|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Code completion (both token level and line level) pipeline in CodeXGLUE |
|
""" |
|
|
|
from __future__ import absolute_import, division, print_function |
|
|
|
import argparse |
|
import glob |
|
import logging |
|
import os |
|
import pickle |
|
import random |
|
import re |
|
import shutil |
|
import json |
|
|
|
import numpy as np |
|
import torch |
|
from torch.utils.data import DataLoader, Dataset, SequentialSampler, RandomSampler,TensorDataset |
|
from torch.utils.data.distributed import DistributedSampler |
|
from dataset import TextDataset, finetuneDataset, EvalDataset, lineDataset |
|
from beam import Beam |
|
|
|
from transformers import (WEIGHTS_NAME, AdamW, get_linear_schedule_with_warmup, |
|
BertConfig, BertForMaskedLM, BertTokenizer, |
|
GPT2Config, GPT2LMHeadModel, GPT2Tokenizer, |
|
OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer, |
|
RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, |
|
DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer) |
|
from model import RNNModel |
|
|
|
|
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
MODEL_CLASSES = { |
|
'gpt2': (GPT2Config, GPT2LMHeadModel, GPT2Tokenizer), |
|
'rnn': (GPT2Config, RNNModel, GPT2Tokenizer), |
|
'openai-gpt': (OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer), |
|
'bert': (BertConfig, BertForMaskedLM, BertTokenizer), |
|
'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), |
|
'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer) |
|
} |
|
|
|
|
|
|
|
def load_and_cache_examples(args, tokenizer, evaluate=False): |
|
if args.not_pretrain: |
|
dataset = finetuneDataset(tokenizer, args, logger, file_type='dev' if evaluate else 'train', |
|
block_size=args.block_size) |
|
else: |
|
dataset = TextDataset(tokenizer, args, logger, file_type='dev' if evaluate else 'train', |
|
block_size=args.block_size) |
|
return dataset |
|
|
|
def set_seed(args): |
|
random.seed(args.seed) |
|
np.random.seed(args.seed) |
|
torch.manual_seed(args.seed) |
|
if args.n_gpu > 0: |
|
torch.cuda.manual_seed_all(args.seed) |
|
|
|
def update_config(args, config): |
|
|
|
config.vocab_size = args.vocab_size |
|
|
|
def get_special_tokens(path): |
|
lits = json.load(open(path)) |
|
tokens = ["<STR_LIT>", "<NUM_LIT>", "<CHAR_LIT>"] |
|
for lit in lits["str"]: |
|
tokens.append(f"<STR_LIT:{lit}>") |
|
for lit in lits["num"]: |
|
tokens.append(f"<NUM_LIT:{lit}>") |
|
for lit in lits["char"]: |
|
tokens.append(f"<CHAR_LIT:{lit}>") |
|
return tokens |
|
|
|
|
|
|
|
def train(args, train_dataset, model, tokenizer, fh, pool): |
|
""" Train the model """ |
|
if args.local_rank in [-1, 0]: |
|
args.tensorboard_dir = os.path.join(args.output_dir, 'tensorboard') |
|
if not os.path.exists(args.tensorboard_dir): |
|
os.makedirs(args.tensorboard_dir) |
|
|
|
args.batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) |
|
train_sampler = RandomSampler(train_dataset) |
|
|
|
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.batch_size, drop_last=True) |
|
total_examples = len(train_dataset) * ( |
|
torch.distributed.get_world_size() if args.local_rank != -1 else 1) |
|
batch_size = args.batch_size * args.gradient_accumulation_steps * ( |
|
torch.distributed.get_world_size() if args.local_rank != -1 else 1) |
|
|
|
|
|
|
|
if args.num_train_epochs > 0: |
|
t_total = total_examples // batch_size * args.num_train_epochs |
|
args.max_steps = t_total |
|
model.to(args.device) |
|
if args.local_rank not in [-1, 0]: |
|
torch.distributed.barrier() |
|
|
|
no_decay = ['bias', 'LayerNorm.weight'] |
|
optimizer_grouped_parameters = [ |
|
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], |
|
'weight_decay': args.weight_decay}, |
|
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} |
|
] |
|
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) |
|
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, |
