Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- output_ft_more_layers_books3_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-books3-8e-05/checkpoint-180/rng_state.pth +3 -0
- output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-675/trainer_state.json +1038 -0
- output_ft_more_layers_github_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-github-8e-05/checkpoint-140/adapter_model.safetensors +3 -0
- output_ft_more_layers_github_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-github-8e-05/checkpoint-140/scheduler.pt +3 -0
- output_ft_more_layers_gutenberg_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-gutenberg-8e-05/checkpoint-60/scheduler.pt +3 -0
- output_ft_more_layers_gutenberg_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-gutenberg-8e-05/checkpoint-220/rng_state.pth +3 -0
- output_ft_more_layers_hackernews_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-hackernews-8e-05/checkpoint-100/rng_state.pth +3 -0
- output_ft_more_layers_hackernews_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-hackernews-8e-05/checkpoint-340/adapter_model.safetensors +3 -0
- output_ft_more_layers_hackernews_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-hackernews-8e-05/checkpoint-350/scheduler.pt +3 -0
- output_ft_more_layers_hackernews_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-hackernews-8e-05/checkpoint-670/adapter_model.safetensors +3 -0
- output_ft_more_layers_hackernews_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-hackernews-8e-05/checkpoint-530/adapter_model.safetensors +3 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-10/README.md +202 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-10/adapter_config.json +31 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-10/trainer_state.json +48 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-100/README.md +202 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-100/adapter_config.json +31 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-100/trainer_state.json +183 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-110/README.md +202 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-110/adapter_config.json +31 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-110/trainer_state.json +198 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-120/README.md +202 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-120/adapter_config.json +31 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-120/trainer_state.json +213 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-130/README.md +202 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-130/adapter_config.json +31 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-130/trainer_state.json +228 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-140/README.md +202 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-140/adapter_config.json +31 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-140/trainer_state.json +243 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-150/README.md +202 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-150/adapter_config.json +31 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-150/trainer_state.json +258 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-160/README.md +202 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-160/adapter_config.json +31 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-160/trainer_state.json +273 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-170/README.md +202 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-170/adapter_config.json +31 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-170/trainer_state.json +288 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-180/README.md +202 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-180/adapter_config.json +31 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-180/trainer_state.json +303 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-190/README.md +202 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-190/adapter_config.json +31 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-190/trainer_state.json +318 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-20/README.md +202 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-20/adapter_config.json +31 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-20/trainer_state.json +63 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-200/README.md +202 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-200/adapter_config.json +31 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-200/trainer_state.json +333 -0
output_ft_more_layers_books3_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-books3-8e-05/checkpoint-180/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b79baa0842c2916b082cba36f9f2b958210e6d7c1813742841fb908cae57fbd
|
3 |
+
size 14575
|
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-675/trainer_state.json
ADDED
@@ -0,0 +1,1038 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.756260633468628,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-80",
|
4 |
+
"epoch": 9.0,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 675,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.42052844166755676,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.7467,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.7734601497650146,
|
21 |
+
"eval_runtime": 43.8138,
|
22 |
+
"eval_samples_per_second": 22.824,
|
23 |
+
"eval_steps_per_second": 2.853,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.37809130549430847,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.7395,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.769258975982666,
|
36 |
+
"eval_runtime": 43.8201,
|
37 |
+
"eval_samples_per_second": 22.821,
|
38 |
+
"eval_steps_per_second": 2.853,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.3573046624660492,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.7631,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.7663551568984985,
|
51 |
+
"eval_runtime": 43.8223,
|
52 |
+
"eval_samples_per_second": 22.819,
|
53 |
+
"eval_steps_per_second": 2.852,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.362831711769104,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.7315,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.7627724409103394,
|
66 |
+
"eval_runtime": 43.8359,
|
67 |
+
"eval_samples_per_second": 22.812,
|
68 |
+
"eval_steps_per_second": 2.852,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.3436615467071533,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.7643,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.759765863418579,
|
81 |
+
"eval_runtime": 43.9684,
|
82 |
+
"eval_samples_per_second": 22.744,
|
83 |
+
"eval_steps_per_second": 2.843,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.3397642970085144,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.779,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.757882833480835,
|
96 |
+
"eval_runtime": 43.842,
|
97 |
+
"eval_samples_per_second": 22.809,
|
98 |
+
"eval_steps_per_second": 2.851,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.3337671458721161,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.8132,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.7570159435272217,
|
111 |
+
"eval_runtime": 43.8608,
|
112 |
+
"eval_samples_per_second": 22.799,
|
113 |
+
"eval_steps_per_second": 2.85,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.330272912979126,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.7171,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.756260633468628,
|
126 |
+
"eval_runtime": 43.8455,
|
127 |
+
"eval_samples_per_second": 22.807,
|
128 |
+
"eval_steps_per_second": 2.851,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.41235682368278503,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.7416,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.7591694593429565,
|
141 |
+
"eval_runtime": 43.9235,
|
142 |
+
"eval_samples_per_second": 22.767,
|
143 |
+
"eval_steps_per_second": 2.846,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.5422492027282715,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.7139,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.7640165090560913,
|
156 |
+
"eval_runtime": 43.8344,
|
157 |
+
"eval_samples_per_second": 22.813,
|
158 |
+
"eval_steps_per_second": 2.852,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.6477387547492981,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.6539,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.7652504444122314,
|
171 |
+
"eval_runtime": 43.8392,
|
172 |
+
"eval_samples_per_second": 22.811,
|
173 |
+
"eval_steps_per_second": 2.851,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.6118409037590027,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.6159,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.764657735824585,
|
186 |
+
"eval_runtime": 43.8454,
|
187 |
+
"eval_samples_per_second": 22.807,
|
188 |
+
"eval_steps_per_second": 2.851,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.6918817162513733,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.7172,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.7642107009887695,
|
201 |
+
"eval_runtime": 43.8336,
|
202 |
+
"eval_samples_per_second": 22.814,
|
203 |
+
"eval_steps_per_second": 2.852,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.7557538747787476,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.6427,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.7659236192703247,
|
216 |
+
"eval_runtime": 43.9711,
|
217 |
+
"eval_samples_per_second": 22.742,
|
218 |
+
"eval_steps_per_second": 2.843,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.7488186955451965,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 1.6787,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 1.7671101093292236,
|
231 |
+
"eval_runtime": 43.8752,
|
232 |
+
"eval_samples_per_second": 22.792,
|
233 |
+
"eval_steps_per_second": 2.849,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 0.8250883221626282,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 1.5311,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 1.7898952960968018,
|
246 |
+
"eval_runtime": 43.8563,
|
247 |
+
"eval_samples_per_second": 22.802,
|
248 |
+
"eval_steps_per_second": 2.85,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 1.030646562576294,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 1.6057,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 1.8094940185546875,
|
261 |
+
"eval_runtime": 43.983,
|
262 |
+
"eval_samples_per_second": 22.736,
|
263 |
+
"eval_steps_per_second": 2.842,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 1.1088566780090332,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 1.5728,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 1.8133563995361328,
|
276 |
+
"eval_runtime": 43.824,
|
277 |
+
"eval_samples_per_second": 22.819,
|
278 |
+
"eval_steps_per_second": 2.852,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 1.021531343460083,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 1.527,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 1.8125377893447876,
|
291 |
+
"eval_runtime": 43.8295,
|
292 |
+
"eval_samples_per_second": 22.816,
|
293 |
+
"eval_steps_per_second": 2.852,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 1.2650625705718994,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 1.5812,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 1.8146140575408936,
|
306 |
+
"eval_runtime": 43.836,
|
307 |
+
"eval_samples_per_second": 22.812,
|
308 |
+
"eval_steps_per_second": 2.852,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 1.2198336124420166,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 1.5373,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 1.8189282417297363,
|
321 |
+
"eval_runtime": 43.8436,
|
322 |
+
"eval_samples_per_second": 22.808,
|
323 |
+
"eval_steps_per_second": 2.851,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 1.240370512008667,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 1.5636,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 1.819279670715332,
|
336 |
+
"eval_runtime": 43.8449,
|
337 |
+
"eval_samples_per_second": 22.808,
|
338 |
+
"eval_steps_per_second": 2.851,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 1.2288763523101807,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 1.4396,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 1.8351694345474243,
|
351 |
+
"eval_runtime": 43.8476,
|
352 |
+
"eval_samples_per_second": 22.806,
|
353 |
+
"eval_steps_per_second": 2.851,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 1.4340574741363525,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 1.4344,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 1.8951430320739746,
|
366 |
+
"eval_runtime": 43.8769,
|
367 |
+
"eval_samples_per_second": 22.791,
|
368 |
+
"eval_steps_per_second": 2.849,
|
369 |
+
"step": 240
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.3333333333333335,
|
373 |
+
"grad_norm": 1.5724129676818848,
|
374 |
+
"learning_rate": 5.037037037037037e-05,
|
375 |
+
"loss": 1.3869,
|
376 |
+
"step": 250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 3.3333333333333335,
