|
--- |
|
language: |
|
- en |
|
multilinguality: |
|
- monolingual |
|
size_categories: |
|
- 10K<n<100K |
|
task_categories: |
|
- summarization |
|
- text-generation |
|
task_ids: [] |
|
tags: |
|
- conditional-text-generation |
|
dataset_info: |
|
config_name: document |
|
features: |
|
- name: report |
|
dtype: string |
|
- name: summary |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 953321013 |
|
num_examples: 17517 |
|
- name: validation |
|
num_bytes: 55820431 |
|
num_examples: 973 |
|
- name: test |
|
num_bytes: 51591123 |
|
num_examples: 973 |
|
download_size: 506610432 |
|
dataset_size: 1060732567 |
|
configs: |
|
- config_name: document |
|
data_files: |
|
- split: train |
|
path: document/train-* |
|
- split: validation |
|
path: document/validation-* |
|
- split: test |
|
path: document/test-* |
|
default: true |
|
--- |
|
|
|
# GovReport dataset for summarization |
|
|
|
Dataset for summarization of long documents.\ |
|
Adapted from this [repo](https://github.com/luyang-huang96/LongDocSum) and this [paper](https://arxiv.org/pdf/2104.02112.pdf)\ |
|
This dataset is compatible with the [`run_summarization.py`](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) script from Transformers if you add this line to the `summarization_name_mapping` variable: |
|
```python |
|
"ccdv/govreport-summarization": ("report", "summary") |
|
``` |
|
|
|
### Data Fields |
|
|
|
- `id`: paper id |
|
- `report`: a string containing the body of the report |
|
- `summary`: a string containing the summary of the report |
|
|
|
### Data Splits |
|
|
|
This dataset has 3 splits: _train_, _validation_, and _test_. \ |
|
Token counts with a RoBERTa tokenizer. |
|
|
|
| Dataset Split | Number of Instances | Avg. tokens | |
|
| ------------- | --------------------|:----------------------| |
|
| Train | 17,517 | < 9,000 / < 500 | |
|
| Validation | 973 | < 9,000 / < 500 | |
|
| Test | 973 | < 9,000 / < 500 | |
|
|
|
|
|
# Cite original article |
|
``` |
|
@misc{huang2021efficient, |
|
title={Efficient Attentions for Long Document Summarization}, |
|
author={Luyang Huang and Shuyang Cao and Nikolaus Parulian and Heng Ji and Lu Wang}, |
|
year={2021}, |
|
eprint={2104.02112}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
|