File size: 3,936 Bytes
dee113c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import torch
import torch.nn as nn
import torch
from torch.autograd import Variable
import copy

class Beam(object):
    def __init__(self, size,sos,eos):
        self.size = size
        self.tt = torch.cuda
        # The score for each translation on the beam.
        self.scores = self.tt.FloatTensor(size).zero_()
        # The backpointers at each time-step.
        self.prevKs = []
        # The outputs at each time-step.
        self.nextYs = [self.tt.LongTensor(size)
                       .fill_(0)]
        self.nextYs[0][:] = sos
        # Has EOS topped the beam yet.
        self._eos = eos
        self.eosTop = False
        # Time and k pair for finished.
        self.finished = []

    def getCurrentState(self):
        "Get the outputs for the current timestep."
        batch = self.tt.LongTensor(self.nextYs[-1]).view(-1, 1)
        return batch

    def getCurrentOrigin(self):
        "Get the backpointers for the current timestep."
        return self.prevKs[-1]

    def advance(self, wordLk):
        """
        Given prob over words for every last beam `wordLk` and attention
        `attnOut`: Compute and update the beam search.

        Parameters:

        * `wordLk`- probs of advancing from the last step (K x words)
        * `attnOut`- attention at the last step

        Returns: True if beam search is complete.
        """
        numWords = wordLk.size(1)

        # Sum the previous scores.
        if len(self.prevKs) > 0:
            beamLk = wordLk + self.scores.unsqueeze(1).expand_as(wordLk)

            # Don't let EOS have children.
            for i in range(self.nextYs[-1].size(0)):
                if self.nextYs[-1][i] == self._eos:
                    beamLk[i] = -1e20
        else:
            beamLk = wordLk[0]
        flatBeamLk = beamLk.view(-1)
        bestScores, bestScoresId = flatBeamLk.topk(self.size, 0, True, True)

        self.scores = bestScores

        # bestScoresId is flattened beam x word array, so calculate which
        # word and beam each score came from
        prevK = bestScoresId // numWords
        self.prevKs.append(prevK)
        self.nextYs.append((bestScoresId - prevK * numWords))


        for i in range(self.nextYs[-1].size(0)):
            if self.nextYs[-1][i] == self._eos:
                s = self.scores[i]
                self.finished.append((s, len(self.nextYs) - 1, i))

        # End condition is when top-of-beam is EOS and no global score.
        if self.nextYs[-1][0] == self._eos:
            self.eosTop = True

    def done(self):
        return self.eosTop and len(self.finished) >=self.size

    def getFinal(self):
        if len(self.finished) == 0:
            self.finished.append((self.scores[0], len(self.nextYs) - 1, 0))
        self.finished.sort(key=lambda a: -a[0])
        if len(self.finished) != self.size:
            unfinished=[]
            for i in range(self.nextYs[-1].size(0)):
                if self.nextYs[-1][i] != self._eos:
                    s = self.scores[i]
                    unfinished.append((s, len(self.nextYs) - 1, i)) 
            unfinished.sort(key=lambda a: -a[0])
            self.finished+=unfinished[:self.size-len(self.finished)]
        return self.finished[:self.size]

    def getHyp(self, beam_res):
        """
        Walk back to construct the full hypothesis.
        """
        hyps=[]
        for _,timestep, k in beam_res:
            hyp = []
            for j in range(len(self.prevKs[:timestep]) - 1, -1, -1):
                hyp.append(self.nextYs[j+1][k])
                k = self.prevKs[j][k]
            hyps.append(hyp[::-1])
        return hyps
    
    def buildTargetTokens(self, preds):
        sentence=[]
        for pred in preds:
            tokens = []
            for tok in pred:
                if tok==self._eos:
                    break
                tokens.append(tok)
            sentence.append(tokens)
        return sentence