File size: 30,854 Bytes
dee113c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 |
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import, division, print_function
import argparse
import glob
import logging
import os
import random
import pickle
import numpy as np
import torch
from torch.utils.data import DataLoader, SequentialSampler, RandomSampler, TensorDataset
from torch.utils.data.distributed import DistributedSampler
try:
from torch.utils.tensorboard import SummaryWriter
except:
from tensorboardX import SummaryWriter
from tqdm import tqdm, trange
from transformers import (WEIGHTS_NAME, get_linear_schedule_with_warmup, AdamW,
RobertaConfig,
RobertaModel,
RobertaTokenizer)
from models import Model
from utils import acc_and_f1, TextDataset
import multiprocessing
cpu_cont = multiprocessing.cpu_count()
logger = logging.getLogger(__name__)
MODEL_CLASSES = {'roberta': (RobertaConfig, RobertaModel, RobertaTokenizer)}
def set_seed(seed=42):
random.seed(seed)
os.environ['PYHTONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
def train(args, train_dataset, model, tokenizer):
""" Train the model """
# if args.local_rank in [-1, 0]:
# tb_writer = SummaryWriter()
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size, num_workers=4, pin_memory=True)
args.save_steps = len(train_dataloader) if args.save_steps<=0 else args.save_steps
args.warmup_steps = len(train_dataloader) if args.warmup_steps<=0 else args.warmup_steps
args.logging_steps = len(train_dataloader)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps)
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(optimizer, args.warmup_steps, t_total)
model.to(args.device)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# multi-gpu training (should be after apex fp16 initialization)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True)
checkpoint_last = os.path.join(args.output_dir, 'checkpoint-last')
scheduler_last = os.path.join(checkpoint_last, 'scheduler.pt')
if os.path.exists(scheduler_last):
scheduler.load_state_dict(torch.load(scheduler_last))
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size * args.gradient_accumulation_steps * (
torch.distributed.get_world_size() if args.local_rank != -1 else 1))
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = args.start_step
tr_loss, logging_loss, avg_loss, tr_nb, tr_num, train_loss = 0.0, 0.0, 0.0, 0, 0, 0
best_results = {"acc": 0.0, "precision": 0.0, "recall": 0.0, "f1": 0.0, "acc_and_f1": 0.0}
model.zero_grad()
train_iterator = trange(args.start_epoch, int(args.num_train_epochs), desc="Epoch",
disable=args.local_rank not in [-1, 0])
model.train()
logger.info(model)
for idx in train_iterator:
bar = tqdm(enumerate(train_dataloader))
tr_num=0
train_loss=0
for step, batch in bar:
code_inputs = batch[0].to(args.device)
nl_inputs = batch[1].to(args.device)
labels = batch[2].to(args.device)
loss, predictions = model(code_inputs, nl_inputs, labels)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError(
"Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
tr_loss += loss.item()
tr_num += 1
train_loss += loss.item()
if avg_loss == 0:
avg_loss = tr_loss
avg_loss = round(train_loss/tr_num, 5)
bar.set_description("epoch {} step {} loss {}".format(idx, step+1, avg_loss))
if (step + 1) % args.gradient_accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()
scheduler.step()
global_step += 1
avg_loss = round(np.exp((tr_loss - logging_loss) / (global_step - tr_nb)), 4)
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
logging_loss = tr_loss
tr_nb = global_step
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
if args.local_rank == -1 and args.evaluate_during_training: # Only evaluate when single GPU otherwise metrics may not average well
results = evaluate(args, model, tokenizer, eval_when_training=True)
for key, value in results.items():
logger.info(" %s = %s", key, round(value,4))
# Save model checkpoint
if results['acc_and_f1'] >= best_results['acc_and_f1']:
best_results = results
# save
checkpoint_prefix = 'checkpoint-best-aver'
output_dir = os.path.join(args.output_dir, checkpoint_prefix)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training
torch.save(model_to_save.state_dict(), os.path.join(output_dir, 'pytorch_model.bin'))
tokenizer.save_pretrained(output_dir)
torch.save(args, os.path.join(output_dir, 'training_{}.bin'.format(idx)))
logger.info("Saving model checkpoint to %s", output_dir)
torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
