|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch |
|
from torch.autograd import Variable |
|
import copy |
|
from torch.nn import CrossEntropyLoss, MSELoss |
|
|
|
|
|
|
|
class Model(nn.Module): |
|
def __init__(self, encoder,config,tokenizer,args): |
|
super(Model, self).__init__() |
|
self.encoder = encoder |
|
self.config=config |
|
self.tokenizer=tokenizer |
|
self.args=args |
|
|
|
|
|
self.dropout = nn.Dropout(args.dropout_probability) |
|
|
|
|
|
def forward(self, input_ids=None,labels=None, return_vec=None): |
|
outputs=self.encoder(input_ids,attention_mask=input_ids.ne(1)) |
|
|
|
if return_vec: |
|
return outputs.pooler_output |
|
outputs = outputs[0] |
|
|
|
|
|
outputs = self.dropout(outputs) |
|
|
|
logits=outputs |
|
prob=torch.sigmoid(logits) |
|
if labels is not None: |
|
labels=labels.float() |
|
loss=torch.log(prob[:,0]+1e-10)*labels+torch.log((1-prob)[:,0]+1e-10)*(1-labels) |
|
loss=-loss.mean() |
|
return loss,prob |
|
else: |
|
return prob |
|
|
|
|
|
|
|
|