File size: 1,811 Bytes
dee113c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# Copyright (c) Microsoft Corporation. 
# Licensed under the MIT license.
import torch
import torch.nn as nn
import torch
from torch.autograd import Variable
import copy
import torch.nn.functional as F
from torch.nn import CrossEntropyLoss, MSELoss

class RobertaClassificationHead(nn.Module):
    """Head for sentence-level classification tasks."""

    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size*2, config.hidden_size)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.out_proj = nn.Linear(config.hidden_size, 2)

    def forward(self, features, **kwargs):
        x = features[:, 0, :]  # take <s> token (equiv. to [CLS])
        x = x.reshape(-1,x.size(-1)*2)
        x = self.dropout(x)
        x = self.dense(x)
        x = torch.tanh(x)
        x = self.dropout(x)
        x = self.out_proj(x)
        return x
        
class Model(nn.Module):   
    def __init__(self, encoder,config,tokenizer,args):
        super(Model, self).__init__()
        self.encoder = encoder
        self.config=config
        self.tokenizer=tokenizer
        self.classifier=RobertaClassificationHead(config)
        self.args=args
    
        
    def forward(self, input_ids=None,labels=None, return_vec=None): 
        input_ids=input_ids.view(-1,self.args.block_size)
        outputs = self.encoder(input_ids= input_ids,attention_mask=input_ids.ne(1))

        if return_vec:
            return outputs.pooler_output

        outputs = outputs[0]
        logits=self.classifier(outputs)
        prob=F.softmax(logits)

        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(logits, labels)
            return loss,prob
        else:
            return prob