logger.info("Saving optimizer and scheduler states to %s", output_dir)
if args.local_rank == -1:
checkpoint_prefix = 'checkpoint-last'
output_dir = os.path.join(args.output_dir, checkpoint_prefix)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = model.module if hasattr(model, 'module') else model
torch.save(model_to_save.state_dict(), os.path.join(output_dir, 'pytorch_model.bin'))
tokenizer.save_pretrained(output_dir)
idx_file = os.path.join(output_dir, 'idx_file.txt')
with open(idx_file, 'w', encoding='utf-8') as idxf:
idxf.write(str(args.start_epoch + idx) + '\n')
logger.info("Saving model checkpoint to %s", output_dir)
torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
logger.info("Saving optimizer and scheduler states to %s", output_dir)
step_file = os.path.join(output_dir, 'step_file.txt')
with open(step_file, 'w', encoding='utf-8') as stepf:
stepf.write(str(global_step) + '\n')
if args.max_steps > 0 and global_step > args.max_steps:
train_iterator.close()
break
# 每一轮记录checkpoint
output_dir = os.path.join(args.output_dir, 'epoch_{}'.format(idx+1))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = model.module if hasattr(model, 'module') else model
ckpt_output_path = os.path.join(output_dir, 'subject_model.pth')
logger.info("Saving model checkpoint to %s", ckpt_output_path)
torch.save(model_to_save.state_dict(), ckpt_output_path)
# 每一轮记录表征
# logger.info("Saving training feature")
# train_dataloader_bs1 = DataLoader(train_dataset, sampler=train_sampler, batch_size=1, num_workers=4,
# pin_memory=True)
# code_feature, nl_feature = [], []
# for batch in tqdm(train_dataloader_bs1):
# code_inputs = batch[0].to(args.device)
# nl_inputs = batch[1].to(args.device)
# labels = batch[2].to(args.device)
# model.eval()
# with torch.no_grad():
# _, cf, nf = model(code_inputs=code_inputs, nl_inputs=nl_inputs, labels=labels, do_my_test=True)
# code_feature.append(cf.cpu().detach().numpy())
# nl_feature.append(nf.cpu().detach().numpy())
# code_feature_output_path = os.path.join(output_dir, 'code_feature.pkl')
# nl_feature_output_path = os.path.join(output_dir, 'nl_feature.pkl')
# with open(code_feature_output_path, 'wb') as f1, open(nl_feature_output_path, 'wb') as f2:
# pickle.dump(code_feature, f1)
# pickle.dump(code_feature, f2)
def evaluate(args, model, tokenizer,eval_when_training=False):
eval_output_dir = args.output_dir
eval_data_path = os.path.join(args.data_dir, args.dev_file)
eval_dataset = TextDataset(tokenizer, args, eval_data_path, type='eval')
if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
os.makedirs(eval_output_dir)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size, num_workers=4, pin_memory=True)
# multi-gpu evaluate
if args.n_gpu > 1 and eval_when_training is False:
model = torch.nn.DataParallel(model)
# Eval!
logger.info("***** Running evaluation *****")
logger.info(" Num examples = %d", len(eval_dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
eval_loss = 0.0
nb_eval_steps = 0
model.eval()
all_predictions = []
all_labels = []
for batch in eval_dataloader:
code_inputs = batch[0].to(args.device)
nl_inputs = batch[1].to(args.device)
labels = batch[2].to(args.device)
with torch.no_grad():
lm_loss, predictions = model(code_inputs, nl_inputs, labels)
# lm_loss,code_vec,nl_vec = model(code_inputs,nl_inputs)
eval_loss += lm_loss.mean().item()
all_predictions.append(predictions.cpu())
all_labels.append(labels.cpu())
nb_eval_steps += 1
all_predictions = torch.cat(all_predictions, 0).squeeze().numpy()
all_labels = torch.cat(all_labels, 0).squeeze().numpy()
eval_loss = torch.tensor(eval_loss / nb_eval_steps)
results = acc_and_f1(all_predictions, all_labels)
results.update({"eval_loss": float(eval_loss)})
return results
def test(args, model, tokenizer):
if not args.prediction_file:
args.prediction_file = os.path.join(args.output_dir, 'predictions.txt')
if not os.path.exists(os.path.dirname(args.prediction_file)):
os.makedirs(os.path.dirname(args.prediction_file))
if not args.answer_file:
args.answer_file = os.path.join(args.output_dir, 'golds.txt')
if not os.path.exists(os.path.dirname(args.answer_file)):
os.makedirs(os.path.dirname(args.answer_file))
test_data_path = os.path.join(args.data_dir, args.test_file)
eval_dataset = TextDataset(tokenizer, args, test_data_path) #, type='test')
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
# multi-gpu evaluate
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Eval!