|
380 |
+
"eval_loss": 1.9017800092697144,
|
381 |
+
"eval_runtime": 43.8303,
|
382 |
+
"eval_samples_per_second": 22.815,
|
383 |
+
"eval_steps_per_second": 2.852,
|
384 |
+
"step": 250
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 3.466666666666667,
|
388 |
+
"grad_norm": 1.5297696590423584,
|
389 |
+
"learning_rate": 4.918518518518519e-05,
|
390 |
+
"loss": 1.4073,
|
391 |
+
"step": 260
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 3.466666666666667,
|
395 |
+
"eval_loss": 1.8953845500946045,
|
396 |
+
"eval_runtime": 43.849,
|
397 |
+
"eval_samples_per_second": 22.806,
|
398 |
+
"eval_steps_per_second": 2.851,
|
399 |
+
"step": 260
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 3.6,
|
403 |
+
"grad_norm": 1.6185989379882812,
|
404 |
+
"learning_rate": 4.8e-05,
|
405 |
+
"loss": 1.3639,
|
406 |
+
"step": 270
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 3.6,
|
410 |
+
"eval_loss": 1.899160385131836,
|
411 |
+
"eval_runtime": 44.3355,
|
412 |
+
"eval_samples_per_second": 22.555,
|
413 |
+
"eval_steps_per_second": 2.819,
|
414 |
+
"step": 270
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 3.7333333333333334,
|
418 |
+
"grad_norm": 1.5792930126190186,
|
419 |
+
"learning_rate": 4.681481481481481e-05,
|
420 |
+
"loss": 1.4427,
|
421 |
+
"step": 280
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 3.7333333333333334,
|
425 |
+
"eval_loss": 1.8958873748779297,
|
426 |
+
"eval_runtime": 43.8434,
|
427 |
+
"eval_samples_per_second": 22.808,
|
428 |
+
"eval_steps_per_second": 2.851,
|
429 |
+
"step": 280
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 3.8666666666666667,
|
433 |
+
"grad_norm": 1.5876963138580322,
|
434 |
+
"learning_rate": 4.5629629629629636e-05,
|
435 |
+
"loss": 1.453,
|
436 |
+
"step": 290
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 3.8666666666666667,
|
440 |
+
"eval_loss": 1.8990998268127441,
|
441 |
+
"eval_runtime": 43.8551,
|
442 |
+
"eval_samples_per_second": 22.802,
|
443 |
+
"eval_steps_per_second": 2.85,
|
444 |
+
"step": 290
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 4.0,
|
448 |
+
"grad_norm": 1.786375880241394,
|
449 |
+
"learning_rate": 4.444444444444445e-05,
|
450 |
+
"loss": 1.4225,
|
451 |
+
"step": 300
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 4.0,
|
455 |
+
"eval_loss": 1.8985201120376587,
|
456 |
+
"eval_runtime": 43.8683,
|
457 |
+
"eval_samples_per_second": 22.795,
|
458 |
+
"eval_steps_per_second": 2.849,
|
459 |
+
"step": 300
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 4.133333333333334,
|
463 |
+
"grad_norm": 2.1489617824554443,
|
464 |
+
"learning_rate": 4.3259259259259264e-05,
|
465 |
+
"loss": 1.3847,
|
466 |
+
"step": 310
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 4.133333333333334,
|
470 |
+
"eval_loss": 1.9717309474945068,
|
471 |
+
"eval_runtime": 44.0693,
|
472 |
+
"eval_samples_per_second": 22.692,
|
473 |
+
"eval_steps_per_second": 2.836,
|
474 |
+
"step": 310
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 4.266666666666667,
|
478 |
+
"grad_norm": 2.2349112033843994,
|
479 |
+
"learning_rate": 4.2074074074074075e-05,
|
480 |
+
"loss": 1.2945,
|
481 |
+
"step": 320
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 4.266666666666667,
|
485 |
+
"eval_loss": 1.998693585395813,
|
486 |
+
"eval_runtime": 43.8345,
|
487 |
+
"eval_samples_per_second": 22.813,
|
488 |
+
"eval_steps_per_second": 2.852,
|
489 |
+
"step": 320
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 4.4,
|
493 |
+
"grad_norm": 1.8916155099868774,
|
494 |
+
"learning_rate": 4.088888888888889e-05,
|
495 |
+
"loss": 1.2914,
|
496 |
+
"step": 330
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 4.4,
|
500 |
+
"eval_loss": 1.9831459522247314,
|
501 |
+
"eval_runtime": 43.9158,
|
502 |
+
"eval_samples_per_second": 22.771,
|
503 |
+
"eval_steps_per_second": 2.846,
|
504 |
+
"step": 330
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 4.533333333333333,
|
508 |
+
"grad_norm": 2.040637731552124,
|
509 |
+
"learning_rate": 3.970370370370371e-05,
|
510 |
+
"loss": 1.2625,
|
511 |
+
"step": 340
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"epoch": 4.533333333333333,
|
515 |
+
"eval_loss": 1.989234209060669,
|
516 |
+
"eval_runtime": 43.9006,
|
517 |
+
"eval_samples_per_second": 22.779,
|
518 |
+
"eval_steps_per_second": 2.847,
|
519 |
+
"step": 340
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 4.666666666666667,
|
523 |
+
"grad_norm": 2.0551321506500244,
|
524 |
+
"learning_rate": 3.851851851851852e-05,
|
525 |
+
"loss": 1.3326,
|
526 |
+
"step": 350
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 4.666666666666667,
|
530 |
+
"eval_loss": 1.9832589626312256,
|
531 |
+
"eval_runtime": 43.871,
|
532 |
+
"eval_samples_per_second": 22.794,
|
533 |
+
"eval_steps_per_second": 2.849,
|
534 |
+
"step": 350
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 4.8,
|
538 |
+
"grad_norm": 2.0094845294952393,
|
539 |
+
"learning_rate": 3.733333333333334e-05,
|
540 |
+
"loss": 1.1616,
|
541 |
+
"step": 360
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 4.8,
|
545 |
+
"eval_loss": 1.982403039932251,
|
546 |
+
"eval_runtime": 43.8576,
|
547 |
+
"eval_samples_per_second": 22.801,
|
548 |
+
"eval_steps_per_second": 2.85,
|
549 |
+
"step": 360
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 4.933333333333334,
|
553 |
+
"grad_norm": 2.060596227645874,
|
554 |
+
"learning_rate": 3.614814814814815e-05,
|
555 |
+
"loss": 1.2835,
|
556 |
+
"step": 370
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 4.933333333333334,
|
560 |
+
"eval_loss": 1.9794756174087524,
|
561 |
+
"eval_runtime": 43.8534,
|
562 |
+
"eval_samples_per_second": 22.803,
|
563 |
+
"eval_steps_per_second": 2.85,
|
564 |
+
"step": 370
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 5.066666666666666,
|
568 |
+
"grad_norm": 1.7903876304626465,
|
569 |
+
"learning_rate": 3.4962962962962965e-05,
|
570 |
+
"loss": 1.1494,
|
571 |
+
"step": 380
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 5.066666666666666,
|
575 |
+
"eval_loss": 2.014777421951294,
|
576 |
+
"eval_runtime": 43.8576,
|
577 |
+
"eval_samples_per_second": 22.801,
|
578 |
+
"eval_steps_per_second": 2.85,
|
579 |
+
"step": 380
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 5.2,
|
583 |
+
"grad_norm": 2.5401782989501953,
|
584 |
+
"learning_rate": 3.377777777777778e-05,
|
585 |
+
"loss": 1.216,
|
586 |
+
"step": 390
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"epoch": 5.2,
|
590 |
+
"eval_loss": 2.08598256111145,
|
591 |
+
"eval_runtime": 43.9811,
|
592 |
+
"eval_samples_per_second": 22.737,
|
593 |
+
"eval_steps_per_second": 2.842,
|
594 |
+
"step": 390
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 5.333333333333333,
|
598 |
+
"grad_norm": 2.357168197631836,
|
599 |
+
"learning_rate": 3.259259259259259e-05,
|
600 |
+
"loss": 1.1258,
|
601 |
+
"step": 400
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 5.333333333333333,
|
605 |
+
"eval_loss": 2.0609829425811768,
|
606 |
+
"eval_runtime": 43.8422,
|
607 |
+
"eval_samples_per_second": 22.809,
|
608 |
+
"eval_steps_per_second": 2.851,
|
609 |
+
"step": 400
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 5.466666666666667,
|
613 |
+
"grad_norm": 2.38639235496521,
|
614 |
+
"learning_rate": 3.140740740740741e-05,
|
615 |
+
"loss": 1.2113,
|
616 |
+
"step": 410
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"epoch": 5.466666666666667,
|
620 |
+
"eval_loss": 2.071895122528076,
|
621 |
+
"eval_runtime": 43.834,
|
622 |
+
"eval_samples_per_second": 22.813,
|
623 |
+
"eval_steps_per_second": 2.852,
|
624 |
+
"step": 410
|
625 |
+
},
|
626 |
+
{
|
627 |
+
"epoch": 5.6,
|
628 |
+
"grad_norm": 2.465963125228882,
|
629 |
+
"learning_rate": 3.0222222222222225e-05,
|
630 |
+
"loss": 1.2223,
|
631 |
+
"step": 420
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"epoch": 5.6,
|
635 |
+
"eval_loss": 2.062394618988037,
|
636 |
+
"eval_runtime": 43.8694,
|
637 |
+
"eval_samples_per_second": 22.795,
|
638 |
+
"eval_steps_per_second": 2.849,
|
639 |
+
"step": 420
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 5.733333333333333,
|
643 |
+
"grad_norm": 2.452862024307251,
|
644 |
+
"learning_rate": 2.9037037037037042e-05,
|
645 |
+
"loss": 1.2178,
|
646 |
+
"step": 430
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 5.733333333333333,
|
650 |
+
"eval_loss": 2.0729126930236816,
|
651 |
+
"eval_runtime": 44.0267,
|
652 |
+
"eval_samples_per_second": 22.713,
|
653 |
+
"eval_steps_per_second": 2.839,
|
654 |
+
"step": 430
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 5.866666666666667,
|
658 |
+
"grad_norm": 2.317140817642212,
|
659 |
+
"learning_rate": 2.7851851851851856e-05,
|
660 |
+
"loss": 1.1608,
|
661 |
+
"step": 440
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 5.866666666666667,
|
665 |
+
"eval_loss": 2.066200017929077,
|
666 |
+
"eval_runtime": 43.852,
|
667 |
+
"eval_samples_per_second": 22.804,
|
668 |
+
"eval_steps_per_second": 2.85,
|
669 |
+
"step": 440
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 6.0,
|
673 |
+
"grad_norm": 2.5810694694519043,
|
674 |
+
"learning_rate": 2.6666666666666667e-05,
|
675 |
+
"loss": 1.1306,
|
676 |
+
"step": 450
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 6.0,
|
680 |
+
"eval_loss": 2.0632646083831787,
|
681 |
+
"eval_runtime": 43.8995,
|
682 |
+
"eval_samples_per_second": 22.779,
|
683 |
+
"eval_steps_per_second": 2.847,
|
684 |
+
"step": 450
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"epoch": 6.133333333333334,
|
688 |
+
"grad_norm": 2.8042051792144775,
|
689 |
+
"learning_rate": 2.5481481481481484e-05,
|
690 |
+
"loss": 1.078,
|
691 |
+
"step": 460
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"epoch": 6.133333333333334,
|
695 |
+
"eval_loss": 2.132199764251709,
|
696 |
+
"eval_runtime": 43.8898,
|
697 |
+
"eval_samples_per_second": 22.784,
|
698 |
+
"eval_steps_per_second": 2.848,
|
699 |
+
"step": 460
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 6.266666666666667,
|
703 |
+
"grad_norm": 2.717993974685669,
|
704 |
+
"learning_rate": 2.4296296296296298e-05,
|
705 |
+
"loss": 1.0141,
|
706 |
+
"step": 470
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 6.266666666666667,
|
710 |
+
"eval_loss": 2.160412311553955,
|
711 |
+
"eval_runtime": 43.9078,
|
712 |
+
"eval_samples_per_second": 22.775,
|
713 |
+
"eval_steps_per_second": 2.847,
|
714 |
+
"step": 470
|
715 |
+
},
|
716 |
+
{
|
717 |
+
"epoch": 6.4,
|
718 |
+
"grad_norm": 2.783339262008667,
|
719 |
+
"learning_rate": 2.3111111111111112e-05,
|
720 |
+
"loss": 1.1532,
|
721 |
+
"step": 480
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"epoch": 6.4,
|
725 |
+
"eval_loss": 2.1363871097564697,
|
726 |
+
"eval_runtime": 43.8676,
|
727 |
+
"eval_samples_per_second": 22.796,
|
728 |
+
"eval_steps_per_second": 2.849,
|
729 |
+
"step": 480
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 6.533333333333333,
|
733 |
+
"grad_norm": 2.8690574169158936,
|
734 |
+
"learning_rate": 2.192592592592593e-05,
|
735 |
+
"loss": 1.0803,
|
736 |
+
"step": 490
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"epoch": 6.533333333333333,
|
740 |
+
"eval_loss": 2.1391971111297607,
|
741 |
+
"eval_runtime": 44.0076,
|
742 |
+
"eval_samples_per_second": 22.723,
|
743 |
+
"eval_steps_per_second": 2.84,
|
744 |
+
"step": 490
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 6.666666666666667,
|
748 |
+
"grad_norm": 2.6717352867126465,
|
749 |
+
"learning_rate": 2.074074074074074e-05,
|
750 |
+
"loss": 1.0504,
|
751 |
+
"step": 500
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 6.666666666666667,
|
755 |
+
"eval_loss": 2.1415843963623047,
|
756 |
+
"eval_runtime": 44.1677,
|
757 |
+
"eval_samples_per_second": 22.641,
|
758 |
+
"eval_steps_per_second": 2.83,
|
759 |
+
"step": 500
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 6.8,
|
763 |
+
"grad_norm": 2.8218679428100586,
|
764 |
+
"learning_rate": 1.9555555555555557e-05,
|
765 |
+
"loss": 1.1414,
|
766 |
+
"step": 510
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 6.8,
|
770 |
+
"eval_loss": 2.1416261196136475,
|
771 |
+
"eval_runtime": 43.8666,
|
772 |
+
"eval_samples_per_second": 22.796,
|
773 |
+
"eval_steps_per_second": 2.85,
|
774 |
+
"step": 510
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 6.933333333333334,
|
778 |
+
"grad_norm": 2.856998920440674,
|
779 |
+
"learning_rate": 1.837037037037037e-05,
|
780 |
+
"loss": 1.0956,
|
781 |
+
"step": 520
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"epoch": 6.933333333333334,
|
785 |
+
"eval_loss": 2.127903699874878,
|
786 |
+
"eval_runtime": 43.8324,
|
787 |
+
"eval_samples_per_second": 22.814,
|
788 |
+
"eval_steps_per_second": 2.852,
|
789 |
+
"step": 520
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 7.066666666666666,
|
793 |
+
"grad_norm": 2.6875741481781006,
|
794 |
+
"learning_rate": 1.7185185185185185e-05,
|
795 |
+
"loss": 1.0464,
|
796 |
+
"step": 530
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"epoch": 7.066666666666666,
|
800 |
+
"eval_loss": 2.153618335723877,
|
801 |
+
"eval_runtime": 43.882,
|
802 |
+
"eval_samples_per_second": 22.788,
|
803 |
+
"eval_steps_per_second": 2.849,
|
804 |
+