|
num_training_steps=t_total) |
|
checkpoint_last = os.path.join(args.output_dir, 'checkpoint-last') |
|
|
|
optimizer_last = os.path.join(checkpoint_last, 'optimizer.pt') |
|
|
|
|
|
if os.path.exists(optimizer_last): |
|
logger.warning(f"Loading optimizer from {optimizer_last}") |
|
optimizer.load_state_dict(torch.load(optimizer_last, map_location="cpu")) |
|
if args.local_rank == 0: |
|
torch.distributed.barrier() |
|
if args.fp16: |
|
try: |
|
from apex import amp |
|
except ImportError: |
|
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") |
|
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) |
|
|
|
|
|
if args.n_gpu > 1: |
|
model = torch.nn.DataParallel(model) |
|
|
|
|
|
if args.local_rank != -1: |
|
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank%args.gpu_per_node], |
|
output_device=args.local_rank%args.gpu_per_node) |
|
|
|
|
|
logger.info("***** Running training *****") |
|
logger.info(" Num examples = %d", total_examples ) |
|
logger.info(" Num epoch = %d", t_total*batch_size//total_examples) |
|
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) |
|
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d", batch_size) |
|
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) |
|
logger.info(" Total optimization steps = %d", t_total) |
|
|
|
global_step = args.start_step |
|
tr_loss, logging_loss,avg_loss,tr_nb = 0.0, 0.0, 0.0, global_step |
|
|
|
model.zero_grad() |
|
set_seed(args) |
|
|
|
for idx in range(args.start_epoch, int(args.num_train_epochs)): |
|
for step, batch in enumerate(train_dataloader): |
|
inputs, labels = (batch, batch) |
|
inputs = inputs.to(args.device) |
|
labels = labels.to(args.device) |
|
model.train() |
|
outputs = model(inputs, labels=labels) |
|
loss = outputs[0] |
|
|
|
if args.n_gpu > 1: |
|
loss = loss.mean() |
|
if args.gradient_accumulation_steps > 1: |
|
loss = loss / args.gradient_accumulation_steps |
|
|
|
if args.fp16: |
|
with amp.scale_loss(loss, optimizer) as scaled_loss: |
|
scaled_loss.backward() |
|
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) |
|
else: |
|
loss.backward() |
|
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) |
|
|
|
tr_loss += loss.item() |
|
|
|
if (step + 1) % args.gradient_accumulation_steps == 0: |
|
optimizer.step() |
|
optimizer.zero_grad() |
|
scheduler.step() |
|
global_step += 1 |
|
output_flag=True |
|
avg_loss=round(np.exp((tr_loss - logging_loss) /(global_step- tr_nb)),4) |
|
if global_step % args.logging_steps == 0: |
|
logger.info(" steps: %s ppl: %s lr: %s", global_step, round(avg_loss,5), scheduler.get_last_lr()[0]) |
|
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: |
|
|
|
logging_loss = tr_loss |
|
tr_nb=global_step |
|
|
|
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0: |
|
checkpoint_prefix = "checkpoint" |
|
|
|
if args.evaluate_during_training: |
|
results = evaluate(args, model, tokenizer, eval_when_training=True) |
|
for key, value in results.items(): |
|
logger.info(" %s = %s", key, round(value,4)) |
|
output_dir = os.path.join(args.output_dir, '{}-{}-{}'.format(checkpoint_prefix, global_step, round(results['perplexity'],4))) |
|
else: |
|
output_dir = os.path.join(args.output_dir, "{}-{}".format(checkpoint_prefix, global_step)) |
|
if not os.path.exists(output_dir): |
|
os.makedirs(output_dir) |
|
model_to_save = ( |
|
model.module if hasattr(model, "module") else model |
|
) |
|
if args.model_type == "rnn": |
|
torch.save(model_to_save.state_dict(), os.path.join(output_dir, "model.pt")) |
|
else: |
|
model_to_save.save_pretrained(output_dir) |
|
tokenizer.save_pretrained(output_dir) |
|
|
|
torch.save(args, os.path.join(output_dir, "training_args.bin")) |
|
logger.info("Saving model checkpoint to %s", output_dir) |
|
|
|
|
|
last_output_dir = os.path.join(args.output_dir, 'checkpoint-last') |
|
if not os.path.exists(last_output_dir): |
|
os.makedirs(last_output_dir) |
|
