File size: 10,363 Bytes
dee113c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
from __future__ import absolute_import, division, print_function
import argparse
import glob
import logging
import os
import pickle
import random
import re
import gc
import shutil
import json
import numpy as np
import torch
from torch.utils.data import DataLoader, Dataset, SequentialSampler, RandomSampler,TensorDataset
from torch.utils.data.distributed import DistributedSampler
from transformers import (WEIGHTS_NAME, AdamW, get_linear_schedule_with_warmup,
BertConfig, BertForMaskedLM, BertTokenizer,
GPT2Config, GPT2LMHeadModel, GPT2Tokenizer,
OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer,
RobertaConfig, RobertaForMaskedLM, RobertaTokenizer,
DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer)
class TextDataset(Dataset):
def __init__(self, tokenizer, args, logger, file_type='train', block_size=1024):
if args.local_rank==-1:
local_rank=0
world_size=1
else:
local_rank=args.local_rank
world_size=torch.distributed.get_world_size()
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
cached_file = os.path.join(args.output_dir, file_type+"_langs_%s"%(args.langs)+"_blocksize_%d"%(block_size)+"_wordsize_%d"%(world_size)+"_rank_%d"%(local_rank))
if os.path.exists(cached_file) and not args.overwrite_cache:
if file_type == 'train':
logger.warning("Loading features from cached file %s", cached_file)
with open(cached_file, 'rb') as handle:
self.inputs = pickle.load(handle)
else:
self.inputs = []
if args.langs == 'all':
langs = os.listdir(args.data_dir)
else:
langs = [args.langs]
data=[]
for lang in langs:
datafile = os.path.join(args.data_dir, lang, file_type+'.pkl')
if file_type == 'train':
logger.warning("Creating features from dataset file at %s", datafile)
# with open(datafile) as f:
# data.extend([json.loads(x)['code'] for idx,x in enumerate(f.readlines()) if idx%world_size==local_rank])
dataset = pickle.load(open(datafile, 'rb'))
data.extend(['<s> '+' '.join(x['function'].split())+' </s>' for idx,x in enumerate(dataset) if idx%world_size==local_rank])
# random.shuffle(data)
data = data
length = len(data)
logger.warning("Data size: %d"%(length))
input_ids = []
for idx,x in enumerate(data):
try:
input_ids.extend(tokenizer.encode(x))
except Exception:
pass
if idx % (length//10) == 0:
percent = idx / (length//10) * 10
logger.warning("Rank %d, load %d"%(local_rank, percent))
del data
gc.collect()
length = len(input_ids)
for i in range(0, length-block_size, block_size):
self.inputs.append(input_ids[i : i + block_size])
del input_ids
gc.collect()
if file_type == 'train':
logger.warning("Rank %d Training %d token, %d samples"%(local_rank, length, len(self.inputs)))
logger.warning("Saving features into cached file %s", cached_file)
with open(cached_file, 'wb') as handle:
pickle.dump(self.inputs, handle, protocol=pickle.HIGHEST_PROTOCOL)
def __len__(self):
return len(self.inputs)
def __getitem__(self, item):
return torch.tensor(self.inputs[item])
class finetuneDataset(Dataset):
def __init__(self, tokenizer, args, logger, file_type='train', block_size=1024):
if args.local_rank==-1:
local_rank=0
world_size=1
else:
local_rank=args.local_rank
world_size=torch.distributed.get_world_size()
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
cached_file = os.path.join(args.output_dir, file_type+"_blocksize_%d"%(block_size)+"_wordsize_%d"%(world_size)+"_rank_%d"%(local_rank))
if os.path.exists(cached_file) and not args.overwrite_cache:
if file_type == 'train':
logger.warning("Loading features from cached file %s", cached_file)
with open(cached_file, 'rb') as handle:
self.inputs = pickle.load(handle)
else:
self.inputs = []
datafile = os.path.join(args.data_dir, f"{file_type}.txt")
if file_type == 'train':
logger.warning("Creating features from dataset file at %s", datafile)