"step": 530
|
805 |
+
},
|
806 |
+
{
|
807 |
+
"epoch": 7.2,
|
808 |
+
"grad_norm": 2.948133707046509,
|
809 |
+
"learning_rate": 1.6000000000000003e-05,
|
810 |
+
"loss": 1.0979,
|
811 |
+
"step": 540
|
812 |
+
},
|
813 |
+
{
|
814 |
+
"epoch": 7.2,
|
815 |
+
"eval_loss": 2.2071073055267334,
|
816 |
+
"eval_runtime": 43.8831,
|
817 |
+
"eval_samples_per_second": 22.788,
|
818 |
+
"eval_steps_per_second": 2.848,
|
819 |
+
"step": 540
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 7.333333333333333,
|
823 |
+
"grad_norm": 2.9918789863586426,
|
824 |
+
"learning_rate": 1.4814814814814815e-05,
|
825 |
+
"loss": 0.9723,
|
826 |
+
"step": 550
|
827 |
+
},
|
828 |
+
{
|
829 |
+
"epoch": 7.333333333333333,
|
830 |
+
"eval_loss": 2.205716609954834,
|
831 |
+
"eval_runtime": 44.1096,
|
832 |
+
"eval_samples_per_second": 22.671,
|
833 |
+
"eval_steps_per_second": 2.834,
|
834 |
+
"step": 550
|
835 |
+
},
|
836 |
+
{
|
837 |
+
"epoch": 7.466666666666667,
|
838 |
+
"grad_norm": 2.925421953201294,
|
839 |
+
"learning_rate": 1.362962962962963e-05,
|
840 |
+
"loss": 1.0114,
|
841 |
+
"step": 560
|
842 |
+
},
|
843 |
+
{
|
844 |
+
"epoch": 7.466666666666667,
|
845 |
+
"eval_loss": 2.196255922317505,
|
846 |
+
"eval_runtime": 43.8605,
|
847 |
+
"eval_samples_per_second": 22.8,
|
848 |
+
"eval_steps_per_second": 2.85,
|
849 |
+
"step": 560
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 7.6,
|
853 |
+
"grad_norm": 2.798750400543213,
|
854 |
+
"learning_rate": 1.2444444444444446e-05,
|
855 |
+
"loss": 1.0025,
|
856 |
+
"step": 570
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 7.6,
|
860 |
+
"eval_loss": 2.188586950302124,
|
861 |
+
"eval_runtime": 43.8806,
|
862 |
+
"eval_samples_per_second": 22.789,
|
863 |
+
"eval_steps_per_second": 2.849,
|
864 |
+
"step": 570
|
865 |
+
},
|
866 |
+
{
|
867 |
+
"epoch": 7.733333333333333,
|
868 |
+
"grad_norm": 3.0446763038635254,
|
869 |
+
"learning_rate": 1.125925925925926e-05,
|
870 |
+
"loss": 0.9964,
|
871 |
+
"step": 580
|
872 |
+
},
|
873 |
+
{
|
874 |
+
"epoch": 7.733333333333333,
|
875 |
+
"eval_loss": 2.202547788619995,
|
876 |
+
"eval_runtime": 43.8579,
|
877 |
+
"eval_samples_per_second": 22.801,
|
878 |
+
"eval_steps_per_second": 2.85,
|
879 |
+
"step": 580
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 7.866666666666667,
|
883 |
+
"grad_norm": 3.105485200881958,
|
884 |
+
"learning_rate": 1.0074074074074074e-05,
|
885 |
+
"loss": 1.0796,
|
886 |
+
"step": 590
|
887 |
+
},
|
888 |
+
{
|
889 |
+
"epoch": 7.866666666666667,
|
890 |
+
"eval_loss": 2.1981332302093506,
|
891 |
+
"eval_runtime": 43.8502,
|
892 |
+
"eval_samples_per_second": 22.805,
|
893 |
+
"eval_steps_per_second": 2.851,
|
894 |
+
"step": 590
|
895 |
+
},
|
896 |
+
{
|
897 |
+
"epoch": 8.0,
|
898 |
+
"grad_norm": 3.4474782943725586,
|
899 |
+
"learning_rate": 8.888888888888888e-06,
|
900 |
+
"loss": 1.0261,
|
901 |
+
"step": 600
|
902 |
+
},
|
903 |
+
{
|
904 |
+
"epoch": 8.0,
|
905 |
+
"eval_loss": 2.192448139190674,
|
906 |
+
"eval_runtime": 43.9245,
|
907 |
+
"eval_samples_per_second": 22.766,
|
908 |
+
"eval_steps_per_second": 2.846,
|
909 |
+
"step": 600
|
910 |
+
},
|
911 |
+
{
|
912 |
+
"epoch": 8.133333333333333,
|
913 |
+
"grad_norm": 2.7830891609191895,
|
914 |
+
"learning_rate": 7.703703703703704e-06,
|
915 |
+
"loss": 0.9023,
|
916 |
+
"step": 610
|
917 |
+
},
|
918 |
+
{
|
919 |
+
"epoch": 8.133333333333333,
|
920 |
+
"eval_loss": 2.2176005840301514,
|
921 |
+
"eval_runtime": 43.9557,
|
922 |
+
"eval_samples_per_second": 22.75,
|
923 |
+
"eval_steps_per_second": 2.844,
|
924 |
+
"step": 610
|
925 |
+
},
|
926 |
+
{
|
927 |
+
"epoch": 8.266666666666667,
|
928 |
+
"grad_norm": 3.22506046295166,
|
929 |
+
"learning_rate": 6.51851851851852e-06,
|
930 |
+
"loss": 1.0544,
|
931 |
+
"step": 620
|
932 |
+
},
|
933 |
+
{
|
934 |
+
"epoch": 8.266666666666667,
|
935 |
+
"eval_loss": 2.2382705211639404,
|
936 |
+
"eval_runtime": 43.8417,
|
937 |
+
"eval_samples_per_second": 22.809,
|
938 |
+
"eval_steps_per_second": 2.851,
|
939 |
+
"step": 620
|
940 |
+
},
|
941 |
+
{
|
942 |
+
"epoch": 8.4,
|
943 |
+
"grad_norm": 3.2194337844848633,
|
944 |
+
"learning_rate": 5.333333333333334e-06,
|
945 |
+
"loss": 0.9563,
|
946 |
+
"step": 630
|
947 |
+
},
|
948 |
+
{
|
949 |
+
"epoch": 8.4,
|
950 |
+
"eval_loss": 2.2369072437286377,
|
951 |
+
"eval_runtime": 43.8392,
|
952 |
+
"eval_samples_per_second": 22.811,
|
953 |
+
"eval_steps_per_second": 2.851,
|
954 |
+
"step": 630
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 8.533333333333333,
|
958 |
+
"grad_norm": 2.7670300006866455,
|
959 |
+
"learning_rate": 4.1481481481481485e-06,
|
960 |
+
"loss": 1.0363,
|
961 |
+
"step": 640
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 8.533333333333333,
|
965 |
+
"eval_loss": 2.2355964183807373,
|
966 |
+
"eval_runtime": 44.1991,
|
967 |
+
"eval_samples_per_second": 22.625,
|
968 |
+
"eval_steps_per_second": 2.828,
|
969 |
+
"step": 640
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 8.666666666666666,
|
973 |
+
"grad_norm": 3.586761951446533,
|
974 |
+
"learning_rate": 2.962962962962963e-06,
|
975 |
+
"loss": 0.9733,
|
976 |
+
"step": 650
|
977 |
+
},
|
978 |
+
{
|
979 |
+
"epoch": 8.666666666666666,
|
980 |
+
"eval_loss": 2.2372989654541016,
|
981 |
+
"eval_runtime": 43.973,
|
982 |
+
"eval_samples_per_second": 22.741,
|
983 |
+
"eval_steps_per_second": 2.843,
|
984 |
+
"step": 650
|
985 |
+
},
|
986 |
+
{
|
987 |
+
"epoch": 8.8,
|
988 |
+
"grad_norm": 3.1485610008239746,
|
989 |
+
"learning_rate": 1.777777777777778e-06,
|
990 |
+
"loss": 0.9575,
|
991 |
+
"step": 660
|
992 |
+
},
|
993 |
+
{
|
994 |
+
"epoch": 8.8,
|
995 |
+
"eval_loss": 2.237969160079956,
|
996 |
+
"eval_runtime": 43.9045,
|
997 |
+
"eval_samples_per_second": 22.777,
|
998 |
+
"eval_steps_per_second": 2.847,
|
999 |
+
"step": 660
|
1000 |
+
},
|
1001 |
+
{
|
1002 |
+
"epoch": 8.933333333333334,
|
1003 |
+
"grad_norm": 3.1032752990722656,
|
1004 |
+
"learning_rate": 5.925925925925927e-07,
|
1005 |
+
"loss": 0.9726,
|
1006 |
+
"step": 670
|
1007 |
+
},
|
1008 |
+
{
|
1009 |
+
"epoch": 8.933333333333334,
|
1010 |
+
"eval_loss": 2.2377612590789795,
|
1011 |
+
"eval_runtime": 43.8847,
|
1012 |
+
"eval_samples_per_second": 22.787,
|
1013 |
+
"eval_steps_per_second": 2.848,
|
1014 |
+
"step": 670
|
1015 |
+
}
|
1016 |
+
],
|
1017 |
+
"logging_steps": 10,
|
1018 |
+
"max_steps": 675,
|
1019 |
+
"num_input_tokens_seen": 0,
|
1020 |
+
"num_train_epochs": 9,
|
1021 |
+
"save_steps": 10,
|
1022 |
+
"stateful_callbacks": {
|
1023 |
+
"TrainerControl": {
|
1024 |
+
"args": {
|
1025 |
+
"should_epoch_stop": false,
|
1026 |
+
"should_evaluate": false,
|
1027 |
+
"should_log": false,
|
1028 |
+
"should_save": true,
|
1029 |
+
"should_training_stop": true
|
1030 |
+
},
|
1031 |
+
"attributes": {}
|
1032 |
+
}
|
1033 |
+
},
|
1034 |
+
"total_flos": 1.10605985906688e+17,
|
1035 |
+
"train_batch_size": 8,
|
1036 |
+
"trial_name": null,
|
1037 |
+
"trial_params": null
|
1038 |
+
}
|
output_ft_more_layers_github_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-github-8e-05/checkpoint-140/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:88f28088cf7aebbf7c80fb198317b1cc676e73a580da7d92fdf01175ad8d16c9
|
3 |
+
size 67144544
|
output_ft_more_layers_github_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-github-8e-05/checkpoint-140/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:21a6935970b037ba9fc4b9dc75dbda421fb162f0fa5b7d5502a5e9660c005897
|
3 |
+
size 627
|
output_ft_more_layers_gutenberg_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-gutenberg-8e-05/checkpoint-60/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:db64dfcaaa6d2770fdeb8c6c250f6efda7e6b2cbc236d50bf153703fcb63ac50
|
3 |
+
size 627
|
output_ft_more_layers_gutenberg_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-gutenberg-8e-05/checkpoint-220/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f5e4256f7b7ace2dd6194570c191ab9026456dc0db24025edac4a5bd9e379dab
|
3 |
+
size 14575
|
output_ft_more_layers_hackernews_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-hackernews-8e-05/checkpoint-100/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:46513e9b1de488f3d70a4461303e6b827989f588807354e14d010b7ee4f4679f
|
3 |
+
size 14575
|
output_ft_more_layers_hackernews_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-hackernews-8e-05/checkpoint-340/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d89e5f1ae766102e6363957af7f2e9c0faed77c98ee8ef3db0dd4a011ccf735a
|
3 |
+
size 67144544
|
output_ft_more_layers_hackernews_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-hackernews-8e-05/checkpoint-350/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8b8cfefd46d2412b7b17da7d799f9e9021312d0b294976f3e87f7063aa01557b
|
3 |
+
size 627
|
output_ft_more_layers_hackernews_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-hackernews-8e-05/checkpoint-670/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a770578b0048f28c9f46f5bce9f41da6239078ad0b9972309451f4ce78ae791
|
3 |
+
size 67144544
|
output_ft_more_layers_hackernews_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-hackernews-8e-05/checkpoint-530/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0cf1d8e7fefbdf01228d12655cdfffad6af74bf8645f992a47cf88f5ce98045a
|
3 |
+
size 67144544
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-10/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-10/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"query_key_value",
|
24 |
+
"dense_4h_to_h",
|
25 |
+
"dense_h_to_4h",
|
26 |
+
"dense"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-10/trainer_state.json
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.2328641414642334,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-10",
|
4 |
+
"epoch": 0.13333333333333333,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 10,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.30893075466156006,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.1733,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.2328641414642334,
|
21 |
+
"eval_runtime": 44.0263,
|
22 |
+
"eval_samples_per_second": 22.714,
|
23 |
+
"eval_steps_per_second": 2.839,
|
24 |
+
"step": 10
|
25 |
+
}
|
26 |
+
],
|
27 |
+
"logging_steps": 10,
|
28 |
+
"max_steps": 675,
|
29 |
+
"num_input_tokens_seen": 0,
|
30 |
+
"num_train_epochs": 9,
|
31 |
+
"save_steps": 10,
|
32 |
+
"stateful_callbacks": {
|
33 |
+
"TrainerControl": {
|
34 |
+
"args": {
|
35 |
+
"should_epoch_stop": false,
|
36 |
+
"should_evaluate": false,
|
37 |
+
"should_log": false,
|
38 |
+
"should_save": true,
|
39 |
+
"should_training_stop": false
|
40 |
+
},
|
41 |
+
"attributes": {}
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"total_flos": 1638607198617600.0,
|
45 |
+
"train_batch_size": 8,
|
46 |
+
"trial_name": null,
|
47 |
+
"trial_params": null
|
48 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-100/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-100/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"query_key_value",
|
24 |
+
"dense_4h_to_h",
|
25 |
+
"dense_h_to_4h",
|
26 |
+
"dense"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-100/trainer_state.json
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.2202378511428833,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
|
4 |
+
"epoch": 1.3333333333333333,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 100,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.30893075466156006,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.1733,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.2328641414642334,
|
21 |
+
"eval_runtime": 44.0263,
|
22 |
+
"eval_samples_per_second": 22.714,
|
23 |
+
"eval_steps_per_second": 2.839,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.17991244792938232,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.2254,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.228402853012085,
|
36 |
+
"eval_runtime": 43.8933,
|
37 |
+
"eval_samples_per_second": 22.783,
|
38 |
+
"eval_steps_per_second": 2.848,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.1784493625164032,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.2043,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.2251635789871216,
|
51 |
+
"eval_runtime": 44.0062,
|
52 |
+
"eval_samples_per_second": 22.724,
|
53 |
+
"eval_steps_per_second": 2.841,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.21547502279281616,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.1879,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.2234975099563599,
|
66 |
+
"eval_runtime": 44.0274,
|
67 |
+
"eval_samples_per_second": 22.713,
|
68 |
+
"eval_steps_per_second": 2.839,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.22946320474147797,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.2158,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.2221243381500244,
|
81 |
+
"eval_runtime": 44.1867,
|
82 |
+
"eval_samples_per_second": 22.631,
|
83 |
+
"eval_steps_per_second": 2.829,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.23243005573749542,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.1901,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.220987319946289,
|
96 |
+
"eval_runtime": 44.0985,
|
97 |
+