if args.model_type == "rnn": |
|
torch.save(model_to_save.state_dict(), os.path.join(last_output_dir, "model.pt")) |
|
else: |
|
model_to_save.save_pretrained(last_output_dir) |
|
tokenizer.save_pretrained(last_output_dir) |
|
idx_file = os.path.join(last_output_dir, 'idx_file.txt') |
|
with open(idx_file, 'w', encoding='utf-8') as idxf: |
|
idxf.write(str(0) + '\n') |
|
|
|
torch.save(optimizer.state_dict(), os.path.join(last_output_dir, "optimizer.pt")) |
|
|
|
logger.info("Saving optimizer and scheduler states to %s", last_output_dir) |
|
|
|
step_file = os.path.join(last_output_dir, 'step_file.txt') |
|
with open(step_file, 'w', encoding='utf-8') as stepf: |
|
stepf.write(str(global_step) + '\n') |
|
|
|
|
|
if args.max_steps > 0 and global_step > args.max_steps: |
|
break |
|
|
|
|
|
output_dir = os.path.join(args.output_dir, 'epoch_{}'.format(idx+1)) |
|
if not os.path.exists(output_dir): |
|
os.makedirs(output_dir) |
|
model_to_save = model.module if hasattr(model, 'module') else model |
|
ckpt_output_path = os.path.join(output_dir, 'subject_model.pth') |
|
logger.info("Saving model checkpoint to %s", ckpt_output_path) |
|
torch.save(model_to_save.state_dict(), ckpt_output_path) |
|
|
|
if args.max_steps > 0 and global_step > args.max_steps: |
|
break |
|
|
|
return global_step, tr_loss / global_step |
|
|
|
|
|
def evaluate(args, model, tokenizer, prefix="", eval_when_training=False): |
|
|
|
eval_output_dir = args.output_dir |
|
|
|
eval_dataset = load_and_cache_examples(args, tokenizer, evaluate=True) |
|
|
|
if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]: |
|
os.makedirs(eval_output_dir) |
|
|
|
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) |
|
|
|
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset) |
|
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size, drop_last=True) |
|
|
|
|
|
if args.n_gpu > 1 and eval_when_training is False: |
|
model = torch.nn.DataParallel(model) |
|
|
|
|
|
|
|
|
|
|
|
eval_loss = 0.0 |
|
nb_eval_steps = 0 |
|
model.eval() |
|
|
|
for batch in eval_dataloader: |
|
inputs, labels = (batch, batch) |
|
inputs = inputs.to(args.device) |
|
labels = labels.to(args.device) |
|
|
|
with torch.no_grad(): |
|
outputs = model(inputs, labels=labels) |
|
lm_loss = outputs[0] |
|
eval_loss += lm_loss.mean().item() |
|
nb_eval_steps += 1 |
|
|
|
eval_loss = eval_loss / nb_eval_steps |
|
perplexity = torch.exp(torch.tensor(eval_loss)) |
|
|
|
result = { |
|
"perplexity": float(perplexity) |
|
} |
|
|
|
output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt") |
|
with open(output_eval_file, "w") as writer: |
|
|
|
for key in sorted(result.keys()): |
|
|
|
writer.write("%s = %s\n" % (key, str(result[key]))) |
|
|
|
return result |
|
|
|
def eval_acc(args, model, tokenizer, file_type='test'): |
|
""" |
|
Evaluate token level code completion on accuracy. |
|
|
|
This function can only used to evaluate accuracy, but not inference, because the inputs are previous sub-tokens but not tokens. |
|
But it can be guaranteed that the accuracy in this function is the same as the real token level completion. |
|
The reason is: |
|
Assuming the inputs are "context_len = 100 <EOL> masks = np . zeros (", and the ground truth is "context_len". |
|
Due to our bpe encoding, the model have to outputs "context", "_" and "len" in 3 time step, i.e. gt0="context", gt1="_", gt2="len". |
|
In a real inference scenario: |
|
time step 0, inputs "context_len = 100 <EOL> masks = np . zeros ( ", model outputs: out0; |
|
time step 1, inputs: in1=out0, outputs: out1 |
|
... until the model outputs a complete token |
|
But in this function, no matter out0 is, in1=gt0="context". |
|
That is to say, in this function, we feed ground truth but not output sub-token when we predict the next token which is split by bpe. |
|
So obviouly we would get different predictions from the real token completion scenario. |
|