with open(datafile) as f:
data = f.readlines()
length = len(data)
logger.info("Data size: %d"%(length))
input_ids = []
for idx,x in enumerate(data):
x = x.strip()
if x.startswith("<s>") and x.endswith("</s>"):
pass
else:
x = "<s> " + x + " </s>"
try:
input_ids.extend(tokenizer.encode(x))
except Exception:
pass
if idx % (length//10) == 0:
percent = idx / (length//10) * 10
logger.warning("Rank %d, load %d"%(local_rank, percent))
del data
gc.collect()
length = len(input_ids) // world_size
logger.info(f"tokens: {length*world_size}")
input_ids = input_ids[local_rank*length: (local_rank+1)*length]
for i in range(0, length-block_size, block_size):
self.inputs.append(input_ids[i : i + block_size])
del input_ids
gc.collect()
if file_type == 'train':
logger.warning("Rank %d Training %d token, %d samples"%(local_rank, length, len(self.inputs)))
logger.warning("Saving features into cached file %s", cached_file)
with open(cached_file, 'wb') as handle:
pickle.dump(self.inputs, handle, protocol=pickle.HIGHEST_PROTOCOL)
def __len__(self):
return len(self.inputs)
def __getitem__(self, item):
return torch.tensor(self.inputs[item])
class EvalDataset(Dataset):
def __init__(self, tokenizer, args, logger, file_type='train', block_size=1024):
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
cached_file = os.path.join(args.output_dir, file_type+"_blocksize_%d"%(block_size))
if os.path.exists(cached_file) and not args.overwrite_cache:
with open(cached_file, 'rb') as handle:
self.inputs = pickle.load(handle)
else:
self.inputs = []
datafile = os.path.join(args.data_dir, f"{file_type}.txt")
with open(datafile) as f:
data = f.readlines()
length = len(data)
logger.info("Data size: %d"%(length))
input_ids = []
for idx,x in enumerate(data):
x = x.strip()
if x.startswith("<s>") and x.endswith("</s>"):
pass
else:
x = "<s> " + x + " </s>"
try:
input_ids.extend(tokenizer.encode(x))
except Exception:
pass
if idx % (length//10) == 0:
percent = idx / (length//10) * 10
logger.warning("load %d"%(percent))
del data
gc.collect()
logger.info(f"tokens: {len(input_ids)}")
self.split(input_ids, tokenizer, logger, block_size=block_size)
del input_ids
gc.collect()
with open(cached_file, 'wb') as handle:
pickle.dump(self.inputs, handle, protocol=pickle.HIGHEST_PROTOCOL)
def split(self, input_ids, tokenizer, logger, block_size=1024):
sample = []
i = 0
while i < len(input_ids):
sample = input_ids[i: i+block_size]
if len(sample) == block_size:
for j in range(block_size):
if tokenizer.convert_ids_to_tokens(sample[block_size-1-j])[0] == '\u0120' or tokenizer.convert_ids_to_tokens(sample[block_size-1-j]).startswith("<NUM_LIT"):
break
if sample[block_size-1-j] in [tokenizer.bos_token_id, tokenizer.eos_token_id, tokenizer.sep_token_id]:
if sample[block_size-1-j] != tokenizer.bos_token_id:
j -= 1
break
if j == block_size-1:
print(tokenizer.decode(sample))
exit()
sample = sample[: block_size-1-j]
# print(len(sample))
i += len(sample)
pad_len = block_size-len(sample)
sample += [tokenizer.pad_token_id]*pad_len
self.inputs.append(sample)
if len(self.inputs) % 10000 == 0:
logger.info(f"{len(self.inputs)} samples")
def __len__(self):
return len(self.inputs)
def __getitem__(self, item):
return torch.tensor(self.inputs[item])
class lineDataset(Dataset):
def __init__(self, tokenizer, args, logger, file_type='test', block_size=924):
datafile = os.path.join(args.data_dir, f"{file_type}.json")
with open(datafile) as f:
datas = f.readlines()
length = len(datas)
logger.info("Data size: %d"%(length))
self.inputs = []
self.gts = []
for data in datas:
data = json.loads(data.strip())
self.inputs.append(tokenizer.encode(data["input"])[-block_size:])
self.gts.append(data["gt"])
def __len__(self):
return len(self.inputs)
def __getitem__(self, item):
return torch.tensor(self.inputs[item]), self.gts[item]
|