"eval_samples_per_second": 22.677,
|
98 |
+
"eval_steps_per_second": 2.835,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.19336333870887756,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.2074,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.2202378511428833,
|
111 |
+
"eval_runtime": 43.9577,
|
112 |
+
"eval_samples_per_second": 22.749,
|
113 |
+
"eval_steps_per_second": 2.844,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.1610746681690216,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.1434,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.22028386592865,
|
126 |
+
"eval_runtime": 43.903,
|
127 |
+
"eval_samples_per_second": 22.777,
|
128 |
+
"eval_steps_per_second": 2.847,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.18507854640483856,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.1506,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.221218466758728,
|
141 |
+
"eval_runtime": 43.981,
|
142 |
+
"eval_samples_per_second": 22.737,
|
143 |
+
"eval_steps_per_second": 2.842,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.17022280395030975,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.1761,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.2210596799850464,
|
156 |
+
"eval_runtime": 43.9473,
|
157 |
+
"eval_samples_per_second": 22.755,
|
158 |
+
"eval_steps_per_second": 2.844,
|
159 |
+
"step": 100
|
160 |
+
}
|
161 |
+
],
|
162 |
+
"logging_steps": 10,
|
163 |
+
"max_steps": 675,
|
164 |
+
"num_input_tokens_seen": 0,
|
165 |
+
"num_train_epochs": 9,
|
166 |
+
"save_steps": 10,
|
167 |
+
"stateful_callbacks": {
|
168 |
+
"TrainerControl": {
|
169 |
+
"args": {
|
170 |
+
"should_epoch_stop": false,
|
171 |
+
"should_evaluate": false,
|
172 |
+
"should_log": false,
|
173 |
+
"should_save": true,
|
174 |
+
"should_training_stop": false
|
175 |
+
},
|
176 |
+
"attributes": {}
|
177 |
+
}
|
178 |
+
},
|
179 |
+
"total_flos": 1.6386071986176e+16,
|
180 |
+
"train_batch_size": 8,
|
181 |
+
"trial_name": null,
|
182 |
+
"trial_params": null
|
183 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-110/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-110/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"query_key_value",
|
24 |
+
"dense_4h_to_h",
|
25 |
+
"dense_h_to_4h",
|
26 |
+
"dense"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-110/trainer_state.json
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.2202378511428833,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
|
4 |
+
"epoch": 1.4666666666666668,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 110,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.30893075466156006,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.1733,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.2328641414642334,
|
21 |
+
"eval_runtime": 44.0263,
|
22 |
+
"eval_samples_per_second": 22.714,
|
23 |
+
"eval_steps_per_second": 2.839,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.17991244792938232,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.2254,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.228402853012085,
|
36 |
+
"eval_runtime": 43.8933,
|
37 |
+
"eval_samples_per_second": 22.783,
|
38 |
+
"eval_steps_per_second": 2.848,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.1784493625164032,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.2043,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.2251635789871216,
|
51 |
+
"eval_runtime": 44.0062,
|
52 |
+
"eval_samples_per_second": 22.724,
|
53 |
+
"eval_steps_per_second": 2.841,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.21547502279281616,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.1879,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.2234975099563599,
|
66 |
+
"eval_runtime": 44.0274,
|
67 |
+
"eval_samples_per_second": 22.713,
|
68 |
+
"eval_steps_per_second": 2.839,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.22946320474147797,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.2158,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.2221243381500244,
|
81 |
+
"eval_runtime": 44.1867,
|
82 |
+
"eval_samples_per_second": 22.631,
|
83 |
+
"eval_steps_per_second": 2.829,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.23243005573749542,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.1901,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.220987319946289,
|
96 |
+
"eval_runtime": 44.0985,
|
97 |
+
"eval_samples_per_second": 22.677,
|
98 |
+
"eval_steps_per_second": 2.835,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.19336333870887756,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.2074,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.2202378511428833,
|
111 |
+
"eval_runtime": 43.9577,
|
112 |
+
"eval_samples_per_second": 22.749,
|
113 |
+
"eval_steps_per_second": 2.844,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.1610746681690216,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.1434,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.22028386592865,
|
126 |
+
"eval_runtime": 43.903,
|
127 |
+
"eval_samples_per_second": 22.777,
|
128 |
+
"eval_steps_per_second": 2.847,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.18507854640483856,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.1506,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.221218466758728,
|
141 |
+
"eval_runtime": 43.981,
|
142 |
+
"eval_samples_per_second": 22.737,
|
143 |
+
"eval_steps_per_second": 2.842,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.17022280395030975,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.1761,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.2210596799850464,
|
156 |
+
"eval_runtime": 43.9473,
|
157 |
+
"eval_samples_per_second": 22.755,
|
158 |
+
"eval_steps_per_second": 2.844,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.27772682905197144,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.2465,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.2218444347381592,
|
171 |
+
"eval_runtime": 43.8733,
|
172 |
+
"eval_samples_per_second": 22.793,
|
173 |
+
"eval_steps_per_second": 2.849,
|
174 |
+
"step": 110
|
175 |
+
}
|
176 |
+
],
|
177 |
+
"logging_steps": 10,
|
178 |
+
"max_steps": 675,
|
179 |
+
"num_input_tokens_seen": 0,
|
180 |
+
"num_train_epochs": 9,
|
181 |
+
"save_steps": 10,
|
182 |
+
"stateful_callbacks": {
|
183 |
+
"TrainerControl": {
|
184 |
+
"args": {
|
185 |
+
"should_epoch_stop": false,
|
186 |
+
"should_evaluate": false,
|
187 |
+
"should_log": false,
|
188 |
+
"should_save": true,
|
189 |
+
"should_training_stop": false
|
190 |
+
},
|
191 |
+
"attributes": {}
|
192 |
+
}
|
193 |
+
},
|
194 |
+
"total_flos": 1.80246791847936e+16,
|
195 |
+
"train_batch_size": 8,
|
196 |
+
"trial_name": null,
|
197 |
+
"trial_params": null
|
198 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-120/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-120/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"query_key_value",
|
24 |
+
"dense_4h_to_h",
|
25 |
+
"dense_h_to_4h",
|
26 |
+
"dense"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-120/trainer_state.json
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.2202378511428833,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
|
4 |
+
"epoch": 1.6,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 120,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.30893075466156006,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.1733,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.2328641414642334,
|
21 |
+
"eval_runtime": 44.0263,
|
22 |
+
"eval_samples_per_second": 22.714,
|
23 |
+
"eval_steps_per_second": 2.839,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.17991244792938232,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.2254,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.228402853012085,
|
36 |
+
"eval_runtime": 43.8933,
|
37 |
+
"eval_samples_per_second": 22.783,
|
38 |
+
"eval_steps_per_second": 2.848,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.1784493625164032,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.2043,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.2251635789871216,
|
51 |
+
"eval_runtime": 44.0062,
|
52 |
+
"eval_samples_per_second": 22.724,
|
53 |
+
"eval_steps_per_second": 2.841,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.21547502279281616,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.1879,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.2234975099563599,
|
66 |
+
"eval_runtime": 44.0274,
|
67 |
+
"eval_samples_per_second": 22.713,
|
68 |
+
"eval_steps_per_second": 2.839,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.22946320474147797,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.2158,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.2221243381500244,
|
81 |
+
"eval_runtime": 44.1867,
|
82 |
+
"eval_samples_per_second": 22.631,
|
83 |
+
"eval_steps_per_second": 2.829,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.23243005573749542,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.1901,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.220987319946289,
|
96 |
+
"eval_runtime": 44.0985,
|
97 |
+
"eval_samples_per_second": 22.677,
|
98 |
+
"eval_steps_per_second": 2.835,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.19336333870887756,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.2074,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.2202378511428833,
|
111 |
+
"eval_runtime": 43.9577,
|
112 |
+
"eval_samples_per_second": 22.749,
|
113 |
+
"eval_steps_per_second": 2.844,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.1610746681690216,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.1434,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.22028386592865,
|
126 |
+
"eval_runtime": 43.903,
|
127 |
+
"eval_samples_per_second": 22.777,
|
128 |
+
"eval_steps_per_second": 2.847,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.18507854640483856,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.1506,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.221218466758728,
|
141 |
+
"eval_runtime": 43.981,
|
142 |
+
"eval_samples_per_second": 22.737,
|
143 |
+
"eval_steps_per_second": 2.842,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.17022280395030975,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.1761,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.2210596799850464,
|
156 |
+
"eval_runtime": 43.9473,
|
157 |
+
"eval_samples_per_second": 22.755,
|
158 |
+
"eval_steps_per_second": 2.844,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.27772682905197144,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.2465,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.2218444347381592,
|
171 |
+
"eval_runtime": 43.8733,
|
172 |
+
"eval_samples_per_second": 22.793,
|
173 |
+
"eval_steps_per_second": 2.849,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.2792418599128723,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.1664,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.2227915525436401,
|
186 |
+
"eval_runtime": 43.869,
|
187 |
+
"eval_samples_per_second": 22.795,
|
188 |
+
"eval_steps_per_second": 2.849,
|
189 |
+
"step": 120
|
190 |
+
}
|
191 |
+
],
|
192 |
+
"logging_steps": 10,
|
193 |
+
"max_steps": 675,
|
194 |
+
"num_input_tokens_seen": 0,
|
195 |
+
"num_train_epochs": 9,
|
196 |
+
"save_steps": 10,
|
197 |
+
"stateful_callbacks": {
|
198 |
+
"TrainerControl": {
|
199 |
+
"args": {
|
200 |
+
"should_epoch_stop": false,
|
201 |
+
"should_evaluate": false,
|
202 |
+
"should_log": false,
|
203 |
+
"should_save": true,
|
204 |
+
"should_training_stop": false
|
205 |
+
},
|
206 |
+
"attributes": {}
|
207 |
+
}
|
208 |
+
},
|
209 |
+
"total_flos": 1.96632863834112e+16,
|
210 |
+
"train_batch_size": 8,
|
211 |
+
"trial_name": null,
|
212 |
+
"trial_params": null
|
213 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-130/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-130/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"query_key_value",
|
24 |
+
"dense_4h_to_h",
|
25 |
+
"dense_h_to_4h",
|
26 |
+
"dense"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-130/trainer_state.json
ADDED
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.2202378511428833,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
|
4 |
+
"epoch": 1.7333333333333334,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 130,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.30893075466156006,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.1733,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.2328641414642334,
|
21 |
+
"eval_runtime": 44.0263,
|
22 |
+
"eval_samples_per_second": 22.714,
|
23 |
+
"eval_steps_per_second": 2.839,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.17991244792938232,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.2254,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.228402853012085,
|
36 |
+
"eval_runtime": 43.8933,
|
37 |
+
"eval_samples_per_second": 22.783,
|
38 |
+
"eval_steps_per_second": 2.848,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.1784493625164032,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.2043,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.2251635789871216,
