File size: 10,483 Bytes
cf1cd5b bdbf36f cf1cd5b bdbf36f e66e7de cf1cd5b bdbf36f cf1cd5b bdbd148 cf1cd5b bdbd148 cf1cd5b bdbd148 cf1cd5b bdbd148 cf1cd5b bdbd148 cf1cd5b bdbd148 cf1cd5b bdbd148 cf1cd5b bdbd148 cf1cd5b bdbd148 cf1cd5b e6b83b8 cf1cd5b bdbd148 cf1cd5b bdbd148 cf1cd5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
---
license: mit
---
# 模型训练过程汇总(持续更新中)
本仓库按照模型类别和名称进行组织,具体结构如下:
- **一级目录**:代表不同的模型类别。
- **二级目录**:在每个模型类别下,进一步细分为具体的模型名称。
- **三级目录**:在每个模型名称下,包含以下三个部分:
- `code`:存放与模型相关的代码和训练脚本。(现增加了训练过程的记录,三种`.log`文件记录训练过程)
- `model`:收集的模型训练过程,(一级子目录:对应不同数据集),(二级子目录:增加了训练变体的记录,子目录0存储正常训练的过程,字目录1存储数据增强训练的过程,字目录2存储后门攻击训练的过程),(三级子目录:包括每个epoch的`.pth`模型权重文件、`.npy`训练中收集的embedding,以及`index.json`文件,后者包含了embedding对应的数据集中数据点的索引列表)。
- `dataset`:提供模型训练使用的数据集,可以是解压后的文件夹形式,或者压缩包形式`dataset.zip`(可以包含多个数据集,需要在代码中进行切换)。
下表汇总了所有收集的模型训练过程信息:
<table>
<tr>
<th>模型名称</th>
<th>模型简介</th>
<th>模型类型</th>
<th>Epoch数量</th>
<th>数据集信息</th>
</tr>
<tr>
<td><a href="https://huggingface.co/datasets/code-philia/ttvnet/tree/main/Code-Code/Clone-detection-BigCloneBench" target="_blank">Clone-detection-BigCloneBench</a></td>
<td>基于大规模代码克隆基准数据集的代码克隆检测模型,任务是进行二元分类(0/1),其中1代表语义等价,0代表其他情况。</td>
<td>代码克隆检测</td>
<td>待上传</td>
<td>BigCloneBench数据集</td>
</tr>
<tr>
<td><a href="https://huggingface.co/datasets/code-philia/ttvnet/tree/main/Code-Code/Clone-detection-POJ-104" target="_blank">Clone-detection-POJ-104</a></td>
<td>基于POJ-104数据集的代码克隆检测模型,任务是识别不同编程题目中相似的代码实现,给定一段代码和一组候选代码,任务是返回具有相同语义的Top K个代码</td>
<td>代码克隆检测</td>
<td>待上传</td>
<td>POJ-104编程题目数据集</td>
</tr>
<tr>
<td><a href="https://huggingface.co/datasets/code-philia/ttvnet/tree/main/Code-Code/CodeCompletion-token" target="_blank">CodeCompletion-token</a></td>
<td>基于token级别的代码自动补全模型</td>
<td>代码补全</td>
<td>待上传</td>
<td>Java代码token序列数据集</td>
</tr>
<tr>
<td><a href="https://huggingface.co/datasets/code-philia/ttvnet/tree/main/Code-Code/Defect-detection" target="_blank">Defect-detection</a></td>
<td>代码缺陷检测模型,通过分析代码来识别潜在的缺陷和错误(进行二元分类(0/1))</td>
<td>代码缺陷检测</td>
<td>待上传</td>
<td>包含缺陷标注的C语言代码数据集</td>
</tr>
<tr>
<td><a href="https://huggingface.co/datasets/code-philia/ttvnet/tree/main/Code-Code/code-refinement" target="_blank">code-refinement</a></td>
<td>代码优化模型</td>
<td>代码优化/重构</td>
<td>待上传</td>
<td>代码优化前后对数据集(C语言)</td>
</tr>
<tr>
<td><a href="https://huggingface.co/datasets/code-philia/ttvnet/tree/main/Code-Text/code-to-text" target="_blank">code-to-text</a></td>
