "epoch": 2.0,
230
+ "eval_loss": 1.2233225107192993,
231
+ "eval_runtime": 43.9266,
232
+ "eval_samples_per_second": 22.765,
233
+ "eval_steps_per_second": 2.846,
234
+ "step": 150
235
+ },
236
+ {
237
+ "epoch": 2.1333333333333333,
238
+ "grad_norm": 0.26675984263420105,
239
+ "learning_rate": 6.103703703703704e-05,
240
+ "loss": 1.1673,
241
+ "step": 160
242
+ },
243
+ {
244
+ "epoch": 2.1333333333333333,
245
+ "eval_loss": 1.2325456142425537,
246
+ "eval_runtime": 43.9006,
247
+ "eval_samples_per_second": 22.779,
248
+ "eval_steps_per_second": 2.847,
249
+ "step": 160
250
+ },
251
+ {
252
+ "epoch": 2.2666666666666666,
253
+ "grad_norm": 0.36160191893577576,
254
+ "learning_rate": 5.9851851851851855e-05,
255
+ "loss": 1.1959,
256
+ "step": 170
257
+ },
258
+ {
259
+ "epoch": 2.2666666666666666,
260
+ "eval_loss": 1.2345908880233765,
261
+ "eval_runtime": 44.0473,
262
+ "eval_samples_per_second": 22.703,
263
+ "eval_steps_per_second": 2.838,
264
+ "step": 170
265
+ },
266
+ {
267
+ "epoch": 2.4,
268
+ "grad_norm": 0.35918164253234863,
269
+ "learning_rate": 5.8666666666666665e-05,
270
+ "loss": 1.1213,
271
+ "step": 180
272
+ },
273
+ {
274
+ "epoch": 2.4,
275
+ "eval_loss": 1.2354995012283325,
276
+ "eval_runtime": 43.984,
277
+ "eval_samples_per_second": 22.736,
278
+ "eval_steps_per_second": 2.842,
279
+ "step": 180
280
+ },
281
+ {
282
+ "epoch": 2.533333333333333,
283
+ "grad_norm": 0.4165070652961731,
284
+ "learning_rate": 5.748148148148149e-05,
285
+ "loss": 1.1228,
286
+ "step": 190
287
+ },
288
+ {
289
+ "epoch": 2.533333333333333,
290
+ "eval_loss": 1.2382323741912842,
291
+ "eval_runtime": 44.1465,
292
+ "eval_samples_per_second": 22.652,
293
+ "eval_steps_per_second": 2.831,
294
+ "step": 190
295
+ },
296
+ {
297
+ "epoch": 2.6666666666666665,
298
+ "grad_norm": 0.3703323304653168,
299
+ "learning_rate": 5.62962962962963e-05,
300
+ "loss": 1.1306,
301
+ "step": 200
302
+ },
303
+ {
304
+ "epoch": 2.6666666666666665,
305
+ "eval_loss": 1.2381049394607544,
306
+ "eval_runtime": 44.0824,
307
+ "eval_samples_per_second": 22.685,
308
+ "eval_steps_per_second": 2.836,
309
+ "step": 200
310
+ }
311
+ ],
312
+ "logging_steps": 10,
313
+ "max_steps": 675,
314
+ "num_input_tokens_seen": 0,
315
+ "num_train_epochs": 9,
316
+ "save_steps": 10,
317
+ "stateful_callbacks": {
318
+ "TrainerControl": {
319
+ "args": {
320
+ "should_epoch_stop": false,
321
+ "should_evaluate": false,
322
+ "should_log": false,
323
+ "should_save": true,
324
+ "should_training_stop": false
325
+ },
326
+ "attributes": {}
327
+ }
328
+ },
329
+ "total_flos": 3.2772143972352e+16,
330
+ "train_batch_size": 8,
331
+ "trial_name": null,
332
+ "trial_params": null
333
+ }