|
51 |
+
"eval_runtime": 44.0062,
|
52 |
+
"eval_samples_per_second": 22.724,
|
53 |
+
"eval_steps_per_second": 2.841,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.21547502279281616,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.1879,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.2234975099563599,
|
66 |
+
"eval_runtime": 44.0274,
|
67 |
+
"eval_samples_per_second": 22.713,
|
68 |
+
"eval_steps_per_second": 2.839,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.22946320474147797,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.2158,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.2221243381500244,
|
81 |
+
"eval_runtime": 44.1867,
|
82 |
+
"eval_samples_per_second": 22.631,
|
83 |
+
"eval_steps_per_second": 2.829,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.23243005573749542,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.1901,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.220987319946289,
|
96 |
+
"eval_runtime": 44.0985,
|
97 |
+
"eval_samples_per_second": 22.677,
|
98 |
+
"eval_steps_per_second": 2.835,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.19336333870887756,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.2074,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.2202378511428833,
|
111 |
+
"eval_runtime": 43.9577,
|
112 |
+
"eval_samples_per_second": 22.749,
|
113 |
+
"eval_steps_per_second": 2.844,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.1610746681690216,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.1434,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.22028386592865,
|
126 |
+
"eval_runtime": 43.903,
|
127 |
+
"eval_samples_per_second": 22.777,
|
128 |
+
"eval_steps_per_second": 2.847,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.18507854640483856,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.1506,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.221218466758728,
|
141 |
+
"eval_runtime": 43.981,
|
142 |
+
"eval_samples_per_second": 22.737,
|
143 |
+
"eval_steps_per_second": 2.842,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.17022280395030975,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.1761,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.2210596799850464,
|
156 |
+
"eval_runtime": 43.9473,
|
157 |
+
"eval_samples_per_second": 22.755,
|
158 |
+
"eval_steps_per_second": 2.844,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.27772682905197144,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.2465,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.2218444347381592,
|
171 |
+
"eval_runtime": 43.8733,
|
172 |
+
"eval_samples_per_second": 22.793,
|
173 |
+
"eval_steps_per_second": 2.849,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.2792418599128723,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.1664,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.2227915525436401,
|
186 |
+
"eval_runtime": 43.869,
|
187 |
+
"eval_samples_per_second": 22.795,
|
188 |
+
"eval_steps_per_second": 2.849,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.32393139600753784,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.1835,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.2218685150146484,
|
201 |
+
"eval_runtime": 43.878,
|
202 |
+
"eval_samples_per_second": 22.79,
|
203 |
+
"eval_steps_per_second": 2.849,
|
204 |
+
"step": 130
|
205 |
+
}
|
206 |
+
],
|
207 |
+
"logging_steps": 10,
|
208 |
+
"max_steps": 675,
|
209 |
+
"num_input_tokens_seen": 0,
|
210 |
+
"num_train_epochs": 9,
|
211 |
+
"save_steps": 10,
|
212 |
+
"stateful_callbacks": {
|
213 |
+
"TrainerControl": {
|
214 |
+
"args": {
|
215 |
+
"should_epoch_stop": false,
|
216 |
+
"should_evaluate": false,
|
217 |
+
"should_log": false,
|
218 |
+
"should_save": true,
|
219 |
+
"should_training_stop": false
|
220 |
+
},
|
221 |
+
"attributes": {}
|
222 |
+
}
|
223 |
+
},
|
224 |
+
"total_flos": 2.13018935820288e+16,
|
225 |
+
"train_batch_size": 8,
|
226 |
+
"trial_name": null,
|
227 |
+
"trial_params": null
|
228 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-140/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-140/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"query_key_value",
|
24 |
+
"dense_4h_to_h",
|
25 |
+
"dense_h_to_4h",
|
26 |
+
"dense"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-140/trainer_state.json
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.2202378511428833,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
|
4 |
+
"epoch": 1.8666666666666667,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 140,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.30893075466156006,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.1733,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.2328641414642334,
|
21 |
+
"eval_runtime": 44.0263,
|
22 |
+
"eval_samples_per_second": 22.714,
|
23 |
+
"eval_steps_per_second": 2.839,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.17991244792938232,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.2254,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.228402853012085,
|
36 |
+
"eval_runtime": 43.8933,
|
37 |
+
"eval_samples_per_second": 22.783,
|
38 |
+
"eval_steps_per_second": 2.848,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.1784493625164032,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.2043,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.2251635789871216,
|
51 |
+
"eval_runtime": 44.0062,
|
52 |
+
"eval_samples_per_second": 22.724,
|
53 |
+
"eval_steps_per_second": 2.841,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.21547502279281616,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.1879,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.2234975099563599,
|
66 |
+
"eval_runtime": 44.0274,
|
67 |
+
"eval_samples_per_second": 22.713,
|
68 |
+
"eval_steps_per_second": 2.839,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.22946320474147797,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.2158,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.2221243381500244,
|
81 |
+
"eval_runtime": 44.1867,
|
82 |
+
"eval_samples_per_second": 22.631,
|
83 |
+
"eval_steps_per_second": 2.829,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.23243005573749542,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.1901,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.220987319946289,
|
96 |
+
"eval_runtime": 44.0985,
|
97 |
+
"eval_samples_per_second": 22.677,
|
98 |
+
"eval_steps_per_second": 2.835,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.19336333870887756,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.2074,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.2202378511428833,
|
111 |
+
"eval_runtime": 43.9577,
|
112 |
+
"eval_samples_per_second": 22.749,
|
113 |
+
"eval_steps_per_second": 2.844,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.1610746681690216,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.1434,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.22028386592865,
|
126 |
+
"eval_runtime": 43.903,
|
127 |
+
"eval_samples_per_second": 22.777,
|
128 |
+
"eval_steps_per_second": 2.847,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.18507854640483856,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.1506,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.221218466758728,
|
141 |
+
"eval_runtime": 43.981,
|
142 |
+
"eval_samples_per_second": 22.737,
|
143 |
+
"eval_steps_per_second": 2.842,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.17022280395030975,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.1761,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.2210596799850464,
|
156 |
+
"eval_runtime": 43.9473,
|
157 |
+
"eval_samples_per_second": 22.755,
|
158 |
+
"eval_steps_per_second": 2.844,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.27772682905197144,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.2465,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.2218444347381592,
|
171 |
+
"eval_runtime": 43.8733,
|
172 |
+
"eval_samples_per_second": 22.793,
|
173 |
+
"eval_steps_per_second": 2.849,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.2792418599128723,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.1664,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.2227915525436401,
|
186 |
+
"eval_runtime": 43.869,
|
187 |
+
"eval_samples_per_second": 22.795,
|
188 |
+
"eval_steps_per_second": 2.849,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.32393139600753784,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.1835,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.2218685150146484,
|
201 |
+
"eval_runtime": 43.878,
|
202 |
+
"eval_samples_per_second": 22.79,
|
203 |
+
"eval_steps_per_second": 2.849,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.3198949694633484,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.1687,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.2223820686340332,
|
216 |
+
"eval_runtime": 43.9319,
|
217 |
+
"eval_samples_per_second": 22.763,
|
218 |
+
"eval_steps_per_second": 2.845,
|
219 |
+
"step": 140
|
220 |
+
}
|
221 |
+
],
|
222 |
+
"logging_steps": 10,
|
223 |
+
"max_steps": 675,
|
224 |
+
"num_input_tokens_seen": 0,
|
225 |
+
"num_train_epochs": 9,
|
226 |
+
"save_steps": 10,
|
227 |
+
"stateful_callbacks": {
|
228 |
+
"TrainerControl": {
|
229 |
+
"args": {
|
230 |
+
"should_epoch_stop": false,
|
231 |
+
"should_evaluate": false,
|
232 |
+
"should_log": false,
|
233 |
+
"should_save": true,
|
234 |
+
"should_training_stop": false
|
235 |
+
},
|
236 |
+
"attributes": {}
|
237 |
+
}
|
238 |
+
},
|
239 |
+
"total_flos": 2.29405007806464e+16,
|
240 |
+
"train_batch_size": 8,
|
241 |
+
"trial_name": null,
|
242 |
+
"trial_params": null
|
243 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-150/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-150/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"query_key_value",
|
24 |
+
"dense_4h_to_h",
|
25 |
+
"dense_h_to_4h",
|
26 |
+
"dense"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-150/trainer_state.json
ADDED
@@ -0,0 +1,258 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.2202378511428833,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
|
4 |
+
"epoch": 2.0,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 150,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.30893075466156006,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.1733,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.2328641414642334,
|
21 |
+
"eval_runtime": 44.0263,
|
22 |
+
"eval_samples_per_second": 22.714,
|
23 |
+
"eval_steps_per_second": 2.839,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.17991244792938232,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.2254,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.228402853012085,
|
36 |
+
"eval_runtime": 43.8933,
|
37 |
+
"eval_samples_per_second": 22.783,
|
38 |
+
"eval_steps_per_second": 2.848,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.1784493625164032,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.2043,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.2251635789871216,
|
51 |
+
"eval_runtime": 44.0062,
|
52 |
+
"eval_samples_per_second": 22.724,
|
53 |
+
"eval_steps_per_second": 2.841,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.21547502279281616,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.1879,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.2234975099563599,
|
66 |
+
"eval_runtime": 44.0274,
|
67 |
+
"eval_samples_per_second": 22.713,
|
68 |
+
"eval_steps_per_second": 2.839,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.22946320474147797,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.2158,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.2221243381500244,
|
81 |
+
"eval_runtime": 44.1867,
|
82 |
+
"eval_samples_per_second": 22.631,
|
83 |
+
"eval_steps_per_second": 2.829,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.23243005573749542,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.1901,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.220987319946289,
|
96 |
+
"eval_runtime": 44.0985,
|
97 |
+
"eval_samples_per_second": 22.677,
|
98 |
+
"eval_steps_per_second": 2.835,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.19336333870887756,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.2074,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.2202378511428833,
|
111 |
+
"eval_runtime": 43.9577,
|
112 |
+
"eval_samples_per_second": 22.749,
|
113 |
+
"eval_steps_per_second": 2.844,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.1610746681690216,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.1434,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.22028386592865,
|
126 |
+
"eval_runtime": 43.903,
|
127 |
+
"eval_samples_per_second": 22.777,
|
128 |
+
"eval_steps_per_second": 2.847,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.18507854640483856,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.1506,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.221218466758728,
|
141 |
+
"eval_runtime": 43.981,
|
142 |
+
"eval_samples_per_second": 22.737,
|
143 |
+