<td>代码到自然语言的转换模型</td>
<td>代码注释生成</td>
<td>待上传</td>
<td>多语言代码-文本对数据集</td>
</tr>
<tr>
<td><a href="https://huggingface.co/datasets/code-philia/ttvnet/tree/main/Text-code/NL-code-search-Adv" target="_blank">NL-code-search-Adv</a></td>
<td>高级自然语言代码搜索模型,通过计算自然语言查询与代码片段之间的相似性来实现代码搜索,</td>
<td>代码搜索</td>
<td>待上传</td>
<td>自然语言-(python)代码对数据集</td>
</tr>
<tr>
<td><a href="https://huggingface.co/datasets/code-philia/ttvnet/tree/main/Text-code/NL-code-search-WebQuery" target="_blank">NL-code-search-WebQuery</a></td>
<td>基于Web查询的代码搜索模型,该模型通过编码器处理代码和自然语言输入,并利用多层感知器(MLP)来计算相似性得分</td>
<td>代码搜索</td>
<td>待上传</td>
<td>Web查询-代码对数据集(CodeSearchNet数据集和CoSQA数据集(python))</td>
</tr>
<tr>
<td><a href="https://huggingface.co/datasets/code-philia/ttvnet/tree/main/Text-code/text-to-code" target="_blank">text-to-code</a></td>
<td>自然语言到代码的生成模型</td>
<td>代码生成</td>
<td>待上传</td>
<td>文本描述-代码(c语言)对数据集</td>
</tr>
<tr>
<td><a href="https://huggingface.co/datasets/code-philia/ttvnet/tree/main/Graph" target="_blank">GraphMAE_QM9</a></td>
<td>在QM9数据集上训练的图掩码自编码器,通过对分子图中的原子的坐标以及类型进行预测实现自监督训练</td>
<td>图自编码器</td>
<td>待上传</td>
<td>分子属性预测数据集</td>
</tr>
<tr>
<td><a href="https://huggingface.co/datasets/code-philia/ttvnet/tree/main/Image/AlexNet" target="_blank">AlexNet</a></td>
<td>2012年获得ImageNet冠军的经典模型,首次证明了深度学习在图像识别上的强大能力。</td>
<td>图像分类</td>
<td>待补充</td>
<td>CIFAR-10数据集</td>
</tr>
<tr>
<td><a href="https://huggingface.co/datasets/code-philia/ttvnet/tree/main/Image/DenseNet" target="_blank">DenseNet</a></td>
<td>每一层都直接与其他所有层相连,像搭积木一样层层堆叠,可以更好地学习图像特征。</td>
<td>图像分类</td>
<td>待补充</td>
<td>CIFAR-10数据集</td>
</tr>
<tr>
<td><a href="https://huggingface.co/datasets/code-philia/ttvnet/tree/main/Image/EfficientNet" target="_blank">EfficientNet</a></td>
<td>通过平衡网络的深度、宽度和图像分辨率,用更少的计算量达到更好的效果。</td>
<td>图像分类</td>
<td>待补充</td>
<td>CIFAR-10数据集</td>
</tr>
<tr>
<td><a href="https://huggingface.co/datasets/code-philia/ttvnet/tree/main/Image/GoogLeNet" target="_blank">GoogLeNet</a></td>
<td>谷歌开发的模型,像多个眼睛同时看图片的不同部分,既省资源又准确。</td>
<td>图像分类</td>
<td>待补充</td>
<td>CIFAR-10数据集</td>
</tr>
<tr>
<td><a href="https://huggingface.co/datasets/code-philia/ttvnet/tree/main/Image/LeNet5" target="_blank">LeNet5</a></td>
<td>深度学习领域的开山之作,虽然简单但奠定了现代CNN的基础架构。</td>
<td>图像分类</td>
<td>待补充</td>
<td>CIFAR-10数据集</td>
</tr>
<tr>
<td><a href="https://huggingface.co/datasets/code-philia/ttvnet/tree/main/Image/MobileNetv1" target="_blank">MobileNetv1</a></td>