However, if we calculate token leval accuracy, |
|
if and only if the model predicts every sub-token correctly, the complete token can be seen correct. |
|
In this situation, out0==gt0, out1==gt1, so it doesn't matter we feed gt or output to model. |
|
In summary, this function can make models oupout the same complete token if this token equals to ground truth, |
|
if not, the model might predict a different token from the real completion scenario, but all wrong. |
|
So it would not affect the token level accuracy. |
|
|
|
I use this trick to speed up evaluation due to the large test set. |
|
""" |
|
eval_dataset = EvalDataset(tokenizer, args, logger, file_type=file_type, block_size=args.block_size) |
|
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) |
|
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset) |
|
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) |
|
model.to(args.device) |
|
|
|
if args.n_gpu > 1: |
|
model = torch.nn.DataParallel(model) |
|
|
|
|
|
if args.local_rank != -1: |
|
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank%args.gpu_per_node], |
|
output_device=args.local_rank%args.gpu_per_node) |
|
|
|
def DecodeIds(idxs): |
|
codes = "" |
|
for idx in idxs: |
|
to_add = tokenizer.convert_ids_to_tokens(idx) |
|
if tokenizer.convert_ids_to_tokens(idx)[0] == '\u0120': |
|
if not codes.endswith(" "): |
|
codes += " " + to_add[1:] |
|
else: |
|
codes += to_add[1:] |
|
elif ( |
|
idx in [tokenizer.bos_token_id, tokenizer.eos_token_id, tokenizer.sep_token_id, tokenizer.pad_token_id] or |
|
tokenizer.convert_ids_to_tokens(idx).startswith("<NUM_LIT") |
|
): |
|
codes += " " + to_add + " " |
|
else: |
|
codes += to_add |
|
return codes.strip(" ") |
|
|
|
model.eval() |
|
|
|
correct = 0.0 |
|
total = 0 |
|
|
|
total_pred = [] |
|
total_gt = [] |
|
|
|
for step, batch in enumerate(eval_dataloader): |
|
inputs = batch.to(args.device) |
|
|
|
with torch.no_grad(): |
|
outputs = model(inputs) |
|
pred_scores = outputs[0] |
|
pred_ids = pred_scores.argmax(-1) |
|
|
|
all_pred = [] |
|
all_gt = [] |
|
prev_pred = None |
|
for pred, gt in zip(pred_ids, inputs): |
|
pred = pred.cpu().tolist() |
|
gt = gt.cpu().tolist() |
|
|
|
for i, y in enumerate(gt): |
|
if i == 0: |
|
if y in [tokenizer.bos_token_id, tokenizer.eos_token_id, tokenizer.sep_token_id, tokenizer.pad_token_id]: |
|
now_gt = [y] |
|
now_pred = [0] if prev_pred is None else [prev_pred] |
|
all_pred.append(DecodeIds(now_pred).strip().split()[0]) |
|
all_gt.append(DecodeIds(now_gt).strip()) |
|
now_gt = [] |
|
now_pred = [] |
|
else: |
|
now_gt = [y] |
|
now_pred = [0] if prev_pred is None else [prev_pred] |
|
else: |
|
if tokenizer.convert_ids_to_tokens(y)[0] == '\u0120': |
|
if len(now_gt) > 0: |
|
try: |
|
all_pred.append(DecodeIds(now_pred).strip().split()[0]) |
|
except IndexError: |
|
all_pred.append("<SPACE>") |
|
all_gt.append(DecodeIds(now_gt).strip()) |
|
now_gt = [] |
|
now_pred = [] |
|
if y in [tokenizer.bos_token_id, tokenizer.eos_token_id, tokenizer.sep_token_id, tokenizer.pad_token_id] or tokenizer.convert_ids_to_tokens(y).startswith("<NUM_LIT"): |
|
if len(now_gt) > 0: |
|
try: |
|
all_pred.append(DecodeIds(now_pred).strip().split()[0]) |
|
except IndexError: |
|
all_pred.append("<SPACE>") |
|
all_gt.append(DecodeIds(now_gt).strip()) |
|
now_gt = [y] |
|
now_pred = [pred[i-1]] |
|
try: |
|
all_pred.append(DecodeIds(now_pred).strip().split()[0]) |
|
except IndexError: |
|
all_pred.append("<SPACE>") |
|
all_gt.append(DecodeIds(now_gt).strip()) |
|
now_gt = [] |
|
now_pred = [] |
|
continue |
|
now_gt.append(y) |
|
now_pred.append(pred[i-1]) |
|
assert len(all_pred) == len(all_gt) |
|
|
|
total_pred.extend(all_pred) |
|
total_gt.extend(all_gt) |
|
|
|
|
|
for x, y in zip(all_pred, all_gt): |
|
if y not in ["<s>", "</s>", "<EOL>", "<pad>"]: |
|
total += 1 |
|
if x == y: |
|
correct += 1 |
|
|
|
if step % args.logging_steps == 0: |
|