"eval_steps_per_second": 2.842,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.17022280395030975,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.1761,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.2210596799850464,
|
156 |
+
"eval_runtime": 43.9473,
|
157 |
+
"eval_samples_per_second": 22.755,
|
158 |
+
"eval_steps_per_second": 2.844,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.27772682905197144,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.2465,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.2218444347381592,
|
171 |
+
"eval_runtime": 43.8733,
|
172 |
+
"eval_samples_per_second": 22.793,
|
173 |
+
"eval_steps_per_second": 2.849,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.2792418599128723,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.1664,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.2227915525436401,
|
186 |
+
"eval_runtime": 43.869,
|
187 |
+
"eval_samples_per_second": 22.795,
|
188 |
+
"eval_steps_per_second": 2.849,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.32393139600753784,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.1835,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.2218685150146484,
|
201 |
+
"eval_runtime": 43.878,
|
202 |
+
"eval_samples_per_second": 22.79,
|
203 |
+
"eval_steps_per_second": 2.849,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.3198949694633484,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.1687,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.2223820686340332,
|
216 |
+
"eval_runtime": 43.9319,
|
217 |
+
"eval_samples_per_second": 22.763,
|
218 |
+
"eval_steps_per_second": 2.845,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.2342524528503418,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 1.1516,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 1.2233225107192993,
|
231 |
+
"eval_runtime": 43.9266,
|
232 |
+
"eval_samples_per_second": 22.765,
|
233 |
+
"eval_steps_per_second": 2.846,
|
234 |
+
"step": 150
|
235 |
+
}
|
236 |
+
],
|
237 |
+
"logging_steps": 10,
|
238 |
+
"max_steps": 675,
|
239 |
+
"num_input_tokens_seen": 0,
|
240 |
+
"num_train_epochs": 9,
|
241 |
+
"save_steps": 10,
|
242 |
+
"stateful_callbacks": {
|
243 |
+
"TrainerControl": {
|
244 |
+
"args": {
|
245 |
+
"should_epoch_stop": false,
|
246 |
+
"should_evaluate": false,
|
247 |
+
"should_log": false,
|
248 |
+
"should_save": true,
|
249 |
+
"should_training_stop": false
|
250 |
+
},
|
251 |
+
"attributes": {}
|
252 |
+
}
|
253 |
+
},
|
254 |
+
"total_flos": 2.4579107979264e+16,
|
255 |
+
"train_batch_size": 8,
|
256 |
+
"trial_name": null,
|
257 |
+
"trial_params": null
|
258 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-160/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-160/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"query_key_value",
|
24 |
+
"dense_4h_to_h",
|
25 |
+
"dense_h_to_4h",
|
26 |
+
"dense"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-160/trainer_state.json
ADDED
@@ -0,0 +1,273 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.2202378511428833,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
|
4 |
+
"epoch": 2.1333333333333333,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 160,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.30893075466156006,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.1733,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.2328641414642334,
|
21 |
+
"eval_runtime": 44.0263,
|
22 |
+
"eval_samples_per_second": 22.714,
|
23 |
+
"eval_steps_per_second": 2.839,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.17991244792938232,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.2254,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.228402853012085,
|
36 |
+
"eval_runtime": 43.8933,
|
37 |
+
"eval_samples_per_second": 22.783,
|
38 |
+
"eval_steps_per_second": 2.848,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.1784493625164032,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.2043,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.2251635789871216,
|
51 |
+
"eval_runtime": 44.0062,
|
52 |
+
"eval_samples_per_second": 22.724,
|
53 |
+
"eval_steps_per_second": 2.841,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.21547502279281616,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.1879,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.2234975099563599,
|
66 |
+
"eval_runtime": 44.0274,
|
67 |
+
"eval_samples_per_second": 22.713,
|
68 |
+
"eval_steps_per_second": 2.839,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.22946320474147797,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.2158,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.2221243381500244,
|
81 |
+
"eval_runtime": 44.1867,
|
82 |
+
"eval_samples_per_second": 22.631,
|
83 |
+
"eval_steps_per_second": 2.829,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.23243005573749542,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.1901,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.220987319946289,
|
96 |
+
"eval_runtime": 44.0985,
|
97 |
+
"eval_samples_per_second": 22.677,
|
98 |
+
"eval_steps_per_second": 2.835,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.19336333870887756,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.2074,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.2202378511428833,
|
111 |
+
"eval_runtime": 43.9577,
|
112 |
+
"eval_samples_per_second": 22.749,
|
113 |
+
"eval_steps_per_second": 2.844,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.1610746681690216,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.1434,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.22028386592865,
|
126 |
+
"eval_runtime": 43.903,
|
127 |
+
"eval_samples_per_second": 22.777,
|
128 |
+
"eval_steps_per_second": 2.847,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.18507854640483856,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.1506,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.221218466758728,
|
141 |
+
"eval_runtime": 43.981,
|
142 |
+
"eval_samples_per_second": 22.737,
|
143 |
+
"eval_steps_per_second": 2.842,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.17022280395030975,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.1761,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.2210596799850464,
|
156 |
+
"eval_runtime": 43.9473,
|
157 |
+
"eval_samples_per_second": 22.755,
|
158 |
+
"eval_steps_per_second": 2.844,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.27772682905197144,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.2465,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.2218444347381592,
|
171 |
+
"eval_runtime": 43.8733,
|
172 |
+
"eval_samples_per_second": 22.793,
|
173 |
+
"eval_steps_per_second": 2.849,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.2792418599128723,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.1664,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.2227915525436401,
|
186 |
+
"eval_runtime": 43.869,
|
187 |
+
"eval_samples_per_second": 22.795,
|
188 |
+
"eval_steps_per_second": 2.849,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.32393139600753784,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.1835,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.2218685150146484,
|
201 |
+
"eval_runtime": 43.878,
|
202 |
+
"eval_samples_per_second": 22.79,
|
203 |
+
"eval_steps_per_second": 2.849,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.3198949694633484,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.1687,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.2223820686340332,
|
216 |
+
"eval_runtime": 43.9319,
|
217 |
+
"eval_samples_per_second": 22.763,
|
218 |
+
"eval_steps_per_second": 2.845,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.2342524528503418,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 1.1516,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 1.2233225107192993,
|
231 |
+
"eval_runtime": 43.9266,
|
232 |
+
"eval_samples_per_second": 22.765,
|
233 |
+
"eval_steps_per_second": 2.846,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 0.26675984263420105,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 1.1673,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 1.2325456142425537,
|
246 |
+
"eval_runtime": 43.9006,
|
247 |
+
"eval_samples_per_second": 22.779,
|
248 |
+
"eval_steps_per_second": 2.847,
|
249 |
+
"step": 160
|
250 |
+
}
|
251 |
+
],
|
252 |
+
"logging_steps": 10,
|
253 |
+
"max_steps": 675,
|
254 |
+
"num_input_tokens_seen": 0,
|
255 |
+
"num_train_epochs": 9,
|
256 |
+
"save_steps": 10,
|
257 |
+
"stateful_callbacks": {
|
258 |
+
"TrainerControl": {
|
259 |
+
"args": {
|
260 |
+
"should_epoch_stop": false,
|
261 |
+
"should_evaluate": false,
|
262 |
+
"should_log": false,
|
263 |
+
"should_save": true,
|
264 |
+
"should_training_stop": false
|
265 |
+
},
|
266 |
+
"attributes": {}
|
267 |
+
}
|
268 |
+
},
|
269 |
+
"total_flos": 2.62177151778816e+16,
|
270 |
+
"train_batch_size": 8,
|
271 |
+
"trial_name": null,
|
272 |
+
"trial_params": null
|
273 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-170/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-170/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"query_key_value",
|
24 |
+
"dense_4h_to_h",
|
25 |
+
"dense_h_to_4h",
|
26 |
+
"dense"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-170/trainer_state.json
ADDED
@@ -0,0 +1,288 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.2202378511428833,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
|
4 |
+
"epoch": 2.2666666666666666,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 170,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.30893075466156006,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.1733,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.2328641414642334,
|
21 |
+
"eval_runtime": 44.0263,
|
22 |
+
"eval_samples_per_second": 22.714,
|
23 |
+
"eval_steps_per_second": 2.839,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.17991244792938232,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.2254,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.228402853012085,
|
36 |
+
"eval_runtime": 43.8933,
|
37 |
+
"eval_samples_per_second": 22.783,
|
38 |
+
"eval_steps_per_second": 2.848,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.1784493625164032,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.2043,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.2251635789871216,
|
51 |
+
"eval_runtime": 44.0062,
|
52 |
+
"eval_samples_per_second": 22.724,
|
53 |
+
"eval_steps_per_second": 2.841,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.21547502279281616,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.1879,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.2234975099563599,
|
66 |
+
"eval_runtime": 44.0274,
|
67 |
+
"eval_samples_per_second": 22.713,
|
68 |
+
"eval_steps_per_second": 2.839,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.22946320474147797,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.2158,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.2221243381500244,
|
81 |
+
"eval_runtime": 44.1867,
|
82 |
+
"eval_samples_per_second": 22.631,
|
83 |
+
"eval_steps_per_second": 2.829,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.23243005573749542,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.1901,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.220987319946289,
|
96 |
+
"eval_runtime": 44.0985,
|
97 |
+
"eval_samples_per_second": 22.677,
|
98 |
+
"eval_steps_per_second": 2.835,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.19336333870887756,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.2074,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.2202378511428833,
|
111 |
+
"eval_runtime": 43.9577,
|
112 |
+
"eval_samples_per_second": 22.749,
|
113 |
+
"eval_steps_per_second": 2.844,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.1610746681690216,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.1434,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.22028386592865,
|
126 |
+
"eval_runtime": 43.903,
|
127 |
+
"eval_samples_per_second": 22.777,
|
128 |
+
"eval_steps_per_second": 2.847,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.18507854640483856,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.1506,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.221218466758728,
|
141 |
+
"eval_runtime": 43.981,
|
142 |
+
"eval_samples_per_second": 22.737,
|
143 |
+
"eval_steps_per_second": 2.842,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.17022280395030975,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.1761,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.2210596799850464,
|
156 |
+
"eval_runtime": 43.9473,
|
157 |
+
"eval_samples_per_second": 22.755,
|
158 |
+
"eval_steps_per_second": 2.844,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.27772682905197144,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.2465,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.2218444347381592,
|
171 |
+
"eval_runtime": 43.8733,
|
172 |
+
"eval_samples_per_second": 22.793,
|
173 |
+
"eval_steps_per_second": 2.849,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.2792418599128723,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.1664,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.2227915525436401,