<td>专门为手机设计的轻量级模型,用特殊的卷积方式减少计算量。</td>
<td>图像分类</td>
<td>待补充</td>
<td>CIFAR-10数据集</td>
</tr>
<tr>
<td><a href="https://huggingface.co/datasets/code-philia/ttvnet/tree/main/Image/MobileNetv2" target="_blank">MobileNetv2</a></td>
<td>MobileNet的升级版,增加了特征复用机制,性能更好。</td>
<td>图像分类</td>
<td>待补充</td>
<td>CIFAR-10数据集</td>
</tr>
<tr>
<td><a href="https://huggingface.co/datasets/code-philia/ttvnet/tree/main/Image/MobileNetv3" target="_blank">MobileNetv3</a></td>
<td>结合自动搜索技术的新版本,自动找到最适合手机的网络结构。</td>
<td>图像分类</td>
<td>待补充</td>
<td>CIFAR-10数据集</td>
</tr>
<tr>
<td><a href="https://huggingface.co/datasets/code-philia/ttvnet/tree/main/Image/ResNet" target="_blank">ResNet</a></td>
<td>通过特殊的"快捷连接"解决深层网络训练难的问题,可以训练超级深的网络。</td>
<td>图像分类</td>
<td>待补充</td>
<td>CIFAR-10数据集</td>
</tr>
<tr>
<td><a href="https://huggingface.co/datasets/code-philia/ttvnet/tree/main/Image/SENet" target="_blank">SENet</a></td>
<td>为网络添加了"注意力机制",让模型能够关注图片中重要的部分。</td>
<td>图像分类</td>
<td>待补充</td>
<td>CIFAR-10数据集</td>
</tr>
<tr>
<td><a href="https://huggingface.co/datasets/code-philia/ttvnet/tree/main/Image/ShuffleNet" target="_blank">ShuffleNet</a></td>
<td>通过巧妙地打乱和分组计算,实现了手机上的高效运行。</td>
<td>图像分类</td>
<td>待补充</td>
<td>CIFAR-10数据集</td>
</tr>
<tr>
<td><a href="https://huggingface.co/datasets/code-philia/ttvnet/tree/main/Image/ShuffleNetv2" target="_blank">ShuffleNetv2</a></td>
<td>在原版基础上优化设计,速度更快,效果更好。</td>
<td>图像分类</td>
<td>待补充</td>
<td>CIFAR-10数据集</td>
</tr>
<tr>
<td><a href="https://huggingface.co/datasets/code-philia/ttvnet/tree/main/Image/SwinTransformer" target="_blank">SwinTransformer</a></td>
<td>把自然语言处理的先进技术用于图像,通过逐步关注图片不同区域来理解图像。</td>
<td>图像分类</td>
<td>待补充</td>
<td>CIFAR-10数据集</td>
</tr>
<tr>
<td><a href="https://huggingface.co/datasets/code-philia/ttvnet/tree/main/Image/VGG" target="_blank">VGG</a></td>
<td>用统一的小型卷积核堆叠成深层网络,结构简单但效果好。</td>
<td>图像分类</td>
<td>待补充</td>
<td>CIFAR-10数据集</td>
</tr>
<tr>
<td><a href="https://huggingface.co/datasets/code-philia/ttvnet/tree/main/Image/ViT" target="_blank">ViT</a></td>
<td>把图片切成小块后像读文章一样处理,是一种全新的图像处理方式。</td>
<td>图像分类</td>
<td>待补充</td>
<td>CIFAR-10数据集</td>
</tr>
<tr>
<td><a href="https://huggingface.co/datasets/code-philia/ttvnet/tree/main/Image/ZFNet" target="_blank">ZFNet</a></td>
<td>通过可视化研究改进的AlexNet,帮助人们理解网络是如何"看"图片的。</td>
<td>图像分类</td>
<td>待补充</td>
<td>CIFAR-10数据集</td>
</tr>
</table>
|