logger.info(f"{step} are done!") |
|
logger.info(f"{total}, {correct/total}") |
|
|
|
|
|
|
|
|
|
saved_file = os.path.join(args.output_dir, "predictions.txt") |
|
total_samples = post_process(args, total_pred, total_gt, open(os.path.join(args.data_dir, f"{file_type}.txt")).readlines(), saved_file) |
|
logger.info(f"Eval on {total_samples}, saved at {saved_file}") |
|
|
|
return total, correct |
|
|
|
def post_process(args, preds, gts, true_gts, saved_file): |
|
wf = open(saved_file, "w") |
|
|
|
cnt = 0 |
|
new_gt = [] |
|
new_pred = [] |
|
for i, (pred,gt) in enumerate(zip(preds,gts)): |
|
if gt in ["", "<pad>"]: |
|
continue |
|
new_gt.append(gt) |
|
new_pred.append(pred.replace(" ", "")) |
|
if gt == "</s>": |
|
gt_str = " ".join(new_gt) |
|
pred_str = " ".join(new_pred) |
|
assert gt_str == true_gts[cnt].strip(), f"{cnt} sample gt_str != true_gt" |
|
wf.write(pred_str+"\n") |
|
cnt += 1 |
|
new_gt = [] |
|
new_pred = [] |
|
|
|
return cnt |
|
|
|
|
|
def main(): |
|
parser = argparse.ArgumentParser() |
|
|
|
|
|
parser.add_argument("--data_dir", default=None, type=str, required=True, |
|
help="The input data path.") |
|
parser.add_argument("--langs", default=None, type=str, required=True, |
|
help="Languages to train, if all, train all languages in data_dir") |
|
parser.add_argument("--output_dir", default=None, type=str, required=True, |
|
help="The output directory where the model predictions and checkpoints will be written.") |
|
|
|
|
|
parser.add_argument("--model_type", default="gpt2", type=str, |
|
help="The model architecture to be fine-tuned.") |
|
parser.add_argument("--pretrain_dir", default="", type=str, |
|
help="The output directory where the model predictions and checkpoints will be written.") |
|
parser.add_argument("--config_dir", type=str, |
|
help="config name. Required when training from scratch") |
|
parser.add_argument("--tokenizer_dir", type=str, |
|
help="Pre-trained tokenizer dir. Required when training from scratch") |
|
parser.add_argument("--lit_file", type=str, |
|
help="literals json file") |
|
parser.add_argument("--load_name", type=str, default="pretrained", |
|
help="Load pretrained model name") |
|
|
|
parser.add_argument("--mlm", action='store_true', |
|
help="Train with masked-language modeling loss instead of language modeling.") |
|
parser.add_argument("--mlm_probability", type=float, default=0.15, |
|
help="Ratio of tokens to mask for masked language modeling loss") |
|
|
|
parser.add_argument("--cache_dir", default="", type=str, |
|
help="Optional directory to store the pre-trained models downloaded from s3 (instread of the default one)") |
|
parser.add_argument("--block_size", default=1024, type=int, |
|
help="Optional input sequence length after tokenization." |
|
"The training dataset will be truncated in block of this size for training." |
|
"Default to the model max input length for single sentence inputs (take into account special tokens).") |
|
parser.add_argument("--do_train", action='store_true', |
|
help="Whether to run training.") |
|
parser.add_argument("--do_eval", action='store_true', |
|
help="Whether to run eval on the dev set.") |
|
parser.add_argument("--evaluate_during_training", action='store_true', |
|
help="Run evaluation during training at each logging step.") |
|
parser.add_argument("--do_lower_case", action='store_true', |
|
help="Set this flag if you are using an uncased model.") |
|
|
|
parser.add_argument("--per_gpu_train_batch_size", default=4, type=int, |
|
help="Batch size per GPU/CPU for training.") |
|
parser.add_argument("--per_gpu_eval_batch_size", default=12, type=int, |
|
help="Batch size per GPU/CPU for evaluation.") |
|
parser.add_argument('--gradient_accumulation_steps', type=int, default=1, |
|
help="Number of updates steps to accumulate before performing a backward/update pass.") |
|
parser.add_argument("--learning_rate", default=5e-5, type=float, |
|