logger.info("***** Running Test *****")
logger.info(" Num examples = %d", len(eval_dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
nb_eval_steps = 0
all_predictions = []
all_golds = []
for batch in eval_dataloader:
code_inputs = batch[0].to(args.device)
nl_inputs = batch[1].to(args.device)
labels = batch[2].to(args.device)
with torch.no_grad():
_, predictions = model(code_inputs, nl_inputs, labels)
all_predictions.append(predictions.cpu())
all_golds.append(labels.cpu())
nb_eval_steps += 1
all_predictions = torch.cat(all_predictions, 0).squeeze().numpy()
all_golds = torch.cat(all_golds, 0).squeeze().numpy()
logger.info("***** Saving Test Result *****")
with open(args.prediction_file,'w') as f:
for example, pred in zip(eval_dataset.examples, all_predictions.tolist()):
f.write(str(example.idx)+'\t'+str(int(pred))+'\n')
with open(args.answer_file,'w') as f:
for example, gold in zip(eval_dataset.examples, all_golds.tolist()):
f.write(str(example.idx)+'\t'+str(int(gold))+'\n')
def check_feature():
code_feature = pickle.load(file=open('model_codesearchnet/checkpoint-all/epoch_0/code_feature.pkl', 'rb'))
print(len(code_feature))
print(code_feature[0].shape)
def main():
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--data_dir", default=None, type=str, required=True,
help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
parser.add_argument("--train_file", default=None, type=str,
help="The input training data file (a text file).")
parser.add_argument("--output_dir", default=None, type=str, required=True,
help="The output directory where the model predictions and checkpoints will be written.")
## Other parameters
parser.add_argument("--dev_file", default=None, type=str,
help="An optional input evaluation data file to evaluate the perplexity on (a text file).")
parser.add_argument("--test_file", default=None, type=str,
help="An optional input evaluation data file to evaluate the perplexity on (a text file).")
parser.add_argument("--model_type", default="roberta", type=str,
help="The model architecture to be fine-tuned.")
parser.add_argument("--pn_weight", type=float, default=1.0,
help="Ratio of positive examples in the sum of bce loss")
parser.add_argument("--encoder_name_or_path", default=None, type=str,
help="The model checkpoint for weights initialization.")
parser.add_argument("--checkpoint_path", default=None, type=str,
help="The checkpoint path of model to continue training.")
parser.add_argument("--mlm", action='store_true',
help="Train with masked-language modeling loss instead of language modeling.")
parser.add_argument("--mlm_probability", type=float, default=0.15,
help="Ratio of tokens to mask for masked language modeling loss")
parser.add_argument("--config_name", default="", type=str,
help="Pretrained config name or path if not the same as model_name")
parser.add_argument("--tokenizer_name", default="", type=str,
help="Pretrained tokenizer name or path if not the same as model_name")
parser.add_argument("--cache_dir", default="", type=str,
help="Optional directory to store the pre-trained models downloaded from s3 (instread of the default one)")
parser.add_argument("--max_seq_length", default=-1, type=int,
help="Optional input sequence length after tokenization."
"The training dataset will be truncated in block of this size for training."
"Default to the model max input length for single sentence inputs (take into account special tokens).")
parser.add_argument("--do_train", action='store_true',
help="Whether to run training.")
parser.add_argument("--do_eval", action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--do_predict", action='store_true',
help="Whether to run predict on the test set.")
parser.add_argument("--evaluate_during_training", action='store_true',
help="Rul evaluation during training at each logging step.")
parser.add_argument("--do_lower_case", action='store_true',
help="Set this flag if you are using an uncased model.")
parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
help="Batch size per GPU/CPU for training.")
parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
help="Batch size per GPU/CPU for evaluation.")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--learning_rate", default=5e-5, type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--weight_decay", default=0.0, type=float,
help="Weight deay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float,
help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float,
help="Max gradient norm.")
parser.add_argument("--num_train_epochs", default=3, type=int,
help="Total number of training epochs to perform.")
parser.add_argument("--max_steps", default=-1, type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
parser.add_argument("--warmup_steps", default=0, type=int,
help="Linear warmup over warmup_steps.")
parser.add_argument('--logging_steps', type=int, default=50,
help="Log every X updates steps.")
parser.add_argument('--save_steps', type=int, default=0,
help="Save checkpoint every X updates steps.")
parser.add_argument('--save_total_limit', type=int, default=None,
help='Limit the total amount of checkpoints, delete the older checkpoints in the output_dir, does not delete by default')
parser.add_argument("--eval_all_checkpoints", action='store_true',
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
parser.add_argument("--no_cuda", action='store_true',
help="Avoid using CUDA when available")
parser.add_argument('--overwrite_output_dir', action='store_true',
help="Overwrite the content of the output directory")
parser.add_argument('--overwrite_cache', action='store_true',
help="Overwrite the cached training and evaluation sets")
parser.add_argument('--seed', type=int, default=42,
help="random seed for initialization")
parser.add_argument('--fp16', action='store_true',
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
parser.add_argument('--fp16_opt_level', type=str, default='O1',
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html")
parser.add_argument("--local_rank", type=int, default=-1,
help="For distributed training: local_rank")
parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.")