|
186 |
+
"eval_runtime": 43.869,
|
187 |
+
"eval_samples_per_second": 22.795,
|
188 |
+
"eval_steps_per_second": 2.849,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.32393139600753784,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.1835,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.2218685150146484,
|
201 |
+
"eval_runtime": 43.878,
|
202 |
+
"eval_samples_per_second": 22.79,
|
203 |
+
"eval_steps_per_second": 2.849,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.3198949694633484,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.1687,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.2223820686340332,
|
216 |
+
"eval_runtime": 43.9319,
|
217 |
+
"eval_samples_per_second": 22.763,
|
218 |
+
"eval_steps_per_second": 2.845,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.2342524528503418,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 1.1516,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 1.2233225107192993,
|
231 |
+
"eval_runtime": 43.9266,
|
232 |
+
"eval_samples_per_second": 22.765,
|
233 |
+
"eval_steps_per_second": 2.846,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 0.26675984263420105,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 1.1673,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 1.2325456142425537,
|
246 |
+
"eval_runtime": 43.9006,
|
247 |
+
"eval_samples_per_second": 22.779,
|
248 |
+
"eval_steps_per_second": 2.847,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 0.36160191893577576,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 1.1959,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 1.2345908880233765,
|
261 |
+
"eval_runtime": 44.0473,
|
262 |
+
"eval_samples_per_second": 22.703,
|
263 |
+
"eval_steps_per_second": 2.838,
|
264 |
+
"step": 170
|
265 |
+
}
|
266 |
+
],
|
267 |
+
"logging_steps": 10,
|
268 |
+
"max_steps": 675,
|
269 |
+
"num_input_tokens_seen": 0,
|
270 |
+
"num_train_epochs": 9,
|
271 |
+
"save_steps": 10,
|
272 |
+
"stateful_callbacks": {
|
273 |
+
"TrainerControl": {
|
274 |
+
"args": {
|
275 |
+
"should_epoch_stop": false,
|
276 |
+
"should_evaluate": false,
|
277 |
+
"should_log": false,
|
278 |
+
"should_save": true,
|
279 |
+
"should_training_stop": false
|
280 |
+
},
|
281 |
+
"attributes": {}
|
282 |
+
}
|
283 |
+
},
|
284 |
+
"total_flos": 2.78563223764992e+16,
|
285 |
+
"train_batch_size": 8,
|
286 |
+
"trial_name": null,
|
287 |
+
"trial_params": null
|
288 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-180/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-180/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"query_key_value",
|
24 |
+
"dense_4h_to_h",
|
25 |
+
"dense_h_to_4h",
|
26 |
+
"dense"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-180/trainer_state.json
ADDED
@@ -0,0 +1,303 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.2202378511428833,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
|
4 |
+
"epoch": 2.4,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 180,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.30893075466156006,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.1733,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.2328641414642334,
|
21 |
+
"eval_runtime": 44.0263,
|
22 |
+
"eval_samples_per_second": 22.714,
|
23 |
+
"eval_steps_per_second": 2.839,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.17991244792938232,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.2254,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.228402853012085,
|
36 |
+
"eval_runtime": 43.8933,
|
37 |
+
"eval_samples_per_second": 22.783,
|
38 |
+
"eval_steps_per_second": 2.848,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.1784493625164032,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.2043,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.2251635789871216,
|
51 |
+
"eval_runtime": 44.0062,
|
52 |
+
"eval_samples_per_second": 22.724,
|
53 |
+
"eval_steps_per_second": 2.841,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.21547502279281616,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.1879,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.2234975099563599,
|
66 |
+
"eval_runtime": 44.0274,
|
67 |
+
"eval_samples_per_second": 22.713,
|
68 |
+
"eval_steps_per_second": 2.839,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.22946320474147797,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.2158,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.2221243381500244,
|
81 |
+
"eval_runtime": 44.1867,
|
82 |
+
"eval_samples_per_second": 22.631,
|
83 |
+
"eval_steps_per_second": 2.829,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.23243005573749542,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.1901,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.220987319946289,
|
96 |
+
"eval_runtime": 44.0985,
|
97 |
+
"eval_samples_per_second": 22.677,
|
98 |
+
"eval_steps_per_second": 2.835,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.19336333870887756,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.2074,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.2202378511428833,
|
111 |
+
"eval_runtime": 43.9577,
|
112 |
+
"eval_samples_per_second": 22.749,
|
113 |
+
"eval_steps_per_second": 2.844,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.1610746681690216,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.1434,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.22028386592865,
|
126 |
+
"eval_runtime": 43.903,
|
127 |
+
"eval_samples_per_second": 22.777,
|
128 |
+
"eval_steps_per_second": 2.847,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.18507854640483856,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.1506,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.221218466758728,
|
141 |
+
"eval_runtime": 43.981,
|
142 |
+
"eval_samples_per_second": 22.737,
|
143 |
+
"eval_steps_per_second": 2.842,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.17022280395030975,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.1761,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.2210596799850464,
|
156 |
+
"eval_runtime": 43.9473,
|
157 |
+
"eval_samples_per_second": 22.755,
|
158 |
+
"eval_steps_per_second": 2.844,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.27772682905197144,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.2465,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.2218444347381592,
|
171 |
+
"eval_runtime": 43.8733,
|
172 |
+
"eval_samples_per_second": 22.793,
|
173 |
+
"eval_steps_per_second": 2.849,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.2792418599128723,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.1664,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.2227915525436401,
|
186 |
+
"eval_runtime": 43.869,
|
187 |
+
"eval_samples_per_second": 22.795,
|
188 |
+
"eval_steps_per_second": 2.849,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.32393139600753784,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.1835,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.2218685150146484,
|
201 |
+
"eval_runtime": 43.878,
|
202 |
+
"eval_samples_per_second": 22.79,
|
203 |
+
"eval_steps_per_second": 2.849,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.3198949694633484,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.1687,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.2223820686340332,
|
216 |
+
"eval_runtime": 43.9319,
|
217 |
+
"eval_samples_per_second": 22.763,
|
218 |
+
"eval_steps_per_second": 2.845,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.2342524528503418,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 1.1516,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 1.2233225107192993,
|
231 |
+
"eval_runtime": 43.9266,
|
232 |
+
"eval_samples_per_second": 22.765,
|
233 |
+
"eval_steps_per_second": 2.846,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 0.26675984263420105,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 1.1673,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 1.2325456142425537,
|
246 |
+
"eval_runtime": 43.9006,
|
247 |
+
"eval_samples_per_second": 22.779,
|
248 |
+
"eval_steps_per_second": 2.847,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 0.36160191893577576,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 1.1959,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 1.2345908880233765,
|
261 |
+
"eval_runtime": 44.0473,
|
262 |
+
"eval_samples_per_second": 22.703,
|
263 |
+
"eval_steps_per_second": 2.838,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 0.35918164253234863,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 1.1213,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 1.2354995012283325,
|
276 |
+
"eval_runtime": 43.984,
|
277 |
+
"eval_samples_per_second": 22.736,
|
278 |
+
"eval_steps_per_second": 2.842,
|
279 |
+
"step": 180
|
280 |
+
}
|
281 |
+
],
|
282 |
+
"logging_steps": 10,
|
283 |
+
"max_steps": 675,
|
284 |
+
"num_input_tokens_seen": 0,
|
285 |
+
"num_train_epochs": 9,
|
286 |
+
"save_steps": 10,
|
287 |
+
"stateful_callbacks": {
|
288 |
+
"TrainerControl": {
|
289 |
+
"args": {
|
290 |
+
"should_epoch_stop": false,
|
291 |
+
"should_evaluate": false,
|
292 |
+
"should_log": false,
|
293 |
+
"should_save": true,
|
294 |
+
"should_training_stop": false
|
295 |
+
},
|
296 |
+
"attributes": {}
|
297 |
+
}
|
298 |
+
},
|
299 |
+
"total_flos": 2.94949295751168e+16,
|
300 |
+
"train_batch_size": 8,
|
301 |
+
"trial_name": null,
|
302 |
+
"trial_params": null
|
303 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-190/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-190/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"query_key_value",
|
24 |
+
"dense_4h_to_h",
|
25 |
+
"dense_h_to_4h",
|
26 |
+
"dense"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-190/trainer_state.json
ADDED
@@ -0,0 +1,318 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.2202378511428833,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
|
4 |
+
"epoch": 2.533333333333333,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 190,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.30893075466156006,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.1733,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.2328641414642334,
|
21 |
+
"eval_runtime": 44.0263,
|
22 |
+
"eval_samples_per_second": 22.714,
|
23 |
+
"eval_steps_per_second": 2.839,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.17991244792938232,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.2254,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.228402853012085,
|
36 |
+
"eval_runtime": 43.8933,
|
37 |
+
"eval_samples_per_second": 22.783,
|
38 |
+
"eval_steps_per_second": 2.848,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.1784493625164032,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.2043,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.2251635789871216,
|
51 |
+
"eval_runtime": 44.0062,
|
52 |
+
"eval_samples_per_second": 22.724,
|
53 |
+
"eval_steps_per_second": 2.841,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.21547502279281616,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.1879,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.2234975099563599,
|
66 |
+
"eval_runtime": 44.0274,
|
67 |
+
"eval_samples_per_second": 22.713,
|
68 |
+
"eval_steps_per_second": 2.839,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.22946320474147797,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.2158,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.2221243381500244,
|
81 |
+
"eval_runtime": 44.1867,
|
82 |
+
"eval_samples_per_second": 22.631,
|
83 |
+
"eval_steps_per_second": 2.829,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.23243005573749542,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.1901,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.220987319946289,
|
96 |
+
"eval_runtime": 44.0985,
|
97 |
+
"eval_samples_per_second": 22.677,
|
98 |
+
"eval_steps_per_second": 2.835,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.19336333870887756,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.2074,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.2202378511428833,
|
111 |
+
"eval_runtime": 43.9577,
|
112 |
+
"eval_samples_per_second": 22.749,
|
113 |
+
"eval_steps_per_second": 2.844,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.1610746681690216,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.1434,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.22028386592865,
|
126 |
+
"eval_runtime": 43.903,
|
127 |
+
"eval_samples_per_second": 22.777,
|
128 |
+
"eval_steps_per_second": 2.847,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.18507854640483856,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.1506,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.221218466758728,
|
141 |
+
"eval_runtime": 43.981,
|
142 |
+
"eval_samples_per_second": 22.737,
|
143 |
+
"eval_steps_per_second": 2.842,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.17022280395030975,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.1761,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.2210596799850464,
|
156 |
+
"eval_runtime": 43.9473,
|
157 |
+