help="The initial learning rate for Adam.") |
|
parser.add_argument("--weight_decay", default=0.0, type=float, |
|
help="Weight deay if we apply some.") |
|
parser.add_argument("--adam_epsilon", default=1e-8, type=float, |
|
help="Epsilon for Adam optimizer.") |
|
parser.add_argument("--max_grad_norm", default=1.0, type=float, |
|
help="Max gradient norm.") |
|
parser.add_argument("--num_train_epochs", default=1.0, type=float, |
|
help="Total number of training epochs to perform.") |
|
parser.add_argument("--max_steps", default=-1, type=int, |
|
help="If > 0: set total number of training steps to perform. Override num_train_epochs.") |
|
parser.add_argument("--warmup_steps", default=0, type=int, |
|
help="Linear warmup over warmup_steps.") |
|
|
|
parser.add_argument('--logging_steps', type=int, default=1000, |
|
help="Log every X updates steps.") |
|
parser.add_argument('--save_steps', type=int, default=5000, |
|
help="Save checkpoint every X updates steps.") |
|
parser.add_argument('--save_total_limit', type=int, default=None, |
|
help='Limit the total amount of checkpoints, delete the older checkpoints in the output_dir, does not delete by default') |
|
parser.add_argument("--eval_all_checkpoints", action='store_true', |
|
help="Evaluate all checkpoints starting with the same prefix as model_name_or_path ending and ending with step number") |
|
parser.add_argument("--no_cuda", action='store_true', |
|
help="Avoid using CUDA when available") |
|
parser.add_argument('--overwrite_output_dir', action='store_true', |
|
help="Overwrite the content of the output directory") |
|
parser.add_argument('--overwrite_cache', action='store_true', |
|
help="Overwrite the cached training and evaluation sets") |
|
parser.add_argument('--seed', type=int, default=42, |
|
help="random seed for initialization") |
|
parser.add_argument('--not_pretrain', action='store_true', |
|
help="use different dataset") |
|
|
|
parser.add_argument('--fp16', action='store_true', |
|
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit") |
|
parser.add_argument('--fp16_opt_level', type=str, default='O1', |
|
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." |
|
"See details at https://nvidia.github.io/apex/amp.html") |
|
parser.add_argument("--local_rank", type=int, default=-1, |
|
help="For distributed training: local_rank") |
|
parser.add_argument("--node_index", type=int, default=-1, |
|
help="node index if multi-node running") |
|
parser.add_argument("--gpu_per_node", type=int, default=-1, |
|
help="num of gpus per node") |
|
parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.") |
|
parser.add_argument('--server_port', type=str, default='', help="For distant debugging.") |
|
|
|
parser.add_argument('--log_file', type=str, default='') |
|
parser.add_argument('--tensorboard_dir', type=str) |
|
|
|
pool = None |
|
args = parser.parse_args() |
|
|
|
|
|
|
|
if args.model_type in ["bert", "roberta", "distilbert"] and not args.mlm: |
|
raise ValueError("BERT and RoBERTa do not have LM heads but masked LM heads. They must be run using the --mlm " |
|
"flag (masked language modeling).") |
|
|
|
if os.path.exists(args.output_dir) and os.listdir( |
|
args.output_dir) and args.do_train and not args.overwrite_output_dir: |
|
raise ValueError( |
|
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format( |
|
args.output_dir)) |
|
|
|
|
|
if args.server_ip and args.server_port: |
|
|
|
import ptvsd |
|
print("Waiting for debugger attach") |
|
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) |
|
ptvsd.wait_for_attach() |
|
|
|
logger.info("local_rank: %d, node_index: %d, gpu_per_node: %d"%(args.local_rank, args.node_index, args.gpu_per_node)) |
|
|
|
if args.local_rank == -1 or args.no_cuda: |
|
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") |
|
args.n_gpu = torch.cuda.device_count() |
|
else: |
|
torch.cuda.set_device(args.local_rank) |
|