parser.add_argument('--server_port', type=str, default='', help="For distant debugging.")
parser.add_argument("--pred_model_dir", default=None, type=str,
help='model for prediction')
parser.add_argument("--test_result_dir", default='test_results.tsv', type=str,
help='path to store test result')
parser.add_argument("--prediction_file", default=None, type=str,
help='path to save predictions result, note to specify task name')
parser.add_argument("--answer_file", default=None, type=str,
help='path to save gold result, note to specify task name')
args = parser.parse_args()
# Setup distant debugging if needed
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend='nccl')
args.n_gpu = 1
args.device = device
# Setup logging
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
# Set seed
set_seed(args.seed)
# Load pretrained model and tokenizer
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
args.start_epoch = 0
args.start_step = 0
checkpoint_last = os.path.join(args.output_dir, 'checkpoint-last')
if os.path.exists(checkpoint_last) and os.listdir(checkpoint_last):
# args.encoder_name_or_path = os.path.join(checkpoint_last, 'pytorch_model.bin')
args.config_name = os.path.join(checkpoint_last, 'config.json')
idx_file = os.path.join(checkpoint_last, 'idx_file.txt')
with open(idx_file, encoding='utf-8') as idxf:
args.start_epoch = int(idxf.readlines()[0].strip()) + 1
step_file = os.path.join(checkpoint_last, 'step_file.txt')
if os.path.exists(step_file):
with open(step_file, encoding='utf-8') as stepf:
args.start_step = int(stepf.readlines()[0].strip())
logger.info("reload model from {}, resume from {} epoch".format(checkpoint_last, args.start_epoch))
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
config = config_class.from_pretrained(args.config_name if args.config_name else args.encoder_name_or_path,
cache_dir=args.cache_dir if args.cache_dir else None)
config.num_labels = 2
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.encoder_name_or_path,
do_lower_case=args.do_lower_case,
cache_dir=args.cache_dir if args.cache_dir else None)
if args.max_seq_length <= 0:
args.max_seq_length = tokenizer.max_len_single_sentence # Our input block size will be the max possible for the model
args.max_seq_length = min(args.max_seq_length, tokenizer.max_len_single_sentence)
if args.encoder_name_or_path:
model = model_class.from_pretrained(args.encoder_name_or_path,
from_tf=bool('.ckpt' in args.encoder_name_or_path),
config=config,
cache_dir=args.cache_dir if args.cache_dir else None)
else:
model = model_class(config)
model = Model(model, config, tokenizer, args)
if args.checkpoint_path:
model.load_state_dict(torch.load(os.path.join(args.checkpoint_path, 'pytorch_model.bin')))
if args.local_rank == 0:
torch.distributed.barrier() # End of barrier to make sure only the first process in distributed training download model & vocab
logger.info("Training/evaluation parameters %s", args)
# Training
if args.do_train:
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Barrier to make sure only the first process in distributed training process the dataset, and the others will use the cache
train_data_path = os.path.join(args.data_dir, args.train_file)
train_dataset = TextDataset(tokenizer, args, train_data_path, type='train')
train(args, train_dataset, model, tokenizer)
# Evaluation
results = {}
if args.do_eval and args.local_rank in [-1, 0]:
checkpoint_prefix = 'checkpoint-best-aver'
output_dir = os.path.join(args.output_dir, checkpoint_prefix)
model.load_state_dict(torch.load(os.path.join(output_dir, 'pytorch_model.bin')))
tokenizer = tokenizer.from_pretrained(output_dir)
model.to(args.device)
results = evaluate(args, model, tokenizer)
logger.info("***** Eval results *****")
for key in results.keys():
logger.info(" Eval %s = %s", key, str(results[key]))
logger.info("Eval Model From: {}".format(os.path.join(output_dir, 'pytorch_model.bin')))
logger.info("***** Eval results *****")
if args.do_predict and args.local_rank in [-1, 0]:
logger.info("***** Testing results *****")
checkpoint_prefix = 'checkpoint-best-aver'
if checkpoint_prefix not in args.output_dir and \
os.path.exists(os.path.join(args.output_dir, checkpoint_prefix)):
output_dir = os.path.join(args.output_dir, checkpoint_prefix)
else:
output_dir = args.output_dir
if not args.pred_model_dir:
model_path = os.path.join(output_dir, 'pytorch_model.bin')
else:
model_path = os.path.join(args.pred_model_dir, 'pytorch_model.bin')
model.load_state_dict(torch.load(model_path))
tokenizer = tokenizer.from_pretrained(output_dir)
model.to(args.device)
test(args, model, tokenizer)
logger.info("Test Model From: {}".format(model_path))
return results
if __name__ == "__main__":
main()
|