"eval_samples_per_second": 22.755,
|
158 |
+
"eval_steps_per_second": 2.844,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.27772682905197144,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.2465,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.2218444347381592,
|
171 |
+
"eval_runtime": 43.8733,
|
172 |
+
"eval_samples_per_second": 22.793,
|
173 |
+
"eval_steps_per_second": 2.849,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.2792418599128723,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.1664,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.2227915525436401,
|
186 |
+
"eval_runtime": 43.869,
|
187 |
+
"eval_samples_per_second": 22.795,
|
188 |
+
"eval_steps_per_second": 2.849,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.32393139600753784,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.1835,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.2218685150146484,
|
201 |
+
"eval_runtime": 43.878,
|
202 |
+
"eval_samples_per_second": 22.79,
|
203 |
+
"eval_steps_per_second": 2.849,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.3198949694633484,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.1687,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.2223820686340332,
|
216 |
+
"eval_runtime": 43.9319,
|
217 |
+
"eval_samples_per_second": 22.763,
|
218 |
+
"eval_steps_per_second": 2.845,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.2342524528503418,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 1.1516,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 1.2233225107192993,
|
231 |
+
"eval_runtime": 43.9266,
|
232 |
+
"eval_samples_per_second": 22.765,
|
233 |
+
"eval_steps_per_second": 2.846,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 0.26675984263420105,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 1.1673,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 1.2325456142425537,
|
246 |
+
"eval_runtime": 43.9006,
|
247 |
+
"eval_samples_per_second": 22.779,
|
248 |
+
"eval_steps_per_second": 2.847,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 0.36160191893577576,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 1.1959,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 1.2345908880233765,
|
261 |
+
"eval_runtime": 44.0473,
|
262 |
+
"eval_samples_per_second": 22.703,
|
263 |
+
"eval_steps_per_second": 2.838,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 0.35918164253234863,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 1.1213,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 1.2354995012283325,
|
276 |
+
"eval_runtime": 43.984,
|
277 |
+
"eval_samples_per_second": 22.736,
|
278 |
+
"eval_steps_per_second": 2.842,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 0.4165070652961731,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 1.1228,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 1.2382323741912842,
|
291 |
+
"eval_runtime": 44.1465,
|
292 |
+
"eval_samples_per_second": 22.652,
|
293 |
+
"eval_steps_per_second": 2.831,
|
294 |
+
"step": 190
|
295 |
+
}
|
296 |
+
],
|
297 |
+
"logging_steps": 10,
|
298 |
+
"max_steps": 675,
|
299 |
+
"num_input_tokens_seen": 0,
|
300 |
+
"num_train_epochs": 9,
|
301 |
+
"save_steps": 10,
|
302 |
+
"stateful_callbacks": {
|
303 |
+
"TrainerControl": {
|
304 |
+
"args": {
|
305 |
+
"should_epoch_stop": false,
|
306 |
+
"should_evaluate": false,
|
307 |
+
"should_log": false,
|
308 |
+
"should_save": true,
|
309 |
+
"should_training_stop": false
|
310 |
+
},
|
311 |
+
"attributes": {}
|
312 |
+
}
|
313 |
+
},
|
314 |
+
"total_flos": 3.11335367737344e+16,
|
315 |
+
"train_batch_size": 8,
|
316 |
+
"trial_name": null,
|
317 |
+
"trial_params": null
|
318 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-20/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-20/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"query_key_value",
|
24 |
+
"dense_4h_to_h",
|
25 |
+
"dense_h_to_4h",
|
26 |
+
"dense"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-20/trainer_state.json
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.228402853012085,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-20",
|
4 |
+
"epoch": 0.26666666666666666,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 20,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.30893075466156006,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.1733,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.2328641414642334,
|
21 |
+
"eval_runtime": 44.0263,
|
22 |
+
"eval_samples_per_second": 22.714,
|
23 |
+
"eval_steps_per_second": 2.839,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.17991244792938232,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.2254,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.228402853012085,
|
36 |
+
"eval_runtime": 43.8933,
|
37 |
+
"eval_samples_per_second": 22.783,
|
38 |
+
"eval_steps_per_second": 2.848,
|
39 |
+
"step": 20
|
40 |
+
}
|
41 |
+
],
|
42 |
+
"logging_steps": 10,
|
43 |
+
"max_steps": 675,
|
44 |
+
"num_input_tokens_seen": 0,
|
45 |
+
"num_train_epochs": 9,
|
46 |
+
"save_steps": 10,
|
47 |
+
"stateful_callbacks": {
|
48 |
+
"TrainerControl": {
|
49 |
+
"args": {
|
50 |
+
"should_epoch_stop": false,
|
51 |
+
"should_evaluate": false,
|
52 |
+
"should_log": false,
|
53 |
+
"should_save": true,
|
54 |
+
"should_training_stop": false
|
55 |
+
},
|
56 |
+
"attributes": {}
|
57 |
+
}
|
58 |
+
},
|
59 |
+
"total_flos": 3277214397235200.0,
|
60 |
+
"train_batch_size": 8,
|
61 |
+
"trial_name": null,
|
62 |
+
"trial_params": null
|
63 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-200/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-200/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"query_key_value",
|
24 |
+
"dense_4h_to_h",
|
25 |
+
"dense_h_to_4h",
|
26 |
+
"dense"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-200/trainer_state.json
ADDED
@@ -0,0 +1,333 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.2202378511428833,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
|
4 |
+
"epoch": 2.6666666666666665,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 200,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.30893075466156006,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.1733,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.2328641414642334,
|
21 |
+
"eval_runtime": 44.0263,
|
22 |
+
"eval_samples_per_second": 22.714,
|
23 |
+
"eval_steps_per_second": 2.839,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.17991244792938232,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.2254,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.228402853012085,
|
36 |
+
"eval_runtime": 43.8933,
|
37 |
+
"eval_samples_per_second": 22.783,
|
38 |
+
"eval_steps_per_second": 2.848,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.1784493625164032,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.2043,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.2251635789871216,
|
51 |
+
"eval_runtime": 44.0062,
|
52 |
+
"eval_samples_per_second": 22.724,
|
53 |
+
"eval_steps_per_second": 2.841,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.21547502279281616,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.1879,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.2234975099563599,
|
66 |
+
"eval_runtime": 44.0274,
|
67 |
+
"eval_samples_per_second": 22.713,
|
68 |
+
"eval_steps_per_second": 2.839,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.22946320474147797,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.2158,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.2221243381500244,
|
81 |
+
"eval_runtime": 44.1867,
|
82 |
+
"eval_samples_per_second": 22.631,
|
83 |
+
"eval_steps_per_second": 2.829,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.23243005573749542,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.1901,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.220987319946289,
|
96 |
+
"eval_runtime": 44.0985,
|
97 |
+
"eval_samples_per_second": 22.677,
|
98 |
+
"eval_steps_per_second": 2.835,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.19336333870887756,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.2074,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.2202378511428833,
|
111 |
+
"eval_runtime": 43.9577,
|
112 |
+
"eval_samples_per_second": 22.749,
|
113 |
+
"eval_steps_per_second": 2.844,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.1610746681690216,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.1434,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.22028386592865,
|
126 |
+
"eval_runtime": 43.903,
|
127 |
+
"eval_samples_per_second": 22.777,
|
128 |
+
"eval_steps_per_second": 2.847,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.18507854640483856,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.1506,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.221218466758728,
|
141 |
+
"eval_runtime": 43.981,
|
142 |
+
"eval_samples_per_second": 22.737,
|
143 |
+
"eval_steps_per_second": 2.842,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.17022280395030975,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.1761,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.2210596799850464,
|
156 |
+
"eval_runtime": 43.9473,
|
157 |
+
"eval_samples_per_second": 22.755,
|
158 |
+
"eval_steps_per_second": 2.844,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.27772682905197144,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.2465,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.2218444347381592,
|
171 |
+
"eval_runtime": 43.8733,
|
172 |
+
"eval_samples_per_second": 22.793,
|
173 |
+
"eval_steps_per_second": 2.849,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.2792418599128723,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.1664,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.2227915525436401,
|
186 |
+
"eval_runtime": 43.869,
|
187 |
+
"eval_samples_per_second": 22.795,
|
188 |
+
"eval_steps_per_second": 2.849,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.32393139600753784,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.1835,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.2218685150146484,
|
201 |
+
"eval_runtime": 43.878,
|
202 |
+
"eval_samples_per_second": 22.79,
|
203 |
+
"eval_steps_per_second": 2.849,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.3198949694633484,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.1687,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.2223820686340332,
|
216 |
+
"eval_runtime": 43.9319,
|
217 |
+
"eval_samples_per_second": 22.763,
|
218 |
+
"eval_steps_per_second": 2.845,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.2342524528503418,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 1.1516,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 1.2233225107192993,
|
231 |
+
"eval_runtime": 43.9266,
|
232 |
+
"eval_samples_per_second": 22.765,
|
233 |
+
"eval_steps_per_second": 2.846,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 0.26675984263420105,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 1.1673,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 1.2325456142425537,
|
246 |
+
"eval_runtime": 43.9006,
|
247 |
+
"eval_samples_per_second": 22.779,
|
248 |
+
"eval_steps_per_second": 2.847,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 0.36160191893577576,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 1.1959,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 1.2345908880233765,
|
261 |
+
"eval_runtime": 44.0473,
|
262 |
+
"eval_samples_per_second": 22.703,
|
263 |
+
"eval_steps_per_second": 2.838,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 0.35918164253234863,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 1.1213,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 1.2354995012283325,
|
276 |
+
"eval_runtime": 43.984,
|
277 |
+
"eval_samples_per_second": 22.736,
|
278 |
+
"eval_steps_per_second": 2.842,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 0.4165070652961731,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 1.1228,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 1.2382323741912842,
|
291 |
+
"eval_runtime": 44.1465,
|
292 |
+
"eval_samples_per_second": 22.652,
|
293 |
+
"eval_steps_per_second": 2.831,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 0.3703323304653168,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 1.1306,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 1.2381049394607544,
|
306 |
+
"eval_runtime": 44.0824,
|
307 |
+
"eval_samples_per_second": 22.685,
|
308 |
+
"eval_steps_per_second": 2.836,
|
309 |
+
"step": 200
|
310 |
+
}
|
311 |
+
],
|
312 |
+
"logging_steps": 10,
|
313 |
+
"max_steps": 675,
|
314 |
+
"num_input_tokens_seen": 0,
|
315 |
+
"num_train_epochs": 9,
|
316 |
+
"save_steps": 10,
|
317 |
+
"stateful_callbacks": {
|
318 |
+
"TrainerControl": {
|
319 |
+
"args": {
|
320 |
+
"should_epoch_stop": false,
|
321 |
+
"should_evaluate": false,
|
322 |
+
"should_log": false,
|
323 |
+
"should_save": true,
|
324 |
+
"should_training_stop": false
|
325 |
+
},
|
326 |
+
"attributes": {}
|
327 |
+
}
|
328 |
+
},
|
329 |
+
"total_flos": 3.2772143972352e+16,
|
330 |
+
"train_batch_size": 8,
|
331 |
+
"trial_name": null,
|
332 |
+
"trial_params": null
|
333 |
+
}
|