device = torch.device("cuda", args.local_rank) |
|
torch.distributed.init_process_group(backend='nccl') |
|
args.local_rank += args.node_index * args.gpu_per_node |
|
args.n_gpu = 1 |
|
args.device = device |
|
|
|
|
|
|
|
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', |
|
datefmt='%m/%d/%Y %H:%M:%S', |
|
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN) |
|
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s, world size: %s", |
|
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16, |
|
torch.distributed.get_world_size() if args.local_rank != -1 else 1) |
|
|
|
|
|
fh = logging.FileHandler(args.log_file) |
|
logger.addHandler(fh) |
|
|
|
|
|
set_seed(args) |
|
|
|
|
|
if args.local_rank not in [-1, 0]: |
|
torch.distributed.barrier() |
|
|
|
args.start_epoch = 0 |
|
args.start_step = 0 |
|
checkpoint_last = os.path.join(args.output_dir, 'checkpoint-last') |
|
if args.do_train and os.path.exists(checkpoint_last) and os.listdir(checkpoint_last): |
|
args.pretrain_dir = os.path.join(checkpoint_last) |
|
args.config_name = os.path.join(checkpoint_last, 'config.json') |
|
idx_file = os.path.join(checkpoint_last, 'idx_file.txt') |
|
with open(idx_file, encoding='utf-8') as idxf: |
|
args.start_epoch = int(idxf.readlines()[0].strip()) + 1 |
|
|
|
step_file = os.path.join(checkpoint_last, 'step_file.txt') |
|
if os.path.exists(step_file): |
|
with open(step_file, encoding='utf-8') as stepf: |
|
args.start_step = int(stepf.readlines()[0].strip()) |
|
|
|
logger.info("reload model from {}, resume from {} steps".format(checkpoint_last, args.start_step)) |
|
|
|
|
|
special_tokens = get_special_tokens(args.lit_file) |
|
|
|
|
|
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] |
|
pretrained = checkpoint_last |
|
if pretrained: |
|
tokenizer = tokenizer_class.from_pretrained(pretrained, do_lower_case=args.do_lower_case, sep_token='<EOL>', bos_token='<s>', eos_token='</s>', pad_token='<pad>', unk_token='<|UNKNOWN|>', additional_special_tokens=special_tokens) |
|
if args.model_type == "rnn": |
|
model = model_class(len(tokenizer), 768, 768, 1) |
|
model_last = os.path.join(pretrained, 'model.pt') |
|
if os.path.exists(model_last): |
|
logger.warning(f"Loading model from {model_last}") |
|
model.load_state_dict(torch.load(model_last, map_location="cpu")) |
|
else: |
|
model = model_class.from_pretrained(pretrained) |
|
model.resize_token_embeddings(len(tokenizer)) |
|
else: |
|
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_dir, sep_token='<EOL>', bos_token='<s>', eos_token='</s>', pad_token='<pad>', unk_token='<|UNKNOWN|>', additional_special_tokens=special_tokens) |
|
args.vocab_size = len(tokenizer) |
|
if args.model_type == "rnn": |
|
model = model_class(len(tokenizer), 768, 768, 1) |
|
else: |
|
config = config_class.from_pretrained(args.config_dir) |
|
model = model_class(config) |
|
model.resize_token_embeddings(len(tokenizer)) |
|
|
|
|
|
model_parameters = model.parameters() |
|
num_params = sum([np.prod(p.size()) for p in model_parameters]) |
|
logger.info(f"Model has a total of {num_params} trainable parameters") |
|
|
|
if args.local_rank == 0: |
|
torch.distributed.barrier() |
|
|
|
logger.info("Training/evaluation parameters %s", args) |
|
|
|
|
|
if args.do_train: |
|
train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False) |
|
|
|
global_step, tr_loss = train(args, train_dataset, model, tokenizer, fh, pool) |
|
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) |
|
|
|
|
|
if args.do_eval: |
|
checkpoint_prefix = 'epoch_5/subject_model.pth' |
|
output_dir = os.path.join(args.output_dir, '{}'.format(checkpoint_prefix)) |
|
model.load_state_dict(torch.load(output_dir)) |
|
model.to(args.device) |
|
|
|
|
|
|
|
test_total, test_cr = eval_acc(args, model, tokenizer, 'test') |
|
logger.info(f"Test total tokens: {test_total}, accuracy: {test_cr/test_total}") |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|