File size: 4,873 Bytes
dee113c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" BERT classification fine-tuning: utilities to work with GLUE tasks """

from __future__ import absolute_import, division, print_function

import csv
import json
import logging
import os
import sys
from io import open
from sklearn.metrics import f1_score, precision_score, recall_score
from torch.utils.data import Dataset
import torch

csv.field_size_limit(sys.maxsize)
logger = logging.getLogger(__name__)


class InputFeatures(object):
    """A single training/test features for a example."""
    def __init__(self, code_tokens, code_ids, nl_tokens, nl_ids, label, idx):
        self.code_tokens = code_tokens
        self.code_ids = code_ids
        self.nl_tokens = nl_tokens
        self.nl_ids = nl_ids
        self.label = label
        self.idx = idx


class InputFeaturesTriplet(InputFeatures):
    """A single training/test features for a example. Add docstring seperately. """
    def __init__(self, code_tokens, code_ids, nl_tokens, nl_ids, ds_tokens, ds_ids, label, idx):
        super(InputFeaturesTriplet, self).__init__(code_tokens, code_ids, nl_tokens, nl_ids, label, idx)
        self.ds_tokens = ds_tokens
        self.ds_ids = ds_ids


def convert_examples_to_features(js, tokenizer, args):
    # label
    label = js['label']

    # code
    code = js['code']
    code_tokens = tokenizer.tokenize(code)[:args.max_seq_length-2]
    code_tokens = [tokenizer.cls_token]+code_tokens+[tokenizer.sep_token]
    code_ids = tokenizer.convert_tokens_to_ids(code_tokens)
    padding_length = args.max_seq_length - len(code_ids)
    code_ids += [tokenizer.pad_token_id]*padding_length

    nl = js['doc']  # query
    nl_tokens = tokenizer.tokenize(nl)[:args.max_seq_length-2]
    nl_tokens = [tokenizer.cls_token]+nl_tokens+[tokenizer.sep_token]
    nl_ids = tokenizer.convert_tokens_to_ids(nl_tokens)
    padding_length = args.max_seq_length - len(nl_ids)
    nl_ids += [tokenizer.pad_token_id]*padding_length

    return InputFeatures(code_tokens, code_ids, nl_tokens, nl_ids, label, js['idx'])


class TextDataset(Dataset):
    def __init__(self, tokenizer, args, file_path=None, type=None):
        # json file: dict: idx, query, doc, code
        self.examples = []
        self.type = type
        data=[]
        with open(file_path, 'r') as f:
            data = json.load(f)
            # data = data[:114560]
        if self.type == 'test':
            for js in data:
                js['label'] = 0
        for js in data:
            self.examples.append(convert_examples_to_features(js, tokenizer, args))
        if 'train' in file_path:
            for idx, example in enumerate(self.examples[:3]):
                logger.info("*** Example ***")
                logger.info("idx: {}".format(idx))
                logger.info("code_tokens: {}".format([x.replace('\u0120','_') for x in example.code_tokens]))
                logger.info("code_ids: {}".format(' '.join(map(str, example.code_ids))))
                logger.info("nl_tokens: {}".format([x.replace('\u0120','_') for x in example.nl_tokens]))
                logger.info("nl_ids: {}".format(' '.join(map(str, example.nl_ids))))

    def __len__(self):
        return len(self.examples)

    def __getitem__(self, i):
        """ return both tokenized code ids and nl ids and label"""
        return torch.tensor(self.examples[i].code_ids), \
               torch.tensor(self.examples[i].nl_ids),\
               torch.tensor(self.examples[i].label)




def simple_accuracy(preds, labels):
    return (preds == labels).mean()


def acc_and_f1(preds, labels):
    acc = simple_accuracy(preds, labels)
    f1 = f1_score(y_true=labels, y_pred=preds)
    prec = precision_score(y_true=labels, y_pred=preds)
    reca = recall_score(y_true=labels, y_pred=preds)
    return {
        "acc": acc,
        "precision": prec,
        "recall": reca,
        "f1": f1,
        "acc_and_f1": (acc + f1) / 2,
    }


def compute_metrics(task_name, preds, labels):
    assert len(preds) == len(labels)
    if task_name == "webquery":
        return acc_and_f1(preds, labels)
    if task_name == "staqc":
        return acc_and_f1(preds, labels)
    else:
        raise KeyError(task_name)