|
import torch |
|
import torch.nn as nn |
|
import torch |
|
from torch.autograd import Variable |
|
import copy |
|
|
|
class Beam(object): |
|
def __init__(self, size, sos, eos): |
|
self.size = size |
|
self.tt = torch.cuda |
|
|
|
self.scores = self.tt.FloatTensor(size).zero_() |
|
|
|
self.prevKs = [] |
|
|
|
self.nextYs = [self.tt.LongTensor(size) |
|
.fill_(0)] |
|
self.nextYs[0][:] = sos |
|
|
|
self._eos = eos |
|
self.eosTop = False |
|
|
|
self.finished = [] |
|
|
|
def getCurrentState(self): |
|
"Get the outputs for the current timestep." |
|
batch = self.tt.LongTensor(self.nextYs[-1]).view(-1, 1) |
|
return batch |
|
|
|
def getCurrentOrigin(self): |
|
"Get the backpointers for the current timestep." |
|
return self.prevKs[-1] |
|
|
|
def advance(self, wordLk): |
|
""" |
|
Given prob over words for every last beam `wordLk` and attention |
|
`attnOut`: Compute and update the beam search. |
|
|
|
Parameters: |
|
|
|
* `wordLk`- probs of advancing from the last step (K x words) |
|
* `attnOut`- attention at the last step |
|
|
|
Returns: True if beam search is complete. |
|
""" |
|
numWords = wordLk.size(1) |
|
|
|
|
|
if len(self.prevKs) > 0: |
|
beamLk = wordLk + self.scores.unsqueeze(1).expand_as(wordLk) |
|
|
|
|
|
for i in range(self.nextYs[-1].size(0)): |
|
if self.nextYs[-1][i] in self._eos: |
|
beamLk[i] = -1e20 |
|
else: |
|
beamLk = wordLk[0] |
|
flatBeamLk = beamLk.view(-1) |
|
bestScores, bestScoresId = flatBeamLk.topk(self.size, 0, True, True) |
|
|
|
self.scores = bestScores |
|
|
|
|
|
|
|
prevK = bestScoresId // numWords |
|
self.prevKs.append(prevK) |
|
self.nextYs.append((bestScoresId - prevK * numWords)) |
|
|
|
|
|
for i in range(self.nextYs[-1].size(0)): |
|
if self.nextYs[-1][i] in self._eos: |
|
s = self.scores[i] |
|
self.finished.append((s, len(self.nextYs) - 1, i)) |
|
|
|
|
|
if self.nextYs[-1][0] in self._eos: |
|
self.eosTop = True |
|
|
|
def done(self): |
|
return self.eosTop and len(self.finished) >=self.size |
|
|
|
def getFinal(self): |
|
if len(self.finished) == 0: |
|
self.finished.append((self.scores[0], len(self.nextYs) - 1, 0)) |
|
self.finished.sort(key=lambda a: -a[0]) |
|
if len(self.finished) != self.size: |
|
unfinished=[] |
|
for i in range(self.nextYs[-1].size(0)): |
|
if self.nextYs[-1][i] not in self._eos: |
|
s = self.scores[i] |
|
unfinished.append((s, len(self.nextYs) - 1, i)) |
|
unfinished.sort(key=lambda a: -a[0]) |
|
self.finished+=unfinished[:self.size-len(self.finished)] |
|
return self.finished[:self.size] |
|
|
|
def getHyp(self, beam_res): |
|
""" |
|
Walk back to construct the full hypothesis. |
|
""" |
|
hyps=[] |
|
for _,timestep, k in beam_res: |
|
hyp = [] |
|
for j in range(len(self.prevKs[:timestep]) - 1, -1, -1): |
|
hyp.append(self.nextYs[j+1][k]) |
|
k = self.prevKs[j][k] |
|
hyps.append(hyp[::-1]) |
|
return hyps |
|
|
|
def buildTargetTokens(self, preds): |
|
sentence=[] |
|
for pred in preds: |
|
tokens = [] |
|
for tok in pred: |
|
tokens.append(tok) |
|
if tok in self._eos: |
|
break |
|
sentence.append(tokens) |
|
return sentence |
|
|