Datasets:

Languages:
English
Size:
< 1K
ArXiv:
Libraries:
Datasets
License:
File size: 5,326 Bytes
1bb8d13
 
43c22bf
1bb8d13
43c22bf
1bb8d13
 
 
 
 
 
 
b94a8cf
 
 
 
 
1bb8d13
d1e73b5
1bb8d13
 
68cbc0d
215507d
 
 
 
 
 
 
 
 
 
43c22bf
1bb8d13
43c22bf
 
 
 
 
 
1bb8d13
43c22bf
1bb8d13
43c22bf
215507d
1bb8d13
67a4fb1
1bb8d13
 
67a4fb1
1bb8d13
 
 
 
 
 
 
 
 
90d2c06
1bb8d13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43c22bf
 
 
1bb8d13
 
 
 
 
 
 
954cbd4
1bb8d13
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import os
import json
import gc

import torch
import pandas as pd
from datasets import load_dataset
from lmppl import EncoderDecoderLM, LM, OpenAI

OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", None)

prompt_dict = {
    "friend/ally of": "Complete the following list with examples of entities that are friends or allies",
    "competitor/rival of": "Complete the following list with examples of entities that are competitors or rivals",
    "known for": "Complete the following list with examples of what entities are known for",
    "influenced by": "Complete the following list with examples of what has influenced different entities",
    "similar to": "Complete the following list with examples of entities that are similar"
}
data = load_dataset("cardiffnlp/relentless", split="test")
full_result = []
for lm, ppl_class, batch, pretty_name in [
    # ("google/flan-ul2", EncoderDecoderLM, 1, "Flan-UL2"),
    # ("google/flan-t5-xxl", EncoderDecoderLM, 1, "Flan-T5\textsubscript{XXL}"),
    # ("google/flan-t5-xl", EncoderDecoderLM, 1, "Flan-T5\textsubscript{XL}"),
    # ("google/flan-t5-large", EncoderDecoderLM, 32, "Flan-T5\textsubscript{LARGE}"),
    # ("google/flan-t5-base", EncoderDecoderLM, 128, "Flan-T5\textsubscript{BASE}"),
    # ("google/flan-t5-small", EncoderDecoderLM, 256, "Flan-T5\textsubscript{SMALL}"),
    # ("t5-11b", EncoderDecoderLM, 1, "T5\textsubscript{XXL}"),
    # ("t5-3b", EncoderDecoderLM, 1, "T5\textsubscript{XL}"),
    # ("t5-large", EncoderDecoderLM, 32, "T5\textsubscript{LARGE}"),
    # ("t5-base", EncoderDecoderLM, 128, "T5\textsubscript{BASE}"),
    # ("t5-small", EncoderDecoderLM, 256, "T5\textsubscript{SMALL}"),
    # ("facebook/opt-66b", LM, 1, "OPT\textsubscript{66B}"),
    ("facebook/opt-30b", LM, 1, "OPT\textsubscript{30B}"),
    ("facebook/opt-13b", LM, 1, "OPT\textsubscript{13B}"),
    ("facebook/opt-6.7b", LM, 1, "OPT\textsubscript{6.7B}"),
    ("facebook/opt-2.7b", LM, 1, "OPT\textsubscript{2.7B}"),
    ("facebook/opt-1.3b", LM, 1, "OPT\textsubscript{1.3B}"),
    ("facebook/opt-350m", LM, 128, "OPT\textsubscript{350M}"),
    ("facebook/opt-125m", LM, 256, "OPT\textsubscript{125M}"),
    ("facebook/opt-iml-30b", LM, 1, "OPT-IML\textsubscript{30B}"),
    ("facebook/opt-iml-1.3b", LM, 1, "OPT-IML\textsubscript{1.3B}"),
    ("facebook/opt-iml-max-30b", LM, 1, "OPT-IML\textsubscript{MAX-30B}"),
    ("facebook/opt-iml-max-1.3b", LM, 1, "OPT-IML\textsubscript{MAX-1.3B}"),
    ("davinci", OpenAI, None, "GPT-3\textsubscript{davinci}")
]:
    os.makedirs(f"results/lm_lc/{os.path.basename(lm)}", exist_ok=True)
    scorer = None
    for d in data:
        ppl_file = f"results/lm_lc/{os.path.basename(lm)}/ppl.{d['relation_type'].replace(' ', '_').replace('/', '__')}.jsonl"

        if not os.path.exists(ppl_file):

            if scorer is None:
                if ppl_class is OpenAI:
                    scorer = ppl_class(OPENAI_API_KEY, model=lm)
                else:
                    scorer = ppl_class(lm, device_map='auto', low_cpu_mem_usage=True, offload_folder=f"./offload_folder/{os.path.basename(lm)}")

            content = "\n".join([f'* ["{a}", "{b}"]' for a, b in d['prototypical_examples']])
            prompt_input = f"{prompt_dict[d['relation_type']]}:\n{content}"
            if ppl_class is LM:
                prompt_input = [f'{prompt_input}\n* ["{x}", "{y}"]' for x, y in d['pairs']]
                ppl = scorer.get_perplexity(input_texts=prompt_input, batch=batch)
                output = [{"perplexity": p, "input": i, "output": ""} for p, i in zip(ppl, prompt_input)]
            elif ppl_class is EncoderDecoderLM:
                prompt_output = [f'* ["{x}", "{y}"]' for x, y in d['pairs']]
                ppl = scorer.get_perplexity(input_texts=[prompt_input] * len(prompt_output), output_texts=prompt_output, batch=batch)
                output = [{"perplexity": p, "input": prompt_input, "output": o} for p, o in zip(ppl, prompt_output)]
            else:
                prompt_input = [f'{prompt_input}\n* ["{x}", "{y}"]' for x, y in d['pairs']]
                ppl = scorer.get_perplexity(input_texts=prompt_input)
                output = [{"perplexity": p, "input": i, "output": ""} for p, i in zip(ppl, prompt_input)]

            with open(ppl_file, "w") as f:
                f.write("\n".join([json.dumps(i) for i in output]))

        with open(ppl_file) as f:
            ppl = [json.loads(i)['perplexity'] for i in f.read().split("\n") if len(i) > 0]
        true_rank = d['ranks']
        assert len(true_rank) == len(ppl), f"Mismatch in number of examples: {len(true_rank)} vs {len(ppl)}"
        rank_map = {p: n for n, p in enumerate(sorted(ppl), 1)}
        prediction = [rank_map[p] for p in ppl]
        tmp = pd.DataFrame([true_rank, prediction], index=['true', 'pred']).T
        cor = tmp.corr("spearman").values[0, 1]
        full_result.append({"model": pretty_name, "relation_type": d['relation_type'], "correlation": cor})
    del scorer
    gc.collect()
    torch.cuda.empty_cache()

df = pd.DataFrame(full_result)
models = df['model'].unique()
print(df)
df = df.pivot(columns="relation_type", index="model", values="correlation")
df = df.T[models].T
df['average'] = df.mean(1)
df.to_csv("results/lm_lc/lm.csv")
df = (100 * df).round()
print(df.to_markdown())
print(df.to_latex(escape=False))