File size: 2,147 Bytes
dee113c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import torch
import torch.nn as nn
import torch
from torch.autograd import Variable
import copy
# from transformers.modeling_bert import BertLayerNorm
import torch.nn.functional as F
from torch.nn import CrossEntropyLoss, MSELoss
# from transformers import (WEIGHTS_NAME, AdamW, get_linear_schedule_with_warmup,
#                           BertConfig, BertForMaskedLM, BertTokenizer,
#                           GPT2Config, GPT2LMHeadModel, GPT2Tokenizer,
#                           OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer,
#                           RobertaConfig, RobertaModel, RobertaTokenizer,
#                           DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer)
from transformers.modeling_utils import PreTrainedModel


class Model(PreTrainedModel):
    def __init__(self, encoder, config, tokenizer, args):
        super(Model, self).__init__(config)
        self.encoder = encoder
        self.config = config
        self.tokenizer = tokenizer
        self.mlp = nn.Sequential(nn.Linear(768*4, 768),
                                 nn.Tanh(),
                                 nn.Linear(768, 1),
                                 nn.Sigmoid())
        self.loss_func = nn.BCELoss()
        self.args = args

    def forward(self, code_inputs, nl_inputs, labels, return_vec=False, do_my_test=False):
        bs = code_inputs.shape[0]
        inputs = torch.cat((code_inputs, nl_inputs), 0)
        encoder_output = self.encoder(inputs, attention_mask=inputs.ne(1))
        outputs = encoder_output[1]

        code_vec = outputs[:bs]
        nl_vec = outputs[bs:]

        code_feature = encoder_output.pooler_output[:bs]
        nl_feature = encoder_output.pooler_output[bs:]

        if return_vec:
            return code_vec, nl_vec
        logits = self.mlp(torch.cat((nl_vec, code_vec, nl_vec-code_vec, nl_vec*code_vec), 1))
        loss = self.loss_func(logits, labels.float().unsqueeze(1))
        if do_my_test:
            return loss, code_feature, nl_feature
        predictions = (logits > 0.5).int()  # (Batch, )
        # predictions = logits.float()
        return loss, predictions